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Fair Queueing With Service Envelopes (FQSE):
A Cousin-Fair Hierarchical Scheduler

for Subscriber Access Networks
Glen Kramer, Member, IEEE, Amitabha Banerjee, Student Member, IEEE,

Narendra K. Singhal, Student Member, IEEE, Biswanath Mukherjee, Member, IEEE,
Sudhir Dixit, Senior Member, IEEE, and Yinghua Ye, Member, IEEE

Abstract—In this paper, we propose and investigate the char-
acteristics of a fair queueing with service envelopes (FQSE)
algorithm—a hierarchical fair-share scheduling algorithm for
access networks based on a remote scheduling system such as
Ethernet passive optical networks (EPON) or cable TV network.
FQSE is designed to overcome the limiting factors of a typical re-
mote scheduling system such as large control-plane delay, limited
control-plane bandwidth, and significant queue switch-over over-
head. The algorithm is based on a concept of service envelope—a
function representing the fair allocation of resources based on
a global network condition called satisfiability parameter (SP).
We define properties of cousin-fairness and sibling-fairness and
show the FQSE to be cousin-fair. FQSE is unique in that it is the
only hierarchical algorithm that is simultaneously cousin-fair.
Furthermore, we show the necessary techniques to adapt FQSE
to variable-sized packet-based networks. We analyze FQSE
performance in EPON serving 1024 independent queues and
demonstrate FQSE’s ability to provide guaranteed bandwidth to
each queue and to share the excess bandwidth fairly.

Index Terms—Ethernet passive optical networks (EPON), fair
queueing, remote scheduling, subscriber access networks.

I. INTRODUCTION

O
VER the past twenty years, a lot of attention has been
given to the problem of fair scheduling and fair resource

allocation. The authors’ desire to revisit the scheduling problem

came from their participation in IEEE 802.3ah “Ethernet in the

First Mile” task force, a standard body chartered with extending
the Ethernet standard (IEEE 802.3) into the access network area.

Among other architectures, the task force is standardizing Eth-

ernet passive optical networks (EPONs)—an architecture com-

bining Ethernet operation (media-access control and variable-
length packet format) with an all-fiber tree-based topology. We

found, to our surprise, that among the multitude of existing

fair-scheduling algorithms, no one is suitable for EPON or for

a remote scheduling system, in general. We define a remote

scheduling system as a scheduling (resource-sharing) domain in
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which the queues (customers) and the scheduler (server) are lo-
cated at a large distance from one another. EPON is just one ex-

ample of a remote scheduling system; other examples include

wireless (cellular) or cable TV networks. The properties of a

typical remote scheduling system such as large control-plane
delay, limited control-plane bandwidth, and significant queue

switch-over overhead do not allow easy adaptation of existing

scheduling algorithms.

In this paper, we propose and investigate the characteristics

of a new algorithm, called fair queueing with service envelopes
(FQSE), which addresses the issues specific to remote-sched-

uling systems. FQSE is not only applicable to EPON systems,

but can be generalized to other point-to-multipoint topologies,

e.g., wireless networks or coax-tree networks.

A. EPON—An Example of a Remote Scheduling System

An EPON is a point-to-multipoint (PtMP) optical network

with no active elements in the signals’ path from source to des-
tination. The only interior elements used in EPON are passive

optical components, such as optical fiber, splices, and splitters.

EPON architecture saves cost by minimizing the number of op-

tical transceivers, central office terminations, and fiber deploy-

ment. We refer the reader to [1] for an in-depth description of
EPON architecture.

All transmissions in an EPON are performed between a

head-end called optical line terminal (OLT) and tail-ends called

optical network units (ONUs) (Fig. 1). The ONU serves either
a single subscriber (fiber-to-the-home) or multiple subscribers

(fiber-to-the-curb or fiber-to-the-multidwelling-unit). In the

downstream direction, EPON is a broadcasting media; Ethernet

packets transmitted by the OLT pass through a passive
splitter or a cascade of splitters and reach each ONU. An ONU

filters packets destined to its users and discards the rest (Fig. 1).

In the upstream direction (from the ONUs to the OLT), the

ONUs need to employ some arbitration mechanism to avoid
data collisions and fairly share the channel capacity. This is

achieved by the OLT allocating (either statically or dynamically)

a nonoverlapping transmission window (time slot) to each ONU.

To enable time slot assignment, the IEEE 802.3ah task force is

developing a multipoint control protocol (MPCP). MPCP uses
two media access control (MAC) messages: GATE and RE-

PORT.1 GATE message is sent from the OLT to an ONU and

1Additional messages defined by the MPCP are used by the initialization
process.

0733-8716/04$20.00 © 2004 IEEE
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Fig. 1. Upstream and downstream transmissions in EPON.

is used to assign a time slot to the ONU. The REPORT message

is sent from an ONU to the OLT to request a next time slot of

specific size. Each message is a standard 64-byte MAC Control

frame. MPCP is only a message-exchange protocol; it does not

specify any algorithm for bandwidth allocation.

In a remote scheduling system like EPON, queues (con-

sumers) could be physically located at a large distance from the

centralized scheduler (server) and from one another. This leads

to several often-ignored system properties such as significant

queue switch-over overhead, large control-plane propagation

delay, and limited control-plane bandwidth.

Significant Queue Switch-Over Overhead: When switching

from one ONU to another, the receiver may need some addi-

tional time to readjust the gain since the power levels received

from ONUs are different. In addition, the ONUs are required

to keep lasers turned off between the transmissions (see [2]).

Turning a laser on and off is not an instantaneous process and

will also contribute to the switch-over overhead. This leads to a

significant overhead when switching from one ONU to another.

For example, in EPON, the maximum overhead is 2 s.2

Large Control-Plane Propagation Delay: Control-plane

delay is negligible for local schedulers (system-in-a-chip ar-

chitectures or when queues and the scheduler are connected

through a back-plane). But, in a remote scheduling system, the

physical distances can be large and delay can exceed by many

times the packet transmission time. In addition, in systems like

EPON, the control messages are in-band and can be transmitted

only in a previously assigned time slot. Thus, the control

message delay increases even more, now due to waiting for the

next time slot to arrive. This results in the scheduler always

operating with somewhat outdated information.

