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Fair Self-Adaptive Clustering for Hybrid

Cellular-Vehicular Networks
Julian Garbiso, Ada Diaconescu, Marceau Coupechoux and Bertrand Leroy

Abstract—Due to the increasing number of car-centered con-
nected services, making efficient use of limited radio resources
is critical in vehicular communications. Hybrid vehicular net-
works dispose of multiple Radio Access Technologies (RATs) like
cellular and vehicle-to-vehicle (V2V) networks, with complemen-
tary characteristics that allow for developing smarter network
traffic distribution methods. This paper proposes a self-adaptive
clustering system for ensuring a suitable trade-off between data
aggregation (over the cellular network) and communication
congestion due to cluster management (within the V2V network).
The systems algorithms use a distributive justice approach for
selecting cluster heads, to improve fairness among car drivers
and hence help the social acceptability of self-adaptive clustering.
Simulation results show that this approach significantly improves
fairness over time without affecting network performance. This
solution can thus optimize the usage of radio resources, reducing
cellular access costs, without the need for uniformization among
different mobile operators access plans.

Index Terms—ITS, Connected Vehicles, Hybrid Vehicular Net-
works, LTE, V2V, Distributive Justice, Clustering.

I. INTRODUCTION

VEHICULAR connectivity has a major role in the de-

velopment of smart cities, making travelling safer and

providing real-time information that allows for an optimized

traffic management, potentially reducing travel times, waiting

times and the ecological footprint [1]. Every vehicle becomes

a source of valuable information, while it takes advantage of

the established communication to provide passengers with new

infotainment services.

Several Radio Access Technologies (RATs) have been stud-

ied for vehicular communications. The IEEE 802.11p stan-

dard [2] is used in the IEEE 1609 family (WAVE) adopted

in the US, and in the European ETSI ITS-G5. Future cellular

networks will also be able to satisfy most latency and through-

put requirements for vehicular applications [3]. However, the

radio spectrum used for these communications is licensed

to mobile network operators, hence its usage is paid. To

balance the equation, compared to license-free alternatives like

IEEE 802.11p, cellular communications offer better quality of

service and reliability. Multiple economic models [4] can be

considered for the payment of the cellular access fees, but

they all eventually impact the consumer’s budget. Conversely,

protocols for V2V communication such as IEEE 802.11p are

free to use, yet they do not necessarily provide access to
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Fig. 1: Illustration of the proposed clustering system model.

the Internet without a substantial investment in deployment

of Road Side Units, whereas such infrastructure is already

available in cellular networks. Additionally, IEEE 802.11p

is prone to congestion, and an increasing number of access

demands can quickly lead to significant packet losses due to

collisions [5], [6].

The presented work aims to capitalize on each technology’s

advantages in the context of a hybrid vehicular network, in

which each vehicle is equipped with access to both V2V and

cellular networks. The proposed solution consists in partition-

ing the set of vehicles in a region covered by a cellular base

station into clusters. In this system, only Cluster Heads (CH)

can access the cellular network, while other Cluster Members

(CM) communicate with the CH using IEEE 802.11p. This

architecture decreases the communication costs thanks to data

aggregation at the CHs. This approach aims to exploit the

high local redundancy of position-based information, which

is common to several services for connected vehicles (such as

uploading Floating Car Data [7] for enhancing traffic manage-

ment, or downloading maps). The CHs aggregate information

transmitted by the vehicles in the cluster, leading to significant

reductions in data volumes transferred through the cellular

network.

New issues arise from this approach. First, IEEE 802.11p

uses broadcast transmissions for position-based services. This

induces network congestion and packet losses when clusters

are large. On the other side, the larger the cluster, the more

efficient the data aggregation. Secondly, at any given moment,

only the CH bears the cost of cellular access. In a voluntary

participation system where free-riders can appear, new solu-

tions should be developed to ensure a fair distribution of the

cellular usage.

To summarize, this paper proposes a fair self-adaptive and

socially acceptable clustering system (Figure 1) that com-

promises between the communication costs of the cellular

network and the performance of the V2V network, at runtime,

depending on traffic conditions. The systems algorithms ensure
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an equitable distribution of communication costs amongst

drivers, over the long term. This helps the social acceptability

of the presented solution. Additionally, the proposed system

does not need any further types of billing nor provider inter-

operability requirements.

In previous works we have presented different versions of

the system’s cluster head selection method and cluster-resizing

procedure [6], [8], [4]. This paper presents a unified approach

for the clustering system, and the complete set of algorithms,

including the previously unpublished Fair Self-Adaptive (FSA)

algorithm and its associated voting algorithm (an idea pre-

viously analyzed in [4] without algorithmic specifications).

The presented approach could potentially be applied in other

multi-RAT networks, or in traffic control problems with other

resources to distribute among drivers.

This paper is organized as follows: Section II is a bibliogra-

phy study. Section III formulates the problem and motivation,

Section IV describes the proposed architecture and algorithms,

and Section V evaluates their performance. Finally, we draw

our conclusions and examine perspectives for future work in

Section VI.

II. RELATED WORK

Position-based services over vehicular networks have a great

level of redundancy when considering vehicles individually.

The only way to make a reasonable use of the available

network resources is by eliminating redundancy by grouping

vehicles by proximity. Clustering techniques have been used

for a long time in network theory [9], and have since found

new applications in wireless ad-hoc networks and, in particu-

lar, in vehicular networks [10]. Many early proposals focused

on improving metrics that are intrinsic to clustering (e.g.

maximizing cluster lifetime, minimizing cluster head changes),

leaving aside the specificities of the application domain. More

recently, new algorithms have started to focus on adapting

clustering techniques to the particular characteristics of ve-

hicular networks [11]. In this paper, we focus on multi-hop

clustering algorithms [12], [13], [14] as they allow for building

larger clusters by extending the communication range through

packet forwarding, at the expense of an increased usage of

the V2V network that can lead to the loss of communication

packets if not handled properly.

Some of these algorithms were proposed to address the

specificities of hybrid vehicular networks [15], [16], [17]. In

most of them, cluster heads are selected in a decentralised

manner based on observations of local metrics, often leading

to an overpopulation of CHs. This phenomenon has an un-

desirable side effect in multi-hop clusters: When the number

of hops is increased, the PLR increases naturally, but there is

no improvement in data aggregation performance [6]. This is

because vehicles try to join their nearest cluster head, and there

are often many CHs in the communication range. A novelty

of the work presented in this paper is that it has been designed

to avoid CH overpopulation by delegating CH selection to the

cellular base station, which leads to an improvement in cluster

sizes, leading to better and more efficient information aggrega-

tion, which in turn leads to a more efficient network usage and

cost reductions. Moreover, the clustering algorithms presented

in this paper are self-adaptive: the number of hops changes

dynamically in order to adapt to the traffic density, maximizing

information aggregation while keeping V2V packet loss under

control. To the best of our knowledge, no other work has taken

this compromising approach for balancing performance.

