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Abstract: A threshold decryption scheme is a multi-party public key cryptosystem that allows 
any sufficiently large subset of participants to decrypt a ciphertext, but disallows the decryption 
otherwise. Many threshold cryptographic schemes have been proposed so far, but fairness is not 
generally considered in this earlier work. In this paper, we present fair threshold decryption 
schemes, where either all of the participants can decrypt or none of them can. Our solutions 
employ semi-trusted third parties (STTP) and offline semi-trusted third parties (OTTP) 
previously used for fair exchange. We consider a number of variants of our schemes to address 
realistic alternative trust scenarios. Although we describe our schemes using a simple hashed 
version of ElGamal encryption, our methods generalise to other threshold decryption schemes 
and threshold signature schemes as well. 
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1 Introduction 

A threshold decryption scheme is a multi-party public key 
cryptosystem that allows any sufficiently large subset of 
participants to decrypt a ciphertext, but disallows the 
decryption otherwise. In a threshold decryption scheme, a 
secret key is typically split into secret key shares for the 
participants using a threshold secret sharing scheme. When 
a sufficiently large subset of participants wants to decrypt a 
ciphertext, each party computes a partially decrypted value 
using its secret key share. Any party who collects 
sufficiently many partially decrypted values can decrypt. 

In this paper, we focus on fairness of threshold 
decryption, which is not easy to achieve without a fully 
trusted third party (TTP). In many scenarios, it is very 
desirable that all participants in a threshold decryption 
procedure should receive the correct decrypted plaintext 
simultaneously, even when those participants are mutually 
mistrustful. In a stand-alone setting, where valuable data is 
encrypted, it is a security problem if some cheating 
participants to the threshold decryption procedure can 
recover the plaintext while the other participants cannot. In 
a more complex setting, where the threshold decryption is 
part of a larger secure multi-party protocol (e.g., Kissner 
and Song, 2005), the security of the overall protocol may be 
compromised unless ciphertexts can be decrypted with 
fairness. Although we focus on threshold decryption in this 
work, essentially, all of our methods hold for the case of 
threshold signatures as well (this is also an important 
primitive in many scenarios). 

The previous threshold decryption schemes sometimes 
include a party called combiner, who collects the decryption 
shares and computes the plaintext. With respect to fairness, 
combiner would need to be a TTP since it obtains the 
plaintext earlier than others. However, TTP is typically 
undesirable because all of the parties should totally trust it. 
Alternatively, each party in the threshold decryption can 
become a combiner by himself if he knows the combining 
algorithm and all the decryption shares are exchanged 
among the parties. In that case, however, unfairness occurs 
when the first party who obtains all of the decryption shares 

quits the protocol without sending his decryption share. 
Even worse, a malicious party may obtain all decryption 
shares exclusively by repeating decryptions without sending 
his decryption share. Robust threshold decryption can be 
helpful here, but it does not by itself yield fairness. 

We employ semi-trusted third parties (STTP) and offline 
STTP (OTTP).1 The STTP is an additional participant that 
follows the prescribed protocol correctly, while recording 
all communication in an attempt to learn something more 
about plaintexts (‘semi-honest’ or ‘honest-but-curious’ 
adversary). The STTP is an online participant, since it 
connects to all the parties before the protocol starts, and 
communicates with them during the protocol even when all 
the parties are honest. 

Our first solution uses a single STTP to achieve  
fair threshold decryption. However, in practice, the 
reconstructing parties may fail to agree on a mutually 
satisfactory STTP. For example, imagine a situation  
where the parties of organisation A trust only STTP ,α  
while the parties of organisation B trust only STTP .β  To 
cover this kind of situation, we give a second solution that 
uses multiple ‘weak’ STTPs to achieve fair threshold  
decryption. A ‘weak’ STTP works semi-honestly for  
all the parties that trust it, but may work maliciously  
for the other parties. We present fair threshold decryption  
schemes for two natural variants of the multiple weak 
STTPs setting. 

Our third solution uses a single OTTP to achieve fair 
threshold decryption. The OTTP is a semi-honest additional 
participant that is not involved in the protocol unless one or 
more of the reconstructing parties crashes or attempts to 
cheat. The OTTP is an offline participant, since it does not 
connect to any of the parties during normal protocol 
execution. This kind of protocol is often called ‘optimistic’, 
since troubles are resolved afterwards rather than prevented 
beforehand. 