Limited Control-Plane Bandwidth: Scheduling multiple

clients (queues, ONUs) may require a separate control message

to be sent periodically from the scheduler located at the OLT to

each client (GATE message) and from each client to the sched-

uler (REPORT message). Increasing the number of clients may

give rise to scalability issues when a significant fraction of the

total EPON bandwidth is consumed by the control messages.

2The 2 �s time interval includes laser on/off, automatic gain control (AGC),
and clock-and-data recovery (CDR) times.

B. Objectives of a Remote Scheduling Algorithm

In this paper, we consider an application of a remote sched-

uler in a subscriber access network. In this network, an ONU

may serve one or more subscribers and can have one or more

queues assigned to each subscriber. Different queues belonging

to one subscriber can be used, for example, to serve different

classes of traffic (i.e., voice, video, and data) with different

quality-of-service (QoS) guarantees. To satisfy the network

requirements, a remote scheduler should meet the following

objectives.

Scalability: The algorithm should support a large number of

queues (several hundreds to several thousands). The algorithm

should be efficient and scalable with the number of queues,

i.e., overhead should not grow significantly with the number of

queues served.

Guarantees: Unlike enterprise local area networks (LANs),

access networks serve noncooperative users; users pay for ser-

vice and expect to receive their service regardless of the network

state or the activities of the other users. Therefore, the network

operator must be able to guarantee a minimum bandwidth

to each queue assuming, of course, that the queue has enough

data to send.

Fairness: Idle queues should not use any bandwidth. Ex-

cess bandwidth left by idle queues should be redistributed

among backlogged queues in a fair manner, i.e., in proportion to

weight assigned to each queue ( ). The

fairness of bandwidth distribution should be preserved regard-

less of whether the queues are located in the same ONU or in

different ONUs.

C. Previous Work

Generalized processor sharing (GPS) [3] is an idealistic fluid

model supporting fair resource sharing. Many algorithms were

derived from GPS to support fair queueing in systems with

atomic protocol data units (i.e., nondivisible cells or packets):

weighted fair queueing (WFQ) [4], worst-case fair weighted

fair queueing ( ) [5], virtual-clock fair queueing (VCFQ)

[6], self-clocked fair-queueing (SCFQ) [7], start-time weighted

fair queueing (STFQ) [8], and many others. These algorithms

were shown to distribute excess bandwidth among the queues
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Fig. 2. Flat (single-level) scheduling in EPON.

almost fairly, i.e., at any moment of time, the amount of service

a queue received would differ from an ideal fluid model by

at most one maximum-sized data unit (packet or cell). In the

following sections, we consider specific characteristics of these

and other protocols and their suitability to remote-scheduling

systems.

1) Virtual-Time Versus Cycle-Based Schedulers: Packet-

based GPS (and its derivatives) schedule packets based on their

virtual finish time (start time, bin number, etc.). Virtual times

depend on packet arrival times and relative weights assigned to

queues. This may result in a situation when consecutive packets

are sent from different queues located in different ONUs. But

this will require a guard time between each pair of such packets.

Taking average Ethernet packet size to be bytes (mea-

sured on a real-access network upstream traffic [9]), EPON line

rate of 1 Gb/s, and guard time of 2 s, we obtain

overhead

(This calculation assumes that no two consecutively served

queues belong to the same ONU.) For smallest Ethernet packet

sizes (64 bytes), this overhead can reach 80% (i.e., 80% of

bandwidth is wasted on guard time). Thus, algorithms based on

virtual-time in EPON are impractical.

An alternative solution is to employ a cycle-based (also called

frame-based) algorithm, where all queues are served consec-

utively in round-robin fashion. The order of service may be

chosen such that all queues belonging to the same ONU are

served continuously without a guard band between them. The

guard band will only be needed when switching from one ONU

to another. A simple extension of round robin in which the ser-

vice quanta for each queue is proportional to the queue’s weight

is called weighted round robin (WRR).

2) Flat (Single-Level) Versus Hierarchical (Multilevel)

Schedulers: Applying a single-level algorithm to an EPON

means that a scheduler located in the OLT would individually

schedule each consumer (queue) located in multiple ONUs

(Fig. 2) such that the required service guarantees are preserved

Fig. 3. Hierarchical scheduling in EPON.

and the excess bandwidth (if any) is fairly divided among

backlogged queues.

Scheduling multiple queues requires a separate GATE mes-

sage to be sent to each queue and a separate REPORT mes-

sage to be received from each queue. Consider an EPON system

with 32 ONUs, 128 subscribers per ONU, and three queues per

subscriber, for a total of 12 288 queues. This adds considerable

overhead for control messages. For example, assuming that 1/3

of all queues are used for voice traffic with a delay bound of

1.5 ms [10], the OLT should be able to generate 4096 GATE

messages within 1.5-ms interval, but at 1-Gb/s EPON rate, it

takes 2.75 ms to transmit this many GATE messages (without

any data packets); so, 4096 voice queues cannot be supported.

Based on this observation, we conclude that, in a remote sched-

uling environment, single-level schedulers are nonscalable with

the number of queues.

Several algorithms have been developed to support hierar-

chical scheduling [hierarchical fair queueing (HFQ) [11], hi-

erarchical round robin (HRR) [12], etc.]. In such schemes, all

queues are divided into groups. The high-level scheduler sched-

ules the groups (i.e., provides aggregated bandwidth per group),

while the low-level schedulers schedule the queues within each

group. The root scheduler treats each group as one consumer and

has no information about internal composition of each group.

EPON can be naturally divided into a hierarchy of schedulers,

where the high-level scheduler is located in the OLT and sched-

ules individual ONUs, and the low-level scheduler is located in

each ONU and schedules queues within the ONU (Fig. 3).