Closer to our approach, Rémy et al. [18] delegate the entire

cluster formation process to the cellular base station. The

improved efficiency in cluster dimensioning comes in this case

at the price of severely increasing cellular traffic and access

cost. The impact of PLR is not assessed. Moreover, a critical

issue is not solved by the authors: At any given moment in the

proposed algorithms, only the CHs bear the cost of accessing

the cellular network. However, for the system to be socially

acceptable and be widely adopted in a model where free-riding

is possible, fairness over time should be ensured. Therefore, in

this paper, we propose a CH selection rule based on a theory of

distributive justice, which provides a powerful tool for social

acceptability of the system.

In the field of distributive justice, different authors iden-

tify various norms [19], [20], [21] for addressing competing

claims. Rescher [20] has a vision of social justice that consists

in determining each individual’s legitimate claims, and treating

all the legitimate claims of the population equally. This theory

does not focus on the origins of those claims, but on how far

an individual’s claims should be met by evaluating competing

claims and the limitations of the available resources. This

theory has been adopted by [22] for linear public good games.

We have followed Rescher’s approach as well for distributing

the costs inherent to the role of Cluster Head. To the best of our

knowledge, there are no previous studies of the application of

distributive justice theory on VANETs. The proposed approach

leads to a significant improvement in several fairness metrics,

without affecting network performance, and without the need

of establishing any interoperability between mobile operators

or new separate billing systems.

This article presents a fair and self-adaptive clustering

system in hybrid cellular-vehicular networks. This system has

been designed building up on the conclusions of previous

works, concerning cluster head selection methods [6], hop

number adaptation [8] and fairness in vehicular communica-

tions [4], reuniting these ideas in a comprehensive formaliza-

tion. This paper takes these preliminary works further provid-

ing: i) a formal representation of the Fair Self-Adaptive (FSA)

cluster head selection algorithm and its associated voting

algorithm, which is essential for the algorithms reusability and

results replicability; ii) further evaluation metrics and results

providing more solid support for the viability of the proposed

algorithm; iii) a comprehensive system formalization, includ-

ing the data structures, state machines and operation between

the different parts.

We can summarize the contributions of the paper to the state

of the art as follows:

• New clustering problem formulation in hybrid vehicular

networks: this paper is the first one to address the trade-

off between data aggregation and network congestion.

• A new system to address this problem (sections IV-A and

B) made of (i) a new way of segmenting the road space
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into regions and sectors under the control of base stations,

(ii) a cluster formation algorithm together with finite state

machine for vehicles and the related data structures, (iii)

a new definition of CAM messages with enhanced fields.

• A self-adaptive (SA) clustering algorithm that dynami-

cally adapts the maximum number of hops to the vehicle

density. SA is the proposal that addresses the data aggre-

gation vs. network congestion trade-off.

• A fair self-adaptive (FSA) clustering algorithm that ex-

tends the previous algorithm by including a fair mech-

anism for selecting cluster heads. FSA is based on the

theory of distributed justice of Rescher [20]. To the best

of our knowledge, this is the first time that this theory is

applied to vehicular networks.

• Extensive simulation results using realistic and well-

established models and simulator (SUMO [23]). They

show the effectiveness of the proposed algorithms com-

pared to the state-of-the-art (taking the VMaSC clustering

algorithm [13] as a representative example).

III. PROBLEM FORMULATION AND MOTIVATION

A. Problem Formulation

We consider a highway section of fixed length Lr, con-

sisting of L lanes. A new vehicle arrives at each lane every

T seconds (at the beginning of the highway section). These

vehicles, which form a vehicular network, traverse the highway

section at constant speed and leave the network afterwards.

We assume that a single cellular base station (BS) covers the

entire highway section. Every vehicle has a V2V and a cellular

interfaces, and has to send information to the BS at a rate of

λ packets/s1.

In this vehicular network, a clustering algorithm is assumed

to be implemented. This means that the packets generated

by a vehicle can either be sent to the BS either directly or

indirectly via a CH. An isolated vehicle (i.e., belonging to a

cluster of size 1) necessarily sends its packets directly through

the cellular network. A vehicle in a cluster c of size Nc > 1
sends its packets to the CH through the V2V interface. The

CH aggregates the information received through the V2V link

from CMs and sends it to the BS. The network traffic sent by

the cluster c to the BS is then η(Nc)Ncλ, where η(Nc) ≤ 1
is a compression function performed by the CH that may

be a decreasing function of Nc. Without loss of generality,

we can assume that η(1) = 1. This function results from

the inherent redundancy of position-based data. We do not

define an explicit expression of this function in this paper

as it may depend on the specific application and required

accuracy. For instance, the CH can upload the average value

of the CMs measurements, in which case η(Nc) = 1/Nc.

We define a cluster partition as a set of non-overlapping

clusters that includes all the vehicles within the network. In

the following, we consider only cluster partitions with clusters

1For the given example application (constant uploading of Floating Car
Data), every vehicle will be constantly sending its position information
through the Base Station to a distant server. This is exactly what very well-
known mobile map applications do when collecting information about an
user’s daily trips.

having a maximum of H hops between any CM and its CH.

As a consequence, the total traffic generated by the vehicular

network on the uplink of the cellular network for a given

cluster partition C can be written as:

Λ(C) =
∑

c∈C

η(Nc)Ncλ, (1)

where C is the set of all clusters, and Nc is the number

of vehicles in cluster c. We denote N =
∑

c Nc the total

number of vehicles in the network. We now define the global

compression ratio of the clustering partition C as:

α(C) , 1−
Λ(C)

Nλ
= 1−

∑

c∈C
η(Nc)Nc

N
(2)

Note that α is also the average compression ratio. For the

specific example, where η(Nc) = 1/Nc, we see that it is

advantageous to have large clusters or even a single cluster to

maximize the compression ratio. Now, for a cluster partition

C and the considered traffic model, we can compute a Packet

Loss Rate PLR(C, λ), which is a function of the cluster

partition and the amount of traffic. We define the Packet Loss

Rate in the V2V network as the ratio between lost packets

(due to collisions or decoding failure when the signal is too

weak) and correctly received and decoded packets. We will see

in Section V that the PLR is increasing with the cluster size

because more users are contending for the channel using the

contention-based medium access V2V protocol. Our problem

is thus for a given traffic condition λ to maximize the average

compression ratio under the constraint of an acceptable packet

loss rate:

max
C

α(C) (3)

s.t. PLR(C, λ) ≤ PLRmax, (4)

where PLRmax is an application-specific constraint.

