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Fair Resource Allocation in Wireless Networks
using Queue-length-based Scheduling and

Congestion Control
Atilla Eryilmaz and R. Srikant

Abstract— We consider the problem of allocating resources
(time slots, frequency, power, etc.) at a base station to many
competing flows, where each flow is intended for a different re-
ceiver. The channel conditions may be time-varying and different
for different receivers. It is well-known that appropriately chosen
queue-length based policies are throughput-optimal while other
policies based on the estimation of channel statistics can be used
to allocate resources fairly (such as proportional fairness) among
competing users. In this paper, we show that a combination of
queue-length-based scheduling at the base station and congestion
control implemented either at the base station or at the end users
can lead to fair resource allocation and queue-length stability.

Keywords: Throughput-optimal scheduling, Congestion
control, m-weighted fairness, Proportional fairness, Wireless
networks.

I. INTRODUCTION

The wireless channel is a shared medium over which many
users compete for resources. Since there are many users, it is
important to allocate this shared resource in a fair manner
among the users. Further, since the available spectrum is
limited, it is also important to efficiently use the channel.
However, the time-varying nature of the wireless environment,
coupled with different channel conditions for different users,
poses significant challenges to accomplishing these goals.
Moreover, the lack of availability of channel and arrival
statistics further complicates the solution.

We will primarily restrict our attention to the downlink in
cellular networks where there is a base station that allocates
resources to many competing users. We assume that the pack-
ets destined for the different receivers are stored in separate
queues. The scheduler at the base station is responsible for
allocating resources to the different queues as a function of
the current channel conditions as well as the queue-lengths.
Prior work on this problem can be largely classified into two
main categories:
• Throughput-optimal scheduling: Here it is assumed that

the mean arrival rates of the packets into each queue lie
within the capacity region (the set of sustainable arrival rates)
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of the channel. However, neither the actual arrival rates nor
the channel capacity region is assumed to be known. The
scheduler is allowed to know the current queue-lengths and
the current channel conditions. It was then shown in [38] that
allocating resources to maximize a queue-length-weighted sum
of the rates (which are feasible in the current time slot) is a
stabilizing policy. This result was then generalized in many
different directions in [3], [33], [32], [12], [4], [23], [10], [28].
Such policies are called throughput optimal since the queues
are stable if the arrival rates lie within the capacity region.
• Fair Scheduling: An obvious drawback of throughput-

optimal policies is that no traffic policing is enforced. For
instance, if one or more sources misbehave and increase their
arrival rates so that the set of arrival rates lies outside the
capacity region, then the system becomes unstable. In other
words, all flows will be penalized due to the behavior of
a few misbehaving flows. Thus, an alternative is to provide
some degree of flow isolation at least in the long term, by
allocating resources in a fair manner to the various queues. A
commonly-used framework for such allocation is the concept
of proportional fairness [16]. It was shown in [39] that propor-
tional fairness can be achieved in TDMA cellular networks by
scheduling the user which has the largest ratio of the achiev-
able data rate at the current instant to the average rate that it
has been allocated so far. The properties of such a policy have
been studied empirically in [15] and analytically in [36], [21],
and a multiple antenna implementation of such an algorithm
over slowly time-varying channels has been proposed in [40].
Related work on channel-state-aware scheduling in wireless
networks can also be found in [1], [9], [25], [8], [26].

From an applications point of view, throughput-optimal
scheduling as described above is more suitable for inelastic
traffic where the sources do not adapt their transmission rate
based on congestion in the network. In this case, admission
control is required to ensure that the arrival rates lie within
the capacity region of the network and further, in the case
of wireless networks, due to the time-varying nature of the
network, an appropriate scheduling algorithm is required to
ensure that the network can stably serve the admitted traffic.
On the other hand, fair scheduling is more suited for elastic
traffic sources which can adjust their traffic rates in response to
feedback from the network regarding the network conditions.
Without such a rate-control mechanism, fair scheduling would
either lead to under utilization (when a traffic source is not
generating enough data to make use of the bandwidth allocated
to it) or packet losses or large delays (when a traffic source
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is generating data at a much larger rate than the rate allocated
to it by the base station).

In this paper, we are interested in allocating resources
to elastic sources whose utilities are described by concave
functions. Specifically, user i derives a utility Ui(ai) when
it transmits at rate ai. For ease of exposition, we consider
utility functions of the form

Ui(ai) = βi
a
(1− 1

m )
i(
1− 1

m

) , for each i ∈ {1, · · · , n}, (1)

where m is a positive constant and βi is some fixed weight,
which can be different for different users. Thus, we consider
m-weighted fair resource allocation. Notice that as m → 1,
this allocation converges to the weighted proportionally fair
allocation and as m → 0, it gives the weighted max-min fair
allocation. We assume that congestion information is conveyed
to the sources by putting the corresponding congestion price
in the ACK packets. Each source react to its congestion price
by choosing its transmission rates such that its marginal utility
(U ′

i(ai)) is equal to the congestion price. We take the queue-
length at the base station to be the congestion price. In the
Internet context, this is a special case of the dual algorithm
proposed in [27], [43], [30]. In wireline networks, this in-
terpretation of queue-length (or delay) as the congestion price
naturally arises from an convex optimization perspective where
the resource constraints are linear [34]. However, in wireless
networks, this interpretation is not immediately obvious since
the resource constraints are not necessarily linear. Despite
this, we show that the dual algorithm at the sources, along
with queue-length-based scheduling at the base station, can be
used to approximate m-weighted fairness arbitrarily closely,
where the approximation depends on the choice of a certain
parameter used in the congestion control algorithm. Instead
of the dual algorithm other algorithms such as the primal
algorithm [17], [20] and the primal-dual algorithm [42], [2]
can also be used. For a comprehensive description of the many
algorithms that can be used to solve the resource allocation
problem, see [34]. In this paper, we restrict ourselves to the
dual algorithm. The problem studied in this paper has also
been considered in [35]. The results in [35] are independent
and contemporaneous to our work. However, the solution
proposed in [35] is quite different. The solution in [35] uses
a greedy source rate update rule while we use a static update
rule as we will see later.