In the hierarchical EPON scheduling scheme, the root sched-

uler (OLT) only schedules the intermediate nodes (ONUs).

The OLT would receive one REPORT message from an ONU

and would generate one GATE message for the ONU. The

GATE and REPORT messages would grant and request an

aggregated bandwidth per ONU (i.e., a large time slot which

the ONU would internally share among its queues). A hierar-

chical scheme solves the scalability issue due to elimination

of separate GATE and REPORT messages for each queue. It

also solves the switch-over overhead issue due to the fact that
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Fig. 4. (a) Sibling-fair scheduling based on cumulative group weight �'.
(b) Sibling-fair scheduling based on cumulative group work�q. (c) Cousin-fair
scheduling.

all queues in one ONU are served consecutively with no guard

times between their transmissions. (Guard times remain only

when the OLT switches to serve the next ONU.)

3) Sibling-Fair Versus Cousin-Fair Schedulers: The chal-

lenging issue with a hierarchical scheme is supporting fair re-

source distribution among queues in different groups (ONUs).

Most hierarchical scheduling protocols known to the authors

allow fairness only among siblings (i.e., nodes having the same

parent). We call such schedulers sibling-fair or locally fair

schedulers. Fig. 4 illustrates bandwidth distribution among 5

queues separated into two groups, and ( and

). Each queue is characterized by its weight

and its size (unfinished work) . The amount of service each

queue gets is denoted by .

In Fig. 4(a), the scheduler makes its bandwidth-allocation de-

cision based on cumulative weight of each group. Queue 5

has less unfinished work and, thus, requires less service. Unused

service left by queue 5 is distributed among its siblings 3 and 4

assuming schedulers at each level are work conserving. It can be

easily observed that siblings at each level receive mutually fair

service , i.e., for any queues and with sufficient amount of

unfinished work ( ), the bandwidth is allocated in pro-

portion to their weights . However, the fairness

does not extend across multiple groups. For example, we can

see that and , but

and . Similar outcome is observed if

the service is distributed based on any other single value, e.g.,

the cumulative amount of unfinished work in a group, as shown

in Fig. 4(b).

Fig. 4(c) illustrates the desired service distribution that

achieves fairness among all leaves with sufficient unfinished

work ( ). We call this

scheme a cousin-fair (or globally fair) scheduling, in contrast

to the sibling-fair scheme described above. This scheduler does

not provide fairness among intermediate nodes, but allows fair-

ness among all leaves, no matter which group they belong to.

Fig. 4(c) shows that the bandwidth allocated to an intermediate

node should dynamically change based on the state of all the

leaves. While cousin fairness is illustrated here for a two-level

system, it is easy to generalize the concept to a hierarchical

scheduling system with an arbitrary number of levels.

We note that Rexford et al. in [13] reported a dynamic weight-

adjustment scheme that allows a hierarchical scheduler to be

cousin-fair. In their algorithm, a root-level scheduler receives

from each group a cumulative weight as a sum of weights of

all nonempty queues in a group, i.e., it is a scheme shown in

Fig. 4(a). As soon as a busy queue becomes empty or an empty

queue becomes busy, the root scheduler should learn the new

weight. Thus, this algorithm is only suitable for systems with a

small propagation delay and not for remote scheduling systems.

Summarizing the above survey of scheduling mechanisms,

we conclude that, in order to satisfy the objectives stated in

Section I-B, the scheduling algorithm should be hierarchical,

cycle-based, and cousin-fair. To the best of our knowledge, no

such algorithm has been described in the literature yet.

This paper is organized as follows. Section II gives a formal

definition of fair scheduling for the case where the queues are

allocated guaranteed minimum bandwidth and are assigned

weights for sharing the excess bandwidth. In Section III,

we present the framework of FQSE suitable for an ideal-

ized fluid-network model and discuss the tradeoff between

complexity and resource-allocation efficiency (utilization). In

Section IV, we introduce additional mechanisms necessary to

adopt FQSE for a network based on variable-sized packets.

Specifically, we consider a subscriber access network based on

EPON. In Section V, we analyze the performance of FQSE,

illustrate its cousin fairness, and derive bounds on fairness

(often called fairness index). We verify our analytical results

using simulation experiments. Section VI concludes this paper.

II. FAIR-SHARE REMOTE SCHEDULING SYSTEM—

A FORMAL DEFINITION

As stated in Section I-B, the objectives of a remote sched-

uler is to guarantee minimum service to each queue and

fairly share the excess service . Typically, bandwidth is dis-

tributed in time slots, i.e., a time slot (transmission window)

of size bytes is given to a queue once every seconds (

is called the cycle time). Thus, it is convenient to define min-

imum (guaranteed) time slot size that should be given to

a queue to guarantee its minimum bandwidth (

). We also define as the total available service

in one cycle time (i.e., the number of bytes that can be trans-

mitted in time ). Clearly, to guarantee minimum bandwidth,

the sum of all should not exceed . The actual

minimum slot size that a queue gets in cycle is

(1)
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where is the length of queue at the beginning of cycle .

Equation (1) states that a queue should never be given a slot

larger than the amount of data the queue has accumulated. Total

remaining transmission-window size (excess bandwidth)

left in cycle after assigning all minimum slots to all the queues

is equal to

(2)

We define a backlogged queue to be a queue which cannot

or will not be served to exhaustion in one cycle (one queue

transmission). The set of all queues backlogged in cycle is de-

noted by . Each queue that remains backlogged after serving

bytes (i.e., with ) should get a share of the

excess bandwidth proportional to its weight , i.e.,

(3)

The subtle problem with the definition in (3) arises due to

the fact that a queue shall not be given more slot size than it has

data to transmit. Thus, if the guaranteed slot together with

excess slot exceeds the queue length , the queue will

be given a slot size equal to . This means that queue will

be served to exhaustion and, thus, it should not be considered a

backlogged queue any more. Removing queue from the set

of backlogged queues will affect the amount of remaining ex-

cess bandwidth, as well as the share of each queue that remains

backlogged. To capture this effect, we amend (3) as follows:

(4)

Equation (4) says that the excess slot size given to a queue will

either be just enough to serve the queue to exhaustion (if queue

does not belong to a set of backlogged queues); otherwise, it

will be served in proportion to the queue’s weight and the

total number of bytes remaining available after serving to ex-

haustion all nonbacklogged queues and assigning the minimum

guaranteed time slots to all backlogged queues. It is important to

understand that this is a recursive definition, since the member-

ship in set is determined as: iff .