In this problem formulation, the difficulty lies in the fact

that the PLR is only implicitly defined. To the best of our

knowledge, there is no closed-form expression of the PLR for a

dynamic multi-hop cluster of moving vehicles communicating

with IEEE 802.11p. Hence, the PLR can only be obtained by

simulations or measurements. In this case, heuristic methods

have been traditionally employed as viable alternatives to

optimality, see e.g. [13] or [18] in our context. From a

combinatorial point of view, our problem is similar to the

Minimum d-hop dominating set problem in a graph [24] if

some simplifying assumptions are made in the model. This

problem consists in finding a set S of vertices of minimum

cardinality such that any vertex of the graph is either in S or at

a distance at most d from S. However, this problem is known

to be NP-complete even in planar unit disk graphs [24].

B. Example Application: FCD Aggregation

For the performance evaluation of the algorithms (Sec-

tion V) we use the example application of Floating Car Data

aggregation, where vehicles need to send periodic updates on

their position, speed and heading to a server (e.g. Google

Maps’ trip history, Waze). By considering position and speed

within a cluster to be similar enough for these services, we
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consider η(Nc) = 1/Nc: the CH aggregates the information

of all its members (received on V2V) and sends a single

average value through the cellular network. This approach can

be used for several applications from map downloading to

video streaming (uplink and downlink).

IV. PROPOSED SYSTEM AND ALGORITHMS

A. Architecture and Delegated CH Selection

We assume that every vehicle is equipped with two ra-

dio transceivers: one for V2V communications (e.g. IEEE

802.11p), and another one for accessing the cellular network

(e.g. 4G LTE)2. Every circulation direction of a road in a

cellular BS’s coverage area becomes a clustering region. The

region is divided into clustering sectors. The sector length is

calculated as the product of the estimated V2V communication

range (fixed input) times the maximum number of hops (which

changes dynamically in our algorithm). Hence, each sector has

the approximate size of a cluster. The CH selection is delegated

to the BS. At regular intervals of T seconds, it verifies the

presence of a CH in each sector. If there is none, it selects

a new CH as determined by the CH Selection Algorithm

(see Figure 1). In this work we study two variants: the Self-

Adaptive (SA) algorithm (Section IV-C), which appoints the

vehicle that is closest to the center of the sector as CH, and

the Fair Self-Adaptive (FSA) algorithm (Section IV-D), which

analyzes several criteria of distributive justice. The rest of the

cluster formation process takes place locally through the V2V

ad-hoc network, as described in the next section.

B. Cluster Formation

1) Vehicle State Diagram: Figure 2 depicts the states of a

vehicle and the transitions proposed in our model. A new vehi-

cle enters the Discovery state, and listens to the advertisement

messages to find a CH at the smallest possible number of hops.

It also starts building its Neighbour Information Table (NIT).

The Discovery state terminates when a timer expires. The

default transition is to the Isolated state. If CH Advertisements

were received, the vehicle attempts to join the CH at the

minimum hop distance (or physical distance in case of a tie).

A vehicle in the Isolated state immediately tries to join the

first CH that it detects. If it succeeds, it transitions to the

Cluster Member state. Any vehicle in the Isolated or Cluster

Member state immediately transitions to the Cluster Head

state upon appointment message from the Base Station. There

are two conditions under which a vehicle in the Cluster Head

state can transition back to the Isolated state: (1) Absence

of cluster members during a specified time period; or (2)

Reception of a request to cease from the base station (triggered

when two or more CHs are present in the same sector).

2If we take a look at the European standards for ITS communications, the
ETSI ITS-G5 standard implies the existence of a V2V connection, while the
eCall directive implies that there is a mandatory cellular connection. Besides,
different manufacturers already have incorporated cellular-based services in
their cars, and it is becoming a mainstream feature.

Fig. 2: Proposed vehicle state diagram.

2) Enhanced Cooperative Awareness Messages (CAMs):

The main source of control information overhead in clustering

algorithms is often the exchange of information between

members during the cluster formation process. On the other

hand, ITS standards such as ETSI ITS-G5 propose Cooperative

Awareness (CA) services to enhance security. These services

rely on a periodical, frequent broadcasting of beacons in the

V2V network. Coincidentally, most of the information usually

required for cluster formation (like sender ID, position, speed

and timestamp) is available in these Cooperative Awareness

Messages (CAM). For the implementation of our approach,

we want to avoid unnecessary redundant signalling and take

advantage of the standardized message exchange. We thus

propose to add a few fields in the CAM body in order to

have all the necessary information for implementing multi-

hop forwarding (see Figure 3). With this minimum increment

of around 3% of the CAM payload, the only control over-

head of the proposed algorithm is limited to occasional CH

Advertisement, Join Request and Join Response messages.

3) Cluster Head Discovery and Join Procedure: When a

vehicle receives a notification from the BS to become CH,

it starts broadcasting CH Advertisement messages regularly.

Even though the CH selection is centralized within the cov-

erage area of a base station, the rest of the cluster formation

process is completely decentralized. After listening for CH

Advertisement messages, a vehicle that decides to join a

specific cluster sends an unicast Join Request message to the

CH (through the specified intermediate nodes if it is a multi-

hop communication), and the CH completes the handshake

process with a Join Response unicast message following the

same path.

4) The Neighbour Information Table (NIT): Every vehicle

creates and maintains its own Neighbour Information Table

(NIT) with the information received from CH Advertisements

and multi-hop CAMs. It can be compared with the upper layer

of the Local Dynamic Map [26]. For each neighbour detected

in a specific time frame (freshness threshold), the following

information is stored in the NIT: neighbour ID, parent CH

ID, timestamp of the last message, direction, speed, state, hop

distance, and the IDs of the intermediary hops if any.