The paper is organized as follows. Section II describes
the model, including the scheduling and the congestion con-
trol algorithms. In Section III, we first analyze a heuristic
continuous-time, deterministic fluid model of the system and
then use the intuition thus obtained to study the original
stochastic system model. Generalizations and implementation
considerations are discussed in Section IV. Various simulation
results are presented in Section V. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL

We consider a cellular network shared by n flows in the
downlink. Figure 1 depicts the combination of the congestion

controller and the base station from the perspective of a single
flow. We assume that time is slotted and denote the size of
the ith queue at the beginning of the time slot t by xi[t],
the number of arrivals to queue i in time slot t by ai[t], and
the amount of service offered to queue-i in slot t by µ

[
it].

We assume that each of these parameters can only take non-
negative integer values. The evolution of the size of the ith

queue is given by

xi[t + 1] = (xi[t] + ai[t]− µi[t])+, i = 1, · · · , n

where (y)+ is equal to y if y > 0, and zero otherwise.
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Fig. 1. A pictorial depiction of the system.

We assume that the channel between the base station and the
receivers can be in one of J states in a given slot. We use s[t]
to denote the state in time slot t. The channel state is assumed
to be fixed within a time slot, but may vary from one slot to
another, and hence captures the time-varying characteristics
of a fading environment. Corresponding to each channel state,
say j, is an achievable rate region, Cj , that is defined to be
the convex hull of the rate vectors, η[t] := (η1[t], · · · , ηn[t])′,
that can be offered to the queues. We assume that each Cj

is a bounded region, which is a reasonable assumption since
in practice, power constraints and code designs allow only
finite rate levels. We use η̂ < ∞ to denote the upper bound
on the achievable rates for all channel states. The channel
state process is assumed to be independent and identically
distributed in each time slot (although it is straightforward
to generalize our results to allow Markovian channel state
processes - see [12]), but we do not require that the statistics
be known at the base station. We define the mean achievable
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Fig. 2. Given x[t] and s[t], the vector µ[t] is chosen on the boundary of
the current achievable rate region as in this figure.
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rate region as

C̄ := {η : η =
J∑

j=1

πch
j η(j), η(j) ∈ Cj},

where πch
j stands for the stationary probability of the channel

state process being in state j. The scheduler implemented at
the base station is described as follows.

QUEUE-LENGTH-BASED SCHEDULER: In time slot t, given
the current queue-length vector, x[t] := (x1[t], · · · , xn[t])′,
and the current channel state, s[t], the scheduler chooses a
service rate vector µ[t] := (µ1[t], · · · , µn[t])′ ∈ Cs[t] that
satisfies

µ[t] ∈ arg max
η∈Cs[t]

n∑

i=1

xi[t]ηi. (2)

A geometric interpretation of the above policy for two users
is given in Figure 2, where the queue-length state space and
the achievable service rate region are superimposed on each
other. We observe that the allocated service rates always lies
on the boundary of the current achievable rate region, and
that if the rate vector µ[t] satisfies (2) for some x[t], then
it satisfies the same condition for all ξx[t], for all ξ > 0.
As mentioned earlier, this policy is known to be throughput-
optimal for inelastic flows. We note that it is possible that there
are more than one µ[t] that satisfies (2) in a given time slot.
In such a case, the choice of µ[t] must be made so that the
chosen vector is in fact achievable in that slot. Such a choice
is possible since within every optimal set, there must exist at
least one rate vector that is achievable because the extreme
points of Cj is achievable for each j.

The packet arrival rate into the queue is assumed to be
congestion controlled according to the dual controller [27],
[43]. We note that the dual controller is derived for the Internet
applications where all users sharing a common resource can
receive the same treatment from the router. However, here
the situation is fundamentally different due the fact that the
channel conditions for the different users can be different.
One of the contributions of this paper is show that, somewhat
surprisingly, the dual controller still leads to fair resource
allocation provided that the base station uses the scheduler de-
scribed above. Such a scheduling mechanism is not necessary
in the Internet, but is crucial in the wireless network context
studied here. We now describe the congestion controller.

CONGESTION CONTROLLER: For the ith flow, given its
current buffer occupancy xi[t], the data generation rate in slot
t, equal to ai[t] in our notation, is a random variable satisfying
the following:

E[ai[t] | xi[t]] = min
{

αiK

(xi[t])m
, M

}
(3)

E[a2
i [t]|xi[t]] ≤ A < ∞, ∀xi[t]

where m, {αi}, A and M > 2η̂ are positive constants1. We
also assume ai[t] is independent across time slots for each i.
(Again, it is straightforward to generalize this assumption to
allow dependence in the arrivals across time slots [13].) ¦

1To relate to (1), the first term in the minimization of (3) is equal to
U ′−1

i (xi[t]) when we define Kαi := βm
i .

We have allowed ai[t] to be a random variable to allow for
various sources of randomness in the actual implementation
(e.g., window-based implementations of congestion control)
that are not precisely modeled here. Further, we have used
M > 2η̂ to ensure that the arrival rate is bounded when xi[t] is
close to zero. It is important that M is large enough to ensure
that any arrival rate within the mean achievable rate region
is achievable by the congestion controller. We note that the
results of this work will continue to hold even if M is taken
to be a function of K that is lower bounded by 2η̂ for large
enough K. However, such a dependency is unnecessary and
would cause impracticalities in the implementation. Observe
the well-known basic characteristics of a congestion controller
in the above mechanism: the higher the congestion level, which
is indicated by an increased level of buffer occupancy, the
lower the data generation rate.