For all of our solutions, no information leaks to the 
sender about the decryption policy (i.e., encryption looks 
like ordinary public key encryption). This has always been 
an essential design principle for threshold cryptography, and 
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it rules out simple approaches where the sender splits his 
message and encrypts using multiple keys. 

1.1 Related work 

Many threshold cryptographic schemes have been proposed 
so far (Desmedt and Frankel, 1989; Santis et al., 1994; 
Gennaro et al., 1996, 2000, 2001, 2008; Shoup, 2000; 
Fouque et al., 2000), but fairness is not generally considered 
in this earlier work. Cleve (1986) showed the impossibility 
of completely fair protocols without an honest majority for 
arbitrary functions, but Gordon et al. (2008) reopened the 
question for specific functions of interest. Particularly, if 

/ 3<t n  where n  is the total number of parties and t   
is the number of corrupted parties, fairness for secure  
multi-party computation (MPC) protocols can be achieved 
without information-theoretic or computational assumptions  
(Ben-Or et al., 1988; Chaum et al., 1988; Goldreich et al., 
1987; Goldreich, 2000). If / 3 / 2,≤ <n t n  a broadcast 
channel is necessary to achieve fairness (Rabin and Ben-Or, 
1989; Goldreich et al., 1987; Goldreich, 2000). Our 
consideration is on the general case where t  can be any 
value between 1 and .n  The ‘gradual release’ paradigm can 
give a relaxation of complete fairness that is useful in  
many contexts (see e.g., Blum, 1983; Luby et al., 1983; 
Ben-Or et al., 1990; Boneh and Naor, 2000; Boudot et al., 
2001; Pinkas, 2003; Garay et al., 2004, 2006). Online  
semi-trusted parties have been used for fair exchange and 
related functions (e.g., Franklin and Reiter, 1997; Zhou and 
Gollmann, 1997; Cox et al., 1995). Offline semi-trusted 
parties have been used for ‘optimistic’ fair exchange (e.g., 
Asokan et al., 1997, 2000; Bao et al., 1998; Zhou et al., 
2000; Boneh et al., 2003; Dodis and Reyzin , 2003; Dodis et 
al., 2007) and two-party optimistic fair secure computation 
(Cachin and Camenisch, 2000). Lindell (2008) considers a 
related setting in which the offline semi-trusted party is 
replaced with a legal infrastructure that respects digital 
signatures. Lepinski et al. (2004) used physical assumptions 
to realise fair secure function evaluation (SFE), which 
includes fair MPC as a special case. 

The rest of the paper is organised as follows. Section 2 
gives some preliminary cryptographic background. We 
present security models and definitions in Section 3. We 
present fair threshold decryption with (online) STTP (both 
strong and multiple weak) in Section 4 and optimistic fair 
threshold decryption with OTTP in Section 5. 

2 Cryptographic background 

In this section, we briefly review the scenario of threshold 
decryption and a threshold version of Hash-ElGamal 
cryptosystem. 

2.1 Threshold decryption 

The scenario of ( 1, )+ lt  – threshold decryption is as 
follows. There are a dealer, l  shareholders who can  
 

participate in the decryption, and a combiner who actually 
decrypts the ciphertext. The dealer initialises a public 
key/secret key pair of the underlying non-threshold 
cryptosystem and splits the secret key into l  secret key 
shares. Each shareholder iP  keeps the corresponding secret 
key share is  privately. Anyone can encrypt a message by 
the public key. When a group of 1+t  shareholders wants to 
decrypt a ciphertext, each shareholder computes a  
partially decrypted value called decryption share by its 
secret key share. Then, the combiner collects 1+t  
decryption shares and obtains the plaintext by the 
combining algorithm. Throughout this paper, we use the 
following notations: 

• secret key share – denotes a piece of the secret key 
shared by the secret sharing scheme 

• decryption share – denotes a partially decrypted value 
of a ciphertext by a secret key share 

• reconstruction group – denotes a group of 1+t  parties 
participating in the decryption process. 

2.2 Threshold version of Hash-ElGamal 
cryptosystem 

Throughout the paper, we use the threshold version of  
Hash-ElGamal cryptosystem (ElGamal, 1985), which 
allows us to focus on the main ideas of our schemes and the 
security arguments introduced by the fairness. 