C. Self-Adaptive (SA) Clustering Algorithm

The most common approach for CH selection in the liter-

ature is called CH self-appointment, in which every vehicle
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Fig. 3: Enhanced CAM packet including extended payload for clustering information [25].

decides individually whether or not it becomes CH by observ-

ing specific metrics of its vicinity (like distance or relative

speed). After having tested this approach by implementing a

representative example [13], we observed that an important

flaw of CH self-appointment is that it often generates too many

CHs. This hinders the possibility of increasing the number of

hops for increasing cluster size. To address these issues, we

propose a BS-based CH Selection approach that has proven to

be useful to overcome this issue (see Algorithm 1): If there is

no CH in a sector, the BS selects a vehicle that is the closest

to the sector center. In this algorithm, the number of hops H
is an input.

Algorithm 1 Self-Adaptive CH Selection Algorithm (Base

Station)

1: Initialisation:

2: Set maintenance period T and adaptation period

Tadaptation = mT , m ∈ N\{0}.
3: Set IEEE 802.11p radio range R.

4: Set clustering region length Lr.

5: Set default values, upper and lower bounds for maximum

number of hops Hdefault, Hu, Hl.

6: Set the Predictive Analysis Zone as the first LPAZ =

min(Lr

4
, 4×R) meters of the clustering region.

7: Set triggering thresholds ∆k−hopmin
and ∆k−hopmax

for

k = Hl, Hl + 1, ..., Hu hops.

8: For t = nT , n = 1, 2, ..., do

9: If n == 0 mod m then

10: H ← Algorithm 2

11: Compute the clustering diameter D = 2R×H .

12: Divide the highway section into S = Lr/D
13: sectors.

14: EndIf

15: For s = 1, 2, ..., S, do

16: If there is no CH in s then

17: Select as CH the vehicle that is the closest

18: to the center of s.

19: Endif

20: Endfor

21: Endfor

Now, every BS dynamically adapts the number of hops H in

its coverage area to the observed vehicular density following

Algorithm 2. The decision to increase or decrease the number

of hops is taken by comparing the observed vehicular density

with two thresholds (for each possible current number of

hops), ∆H−hopmin
and ∆H−hopmax

that have a hysteresis

margin to avoid instability.

Vehicle density can vary quickly, creating a heterogeneous

distribution within a clustering region. This can lead to a

performance degradation if the adaptation of the number of

hops is not sufficiently fast. We define the Predictive Analysis

Zone (PAZ) of a clustering region in Algorithm 2 as the first

portion of the region, measuring in the sense of traffic. The

decision to increase or decrease the number of hops is made

by comparing the vehicular density in the PAZ (δPAZ) and in

its complement (δPAZ), and then comparing the maximum

of those values with the aforementioned thresholds. This

approach takes advantage of the particular movement pattern

of vehicles in order to anticipate density changes, avoiding

performance degradation due to sudden changes.

Algorithm 2 Hop adaptation algorithm (Base Station)

1: If t == 0 then Return Hdefault

2: Compute vehicular density δ = max{δPAZ , δPAZ}.
3: If δ < ∆H−hopmin

then

4: H ← min{H + 1, Hu}
5: Endif

6: If δ > ∆H−hopmax
then

7: H ← max{H − 1, Hl}
8: Endif

9: Notify all vehicles in the clustering region

10: Return H .

D. Fair Self-Adaptive (FSA) Clustering Algorithm

At any given moment, only the CH bears the economic cost

of using the cellular network. In order for the system to be

socially acceptable, the system must ensure that a fair distri-

bution of costs is achieved over time. The Fair Self-Adaptive

clustering algorithm uses the same hop adaptation mechanism

as the Fairness-agnostic approach, but it proposes a new CH

selection methodology based on a theory of distributive justice.

Our approach can be similarly applicable to other clustering

algorithms.

1) Theory of Distributive Justice for CH Selection: We have

chosen to base our method on Rescher’s [20] vision of social

justice, which aims to determine the different legitimate claims

that participants may have, treating those claims impartially.

Instead of analyzing their causes, this theory focuses on

delivering distributive justice: How far an individual’s claims

should be met, taking into account other people’s claims and

the limited resources. In his work, Rescher surveys the way

other authors have analyzed fairness and extract seven so

called canons of distributive justice (or fairness requirements):

1) to be treated as equals, 2) according to one’s needs, 3) to

one’s productive contributions, 4) to efforts and sacrifices, 5)

to the social value of the services provided by the individual

to the society, 6) to supply and demand, or 7) to merits and
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achievements. Rescher’s proposal states that none of these

canons, taken individually, could grant distributive justice.

Instead, he proposes to analyze every participant’s legitimate

claims following each of these aspects, and focuses on how

to balance them in case of conflict.

In order to apply Rescher’s approach to our CH selection

algorithm, we have mapped the seven canons of justice to our

problem’s variables. Vehicles in a clustering sector where a CH

selection takes place vote for their preferred canon, perceived

as the most convenient one according to their situation. The

cellular BS takes this vote into account as a weighting factor

for each of the canons, and tries to make the best choice for

selecting the new CH in terms of fairness and performance.

We now show how Rescher’s canons of distributive justice

are mapped in the terms of our problem, which is to distribute

the cost of the cellular access. The seventh canon (merits

and achievements) rewards extraordinary actions that are not

possible in our context; any form of contribution is always

taken into account by other canons. Hence, we do not include

this canon in our mapping. The fourth (efforts) and fifth (social

utility) canons are merged into a single one because all efforts

contribute to the social utility. This results in the five following

canons. Each one is associated to a preference value that

is used by vehicles to rank the canons and vote for their

preferred one. Time is divided into billing periods of duration

tb and we define te the elapsed time of the current billing

period. The billing period corresponds to the validity period

of a cellular data quota Qb (for example Qb = 30 Gbits and

tb = 1 month). At time te, the remaining quota is denoted Qe.

In the following, all preference values are computed at te.

• Canon of equality: The preference value for this canon is

a normalized amount of data sent as CM:

EdCM
=

[

1−
dCM

te/tb.MdCM

]1

0

, (5)

where dCM is the data sent as a CM at te during the

current billing period, MdCM
is the historic maximum

value of sent data during any billing period and [x]10 ,

max{min{x, 1}, 0}. The parameter MdCM
allows us to

compare the current data consumption with respect to

the history of this vehicle. The preference value EdCM

measures how extraordinary is the data consumption at

te. With this definition, the higher the amount of data

sent as CM, the higher the probability of being selected

as CH.

• Canon of needs: The preference value is defined as the

normalized remaining quota:

EQe
=

[

1−
Qe

Qb

]1

0

, (6)

The higher the amount of available cellular quota, the

higher the probability of being selected as CH.