Summing (1) and (4), we get the total time slot size given

to a queue in cycle to be shown in (5) at the bottom of the

page.

Finally, the cumulative size of all slots assigned in one cycle

cannot exceed the cycle capacity . The cumulative slot

size also cannot exceed the sum of all queue lengths (i.e., in the

case when all the queues can be served to exhaustion in one

cycle). This is reflected in (6)

(6)

It is easy to verify that (5) summed for all queues indeed com-

plies with the requirement in (6).

A solution to a system of equations described by (5) consti-

tutes a valid schedule compliant with the requirements for guar-

anteeing the minimum bandwidth and fairly sharing the excess

bandwidth.

By specifying the minimum bandwidth (or minimum

time slot ) and the weight per connection, the network

operator can provision different types of services to subscribers

(queues). Table I presents some examples of specifying different

services.

III. FAIR QUEUEING WITH SERVICE ENVELOPES (FQSE)

FQSE is a hierarchical remote-scheduling algorithm that dis-

tributes service in accordance with (5). The algorithm is based

on a concept of a service envelope (SE). A service envelope rep-

resents the amount of service (time slot size) given to a node as a

function of some nonnegative value which we call satisfiability

parameter (SP). SP is a measure of how much the demand for

bandwidth can be satisfied for a given node.

In a scheduling hierarchy, each node has its associated SE

function. We distinguish the construction of a service envelope

for a leaf (denoted ) from the construction of a service enve-

lope for a nonleaf node (denoted ).

is a piecewise-linear function consisting of at most

two segments (see Fig. 5, plots and ). The first seg-

ment begins at a point with coordinate (0, ) and ends at

( ). The ending SP value is chosen such

that the slope of the first segment is exactly . The second

segment has a slope equal to 0 and continues to infinity.

Intuitively, the meaning of the function should be clear: as

the satisfiability parameter changes, the function determines

the fair time slot size for the given queue. In the worst case (i.e.,

when ), an exact -byte time slot will be given

to the queue (i.e., the queue will get its guaranteed minimum

service). As satisfiability parameter increases, the queue will

be given an additional time slot (excess bandwidth) equal to .

When the time slot size reaches (total queue length), it will

not increase any more, even if increases. In case a queue has

less data than its guaranteed slot size (i.e., ), the

function will consist of only one segment with slope zero

(Fig. 5, plot ).

(5)
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TABLE I
EXAMPLES OF QUEUE CONFIGURATIONS

Fig. 5. Construction of service envelopes.

The service envelope of a nonleaf node is built as a sum

of service envelopes of all the node’s children

(7)

where is a set containing all children of node . This is illus-

trated in Fig. 5, plot .

The FQSE algorithm consists of alternating requesting and

granting phases. The following are the steps of the algorithm.

A. Phase 1–Requesting Service

At the end of transmission in a previously assigned time slot,

a node should generate a new service envelope and send it to its

parent in a request message. After collecting service envelopes

from all its children, an intermediate node would generate its

own service envelope by summing all received envelopes and

send it to its parent.

A request message typically has a fixed format and may con-

tain at most point coordinates representing knots of the piece-

wise-linear service envelope. Since the number of children of

any intermediate node can be arbitrarily large, the service en-

velope of node may contain an arbitrarily large number of

points. In case that the actual number of points , node

will perform a piecewise linear approximation of the function

such that the -point function is described with only

points and can be transmitted in one request message. (The

approximation procedure is described in Section III-C.) The ap-

proximated function is denoted . Thus, (7) can be rewritten

as follows:

(8)

where is the approximated service envelope of the th child

of node in cycle .

The requesting phase ends when the root node receives ser-

vice envelopes from all its children and calculates its own ser-

vice envelope .

B. Phase 2–Granting Service

The root node knows the total number of bytes that can be

transmitted in one cycle ( ). When the root sched-

uler obtains the function in cycle , it calculates the

satisfiability parameter by solving .

Knowing the cycle start time and the satisfiability parameter

, the root node calculates the time slot start time for

each child such that transmissions from each child

do not overlap. This calculation is performed by a procedure

shown in Fig. 6. The time slot

start time and the satisfiability parameter are then

transmitted to each child in a grant message.3

Upon receiving the grant message, each intermediate node

invokes the same procedure to

further subdivide the time slot among its children.

The granting phase ends with each leaf node receiving

the grant message. When leaf node receives the grant

message containing the time slot start time and the satis-

fiability parameter , it will calculate its own time slot size

. When the local clock in the leaf node reaches

3The time slot start time in a grant message should be “precompensated” for
the round-trip propagation delay as explained in [1].



KRAMER et al.: FQSE: A COUSIN-FAIR HIERARCHICAL SCHEDULER FOR SUBSCRIBER ACCESS NETWORKS 1503

Fig. 6. PROCESS_GRANT procedure calculates start times for all children of
node i.

time , the leaf node starts transmission and transmits

bytes of data.4

C. Service Envelope Approximation Schemes

In the requesting phase (phase 1), each intermediate node

would collect service envelopes from all its children and create

service envelope , which it will send to

its parent in a Request control message. A Request message

can only accommodate a fixed number of points . If node

has children, the function may have points:

(the first point always has

and will coincide for all children). If the actual number

of points , node will perform a piecewise-linear

approximation of the function such that the -point SE

function is described with only points. We denote the approx-

imated function by .