Notice that we have introduced a constant K in the con-
gestion control algorithm. This corresponds to assuming that

the utility function of user i is (Kαi)
1
m

a
(1− 1

m
)

i

(1− 1
m )

. Since K

is the same for all users, this will not affect the relative
resource allocation among the users. However, this constant
plays a crucial role in determining how well we approximate
weighted m-fair resource allocation in a wireless network.
Indeed, we will argue that weighted m-fair allocation is closely
approximated for large K. Intuitively, as K increases the
congestion controller reacts to the same queue-length levels
more aggressively, i.e., generates more data. Such a behavior
results in larger equilibrium queue-length levels and hence
delay, but also in fair division of the system resources, as
we will argue in the rest of the paper. In order to indicate the
dependence on K, we will use (K) as a superscript for the
queue-length and service rate parameters that vary with K.

III. CHARACTERIZING THE SYSTEM PERFORMANCE

In this section, we will analyze the system described in
the previous section. To accomplish this, we will start with
a heuristic continuous-time fluid model and understand its
behavior. Later, we will use these observations in the analysis
of the original model and show that the original model behaves
like the fluid model for large K.

A. Continuous-time Fluid Model

In the fluid-model, we assume that the channel state process
is not random, but constant at its mean level. In other words,
the achievable rate region is fixed at C̄. Also, the arrival
rate is no longer a random variable, but is taken to be

equal to its mean, i.e., a
(K)
i (t) = min

{
αiK(

x
(K)
i (t)

)m , M

}
.

Here, (t), instead of [t], is used to signify that time is a
continuous variable. Then, the evolution of the ith queue-
length is described by

ẋ
(K)
i (t) =


min





αiK(
x

(K)
i (t)

)m ,M



− µ̄

(K)
i (t)




+

x
(K)
i (t)

, (4)
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where µ̄(K)(t) ∈ arg max
η∈C̄

n∑

i=1

x
(K)
i (t)ηi and (y)+x is equal

to y when x > 0 and is equal to max(y, 0) when x ≤ 0. In
this formulation, the queue-length state space is assumed to be
continuous. We now identify the set of service rates and queue-
lengths such that if the these queue-lengths are chosen as the
initial state and at each time instant, resources are allocated to
achieve these service rates, then the queue-lengths will remain
at the initial conditions forever.

Definition 1 (Invariant pair): The pair
(

?
x

(K)
,

?
µ

(K)
)

forms an invariant pair (more precisely,
?
µ

(K)

is an invariant

service rate vector and
?
x

(K)
is an invariant queue-length

vector) if they satisfy both of the following conditions:

(D1)
?
µ

(K)

∈ arg max
η∈C̄

n∑

i=1

?
x

(K)

i ηi,

(D2)
?
x

(K)

i =


 αiK

?
µ

(K)

i




1/m

∀i ∈ {1, · · · , n}.

¦
Notice that, if at any time t′ we have x(K)(t′) =

?
x

(K)
and

µ(K)(t′) =
?
µ

(K)

, then, due to (D1) and (D2), ẋ(K)(t) given by
(4) will be zero for all t ≥ t′. We now show that the invariant
pair exists and is unique.

Proposition 1: [Existence and Uniqueness of (
?
x

(K)
,

?
µ

(K)

)]
For each K, an invariant pair of rates and queue-lengths exists

and is unique. Moreover, the unique invariant rate vector
?
µ

(K)

is independent of K.

Proof: Note that the conditions on
?
µ

(K)

given by (D1)
and (D2) can be concisely written as

n∑

i=1

(
?
µ

(K)

i −ηi

) 
 αiK

?
µ

(K)

i




1/m

≥ 0 ∀η ∈ C̄.

This is simply the condition for
?
µ

(K)

to be an optimal solution
to the following problem of maximizing a concave function
over a convex set [6]:

?
µ

(K)

∈ arg max
η∈C̄

n∑

i=1

(Kαi)
1
m(

1− 1
m

)η
(1− 1

m )
i . (5)

Since C̄ is a bounded set, clearly a solution exists to the above
optimization problem. Further, since the objective is strictly
concave the solution is unique. Finally, notice that K, being a
constant factor, does not influence the optimizer of (5), hence
?
µ

(K)

is the same for all K.
The above proof shows that the invariant point is simply the

set of rates and queue-lengths achieved under fair resource

allocation, which is our goal. Since
?
µ

(K)

does not depend
on K due to Proposition 1, we will omit the superscript
henceforth. Next, we are interested in showing that the queue-
lengths described by the invariant point is attractive, i.e., all
trajectories eventually converge to it.

Proposition 2: For any fixed K, starting from any initial
queue-length vector, x(K)(0), the queue-length vector x(K)(t)

eventually reaches
?
x

(K)
as t →∞.

Proof: We will omit the superscript (K) throughout the
proof for ease of exposition. Consider the Lyapunov function

W (x) = 1
2

n∑

i=1

(
xi− ?

xi

)2

. Next, we study the time derivative

of this Lyapunov function at time t.

Ẇ (x(t)) =
n∑

i=1

(
xi(t)− ?

xi

)
ẋi(t)

=
n∑

i=1

[(
xi(t)− ?

xi

)

(
min

{
αiK

(xi(t))m
,M

}
− µ̄i(t) + ui(t)

)]
,

where ui(t) is a non-negative quantity which denotes the
wasted service given to queue i at time t. Note that ui(t) = 0
whenever xi(t) > 0. Thus, it is easy to see that

Ẇ (x(t))

≤
n∑

i=1

(
xi(t)− ?

xi

) (
min

{
αiK

(xi(t))m
, M

}
− µ̄i(t)

)

=
n∑

i=1

(
xi(t)− ?

xi

) (
min

{
αiK

(xi(t))m
, M

}
− ?