• Canon of productivity: The preference value is defined as

the normalized amount of cellular data sent as CH:

EdCH
=

[

dCH

te/tb.MdCH

]1

0

, (7)

where dCH is the amount of cellular data sent as CH

in the current billing period and MdCH
is the historic

maximum value of dCH in any billing period. The higher

the volume of data sent as CH, the lower the chance to

be CH.

• Canon of effort/social utility: The preference value is

defined as the normalized number of times having served

as CH:

EnCH
=

[

nCH

te/tb.MnCH

]1

0

, (8)

where nCH is the number of times the vehicle has been

selected as CH in the current billing period and MnCH
is

the historic maximum value of nCH in any billing period.

The more times a vehicle has been CH, the less likely it

is to be selected again.

• Canon of supply and demand: Following [22], we in-

terpret this canon as a measure of the compliance to the

rules. An example of non-compliance is switching off the

cellular connection while being CH. The preference value

is defined as the normalized number of non-compliance

events:

EnNC
=

[

1−
nNC

te/tb.MnNC

]1

0

, (9)

where nNC is the number of non-compliance events

and MnNC
is its historic maximum value of nNC in

any billing period. The more non-compliance events are

detected, the more likely it is to be selected as CH.

Each vehicle uses the five preference values above to know

which canon it will vote for. All the variables required to build

the preference values are assumed to be known by the BS for

all vehicles in a sector.

2) Algorithm: The BS runs Algorithm 3 for every sector s
when there is no CH in s at time te (step 4). For every vehicle

i, it retrieves the variables required for evaluating the canons

and vi (step 6). This vector is a vote to elect the preferred

canon (see Algorithm 4). A weight is allocated to every canon.

The weight is proportional to the number of votes received

for that canon (step 11). They are used in a weighted Borda

vote [27] where each canon acts as a Borda-type voter. Each

of the five lists built in steps 15 to 19 becomes a prioritized

voting ballot: for a list of n elements, the first vehicle in the

list receives n points, the second one receives n − 1, and so

on (step 21). The resulting score µi for each vehicle is the

sum of its five scores, weighed by the factors calculated in

the distributed vote (step 22).

We also propose to take into account the distance to

the center of the sector to balance fairness and efficiency.

Distances of the vehicle to the center of s are retrieved (step 7)

and normalized (step 10). A centrality score σi is associated to

every vehicle (step 24). The final score balances the Borda and

the centrality scores via a parameter β (step 26). The vehicle

with the best score is selected as CH (step 27-28).

3) Computational complexity: The most computationally

intensive part of the process is the ordering of the five lists,

which can be considered to be O(n log n), where n is the

number of vehicles in the clustering sector. This cost is

also alleviated by the distributed and scalable nature of the
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Algorithm 3 Fair Self-Adaptive CH Selection Algorithm (run

at Base Station in every sector s)

1: Inputs: β: a parameter to balance fairness and efficiency.

2: Vs: the set of vehicles in sector s. Ns ← |Vs|.
3: xs: the central location of s.

4: Triggering condition: No CH in s (at te 6= 0).

5: % Procedure:

6: ∀i ∈ Vs, dCM [i], Qe[i], dCH [i], nCH [i], nNC [i], vi ←
Algorithm 4

7: ∀i ∈ Vs, di ← distance between i and xs

8: dmin ← mini∈Vs
di ; dmax ← maxi∈Vs

di.
9: % normalized distance to the sector centre.

10: ∀i ∈ Vs, Di ←
di−dmin

dmax−dmin

11: % Compute the weight of each canon:

wj ←
1

Ns

∑

i∈Vs

vi[j], j = 1, ..., 5

12: % Create L1, ..., L5 : ordered lists for each canon:

13: Define list element: (value, vehicle ID)

14: Order by: value

15: L1 ← (dCM [i], i), decreasing order

16: L2 ← (Qe[i], i), decreasing order

17: L3 ← (dCH [i], i), increasing order

18: L4 ← (nCH [i], i), increasing order

19: L5 ← (NNC [i], i), decreasing order

20: % Compute the weighted Borda score for every vehicle:

21: ∀i ∈ Vs, pij ← position of i in Lj , j = 1, ..., 5.

22: ∀i ∈ Vs, µi ←
∑5

j=1
(Ns + 1− pij)wj

23: % Calculate the centrality score for every vehicle in s:

24: ∀i ∈ Vs, σi ← NsDi

25: % Calculate final scores:

26: ∀i ∈ Vs, scorei ← βµi + (1− β)σi

27: k ← argmaxi∈Vs
scorei.

28: Select vehicle k as new CH and notify it.

Algorithm 4 Distributed Criteria Vote (run at Vehicle)

1: Init: (v[1], ..., v[5]) = (0, ..., 0)
2: Retrieve from local database: nCH , MnCH

, dCH , MdCH
,

dCM , MdCM
, Qe, Qb, nNC , MnNC

3: Compute the vector of preference values for each canon:

E ← [EnCH
, EdCH

, EdCM
, EQe

, EnNC
] according to

equations (5) to (9).

4: i← argmaxj=1,...,5 E[j]
5: v[i]← 1
6: Return nCH , dCH , dCM , Qe, nNC , v.

proposed solution. Firstly, in the coverage area of a base

station (which is the unit performing the sorting operations),

which can only be a few kilometers wide, there are only a

limited number of clustering sectors, as the multi-hop cluster

sizes can only go up to a few hundred meters. Secondly, within

each sector (in the order of the hundred meters) there can only

be a limited number of vehicles (this will typically be below

one hundred). Finally, these sorting algorithms will only be

called when a new cluster needs to be formed. The average

time between two cluster formation operations is, due to the

nature of the problem, significantly high compared to the time

required for a server to perform a sorting algorithm over five

lists of approximately a hundred elements each. Therefore,

the computation time can be considered negligible in the

problem’s timescale.

4) Billing and interoperability: The proposed approach

does not involve any supplementary billing, does not

require the mobile operators to agree to a common

credit/reimbursement/cost-sharing plan, and still delivers long-

term fairness.

Alternative arrangements such as sharing the cost per-round

among all users in a cluster cannot be done directly. Users

can subscribe to different data plans with different access

providers, and the implementation of a mechanism that directly

shares the costs amongst all users would require interoperabil-

ity among all existing data plans from all providers. As data

plans may also change over time, the interoperability problem

would have to be revisited accordingly. Forcing compatibility

between different business strategies is far from evident.