Setup 
Let G  be a multiplicative group of large prime order .q  Let 
H  be a Hash function from G  to plaintext-length 
bitstrings. Let g  be a generator of .G  

Key generation 

A dealer does the following: 

1 chooses a secret key [1.. 1]= ∈ −RSK x q  and computes 

public key xPK g=  

2 picks a random polynomial ( )⋅f  with degree t for 
Shamir’s (1979) secret sharing scheme whose 
coefficients are picked in [0.. 1]−q  and (0)f x=  

3 for all 1 ,≤ ≤ li  computes secret key share 
( ) mod ,=is f i q  verification key ,= is

iVK g  sends is  to 

party ,iP  and publishes ( ){ }1
, , , .

≤ ≤li i
g PK i VK  

Encryption 
To encrypt a message ,m  one randomly chooses 

[1.. 1]∈ −Rr q  and computes ( )( )( ) , .= r rxE m g m H g⊕  
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Threshold decryption 

Let ( ) ( , ),=E m u v  and let [1.. ]⊆ lS  be a reconstruction 
group with | | 1.= +S t  For each ,∈ ii S P  sends its 

decryption share = irs
iw g  to the combiner. The combiner 

computes ( ) ,
∈

=∏ irx
ii S

g w λ  where { } ∈i i S
λ  are the 

appropriate Lagrange coefficients: 

\{ }
i.e.,  .

∈

⎛ ⎞=⎜ ⎟−⎝ ⎠∏i b S i

i
b i

λ  

Then the combiner computes ( ) .=rxv H g m⊕  

Robust threshold decryption 

iP  also sends to the combiner a zk-proof of equality of 
discrete logarithms that ( ) ( )log log .= rg i ig

disc VK disc w  

The combiner rejects the decryption share from iP  unless 
this zk-proof is good. 

This threshold decryption scheme is semantically secure 
against a chosen plaintext attack if H  is modelled as a 
random oracle, and if the computational Diffie-Hellman 
problem (CDH) is hard in G  (where the chosen plaintext 
attack is performed by an adversary that can see up to t  
shares of the decryption key). The robust threshold 
decryption scheme has similar security if (in addition) the 
proof of equality of discrete logarithms is sound, complete 
and zero knowledge. 

3 Security models and definitions 

In this section, we introduce members of our scenarios and 
define fairness of threshold decryption. 

3.1 Members and security models 

The members of our fair threshold decryption scheme 
consist of a dealer ,lD  shareholders and additional  
STTP. 

• Dealer. A dealer D  initialises the scheme as in the 
usual threshold decryption. If desired, a distributed key 
generation protocol can replace this trusted dealer using 
standard methods (e.g., Gennaro et al., 2007). 

• Shareholder. A shareholder is a legal member with a 
secret key share who can participate in the decryption. 
We assume that each shareholder works in a malicious 
model. That is, it may arbitrarily deviate from a 
specified protocol. It may refuse to participate in the 
protocol or abort the protocol prematurely. 

• Strong STTP. A strong STTP is an STTP trusted to 
work semi-honestly by all the shareholders. Only one 
strong STTP suffices in our fair threshold decryption 
scheme. 

• Weak STTP. A weak STTP is an extended notion of 
STTP which is trusted to work semi-honestly by some 
of the shareholders but not trusted by other 
shareholders. To all the shareholders who trust it, it 
faithfully works in semi-honest model, while it can 
work maliciously to other shareholders. We assume that 
every weak STTP works semi-honestly to other weak 
STTPs regardless of trust relationship between 
shareholders and weak STTPs. In our schemes with 
multiple weak STTPs, several weak STTPs work 
together like one strong STTP. 

• Offline STTP (OTTP). An offline STTP is an STTP 
trusted by all the shareholders but it does not attend the 
protocol if all the shareholders behave honestly. 

Every online (strong or weak) STTP has its secret key share 
distributed privately during the key generation and can 
compute its decryption share like a shareholder. 

3.1.1 Communication model 

We assume that every pair of participants has a private and 
reliable communication channel connecting them. This 
includes all combinations of shareholder-to-shareholder, 
shareholder-to-STTP, and STTP-to-STTP communication. 

3.2 Formal definition of fairness 

We define fairness of ( 1, )-threshold+ lt  decryption as 
follows. 

Definition 1 (Fairness of threshold decryption): If any 
shareholder iP  decrypts a ciphertext, then there exists at 
least one reconstruction group S  with ∈iP S  and 
| | 1= +S t  such that all the shareholders of S  can get the 
plaintext. 

In the above definition, fairness means that all the 
shareholders of S  can obtain the plaintext or no shareholder 
can. Any shareholder out of S  should not be able to decrypt 
the ciphertext unless some shareholders of S  send the 
plaintext to it. This requirement is important for applications 
in which the plaintext should be kept secret among the 
participants (e.g., Kissner and Song, 2005). 