µi

)
(6)

+
n∑

i=1

(
xi(t)− ?

xi

)(?
µi −µ̄i(t)

)
, (7)

where the last step follows from adding and subtracting
?
µi

to each term in the summation. Consider (6): if xi(t) >
?
xi

, then min
{

αiK
(xi(t))m ,M

}
− ?

µi< 0; and if xi(t) <
?
xi, then

min
{

αiK
(xi(t))m ,M

}
− ?

µi> 0. Therefore, unless
?
xi= xi(t), the

expression (6) is negative and when
?
xi= xi(t), the expression

(6) is zero.
Next we consider (7). We show that this expression is

negative unless
?
x= x(t). First we note the following two

inequalities which follow from the definition of the invariant
point and our scheduling policy, which is the solution to the
optimization problem (2).

n∑

i=1

?
xi

?
µi ≥

n∑

i=1

?
xi µ̄i(t) (8)

n∑

i=1

xi(t)µ̄i(t) ≥
n∑

i=1

xi(t)
?
µi (9)

Adding both sides of the inequalities (8) and (9), and re-
arranging the terms yields

n∑

i=1

(xi(t)− ?
xi)(

?
µi −µ̄i(t)) ≤ 0.

Combining this result with our earlier observation regarding
(6) leads to

Ẇ (x(t)) < 0, if x(t) 6=?
x, and

Ẇ (x(t)) = 0, if x(t) =
?
x .
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The result follows from Lyapunov’s global stability theorem
[18].

B. Original System Model

In this section, we return to our original system model,
where the arrivals and departures are integer-valued and ran-
dom. We observe that the queue-length state vector x(K)[t]
evolves according to a discrete-time, discrete-space Markov
chain. We first show that this Markov chain is stable, i.e.,
positive recurrent. The fact that the Markov chain is stable is
not surprising since by our choice of congestion control, we
have ensured that the mean arrival rate into a queue reduces
when the queue-length is large. However, the Lyapunov func-
tion used to establish stability can be used to obtain a useful
upper bound on the Euclidean distance between the invariant

queue-length vector
?
x

(K)
and x(K)[t] for large K and large

t. This upper bound is then used to establish the properties of
our joint congestion control-scheduling algorithm.

In the following theorem, we show that the Lyapunov
function W (·) satisfies the Foster-Lyapunov criterion [5,
Proposition I.5.3], which is sufficient to establish the positive
recurrence of the Markov chain x(K). We repeat this criterion
for future reference.

Proposition 3 (Foster-Lyapunov Criterion, [5]): Suppose
the chain is irreducible and let S be a finite subset of the
state space E. Then, the chain is positive recurrent if for
some h : E → R and some ε > 0, we have inf

x
h(x) > −∞

and

E[h(x[t + 1]) | x[t] = x] ≤ B, x ∈ D,

E[h(x[t + 1]) | x[t] = x] < h(x)− ε, x ∈ E\D
where B is some finite constant. ¦

Theorem 1 (Positive Recurrence): Under the congestion
control mechanism satisfying (3), and the queue-length-based
scheduler satisfying (2), the Markov chain x(K)[t] is positive
recurrent.

Proof: Since K is fixed, we omit the superscript (K)
in the proof. It is easy to see that the Markov chain has
a countable state space and is irreducible and aperiodic.

Consider the Lyapunov function W (x) =
n∑

i=1

(xi− ?
xi)2

2
. It

is shown in the appendix that there exist positive constants
δ, ζ and c such that

E[∆Wt(x)] := E[W (x[t + 1])−W (x[t]) | x[t] = x]

≤ − δ

(K)
1

2m

‖x− ?
x ‖Ix∈Dc + ζIx∈D, (10)

where D := {y : ‖y− ?
x ‖ < c(K)

1
2m } and Dc is the

complement of D in Zn
+. Thus, we have a Lyapunov function

that has negative conditional mean drift for all queue-length
vectors that have sufficiently large magnitude. The positive
recurrence of the Markov Chain follows from Proposition 3
when we substitute h(·) = W (·); E = Zn

+; S = D; B = ζ;
and ε = δ

(K)
1

2m
‖x− ?

x ‖.

Inequality (10) is stronger than what is necessary to prove
the stability of the Markov chain. However, it is useful in
establishing the following theorem which characterizes the
mean distance between x(K)[t] for large t and the invariant

queue-length vector
?
x

(K)
.

Theorem 2 (Mean Distance Bound): There exists a posi-
tive constant c̄, that depends on the mean achievable rate
region, the algorithm parameters {αi, γi}, and the moments
of the channel and arrival processes, such that

E

[∥∥∥∥
∞
x

(K) − ?
x

(K)
∥∥∥∥
]
≤ c̄K1/(2m), for large K, (11)

where
∞
x

(K)
is a notation used to denote the state of the

Markov chain in steady-state and ‖ · ‖ denotes the Euclidean
distance in the <n.

Proof: Here also, we omit the superscript (K) for ease
of exposition. We use (10) and the idea behind the proof of
Pakes’ lemma [31], [7] to prove the theorem. We consider the
following T−step mean drift. For any y ≥ 0,
E[W (x[T ])|x[0] = y]−W (y)

=
T−1∑
t=0

E[W (x[t + 1])−W (x[t])|x[0] = y]

=
T−1∑
t=0

∑

x∈Zn
+

[P (x[t] = x|x[0] = y)

E[W (x[t + 1])−W (x[t])|x[t] = x]]

(12)

≤ ζ
∑

x∈D

T−1∑
t=0

P (x[t] = x|x[0] = y)

− δ

(K)
1

2m

∑

x∈Dc

‖x− ?
x ‖

T−1∑
t=0

P (x[t] = x|x[0] = y) ,

(13)

where Zn
+ denotes the set of all non-negative n dimensional

integer valued vectors. In the above derivation, (12) follows
from the fact that x[t] is a Markov chain, and we have used
(10) to get the inequality in (13). We note that for any x ∈ Zn

+,

lim
T→∞

1
T

T−1∑
t=0

P (x[t− 1] = x|x[0] = y) = π∞x ,

for all y, where π∞ denotes the stationary distribution of the
Markov chain x[t]. Next, we move W (y) to the other side of
the inequality in (13), divide both sides by T, and let T go to
infinity. This operation yields

0 ≤ ζ
∑

x∈D
π∞x − δ

(K)
1

2m

∑

x∈Dc

‖x− ?
x ‖π∞x .