Another ad-hoc cost distribution alternative is, then, to

propose that users subscribe to an application in which they

would have to constantly or periodically make (and receive)

payments for the service usage, that would go on top of

their mobile provider’s bill. This would certainly produce a

generalized unwillingness to adopt the service. In contrast, the

FSA algorithm can be implemented without any further action

from operators or users.

V. PERFORMANCE EVALUATION

The performance of the proposed approach is evaluated in

three different parts. In Section V-C, is dedicated to the cluster

formation process. Section V-D concerns the Self-Adaptive

(SA) algorithm, and Section V-E focuses on the Fair Self-

Adaptive (FSA) algorithm. The evaluation methodology is

described in Section V-A and the common simulation settings

are presented in Section V-B.

A. Evaluation Methodology

The algorithms are evaluated through simulations. The road

traffic simulations are performed with SUMO [23], together

with OMNET++ [28] for network protocols (from physical

to application layers). Both simulators are references in the

domain and implement well-established models (for example,

we use the Krauss car-following model [29] in SUMO, and

a two-ray interference model in OMNET++ for the physical

layer of the V2V network [30]). We also use the Veins

framework [31] to establish the scenario synchronization be-

tween SUMO and OMNET++. The test scenarios in these

simulations are conceived for performing a stress test of the

clustering algorithms in each evaluated aspect, covering both

regular and extraordinary situations. The results presented in

this section for every evaluated metric are the average values

over twenty repetitions.

B. Common simulation settings

In all the following simulations, the access protocol

in the V2V network is IEEE 802.11p. The protocol for
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Fig. 4: IEEE 802.11p (V2V) PLR as a function of the vehicular

inter-arrival time, for different numbers of hops.

the network and transport layers is IEEE 1609.3. In the

application layer we implement the Cooperative Awareness

Messages (CAM) from the European ETSI ITS G5 standard,

set at a frequency of 1 Hz (every vehicle broadcasts one

message per second on V2V). The cellular network protocol

is assumed to be LTE. The aggregation ratio performed by

the CH is η(Nc) = 1/Nc, where Nc is the cluster size.

The path loss follows a Two-Ray Interference model [30].

We consider that to ensure the system’s reliability, V2V

PLR cannot he be higher than PLRmax = 10%. The IEEE

802.11p maximum range is set to R = 800 m. For the

SA and FSA algorithms (Sections V-D and V-E), we set

the hop number adaptation time T = 40 s, the maximum,

minimum and default number of hops (Hu, Hl, Hdefault) =
(3, 1, 3), and the hop change density thresholds

(∆1−hopmin
,∆2−hopmin

,∆2−hopmax
,∆3−hopmax

) =
(17.5, 5.5, 22.0, 7.0) vehicles/km. These values have been set

according to the findings published in [6].

C. Cluster Formation: Packet Loss Rate vs. Number of Hops

In the following, we show how the Packet Loss Rate (PLR)

depends on the maximum allowed number of hops in a cluster.

The results obtained were employed to determine the contexts

(traffic densities) for which different cluster sizes were viable;

and hence determine the triggering conditions for cluster size

adaptations (see Algorithm 2 in IV-C).

1) Simulation Configuration: We consider a highway sec-

tion which is Lr = 5 km long and has L = 3 lanes. N = 60
vehicles traverse the highway section at an average speed of

16.6 m/s. Inter-arrival times (inversely proportional to density)

vary between 1 s and 20 s. The maximum number of hops is

set to H = 1, 2 and 3 in separate runs (it is fixed in every

experiment).

2) Simulation Results: Figure 4 shows the PLR in the V2V

network as a function of the vehicular inter-arrival time for

static hop configurations (H = 1, 2 and 3). Considering the

inverse proportionality between inter-arrival time and vehicular

density, we observe that for very high traffic densities, the V2V

PLR worsens significantly for every supplementary allowed

hop. This is due to the amplification of the broadcast storm

effect when the number of nodes increases. We observe

that the 2- and 3-hop configurations do not meet the PLR

constraint of 10% for inter-arrival times shorter than 3 and 10

(a) Low density

(b) Medium density

(c) High density

Fig. 5: Packet Loss Rate (PLR) in function of time for

the tested scenario. Comparison between 1-,2- and 3-hop

configurations vs. Self-Adaptive algorithm.

seconds respectively. Knowing that on the other hand, a higher

number of hops improves the data aggregation performance,

we conclude that there are three different vehicular density

scenarios (low, medium and high) for which a different number

of hops is optimal in terms of equations (3) and (4).

D. Self-Adaptive (SA) Clustering Algorithm

The proposed hop adaptation algorithm has been tested in

order to verify its reactivity to changes in vehicular density

and its convergence to the results in terms of PLR and α(C)
to the ideal hop configuration for the traffic situation.

1) Simulation Configuration: The traffic simulation con-

sists of a 10 km long highway segment, divided into two

clustering regions of equal length. In terms of vehicular traffic,

the tested scenario consists of three consecutive flows of very

different densities: from 0 s to 2500 s, 100 vehicles enter the

highway section at an average inter-arrival time of 25 s. From

2500 s to 4500 s, a second flow of 200 vehicles will enter the

highway section at an average inter-arrival time of 10 s. And

finally, starting from 4500s, a flow of 1600 vehicles will enter

at an average inter-arrival time of 1 second. A performance

evaluation in terms of α(C) and PLR is made, comparing the

Self-Adaptive algorithm to the fixed-hop static configurations

of the previous section, with 1, 2 and 3 hops.

2) Simulation Results: The results are presented in separate

figures for the different traffic flows for an improved reading
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(a) Low density

(b) Medium density

(c) High density

Fig. 6: Cellular data consumption reduction (Alpha) in func-

tion of time for the tested scenario. Comparison between 1-,2-

and 3-hop configurations vs. Self-Adaptive algorithm.

and analysis, but the reader should keep in mind that they

are part of a single, continuous simulation. PLR are shown in

Figure 5 and compression ratios are shown in Figure 6. Our

Self-Adaptive algorithm is compared to fixed-hop algorithms,

that do not adapt the cluster sizes to traffic density.