Our definition of fairness implies that any fair threshold 
decryption scheme should be robust against such an attack 
whereby malicious shareholders initiate two or more 
reconstruction protocols for the same ciphertext (e.g., with 
disjoint subsets of honest shareholders), aborting so that no 
honest shareholder succeeds in any single reconstruction 
effort, while the malicious shareholders can decrypt by 
combining honest decryption shares from all of the 
reconstruction efforts. 

When the number of corrupted shareholders is less than 
( 1) / 2+t  (i.e., majority of any reconstruction group is 
honest), fairness can be achieved by general results of fair 
MPC (Ben-Or et al., 1988; Chaum et al., 1988; Goldreich et 
al., 1987; Goldreich, 2000). We employ STTPs to cover the 
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general case where up to t  shareholders are corrupted. The 
following definition states fairness of threshold decryption 
when STTPs are involved in. 

Definition 2 (Fairness of threshold decryption with STTPs): 
A threshold decryption with STTPs is fair if all the 
shareholders achieve fairness in Definition 1 with the help 
of STTPs, while no STTP can learn anything about the 
decrypted message in polynomial time. 

4 Fair threshold decryption with (online) STTP 

4.1 Security notions 

We formally define two security notions, STTP-assistance 
and STTP-obliviousness by challenge-adversary games. 
Informally, STTP-assistance means that if any one of 
STTPs does not contribute its decryption share, no coalition 
of shareholders can decrypt any ciphertext even  
with the secret key shares of the other STTPs. And  
STTP-obliviousness means that no STTP, even with t  secret 
key shares of shareholders, can learn anything about  
the decrypted message during polynomial number of 
decryptions on any ciphertexts. 

4.1.1 STTP-assistance 

We say that a threshold scheme satisfies STTP-assistance if 
any polynomially bounded adversary A  cannot win the 
following game with non-negligible probability. The game 
proceeds between A  and a challenger CH  where there are 
k  STTPs: 

1 CH  runs setup and key generation algorithms taking a 
security parameter. CH  gives A  the resulting 
common parameters. 

2 A  receives all the secret key shares of l  shareholders 
and 1−k  secret key shares of the STTPs from .CH  

3 A adaptively makes a polynomial number of queries to 
CH  on any messages. For each message ,M CH  
generates encryption C  of M  and responds with C  
and the corresponding decryption share of the 
remaining STTP with zk-proof. 

4 A selects two target messages ( )0 1, .M M  CH  picks 
one message bM  by selecting a random bit {0,1}←b  
and sends a ciphertext bC  of bM  to .A  

5 Repeat Step 3. 

6 A  outputs ′b  (and wins if ).′ =b b  

4.1.2 STTP-obliviousness 

We say that a threshold scheme with STTP satisfies  
STTP-obliviousness if it satisfies any polynomially bounded 
adversary A  cannot win the following game with  

non-negligible probability. The game proceeds between A  
and a challenger CH  where there are k  STTPs: 

1 CH  runs setup and key generation algorithms taking a 
security parameter. CH  gives A  the resulting 
common parameters. 

2 A  is given all the secret key shares of k  STTPs and t  
secret key shares of shareholders.2 

3 A  adaptively makes a polynomial number of queries to 
CH  on ( , )M S  where [1.. ],| | 1.⊆ = +ls S t  For each 
( , ),M S  CH  generates encryption C  of ,M  and 
responds with C  and the corresponding decryption 
shares with zk-proofs following the protocol on behalf 
of the shareholders of .S  

4 A selects two target messages ( )0 1, .M M  CH  picks 
one message bM  by selecting a random bit {0,1}←b  
and sends a ciphertext bC  of bM  to .A  CH  simulates 
executions of all the shareholders so that A  can 
participate in the decryption of bC  on behalf of the 
STTPs. 

5 Repeat Step 3. 

6 A outputs ′b  (and wins if ).′ =b b  

4.2 Strong STTP fair threshold Hash-ElGamal 

4.2.1 Description 

The main idea of this scheme is that the secret key is split 
into 1+l  secret key shares instead of l  secret key shares so 
that a secret key share is assigned for the strong STTP. 
However, we define the secret key share of the strong STTP 
as a special one, thus even more than 1+t  shareholders 
cannot decrypt a ciphertext without the decryption share of 
the strong STTP. The strong STTP can trigger the 
decryption by sending its decryption share after the 
shareholders of S  exchange their decryption shares with 
one another. This scenario is applicable to all schemes 
which follow the general threshold decryption scenario. 
Figure 1 shows this scenario graphically. The details of the 
protocol are as follows. 