In performing this approximation, we set our ob-

jective at minimizing the maximum error (minimize

). We also require that the error

is nonnegative ( ). It is easy to see that

allowing a negative error would mean that a time slot granted

by a parent to a child ( ) could be smaller than the time

slot assumed by the child ( ). This may cause a collision

with the data transmitted by some other child of parent node.

Keeping the approximation error nonnegative will at most

increase the dead zone between two adjacent time slots (i.e.,

it may reduce the channel’s utilization), but it will ensure that

each node can get its fair slot size and no data collisions will

occur due to slot overlaps.

The approximation procedure employs two functions:

and .

Given a fixed maximum error and the original service

envelope , the function

constructs an approximated service envelope , which has the

minimum number of points. This procedure returns SUCCESS

if the approximated envelope can be constructed with or less

points, and FAILURE, otherwise.

4The actual transmission size may be less than w bytes for the case of
packet-based networks due to nondivisible packets not filling the time slot com-
pletely. The necessary adaptation mechanisms for variable-size-packet-based
schedulers are discussed in Section IV.

Fig. 7. Approximating the service envelope E.

Function performs binary search

on invoking CONSTRUCT_APPROX at each step.

This function will stop when it finds such that

, but

, where

is the smallest error increment (some small constant).

constructs an approx-

imated piecewise-linear enevelope , as explained in the

following steps.

Step 1) Construct a piecewise linear curve (Fig. 7), all

points of which have an error from the original

service envelope.

Step 2) Draw a line which coincides with the last seg-

ment of the original envelope (segment ( ) in

Fig. 7).

Step 3) Extend the first segment ( ) until it intersects the

curve or the line , whichever appears first. Call

the point of intersection .

Step 4) From , draw a tangent to the original service en-

velope so that it intersects at point . (It may

happen that the tangent has the same slope as one

of the segments, in which case the tangent inter-

sects at multiple points.)

Step 5) Extend the tangent ( ) until it intersects the curve

or the line again. Call the new intersection

point .

Step 6) Repeat steps 4 and 5 for each new point of intersec-

tion with curve or line until such new points

are found or the last point of the original curve

(point in the example on Fig. 7) is reached.

In [14], we proved that slopes of segments of any service

envelope are decreasing, i.e., for any segments and ,

iff . Relying on this property of service envelopes, the test

of whether line ( ) is tangential to can be performed in

time. Indeed, since the segment slopes are strictly decreasing;

line ( ) will be tangential to if and only if the slope of ( )

is larger than or equal to the slope of ( ) and the slope of ( )

is smaller than or equal to the slope of ( ).

Each point of the original service envelope is passed only

once, whether while searching for a tangential line, or searching

for the intersection of the tangential line with the curve .
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Fig. 8. Relative approximation error.

Therefore, CONSTRUCT_APPROX runs in , where

is the number of points in curve as defined earlier.5

Finally, procedure invokes CON-

STRUCT_APPROX at most times, where

is the maximum error possible for any service envelope.

Because only bytes can be granted in one cycle,

no service envelope needs to have any points with envelope

value exceeding .6 Thus, no approximation error can

exceed (i.e., ). To summarize,

the running time of the entire approximation procedure is

. Pseudocode implementations of CON-

STRUCT_APPROX (Fig. 16) and FIND_APPROX (Fig. 18)

functions are shown in Appendix A.

We measured the approximation error using a simulation ex-

periments with a large number of randomly generated service

envelopes. Fig. 8 presents the average relative approximation

error (measured as ) for different reduction ratios

( ). Each point on a plot represents the average error

measured over 10 000 service envelopes.

It can be seen that the average approximation error stabilizes

at 0.001 28, i.e., we can expect each intermediate node to intro-

duce 0.128% overhead. While this overhead is reasonably small

for one node, it may accumulate for multiple nodes. Thus, the

scheduling hierarchy should be designed in such a way as to

keep the number of intermediate nodes small.

D. FQSE Complexity

In the requesting phase, each node should perform two op-

erations: 1) obtain service envelope by summing service en-

velopes received from all its children and 2) perform approx-

imation, if necessary.

Each envelope received from a child may contain at most

points and is sorted by satisfiability parameter . Thus, to

calculate its service envelope, node should first merge points

of received envelopes together, and then it should calculate the

cumulative envelope values at each point. Performing pair-wise

merging, node would first merge pairs of -point

5In [14], we have additionally considered an implementation of CON-
STRUCT_APPROX performing binary search over the points of the original
service envelope to locate the tangent line and its intersections. This version
runs in O(K logm) time.

6If, after summing all the envelopes received from the children, some points
have envelope values aboveW , such points should be pruned from the
resulting envelope.

envelopes resulting in -point envelopes. In the next

iteration, these envelopes will be merged together

resulting in -point envelopes. Node will continue

merging until, after steps, the last pair is merged into

one -point envelope. Therefore, the complexity of this

operation is

In the following step, node may need to perform

an approximation procedure. As was shown in Sec-

tion III-C, the complexity of this operation is bounded by

(since ). Thus, the overall

complexity of the requesting phase at each node is bounded by

.

In the granting phase, each node invokes

procedure (Fig. 6) to send a

Grant message to each child; therefore, the total work in the

granting phase is .

E. Granting Schemes

The FQSE algorithm requires the root scheduler to receive

service envelopes from all its children before calculating the

satisfiability parameter for the next cycle. Each intermediate

node should also receive the envelopes from all the children be-

fore generating its own envelope. Fig. 9 illustrates this granting

scheme for the scheduling hierarchy shown in Fig. 4. The ob-

vious drawback of this scheme is that each cycle will incur an

overhead equal to the maximum round-trip delay plus message

processing delay at each level in the hierarchy.

In an alternative approach, the root node may separate its chil-

dren into two or more groups and schedule each group indepen-

dently. Fig. 10 presents an example of dividing all the nodes into

two groups: A and B. The root schedules nodes from group A,

while collecting requests from group B. Then, when all the re-

quests from group B are collected, the root would schedule all

nodes from group B, while receiving requests from group A.