During the first part of the simulation, a very light traffic

density is introduced, so that PLRs are very low (Figure 5.a):

all the algorithms remain below 1%. Vehicles are rather far

away from each other and, as we can see in Figure 6, the

1-hop algorithm is unable to form big enough clusters, and

is severely penalized in its aggregation performance when

compared to the others. The best aggregation performance

is achieved for the 3-hop algorithm closely followed by our

Self-Adaptive algorithm (Figure 6.a). When the second flow of

vehicles arrives at the mark of 2500 s, curves gradually change,

and the 3-hop algorithm goes beyond the PLR acceptability

threshold of 10% (Figure 5.b). The Self-Adaptive algorithm

then changes the number of hops, from 3 to 2, and we can see a

significant reduction of the PLR after the peak we get when the

new flow starts. The Self-Adaptive algorithm’s compression

curve starts following the 2-hop curve (Figure 6.b). Finally,

for the highest density (Figures 5.c and 6.c), the PLR curves

of 2- and 3-hop go off-chart, leaving 1-hop as the only viable

possibility. The Self-Adaptive algorithm triggers a hop change

again, resolving another PLR peak, while its aggregation

performance follows the curve of 1-hop. In the worst case,

(a) State-of-the-art: clustering method based on [17]
and [13].

(b) Proposed cluster head selection and cluster formation
algorithm.

Fig. 7: Resulting cluster sizes for 1, 2 and 3-hop configura-

tions. Comparison between the implementation of a state-of-

the-art clustering algorithm (a) and the approach presented in

this paper (b).

signalling represents only 0.17% of the savings in terms of

number of messages. Even if messages have different lengths,

this rough estimation shows that the signalling associated to

our algorithm is negligible.

As an intermediate conclusion, we see that the Self-

Adaptive algorithm correctly adapts to extreme density

changes, achieving an important reduction in cellular network

usage in every scenario (thus making important monetary sav-

ings at large scale), while respecting the imposed constraints

of packet loss rate on the V2V network, guaranteeing that

specific applications’ requirements can be met. This method is

efficient for preserving network performance, but the problem

of fairly distributing the communication costs in which CHs

incur still needs to be addressed. The next section evaluates

our proposal to tackle this issue.

3) Comparison with state-of-the art clustering algorithms

- Maximum number of hops vs. cluster size: Figure 7 shows
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the distributions of cluster sizes when the maximum number

of hops is respectively 1, 2 or 3. On the left (a), we show

the performance of VMaSC, a state-of-the-art clustering algo-

rithm [13], [17]; on the right (b) we show the performance

of SA. Cluster size is indeed a metric of utmost importance

since it is directly related to the aggregation ratio.

The VMaSC algorithm that we compare to has been chosen

because it is a paradigmatic example of the most common

design strategy in the literature of clustering algorithms for

vehicular networks. This design consists in Cluster Heads that

take this role in function of their own observation of their

environment (what we can call a self-proclaimed CH). In

contrast, the approach we propose in this paper is to let the

cellular base station select a CH, with the rest of the cluster

formation process taking place through V2V interaction.

We observe from the figure3 that at high inter-arrival times

(say above 17 s), there is a clear correlation between the

number of hops and the cluster sizes. For both algorithms

indeed, increasing the number of hops logically increases the

average cluster sizes. However, for low inter-arrival times

(i.e. high vehicle densities), VMaSC is unable maintain this

correlation. The issue comes from the fact that VMaSC allows

too many nodes to self-proclaim as CHs. This results in smaller

cluster sizes, even when more hops are permitted. In contrast,

the region-based CH selection performed by the cellular base

station in our approach yields clearly distinct cluster sizes

when increasing the number of hops, even in higher vehicular

density scenarios. This allows us to control the average cluster

sizes by allowing more or less numbers of hops.

Thus, we conclude that the CH selection design choice of

our proposal gives it a clear advantage with respect to VMaSC

for the data aggregation-based cellular cost reduction problem.

E. Fair Self-Adaptive (FSA) Clustering Algorithm

In this section we compare the Fairness-agnostic and

Fairness-aware approaches of our Self-Adaptive clustering al-

gorithm in terms of network performance and fairness metrics.

1) Simulation Configuration: The simulation experiment

consists of a group of 100 vehicles that pass through a 10

km highway segment, for approximately 100 times each, with

randomized order of re-entrance. In the curves that follow,

where time is represented in the horizontal axis, it refers to

the simulated time, where the 100 vehicles randomly re-enter

with a precise inter-arrival time. This is thus the equivalent of

the time that it would take for 10,000 vehicles to traverse the

10 km highway segment, with an uniform inter-arrival time.

We set the fairness vs. efficiency parameter β = 0.65.In the

simulations, we don’t simulate events of non-compliance with

the rules – the implementation of a behavioral model, as well

as the analysis of the variation of β is left for future work.

2) Vehicles Having Served as CH: A first relevant outcome

of introducing distributive justice over the long term is that

the role of CH, which seems like a temporary burden, will be

3In the box plots in this article, the solid band represents the median (second
quartile), while the box is delimited by the first and third quartiles. The
whiskers mark the lowest and highest datum still within 1.5 Inter-quartile
Range (IQR) of the lower and upper quartiles, respectively. The outliers are
marked as circles.

Fig. 8: Box plot showing the distribution of the number of

times that every vehicle has served as CH, for both algorithms,

over time.

taken by a greater proportion of the participants if we analyze

successive samples over time. The box-plot in Figure 8 shows

the distribution of the number of times that each vehicle has

been designated as CH over time. Regardless of the time

passing, the value range of the box (which represents the

majority of the vehicles) for the FSA Algorithm remains small

and doesn’t increase. Their whiskers (representing slightly less

than 25% of the values below and above the value range of the

box each) are usually tiny or non-existent. This means that,

even if the average number of times that vehicles in general

serve as CH increases with time (which is necessary), all of

the vehicles serve approximately the same amount of times as

CH. On the other hand, for the SA Algorithm’s boxes, their

size increases, and the whiskers keep getting bigger, showing

extreme disparities between the participants.

3) Cellular Quota Consumption: The differences in the

outcome of the CH selection that we discussed above, has

a direct impact on cellular quota consumption. We now see

some examples of the different distribution of the cellular

quota usage with both algorithms, which translates almost

directly into different economic costs. Since the final available

quota can be seen as a remaining wealth that can be distributed

more or less evenly among the participants depending on the

algorithm’s distribution policies (or lack thereof), we have

analyzed the distribution of the remainder of this resource

following two common fairness metrics: the Gini coefficient

and the Lorenz curve [32] (see Figure 9). The Gini coefficient

measures the statistical dispersion of the distribution of a

resource among a certain population (like the distribution of

wealth between a country’s residents). The perfect distribution

where every person has the same resources has a coefficient

G = 0, whereas the case of one person having all the resources

has a coefficient of G = 1. The Lorenz curve is a graphical

representation of this distribution, which shows the proportion

of resources held by the bottom x proportion of the population.