Key generation 

D  chooses , [1.. 1],∈ −Rx R q  and computes ,= xPK g  

.= R
STTPVK g  D  picks an otherwise random degree t  

polynomial ( )⋅f  with coefficients in [0.. 1]−q  such that 
(0) ( ) mod .= −f x R q  Then for all (1 ),≤ ≤ li i  D  computes 

mod ,=i is f q  ,= is
iVK g  and sends is  to shareholder .iP  

D  sends =STTPs R  to the STTP. Lastly, D  publishes 

( ){ }1
, , , , .

≤ ≤lSTTP i i
g PK VK i VK  
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Strong STTP fair threshold decryption 

Let ( ) ( , ),=E m u v  and let [1.. ],| | 1.⊆ = −lS S t  The STTP 
do not have to know ( , )u v  or .S  

For each , ,  ∈ ii j S P  sends = is
iw u  and a zk-proof that 

( ) ( )log log=g i u idisc VK disc w  to .jP  If iP  succeeds in 
verifying 1+t  decryption shares (including her own),  
then iP  sends a ( ), , ( , )READY S u v  signal to the STTP. 
When the STTP receives consistent and well-formed 
READY  signals from at least 1+t  shareholders, the STTP 
sends to each READY  signaller STTPs

STTPw u=  and a zk-
proof that ( ) ( )log log .g STTP u STTPdisc VK disc w=  If iP  
was a READY  signaller, and if the STTP sent a  
valid decryption share, then iP  can now decrypt, since 

∈
= ⋅∏ irx

STTP ii S
g w wλ  where 

\{ }
.i b S i

i
b i

λ
∈

=
−∏  

Non-threshold access structure 

Instead of viewing this as a ( 1)-out-of-+ lt  threshold 
decryption scheme with l  shareholders ( )1,..., lP P  and a 
separate STTP, we can view it as a ‘non-threshold’ access 
structure with 1+l  shareholders ( )1, ,..., .lSTTP P P  
Specifically, the access structure ′Γ  for successful 
decryption is 1, ,+∧Γ ltSTTP  where 1,+Γ lt  is the 

( 1)-out-of-+ lt  threshold access structure on ( )1,..., .lP P  
Strong STTP fair threshold decryption is possible whenever 
this non-threshold access structure ′Γ  can be realised. 

Communication cost 

Each shareholder’s communication cost is ( )O t  and the 

total communication cost is ( )2O t  except the key 

generation step. These costs are necessary for each 
shareholder to collect decryption shares from 1+t  
shareholders. 

Figure 1 Fair threshold decryption with one strong STTP  
(see online version for colours) 

 

4.2.2 Security proof of strong-STTP version 

Now we prove that the strong-STTP protocol satisfies 
STTP-assistance, STTP-obliviousness, and fairness from the 
CDH assumption. 

Theorem 1 (STTP-assistance): Under the CDH assumption, 
the strong-STTP protocol satisfies STTP-assistance in the 
random oracle model. 

Proof: Let us assume the existence of an adversary A  able 
to break STTP-assistance. We now describe that a 
challenger CH  can solve the CDH problem using the 
adversary A  with non-negligible probability. When starting 
the STTP-assistance game, CH  gets an instance of CDH 
problem ( ), ,x yg g g  whose goal is computing .xyg  

In Step 1, CH  chooses a random polynomial ( )⋅f   
with degree .t  He simulates the strong-STTP protocol  
with initialising 1, (1),..., ( ).= = =l lxPK g s f s f  Then, 

STTPs  is automatically chosen as (0)= −STTPs x f  but  
CH  knows neither x  nor .STTPs  The verification  

keys are easily computed by 1
1 ,..., ,= = l

l
s sVK g VK g  

(0) .= x f
STTPVK g g  CH  sends common parameters 

( )1, ,..., ,l STTPPK VK VK VK  to .A  

In Step 2, CH  sends ( )1,..., ls s  to .A  A  cannot 
distinguish these from a set of normal parameters because 
all of them are valid. 