Re-arranging the terms and with minor manipulations, this
inequality can be written as

δ

(K)
1

2m

∑

x∈Zn
+

‖x− ?
x ‖π∞x

≤
∑

x∈D

(
ζ +

δ

(K)
1

2m

‖x− ?
x ‖

)
π∞x

≤ (ζ + δc)
∑

x∈D
π∞x ≤ (ζ + δc),
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where the second inequality follows from the definition of
D. Here, the left-hand-side is nothing but δE[‖∞x−?

x‖]
(K)

1
2m

. So we

multiply both sides with (K)
1

2m

δ to get

E[‖ ∞x − ?
x ‖] ≤

(
c +

ζ

δ

)
(K)

1
2m ,

which completes the proof for c̄ :=
(
c + ζ

δ

)
.

In Theorem 2, we proved that the mean distance between
the queue-length vector and the invariant queue-length vector
cannot increase at a rate larger than K1/2m. Next, recalling

the relationship
?
x

(K)

i =
(

αiK
?
µi

)1/m

for each i ∈ {1, · · · , n},
we can state the following theorem about the rate vectors.

Theorem 3: The mean of the stationary rate vector con-
verges to

?
µ as K increases, i.e.

| ∞µ
(K)

i − ?
µi | ≤ c̄B(K)−1/2m, for all i ∈ {1, · · · , n},

where B is a finite positive constant and
∞
µ

(K)

represents
the mean service rate provided by our algorithm under the
stationary distribution of the Markov Chain. More precisely,
∞
µ

(K)

is defined by
∞
µ

(K)

i = E


min





αiK(
∞
x

(K)
i

)m ,M






 for all

i ∈ {1, · · · , n}.
Proof: For ease of presentation, let us define Ui(z) :=

αiz
(1−m)

(1−m) for each i. Notice that Ui(·) is a strictly concave
function that satisfies

0 ≤ − 1
U ′′

i (z)
≤ B < ∞, for all z ∈ [0,M ], (14)

where B may depend on m. Also, notice that the relationship
between x(K) and µ(K) is given by

E[µ(K)
i [t] | x(K)

i [t]] = min

{
U ′−1

i

(
x

(K)
i [t]

K1/m

)
,M

}
,

?
µi = U ′−1

i




?
x

(K)

i

K1/m


 ,

for each i ∈ {1, · · · , n}. If we divide both sides of the
expression (11) by K1/m, then we can write: for each i ∈
{1, · · · , n},

E




∣∣∣∣∣∣

∞
x

(K)

i

K1/m
−

?
x

(K)

i

K1/m

∣∣∣∣∣∣


 ≤ c̄K−1/(2m) (15)

→ 0, as K →∞.

We can write

| ∞µ
(K)

i − ?
µi |

=

∣∣∣∣∣∣
E


min



U ′−1

i




∞
x

(K)

i

K1/m


 ,M






− U ′−1

i




?
x

(K)

i

K1/m




∣∣∣∣∣∣

≤ E




∣∣∣∣∣∣
min



U ′−1

i




∞
x

(K)

i

K1/m


 ,M



− U ′−1

i




?
x

(K)

i

K1/m




∣∣∣∣∣∣




= E




∣∣∣∣∣
1

U ′′
f (x̃)

∣∣∣∣∣

∣∣∣∣∣∣

∞
x

(K)

i

K1/m
−

?
x

(K)

i

K1/m

∣∣∣∣∣∣


 ∀i ∈ {1, · · · , n}

for some x̃ ∈ [0,M ] due to Taylor’s expansion. Thus, we can
invoke the fact (14) on the utility functions to claim that

| ∞µ
(K)

i − ?
µi | ≤ BE




∣∣∣∣∣∣

∞
x

(K)

i

K1/m
−

?
x

(K)

i

K1/m

∣∣∣∣∣∣




≤ c̄BK−1/(2m), ∀i ∈ {1, · · · , n}
where the second inequality follows from (15).

This results proves that the steady state distribution con-
verges to the fair allocation as K tends to infinity. In the next
statement, we use the positive recurrence of the Markov Chain

{x(K)[t]} to prove convergence to
∞
µ

(K)

.
Theorem 4: For any fixed K and starting from any initial

queue-length vector, x[0], the scheduling-congestion-control
algorithm satisfies, for each i ∈ {1, · · · , n},

lim
T→∞

1
T

T−1∑
t=0

min





αiK(
x

(K)
i [t]

)m ,M



 =

∞
µ

(K)

i , almost surely.

Proof: We omit the superscript (K) for ease of expo-
sition. Since the Markov Chain is positive recurrent, for any
bounded function f(x), we have [29]

lim
T→∞

1
T

T−1∑
t=0

f(x[t]) = f̄ , almost surely,

where f̄ denotes the mean of f(x) over the steady-state
distribution of the Markov Chain. Since min

{
αiK

(xi[t])m ,M
}

is a bounded function, this result applies to the Markov Chain
{x[t]}.

Theorems 3 and 4 characterize the convergence of the
user rates to the solution of the utility optimization problem.
Theorem 4 states that the empirical average of the user rates
converges to certain values determined by the steady-state
queue-length distribution. Theorem 3 states that these values
are close to the solution of the optimization problem for large
K.