Perfect equality is represented by the diagonal line. If we call

A the area between the perfect equality line and the Lorenz

curve, and we call B the area below the Lorenz curve, the Gini

index can be defined as G = A
A+B

. Results show that the Fair

Self-Adaptive (FSA) algorithm reduces the Gini coefficient by

78%, with the Lorenz curve approaching the perfect equality
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(a) Self-Adaptive (SA) algorithm (b) Fair Self-Adaptive (FSA)
algorithm

Fig. 9: Lorenz curves and Gini indices analyzing the final

distribution of available cellular quota in both algorithms.

Fig. 10: Histogram of the final available cellular quotas among

the vehicles having served as CH.

line. The clear final picture of the situation can be seen in

the histogram of Figure 10, where we can see that for the

Fair Self-Adaptive algorithm, the variance of the final cellular

quota is much smaller than for the Self-Adaptive algorithm.

4) Network Performance: The original Self-Adaptive clus-

tering algorithm aims to adapt the size of the clusters, finding

compromises between cellular consumption reduction and

PLR on the V2V network. We could expect that modifying

the geometry and criteria of the election process could affect

the metrics that this algorithm was designed for. Figures 11a

and 11b compare both algorithms in terms of data compression

and PLR, respectively. As we can clearly see, the improve-

ments in distributive justice come at no cost in terms of

network performance.

VI. CONCLUSION

In this paper, we studied and proposed a solution addressing

the required trade-off between data aggregation over cellular

networks and minimal performance over V2V networks. In-

novative ITS applications will require big volumes of data

to be uploaded from the vehicles to the cloud using the

cellular network. The cost of access to this network can

become a major problem and data aggregation at Cluster

Head (CH) appears as a promising solution. This approach

yields better results when cluster sizes increase. However, this

comes with a higher Packet Loss Rate (PLR) in the V2V

network because of the contention-based access protocol. We

have thus proposed an Self-Adaptive clustering algorithm that

dynamically adapts the cluster size to the traffic density. We

have also proposed a Fair Self-Adaptive algorithm based on

(a)

(b)

Fig. 11: Comparison between the FSA and SA algorithms,

regarding: (a) Data compression ratio on the cellular network

link over (simulated) time. (b) Packet Loss Rate (PLR) on the

V2V network.

the theory of distributed justice to ensure a fair distribution

over time of the responsibilities of being elected CH and hence

a better social acceptability. Simulations show that the Self-

Adaptive algorithm exhibits high compression ratios and low

PLR. The Fair Self-Adpative alogorithm improves the Gini

index by 78% in terms of remaining quota with respect to the

baseline algorithm.
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lacadémie royale des sciences,” Paris, France, 1781.

[28] A. Varga, “Discrete event simulation system,” in Proc. of the European

Simulation Multiconference (ESM’2001), 2001.

[29] S. Krauß, P. Wagner, and C. Gawron, “Metastable states in a microscopic
model of traffic flow,” Physical Review E, vol. 55, no. 5, p. 5597, 1997.

[30] C. Sommer, S. Joerer, and F. Dressler, “On the Applicability of Two-
Ray Path Loss Models for Vehicular Network Simulation,” in 4th IEEE

Vehicular Networking Conference (VNC 2012). Seoul, Korea: IEEE,
November 2012, pp. 64–69.

[31] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE

Transactions on Mobile Computing, vol. 10, no. 1, pp. 3–15, January
2011.

[32] J. L. Gastwirth, “The estimation of the lorenz curve and gini index,”
The review of economics and statistics, pp. 306–316, 1972.

Julian Garbiso received his Ph.D. in Telecommu-
nications Engineering (Computer Science and Net-
works) from Telecom ParisTech (Paris, France) in
2017. In addition, he holds a M.Eng. in Telecom-
munications and a M.Sc. on Research in Computer
Science from IMT Atlantique (Brest, France). He
currently works as an IoT and Data Technologies
Manager at Institut VEDECOM (Versailles, France).
Prior to that, he has worked as a Research and
Development Engineer at Telecom ParisTech (Paris,
France), and as a Software Developer for the Min-

istry of Science and Technology of Argentina and in a start-up in Buenos
Aires (Argentina). His research interests include ad-hoc networks, cellular
networks, machine learning and intelligent transportation systems.

Ada Diaconescu is Assistant Professor (tenured) at
Telecom ParisTech, since 2009. She received a Ph.D
from Dublin City University (2006) and pursued
post-doctoral research at University of Grenoble,
Orange Labs, and INRIA Rhone Alpes (2005-2009).
She was a visiting scientist at Leibniz University in
Hanover in 2016 and 2017. Her research interests
include autonomic, self-adaptive, self-organising and
complex systems, and the impact of technology
in socio-technical systems. She has co-authored a
Springer book on Autonomic Computing (2013),

was PC co-Chair of IEEE SASO (2014), General Co-Chair of IEEE ICAC
(2015), General Chair of IEEE SASO (2017), and co-organiser of two
Dagstuhl seminars (2015 and 2018).

Marceau Coupechoux is Professor at Telecom
ParisTech and Ecole Polytechnique. He obtained his
Master from Telecom ParisTech (1999) and from
Univ. of Stuttgart (2000), his Ph.D. from Eurecom
(2004), his Habilitation from UPMC (2015). From
2000 to 2005, he was with Alcatel-Lucent. He was
Visiting Scientist at the IISc, Bangalore, India, in
2011-2012. He has been General Co-Chair of WiOpt
2017. He is working on cellular networks, wireless
networks, ad hoc networks, cognitive networks, In-
ternet of things, focusing mainly on performance

evaluation, optimization and resource management.

Bertrand Leroy leads the VEDECOM research
group dedicated to Mobility Data Sensing and Pro-
cessing. He started his career as a research scientist
in image processing at Hopital Saint Louis (Paris)
and then at the University of Southern California
(USC). Later on, he worked in digital video startups,
and then in the automotive industry. He holds a
PhD in Computer Science from the University Paris-
Dauphine; his thesis work was carried out at INRIA
in the field of Computer Vision. He also holds an
MBA degree from University Paris-Sorbonne. His

research interests include image processing, machine learning and connected
sensors applied to mobility.