In Step 3, for each query M  of ,A CH  generates a 
ciphertext: 

( )( )( ) ,= r rxEnc M g M H g⊕  

where 

[0.. 1]∈ −Rr q  

and responds with ( )( ), = r
STTP STTPEnc M w VK  with the 

corresponding simulated zk-proof. 
In Step 4, for given two messages 0 1,M M  from ,A CH  

picks one message bM  by selecting a random bit {0,1}←b  
and generates a dummy ciphertext: 

( ) ( )ˆ ,= y b
bEnc M g M h⊕  

where [0.. 1].∈ −Rh q  CH  sends ( )ˆ
bEnc M  to .A  

In Step 5, for every query ,M CH  works the same way 
as in Step 3. Finally, A  outputs ′b  such that [ ]Pr ′ =b b  is 
non-negligibly higher than 1/2. 

The success probability of CH  using A  is analysed as 
follows. Let Q  be the set of queries which A  has asked to 
the random oracle during the execution, and the success 
probability of A  be [ ]Pr 1/ 2 ,success Adv= +A  where Adv  
is the non-negligible advantage of .A  
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If A  does not query xyg  to the random oracle, bM h⊕  

in ( )ˆ
bEnc M  is the same as the one-time pad whose key is 

.h  Since the one-time pad has perfect secrecy, no  
adversary can guess b  with probability higher than 1/2 

( )i.e., Pr 1/ 2 .⎡ ⎤∈ =⎣ ⎦
xy

success g QA  

We can get Pr 2⎡ ⎤∈ ≥ ⋅⎣ ⎦
xyg Q Adv  as follows: 

[ ]

( )

1Pr
2

Pr Pr

1Pr Pr
2

1 1Pr 1 Pr
2 2
1 11 Pr 1 Pr
2 2
1 Pr .
2

success

xy xy
success

xy xy
success

xy xy

xy xy

xy

Adv

g Q g Q

g Q g Q

g Q g Q

g Q g Q

g Q

= −

⎡ ⎤ ⎡ ⎤= ∈ ⋅ ∉⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ∈ ⋅ ∈ −⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤≤ ⋅ ∉ + ⋅ ∈ −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤≤ ⋅ − ∈ + ⋅ ∈ −⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⋅ ∈⎣ ⎦

A

A

A
 

On the other hand, if A  queries xyg  to the random  
oracle, CH  can solve the CDH problem with probability 
1 | |Q  simply by returning a random element of Q  

( )i.e., Pr 1 | | .⎡ ⎤∈ ≥⎣ ⎦
xy

success g Q QA  

Now, we can compute a lower bound of ’sCH  success 
probability: 

( )Pr Pr Pr

2 | |.

⎡ ⎤⎡ ⎤≥ ∈ ⋅ ∈⎣ ⎦ ⎣ ⎦
≥ ⋅

xy xy
success successg Q g Q

Adv Q

CH A
 

| |Q  is polynomially bounded in the security parameter 
because the running time of A  is polynomially bounded. 
Therefore, the success probability of CH  is non-negligible, 
which contradicts CDH assumption. ⁪ 

Theorem 2 (STTP-obliviousness): Under the CDH 
assumption, the strong-STTP protocol satisfies STTP-
obliviousness in the random oracle model. 

Proof: The proof is similar to that of Theorem 1  
except simulation setup. In Step 1, CH  chooses random 

1,..., ,ts s  [1.. 1].∈ −STTPs q  CH  simulates verification  

keys 1
1 ,..., , .= = =t STTPs s s

t STTPVK g VK g VK g  For each 
[ 1.. ],∈ + li t  CH  simulates: 

1
1

1

...
.
i

t
t STTP

PK
i VK VK VK

VK λ λ

λ

⋅
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

CH  sends common parameters: 

( )1, ,..., ,l STTPPK VK VK VK  

to .A  In Step 2, CH  sends t secret key shares ( )1,..., ts s  
and STTPs  to .A  

Then, since the arguments of Theorem 1 hold in the same 
way, no adversary can obtain non-negligible advantage from 
the above game if the CDH problem is hard. That leads to 
STTP obliviousness under the CDH assumption in the 
random oracle model. 

Theorem 3 (Fairness): The strong-STTP protocol satisfies 
fairness of threshold decryption with STTP in Definition 2. 