Recalling Theorem 2 we can expect the mean of
∞
x

(K)
to be

very close to
?
x

(K)
. In fact, using a Lyapunov function of the

form L(x) = 1
2

∑n
i=1 x2

i , and using arguments very similar
to the ones used in the proof of Theorem 2, we can prove

that for large enough K, E

[
∞
x

(K)
]

= Θ
(

?
x

(K)
)

.2 Since we

2f(u) = Θ(g(u)) implies that for large enough u, there exist positive
constants, c1 ≤ c2, such that c1g(u) ≤ f(u) ≤ c2g(u).
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need large K to ensure a close approximation to m-weighted
fairness, this also implies large queue-lengths. This can be
alleviated by a virtual queue implementation of the scheduling
mechanism which will be discussed in the next section.

IV. GENERALIZATIONS AND IMPLEMENTATION
CONSIDERATIONS

A. Multi-hop Wireless Networks

The model analyzed so far focuses on cellular networks with
a base station to perform the scheduling, i.e., the single-hop
case. The results can also be extended to cover the multi-
hop network case. Consider a multi-hop radio network where
each user is identified by a origin-destination (O-D) pair and
a collection of nodes describing the route between the O-D
pair. However, the scheduler will now have to be a version of
the multi-hop resource allocation described in [37], [28]. The
algorithm can also be extended to the case where a collection
(more than one) of routes exists between an O-D pair. The
congestion control algorithm in this case would be the multi-
path routing algorithm proposed in [17], [41], [24] along with
the resource allocation algorithm in [28]. In principle, one
can prove similar results as we have done in this paper for
the multi-hop problem also [11], but the scheduler is not
implementable in the absence of a base station since then
there is no central scheduler to solve the wireless resource
allocation problem. The challenging problem of obtaining
reasonable distributed solutions for the scheduling problem is
still the hurdle whether one considers the throughput-optimal
scheduling problem as in [37], [28] or the fair scheduling
problem that we have considered here.

B. Reducing Delays Using Virtual Queues

As we have discussed earlier, one penalty for achieving
fairness is the possibility of large delays at the base station
buffers. We can alleviate this problem by implementing the
base station scheduler using virtual queues [14], [19], [22].
For each flow, the base station maintains a counter called the
virtual queue. As an example, consider flow i. The virtual
queue of flow i keeps track of a virtual queue-length, where the
virtual queue-length of flow i is simply the length of a queue
whose arrivals are the same as that of flow i, but whose service
rate is always a fixed fraction ρ < 1 of the actual service rate.
Therefore, the size of the virtual queue (denoted by x̃i for
flow i) will always be larger than the actual queue-length xi.
The congestion feedback given to user i is x̃i[t] and therefore,
user i will reduce its arrival rate well before its real queue
builds up significantly. See Figure 3 for the model from flow
i’s perspective.

By choosing the ρ parameter appropriately the delay levels
and the packet loss probabilities can be adjusted: the lower
the ρ, the lower the actual queue-lengths. However, there
is a possible loss in throughput by choosing ρ < 1. In
Section V, we will provide simulation results which show that,
by choosing ρ close to 1, but not equal to 1, we can reduce the
queue-lengths dramatically while maintaining close to 100%
throughput.

i

Receiver

VQ

~
[k]

i
x

Base Station

µ
i
[k]ρ

...
a

i
[k] µ

i
[k]

...

Transmitter

 i

Fig. 3. The virtual queue implementation at the base station.

V. SIMULATION RESULTS

In this section, we provide simulation results to complement
the analysis in the previous sections. We present results for
a ten-user scenario, and make the reasonable assumption
that the channels between the base station and each of the
users fade independently. The base station is only allowed to
serve a single queue in a given slot3. For this scenario, the
scheduling algorithm (2) is equivalent to serving the user that
solves i∗[t] = arg max

i∈{1,··· ,10}
ηixi[t], at the rate ηi∗ [t]. Ties are

broken randomly. We let the rate vectors, (η1[t], · · · , η10[t]),
be Poisson distributed with mean 0.4+(0.1)k for the kth user.
Also, the number of arrivals in each slot to each queue is Pois-
son distributed with the mean determined by the congestion
controller. In the simulations, we set αi = 1 for all i and
investigated the behavior of the queue-lengths as a function of
K for different m values.
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Fig. 4. Empirical change in the mean of users’ queue-lengths with K, when
m = 2.

We start with the case of m = 2. Figure 4 plots the average
queue-length levels experienced by each flow, as a function of
K. To confirm that the queue-lengths are proportional to

√
K

in accordance with our analysis, we plot the squared values

3Notice that for this model the achievable rate region for a given channel
state is given by a region in the positive quadrant of Rn that lies on or below
a corresponding hyperplane.
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Fig. 5. Empirical variance of the queue-lengths with increasing K, when
m = 2.
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Fig. 6. Squared empirical mean values of users’ queue-lengths with K, when
m = 2.

of the mean in Figure 6. In Figure 5, the variances of the
queue-lengths are depicted and it can be seen in Figure 7
that they are also of the form

√
K. Therefore, the queue-

lengths are more and more clustered around the mean level
as K increases. This observation agrees with our theoretical
arguments in Section III.

The average service rates provided to the flows is plotted in
Figure 8 with differing K, when m = 2. Clearly, K does not
have a significant impact on these levels. It is of interest to
determine whether these rates are allocated in a fair manner.
We will study this aspect later on in this section.

Next, we take m = 1. In this case, our analysis predicts that
the mean queue-length levels change linearly with K. Figure 9
verifies this expectation and Figure 10 plots the mean service
rate levels as a function of K. Again, we observe that the
average service rates appear to be the same for different K.

Finally, we consider the case when m = 0.5. Figure 11 plots
the mean queue-length levels of the queues as a function of
K. Figure 12 depicts the change in the mean service rates with
K. We observe once again that the mean service rates are not
significantly affected by the K parameter. On the other hand,
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Fig. 7. Squared empirical variance of the queue-lengths with increasing K,
when m = 2.

the average queue-length levels increase as K2, in agreement
with our theoretical analysis.