This scheme is free from the overhead shown in Fig. 9, but it pro-

vides fairness only among queues within each of the two groups.

The impact of the fact that fairness is only provided within

each group can be lessened by carefully grouping the queues.

For example, some service-level agreements (SLA) may only

require fixed guaranteed bandwidth and no excess bandwidth.

Such queues do not participate in excess bandwidth sharing and,

therefore, are good candidates for being grouped together. The

rest of the queues could be placed in the other group, and they

will get a fair share of the excess bandwidth. Another situation

when grouping may become even more beneficial is when dif-

ferent types of customers are served by the same subscriber ac-

cess network, e.g., business and residential subscribers may be

separated into different groups.

IV. FQSE ADAPTATION FOR EPON

So far, in our description, we assumed a fluid network model

in which the transmission quanta can be infinitesimally small.

The time slot assignment guarantees fairness in term of raw

bandwidth, i.e., when an entire time slot can be utilized if there is

data available in the corresponding queue. This FQSE algorithm
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Fig. 9. Collecting all requests before scheduling grants.

Fig. 10. Scheduling two groups of nodes separately.

can be easily adapted for asynchronous transfer mode (ATM)

traffic by simply measuring the time slot size in units of ATM

cells (53 bytes). In EPON, however, we are dealing with indivis-

ible packets of variable sizes. Ethernet packets cannot be frag-

mented; therefore, if the head-of-line (HOL) packet does not fit

in the remaining time slot, it will be deferred to the next time

slot, while the current time slot will have an unused remainder

[15]. This creates two additional issues that the algorithm must

address: HOL blocking and bandwidth utilization.

A. HOL Blocking

HOL blocking is a result of coupling between bandwidth and

latency in a time-sharing packet-based system. It is best ex-

plained by an example. Consider the case when a connection

should be provisioned a guaranteed bandwidth of 1 Mb/s (and

no excess bandwidth) and latency ms (i.e., cycle time is

1 ms). This connection should be given a fixed time slot of size

Mb/s ms bytes. All Ethernet packets exceeding

the 125-byte size will be blocked in this case. Increasing the

time slot size would require a larger cycle time in order to keep

the connection bandwidth at a fixed value of 1 Mb/s. However,

larger cycle times will violate latency requirements.

To resolve the HOL blocking problem, we allow a connection

to occasionally request a minimum slot size larger than its guar-

anteed minimum slot size . This approach may lead to a

loss of short-term fairness, when, in one cycle, a queue may be

given a larger slot to accommodate a larger packet. To account
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for overused bandwidth (i.e., to maintain long-term fairness),

we introduce a per-queue counter called overdraft. Overdraft of

queue at the beginning of cycle (denoted ) is estimated

as

(9)

where minimum time slot size requested by queue

in cycle and nominal minimum time slot (

). A positive overdraft value means that the queue con-

sumed more service than it is entitled to. Denoting

size of HOL packet in queue at the beginning of th cycle,

we calculate as follows:

(10)

Equation (10) says that, if no excess service was received by

an ONU before the th cycle, the ONU may request a larger

time slot in the th cycle to accommodate a large HOL packet.

This, of course, will be counted as a service overdraft (

), and, in the following few cycles, the queue may be reverse-

compensated by receiving less service, until overdraft becomes

less than or equal to zero. At this point, if the next HOL packet

exceeds , the queue will get excess service again.7

We analyze the effects of loss of short-term fairness due to

the HOL-blocking avoidance mechanism in Section V-D.

B. Bandwidth (Time Slot) Utilization

Ethernet traffic consists of nondivisible packets of variable

sizes. In most cases, these packets cannot fill the slot completely

(i.e., packet delineation in a buffer does not match slot size).

This leads to an unused slot remainder and decreased bandwidth

utilization. In [15], we derived a formula for the estimated size

of the remainder for an arbitrary packet-size distribution. With

the empirical trimodal packet-size distribution reported in [9],

the average size of the remainder is 595 bytes.

While each individual queue may be blocked on HOL packet,

all the remainders together (assuming there are many queues in

an ONU) constitute a considerable chunk of slot space, suffi-

cient for sending several more complete packets. To utilize this

bandwidth, we borrow the idea of per-queue deficit counters

from the deficit round-robin (DRR) algorithm [16]. An unused

remainder is added to the queue’s deficit. When all queues have

transmitted all their frames that fit in their granted slots ,

the ONU performs a second pass and attempts to transmit the

HOL packet from a queue with the highest value of its deficit

counter. When a packet is transmitted, the value of the deficit

counter is decremented by the size of the transmitted packet.

The value of the deficit counter is retained between the cycles

and can accumulate if a queue does not get a chance to send

additional data to compensate for previously unused remain-

ders. This approach efficiently utilizes the bandwidth, with one

remainder left per ONU, rather than one remainder per each

7With a small probability, the cumulative request from all the queues may
exceed the cycle capacityW . Should this happen, the cycle time must
increase to accommodate larger slots. Increased cycle time can affect the accu-
racy of bandwidth assignment and the SLA guaranteed to a subscriber. In [14],
we investigated a way to combat this problem by controlling the guaranteed
bandwidth provisioning.

Fig. 11. Size of unused remainder in an ONU.

queue. Additionally, because an ONU can choose among the

HOL packets in all the backlogged queues, the remainder left

per ONU is considerably smaller than the one associated with a

single first-in–first-out (FIFO) queue. Fig. 11 shows the average

size of the unused ONU remainder as a function of the number

of backlogged queues in the ONU. It is interesting to notice the

effects of multiplexing gain on slot utilization. When there is

only one backlogged queue, the average remainder is 595 bytes.

When the number of backlogged queues per ONU reaches 16,

the average remainder drops to only 40 bytes. Further increase

in the number of backlogged queues does not provide any sig-

nificant improvement.