Proof: By Theorem 1, no t  shareholders can succeed in 
decryption without following the protocol until the STTPs 
sending its decryption share. The STTP contributes its 
decryption share only after all the shareholders of S  
exchange their decryption shares with one another. Since 
the STTP sends its share to the shareholders at the same 
time, it guarantees that they can get the decrypted message 
simultaneously. From this and Theorem 2, the strong-STTP 
protocol satisfies the fairness with STTP in Definition 2. ⁪ 

4.3 Multiple-weak STTP fair threshold  
Hash-ElGamal 

4.3.1 Description 

When all the shareholders cannot agree on a mutually 
satisfactory STTP, they can make use of several weak 
STTPs instead of one strong STTP. The members of this 
scenario are a dealer ,lD  shareholders and k  weak STTPs. 
We assume that each shareholder trusts at least one weak 
STTP. Moreover, we assume that any subset of less than 

1+t  shareholders has at least one common trustworthy 
weak STTP, which we call the technical covering condition. 

The reliability between weak STTPs and all the 
shareholders is public. Let S  be a reconstruction group of 

1+t  shareholders that collaboratively want to decrypt the 
ciphertext. Before introducing our scheme, we formally 
define the technical covering condition as follows. 

Definition 3: (Technical covering condition) Given a 
reconstruction group S  with | | 1,= +S t  and k  weak 
STTPs, let [1.. ]⊆iT k  be the subset of indices of the weak 
STTPs that iP  trusts (i.e., ’siP  trustworthy weak STTPs), 
and let [1.. ]= −i iU k T  be that of the weak STTPs that iP  do 
not trust (i.e., ’siP  untrustworthy weak STTPs). For any 
subset [1.. ]⊂ lF  with | | ,≤F t  if ∈Ii F iT  is non-empty, 
then we say the technical covering condition is satisfied. 

Table 1 and Figure 2 show an example relationship between 
weak STTPs and shareholders with 2=t  satisfying the 
technical covering condition. All the shareholders cannot 
agree on a common STTP but every combination of two 
shareholders trusts at least one of the weak STTPs together. 

Once we assume that the technical covering condition is 
satisfied, we can use the following scheme for fair threshold 
decryption. In this scenario, each shareholder iP  of S  
collects the decryption shares of iU  (his untrustworthy 
weak STTPs) so that it can proceed to the threshold 
decryption without doubting them. Then, all the 
shareholders of S  exchange their decryption shares with 
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one another and send READY  signals to all the weak 
STTPs. When each weak STTP receives READY  signals 
from all the shareholders of ,S  it sends its own READY  
signals to all other weak STTPs. When each weak STTP 
receives READY  signals from all the remaining weak 
STTPs, it triggers the decryption by sending its decryption 
share to the shareholders who trust it. Figure 3 shows this 
scenario graphically. The details of the protocol are as 
follows. 

Table 1 Trust table 

Shareholder Trustworthy STTP Untrustworthy STTP 

1P  1 2,STTP STTP  3STTP  

2P  1 3,STTP STTP  2STTP  

3P  1 3,STTP STTP  2STTP  

4P  2 3,STTP STTP  1STTP  

Figure 2 Relation graph (see online version for colours) 

 

Figure 3 An example of fair threshold decryption with weak 
STTPs under the trust table in Figure 2, where a 
reconstruction group is 1 2 4,  ,  P P P  and 3=k   
(see online version for colours) 

 
Note: Dotted line indicates that each STTP sends its 

decryption share to the shareholders who do not 
trust it in Step 1, and solid line indicates that each 
STTP sends it to the shareholders who trust it in 
Step 4. 

Key generation 

D  chooses random 1, ,..., [1.. 1],∈ −kx R R q  and computes 

,= xPK g  1
1

,..., .= = k
k

R R
STTP STTPVK g VK g  D  picks an 

otherwise random degree t  polynomial ( )⋅f   
with coefficients in [0.. 1]−q  such that 

( )1
(0) mod .

k
ii

f x R q
=

= −∑  Then for all ,1 ,≤ ≤ li i D  

computes ( ) mod ,=is f i q  is
iVK g=  and sends is  to .iP  

Then for all ,1 ,≤ ≤j j k D  sends =
jSTTP js R  to .jSTTP  

Lastly, D  publishes: 

( ){ } ( ){ }11
, , , , , .