Next, we compare the above implementation of a queue-
length-based base station scheduler and an end-to-end conges-
tion controller with the m-weighted fair scheduler, similarly
designed with the scheduler suggested by [39]. This scheduler
is described next.

m-WEIGHTED FAIR SCHEDULER [39]: The scheduler
keeps track of the average service rates provided to each of the
flows in the last tc slots. We denote this parameter by Ti[t] for
the ith flow in slot t. Then, given the achievable service rates
{ηi[t]}, the scheduler serves the queue, i∗[t], that satisfies

i∗[t] = arg max
i=1,2

ηi[t]
(Ti[t])

1
m

,

where Ti[t] is updated using an exponential weighted low-pass
filter as follows:

Ti[t + 1] =





(
1− 1

tc

)
Ti[t] + ηi[t]

tc
i = i∗[t](

1− 1
tc

)
Ti[t] i 6= i∗[t]

¦
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Fig. 8. Empirical average of the service rates provided to the flows for
various K with m = 2.
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Fig. 9. Empirical change in the mean of users’ queue-lengths with K, when
m = 1.
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Fig. 10. Mean service rates with increasing K, when m = 1.
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Fig. 11. Empirical change in the mean of users’ queue-lengths with K, when
m = 0.5.

In our simulations, we let tc to be 100. Notice that Ti[t]
serves as an empirical average service rate provided to flow i
until time t. Hence, this scheduler gives priority to those flows
that haven’t received enough service in the history.

Table 1 shows the empirical average obtained by this m-
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Fig. 12. Mean service rates with increasing K, when m = 0.5.

#� (m) Q (2) M (2) Q (1) M (1) Q (1/2) M (1/2)
User 1 0.147 0.147 0.177 0.177 0.206 0.202
User 2 0.172 0.173 0.200 0.198 0.217 0.217
User 3 0.199 0.199 0.220 0.218 0.238 0.231
User 4 0.227 0.228 0.238 0.239 0.249 0.244
User 5 0.254 0.258 0.260 0.259 0.259 0.256
User 6 0.285 0.288 0.283 0.279 0.273 0.267
User 7 0.314 0.316 0.304 0.297 0.291 0.277
User 8 0.343 0.345 0.321 0.316 0.295 0.287
User 9 0.375 0.373 0.336 0.333 0.303 0.296
User 10 0.407 0.403 0.351 0.351 0.308 0.306

TABLE I
COMPARISON OF OUR QUEUE-LENGTH-BASED ALGORITHM (DENOTED AS

Q IN THE TABLE) TO THE m-WEIGHTED FAIR SCHEDULER (DENOTED AS

M IN THE TABLE). MEAN RATES UNDER THE TWO ALGORITHMS ARE

PROVIDED FOR m = 2, 1, AND 1/2.

weighted fair scheduler along with our results for differing m
parameters. We observe that the empirical mean service rate
allocated to the users under the m-weighted fair algorithm in
[39] and our scheduler are in fact nearly identical as is to be
expected.

Finally, we simulate the virtual queue implementation de-
scribed in Section IV for the case when m = 1 and K = 100.
We demonstrate the effect of ρ on the mean queue-length
levels of queues 1 and 10 in Figure 13. Here, we plot the
users that experience the largest and smallest mean queue-
lengths in order to avoid confusion. The rest of the queues
exhibit similar behaviors.

It can be seen from this simulation that modifying ρ has a
dramatic impact on the mean queue-length levels as we had
argued. Of course, the choice of virtual queue parameter ρ
will also have an effect on the mean service rates as shown
in Figure 14. For example, if ρ is chosen to be 0.99 (which
leads to a dramatic decrease in the queue-lengths as seen from
Figure 13), the mean service rate for users do not decrease
significantly. Thus, we see that by sacrificing throughput min-
imally one can dramatically reduce the queue-lengths which
is consistent with the observation for the Internet [14], [19],
[22].
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Fig. 13. Empirical change in the mean of users’ queue-lengths with ρ, when
m = 1, K = 100.
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Fig. 14. Mean service rates with increasing ρ, when m = 1, K = 100.

VI. CONCLUSIONS

We showed that the interaction between the end-to-end con-
gestion controller and the local queue-length-based scheduler
interestingly results in an m- weighted fair allocation of the
services. Furthermore, using virtual queues, the buffer levels
are kept low and hence the delays experienced by the flows
are also low. We also provided a characterization of the point
of operation for the queue-length and service rate levels for
each of the flows.

APPENDIX

Proof: [Proof of (10)] We start by noting that the
superscript (K) is omitted to facilitate the presentation. We
write the evolution of the ith queue as

xi[t + 1] = xi[t] + ai[t]− µi[t] + ui[t], (16)

where ui[t] denotes the amount of unused service that is
offered to the queue. Clearly, ui[t] ≤ µi[t] ≤ η̂. Therefore,
if xi[t] > η̂, then we have ui[t] = 0.

Now we study the conditional mean drift of W (·).

E[∆Wt(x)]

=
n∑

i=1

E[(xi[t + 1]− ?
xi)2 − (xi[t]− ?

xi)2 | x[t] = x]
2

=
1
2

n∑

i=1

E[(xi[t + 1]− xi[t])

(xi[t + 1] + xi[t]− 2
?
xi) | x[t] = x].