While using the deficit counter scheme, we should be aware

of two problems: starvation of an old queue and starvation of a

new queue. By new queue, we mean a queue that became busy

after a long idle interval; an old queue is a queue that has been

busy for a long period of time.

As was explained in [16], idle queues should not accumu-

late the deficit. Allowing the deficit to accumulate during idle

periods would permit a new queue to get an unfairly large band-

width at the expense of old queues, which will lead to starvation

of old queues. Thus, the deficit counter remains zero for all idle

queues.

One important distinction between FQSE and DRR scheme

is that the deficit cannot be completely satisfied in FQSE; no

matter how many queues the ONU has, the average unused slot

remainder is not zero. In other words, after each transmission

cycle, the cumulative unsatisfied deficit would increase by the

size of the unused slot remainder (one remainder per ONU). For

old queues, this deficit may accumulate for as long as the queues

remain busy. When a previously idle queue becomes busy (i.e.,

a new queue appears), its deficit is much lower than the deficit

of a queue that was busy for a long time (due to accumulation of

unsatisfied deficit). This could lead to starvation of a new queue.

To overcome this problem, after each transmission opportunity,

all deficit counters will be decreased by the value of the smallest

deficit counter among all the busy queues. In other words, we

enforce a condition that the “most satisfied” old queue always

has . Since deficit does not accumulate for idle

queues, any new queue will have deficit 0 and, thus, would have

the same chance for service as the “most satisfied” old queue.
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TABLE II
SYSTEM PARAMETERS

V. FQSE PERFORMANCE

A. Experimental Setup

In this paper, we consider an EPON access network consisting

of an OLT and ONUs, each containing queues. Propagation

delay between each ONU and the OLT is uniformly distributed

over the interval [50 s, 100 s], which corresponds to distances

between the OLT and ONUs ranging from 10 to 20 km.

The transmission speed of the EPON and the user access link

may not necessarily be the same. In our model, we consider

Mb/s to be the data rate of the access link from a user to an ONU,

and Mb/s to be the rate of the upstream link from an ONU

to the OLT. (Typically, .) Line rates for each link are

the same in upstream and downstream directions.

Table II summarizes the parameters used in our simulation

experiments.

We designate queues 1 to 4 in ONU A and queues 1 to 4

in ONU B as our test queues (see Fig. 12). The test queues

are assigned the guaranteed bandwidth and weight as shown

in Table I. The rest of the queues were used to generate back-

ground traffic (ambient load). Among these background queues,

18 queues were assigned a guaranteed bandwidth of 1 Mb/s and

weight , and the remaining queues were best-effort queues

(guaranteed bandwidth ) and weight .

B. Fairness of FQSE

In this section, we analyze the fairness of FQSE by measuring

the throughput of the four test queues (1–4) located in one ONU

(ONU A). The throughput of each queue was measured over 1-s

intervals at four different levels of ambient load (generated by

all other queues in all the ONUs).

Each test queue was input a bursty traffic at an average load of

90 Mb/s. Since the FQSE scheduler is work-conserving (i.e., it

never grants to any queue a slot larger than the queue length), we

expect that the burstiness of the input traffic would be reflected

in the queues’ throughput. To illustrate the effects of traffic

burstiness, we analyzed the queue throughput with two traffic

types: short-range dependent (SRD) and long-range dependent

(LRD). Both traffic types are bursty (consisting of alternating

Fig. 12. Experimental EPON model.

ON/OFF periods) with burst sizes in SRD traffic having neg-

ative exponential distribution, and burst sizes in LRD having

a heavy-tail distribution (e.g., Pareto distribution). The LRD

traffic was generated using the method described in [18] and

was verified to be self-similar with Hurst parameter 0.8.

First, we note that queue 3, which was configured to have

10-Mb/s fixed bandwidth (weight ), indeed has a con-

stant throughput regardless of the ambient load (see Fig. 13).

The remaining queues were allowed to use the excess band-

width, if available. In the first 25-s interval, the ambient load

was kept relatively low ( Mb/s), so that each queue with

nonzero weight (queues 1, 2, and 4) was able to send all arrived

packets and never became backlogged. The average throughput

of each queue was the same as the average load (90 Mb/s). We

can see that, in case of LRD traffic [Fig. 13(b)], the throughput
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Fig. 13. Throughput of test queues for under different ambient loads.

is bursty (even after averaging over 1-s intervals) reflecting the

burstiness of the incoming data stream. In case of SRD traffic

[Fig. 13(a)], the averaging effects were much more pronounced

and the resulting plots are smoother.

When, at time , the ambient load increases to

Mb/s, queues 2 and 4 are not able to transmit all the

incoming packets and become backlogged. From this moment

on, they will maintain the fair relative throughput, with queue 4

always being able to send 10 Mb/s more than queue 2. Queue 1

supposes to have twice the throughput of queue 2. This, how-

ever, would give queue 1 more than 90-Mb/s bandwidth, so

it only uses 90 Mb/s and does not become backlogged until

time . At , when the ambient load increases to

Mb/s, all four queues become backlogged and all are

assigned fair bandwidth. Finally, at time , the ambient

load increases even more (to Mb/s) and the available

excess bandwidth decreases to a very small amount. At this

time, the throughput of each queue approaches its guaranteed

bandwidth: 10 Mb/s for queues 3 and 4, and zero for queues 1

and 2.

C. Analysis of Cousin-Fairness

Claim 1: FQSE is a cousin-fair scheduling algorithm.

Consider any two nonsibling leaves (queues) and , and

let and be their respective service envelopes in

cycle , and let and be their time slot sizes given

satisfiability parameter ( and

). We want to show that and are mutually fair

time slot sizes (i.e., excess bandwidth given to each queue is

proportional to the queue’s weights: ).

Proof: The claim is trivially true when the satisfiability

parameter completely satisfies one or both queues (i.e., when

and/or ). In this case, one or both

queues will be served to exhaustion; the remaining (at most one)

backlogged queue can take all the remaining bandwidth and that

will be fair.