By substituting (16) and dropping the time variable t for
convenience, we get

E[∆Wt(x)]

=
1
2

n∑

i=1

E[(ai − µi + ui)(2xi + ai − µi + ui − 2
?
xi) | x]

≤
n∑

i=1

{(xi− ?
xi)

(
min

{
αiK

(xi)m
,M

}
− µ̄i + E[ui|x]

)

+
E[a2

i + µ2
i + u2

i |x]
2

+ E[ui(ai − µi)|x]

−min
{

αiK

(xi)m
,M

}
µ̄i},

where µ̄ ∈ arg max
η∈C̄

n∑

i=1

xiηi, and µ ∈ arg max
η∈Cs

n∑

i=1

xiηi.

Recall that E[a2
i |x] ≤ A, for some finite A. Also, µi < η̂

implies that E[u2
i + µ2

i |x] < 2η̂2. Further, observing that ui

takes positive values only if ai < µi implies that E[ui(ai −
µi)|x] ≤ 0. Therefore, we can upper-bound all the terms in
the last line of the above expression by a finite value, say B,
independently of K. Hence, we obtain

E[∆Wt(x)] ≤ B +
n∑

i=1

[
(xi− ?

xi)

(
min

{
αiK

(xi)m
, M

}
− µ̄i + E[ui|x]

)]
.

For all j with xj >
?
xj , we have uj = 0 when K is large

since we have xj >
?
xj> η̂ when K is taken large enough. We

already argued that there cannot be any unused service if the
queue-length is larger than η̂. On the other hand, for all m

with xm ≤?
xm, we have E[um|x] ≥ 0. Combining these two

observations, we obtain the following upper bound:

(xi− ?
xi)E[ui|x] ≤ 0, ∀i, for large K. Thus,

E[∆Wt(x)]

≤
n∑

i=1

(xi− ?
xi)

(
min

{
αiK

(xi)m
,M

}
− µ̄i

)
+ B

=
n∑

i=1

(xi− ?
xi)

(
min

{
αiK

(xi)m
,M

}
− ?

µi

)

+
n∑

i=1

(xi− ?
xi)(

?
µi −µ̄i) + B

≤
n∑

i=1

(xi− ?
xi)

(
min

{
αiK

(xi)m
,M

}
− ?

µi

)
+ B,
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where the last step follows from the observation in the proof
of Proposition 2 that

n∑

i=1

(xi− ?
xi)(

?
µi −µ̄i) ≤ 0.

We let i∗ = arg max
i
|xi− ?

xi | and re-write the upper bound
as

E[∆Wt(x)] ≤ −|xi∗− ?
xi∗ |

∣∣∣∣min
{

αi∗K

(xi∗)m
,M

}
− ?

µi∗

∣∣∣∣ + B.

Now, if min
{

αi∗K
(xi∗ )m ,M

}
= M, then

∣∣∣∣min
{

αi∗K

(xi∗)m
,M

}
− ?

µi∗

∣∣∣∣ = M− ?
µi∗> η̂.

If min
{

αi∗K
(xi∗ )m ,M

}
= αi∗K

(xi∗ )m , then

∣∣∣∣min
{

αi∗K

(xi∗)m
,M

}
− ?

µi∗

∣∣∣∣ =
?
µi∗

∣∣∣∣∣1−
(

?
xi∗

xi∗

)m∣∣∣∣∣

≥ ?
µi∗

∣∣∣∣∣1−
(

?
xi∗

?
xi∗ +|xi∗− ?

xi∗ |

)m∣∣∣∣∣

Suppose that ‖ ?
x −x‖ ≥ c(K)

1
2m , where the choice of c > 0

will be specified later. Noting the inequalities

|xi∗− ?
xi∗ | ≤ ‖x− ?

x ‖ ≤ √
n|xi∗− ?

xi∗ |,
we can write∣∣∣∣∣1−

(
?
xi∗

?
xi∗ +|xi∗− ?

xi∗ |

)m∣∣∣∣∣
?
µi∗

≥ ?
µi∗

∣∣∣∣∣∣∣∣
1− 1(

1 + c(
?
µi∗ )1/m

√
nα

1/m

i∗
(K)−

1
2m

)m

∣∣∣∣∣∣∣∣

≥ ?
µi∗

∣∣∣∣1−
1

1 + ψm

∣∣∣∣ =
?
µi∗

ψm

1 + ψm
, (17)

where ψ := c(
?
µi∗ )1/m

√
nα

1/m

i∗
(K)−

1
2m and the last step follows from

Taylor’s expansion: (1 + ψ)m ≥ 1 + mψ, for ψ > 0. Clearly,
for large enough K, the expression in (17) can be made smaller
than η̂. Therefore, for large K we can write

E[∆Wt(x)]

≤ −|xi∗− ?
xi∗ |

(
?
µi∗

ψm

1 + ψm
− B

|xi∗− ?
xi∗ |

)

≤ −|xi∗− ?
xi∗ |

(
mc(

?
µi∗)1+

1
m

√
nα

1/m
i∗ (K)

1
2m + mc(

?
µi∗)

1
m

− B
√

n

c(K)
1

2m

)

≤ −|xi∗− ?
xi∗ |

(K)
1

2m

(
mc(

?
µi∗)1+

1
m

√
nα

1/m
i∗ + mc(

?
µi∗)

1
m

− B
√

n

c

)

It is not difficult to see that the expression in the parentheses
can be made strictly negative by choosing c sufficiently large,

independent of K. Then the previous expression becomes
E[∆Wt(x)] ≤ − δ̂

(K)
1

2m
|xi∗− ?

xi∗ |, for some δ̂ > 0. Using

the fact that ‖x− ?
x ‖ ≤ √

n|xi∗− ?
xi∗ |, we can further write

E[∆Wt(x)] ≤ − δ

(K)
1

2m

‖x− ?
x ‖,

for all ‖x− ?
x ‖ ≥ c(K)

1
2m , for K large enough and where

δ := δ̂√
n
.

When ‖x− ?
x ‖ < c(K)

1
2m , it is not difficult to see that

E[∆Wt(x)] ≤ ζ for some ζ > 0. Combining the previous
two inequalities completes the proof.
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