Let us consider a case when both queues cannot be com-

pletely satisfied (i.e., in both functions and , the coordi-

nate belongs to segments with slope ). Excess bandwidths

given to queues and in this case are

and . We need to show that

. By construction of the function, we have

Claim 1 holds no matter whether queues and have the same

parent or not (i.e., this is a cousin-fair time slot allocation).

To verify the property of cousin-fairness experimentally, we

compare the throughputs of four test queues located in ONU

A with their counterparts (queues having the same guaranteed

bandwidth and weight values) in ONU B. For each test queue ,

we plot the ratio of the throughput of queue in ONU A to the

throughput of queue in ONU B (Fig. 14).

It can be seen that, for backlogged queues, this ratio ap-

proaches 1. For nonbacklogged queues, the ratio may deviate

from 1, reflecting the burstiness of the input data stream. This

behavior is expected for a work-conserving system.

D. Analysis of Fairness Bound

In Section IV-A, we explained that the HOL-blocking avoid-

ance mechanism could result in the short-term loss of fairness.

In this section, we derive the bound for fairness error and com-

pare it with experimental results. We start with the following

claims.

Claim 2: For any queue with , the running

values of the overdraft counter are bounded as

, if , and , if

.

Proof: Equations (9) and (10) can be combined, as shown

in (11a)–(11c) at the bottom of the next page.

In (11a), the overdraft value in the next cycle remains the

same as it was in the previous cycle. Equation (11b) results in

an increased value of . The value of will be the largest

when [by condition (11b), should be nonposi-

tive] and .

Equation (11c) results in a decreased value of . The value

of will be the lowest when [by condition (11c),

should be positive].

Thus, we have .
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Fig. 14. Ratio of throughputs for queues located in different ONUs.

Also, from (11), we can derive bounds on the incre-

ment/decrement that the overdraft counter can have in one

cycle.

Claim 3: Increment that the overdraft counter may get in

one cycle is bounded by , and the decrement

is bounded by , i.e., for any

The proof follows directly from (11).

Definition: Let be the cumulative optimal service

[according to (5)] that queue should receive during cycles of

the scheduler starting in cycle , i.e.,

; and let be the actual cumulative service

received by queue during cycles of the scheduler starting

in cycle , i.e., .

( may not be equal to because of the HOL-blocking

avoidance mechanism, i.e., ).

Theorem 1: Service received by queue in any interval of

cycles ( ), during which the queue remains

backlogged, does not exceed the optimal service by more than

, and does not fall short by more than , i.e.,

where

Proof:

(12)

where and

.

Since queue remains backlogged during the entire interval

of cycles, we can write and .

Thus, (12) becomes

(13)

and (11a)

and (11b)

. (11c)
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From (9), we have

Alternatively

(14)

Substituting (14) into (13), we get

(15)

Equation (15) states that the difference between the actual and

the optimal service during any interval of cycles is equal to

the difference between the values of the overdraft counter at the

beginning and at the end of this interval.

Using the bounds on the overdraft counter from Claim 2, we

get

(16)

Alternatively, we can expand

Using the bounds from Claim 3, we get

(17)

Combining (16) and (17) and substituting the result into (15),

we obtain upper and lower bounds on service (un)fairness as

follows:

Corollary 1: Let queues and have the same guaranteed

bandwidth ( ) and the same weight ( ).

Then, the amount of service that queues and get in any

-cycle interval ( ) in which they remain back-

logged would differ by no more than .

Proof: From and , it follows

that . Thus

Substituting and

by their bounds from Theorem 1, we get

.

Fig. 15. Maximum difference in bandwidth allocated to queue 4 in ONU A
and queue 4 in ONU B.

Since , we have and

. Thus

We illustrate Corollary 1 by an experiment in which we mea-

sure the difference in bandwidth allocated to two queues with

the same guaranteed bandwidth and weight, and located in dif-

ferent ONUs. For example, we choose queue 4 in ONU A and

queue 4 in ONU B in the experimental setup of Fig. 12. Fig. 15

presents two plots, the first being the maximum observed dif-

ference in bandwidths over the interval of 1000 s (measured

as ), and the second plot representing

the maximum difference according to Corollary 1 [measured as

].

We observe that the difference in the allocated bandwidths

quickly declines as the sampling window size increases. At

1-s sampling window ( ), the maximum measured dif-

ference in allocated bandwidth was only kb/s. Results in

Fig. 15 illustrate the short-term nature of loss of fairness due to

HOL-blocking avoidance.

VI. CONCLUSION

An important property of hierarchical resource-allocation al-

gorithms is that the amount of information which each sched-

uling node processes is proportional only to number of children

of this node, and does not depend on the number of consumers at

the bottom of the hierarchy. On the other hand, to allow fairness

among all the end consumers, the root scheduler should receive

information from each consumer (especially if service consists

of guaranteed and excess proportional-share parts as we have

stated in Section II). This presents a fundamental conflict in a

fair resource assignment in a remote-scheduling system; on the

one hand, the algorithm should be hierarchical to achieve effi-

ciency in the presence of large delays and limited control-plane

bandwidth, and, on the other hand, there is a requirement to

achieve resource-allocation fairness among the end consumers.

In this paper, we have presented FQSE—a novel algorithm that

successfully achieves both goals, it is hierarchical (each node

knows only its immediate children) and it is cousin-fair.
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Fig. 16. CONSTRUCT_APPROX algorithm.

Fig. 17. TEST_TANGENT function.

We have estimated FQSE’s complexity and found that, at

each node , the scheduling work is proportional to the number

of children of node , and not to the total number of con-

sumers as it would be in a flat-scheduling scheme.

In Section V, we proved cousin fairness property of FQSE

and derived its fairness bounds. We showed that FQSE provides

excellent fairness with a bound of less than one maximum-sized

packet.

APPENDIX

See Figs. 16–18.

Fig. 18. FIND_APPROX procedure.
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