≤ ≤≤ ≤ ljSTTP i ij k
g PK j VK i VK  

Multiple-weak STTP fair threshold decryption 

Let ( ) ( , ),=E m u v  and let [1.. ],| | 1.⊆ = +lS S t  Let iT  and 

iU  be the same as those of Definition 3.1. We assume that 
the technical covering condition is satisfied. We assume that 
the STTPs know ( , ),u v S  and { } .∈i i S

T  

1 For every [1.. ],∈j k  and for every [1.. ]∈ li  such that 

,∈ i jj U STTP  sends = j

j

R
STTPw u  and a zk-proof that 

( ) ( )log log=
j jg STTP u STTPdisc VK disc w  to .iP  

2 Each iP  checks the decryption shares it received from 

iU  (its untrustworthy weak STTPs) and it halts if any is 

bad. Otherwise, iP  sends = is
iw u  and a zk-proof that 

( ) ( )log log=g i u idisc VK disc w  to every shareholder 
in .S  When iP  receives good decryption shares from 
all the other shareholders in ,S  then iP  sends a 
READY  signal to all the STTPs. 

3 Each STTP waits for READY  signals from all the 
shareholders in ,S  and then sends its own READY  
signal to all the other STTPs. Each STTP goes on to the 
next step after receiving READY  signals from all the 
other STTPs. 

4 For every [1.. ],∈j k  and for every [1.. ]∈ li  such that 
,∈ i jj T STTP  sends 

jSTTPw  and a zk-proof that 

( ) ( )log log=
j jg STTP u STTPdisc VK disc w  to .iP  

5 Each iP  can now decrypt, since 

1≤ ≤ ∈
= ⋅∏ ∏ i

j

rx
STTP ij k i S

g w wλ   

where 
\{ }

.
∈

=
−∏i b S i

i
b i

λ  

Non-threshold access structure 

Instead of viewing this as a ( 1)-out-of-+ lt  threshold 
decryption scheme with l  shareholders ( )1,..., lP P  and k  

separate STTPs ( )1,..., ,kSTTP STTP  we can view it as a 
non-threshold access structure with +l k  shareholders 
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( )1 1,..., , ,..., .lkSTTP STTP P P  Specifically, the access 
structure ′Γ  for successful decryption is 
( )1 1,... ,+∧ ∧ ∧Γ lk tSTTP STTP  where 1,+Γ lt  is the 

( 1)-out-of-+ lt  threshold access structure on { }1,..., .lP P  
Multiple-weak STTP fair threshold decryption is possible 
whenever this non-threshold access structure ′Γ  can be 
realised. 

Communication cost 

Each shareholder’s communication cost is ( )+O t k  and the 

total communication cost is ( )2( ) .+O t k  

4.3.2 Security proof of multiple weak-STTP versions 

Now we prove that the multiple weak-STTP protocol 
satisfies STTP-assistance, STTP-obliviousness, and fairness 
from the CDH assumption. 

Theorem 4 (STTP-assistance): Under the CDH assumption, 
the multiple weak-STTP protocol satisfies STTP-assistance 
in the random oracle model. 

Proof: This proof is a simple extension of Theorem 1. CH  
gets an instance of CDH problem ( ), ,x yg g g  whose goal is 

computing .xyg  Without loss of generality, we assume that 
the secret share of thk  weak STTP is not given to .CH  

In Step 1, CH  chooses random 1 1,..., [1.. 1],− ∈ −kR R q   
and a random polynomial ( )⋅f  with degree .t  He  
simulates the multiple weak-STTP protocol with  
initialising ,= xPK g  1 (1),..., ( ),= = =l l

jSTTP js f s f s R   

for 1 1.≤ ≤ −j k  Then, 
kSTTPs  is automatically chosen  

as 
1

1
(0)

−

=
= − −∑k

k
STTP ii
s x f R  but CH  knows neither  

x  nor .
kSTTPs  The verification keys are easily computed by 

1 1 1
1 11 ,..., , ,..., ,−

−
= = = =l

l
k

k

s s R R
STTP STTPVK g VK g VK g VK g

 (0)
1 1

.
≤ ≤ −

= ⋅∏
x

Rf ik
i k

g
STTP g g

VK  CH  sends common parameters 

( )1, ,..., ,l STTPPK VK VK VK  to .A  

In Step 2, CH  sends ( )1 11,..., , ,...,
−l kSTTP STTPs s s s  to .A  

A  cannot distinguish these from a set of normal parameters 
because all of them are valid. 

Then, the remaining steps are simulated as in the proof 
of Theorem 1 and the STTP-assistance is derived easily. ⁪ 

Theorem 5 (STTP-obliviousness): Under the CDH 
assumption, the multiple weak-STTP protocol satisfies 
STTP-obliviousness in the random oracle model. 

Proof: This proof is also a simple extension of  
Theorem 2. In Step 1, CH  chooses random 1,..., ,ts s  

1
,..., [1.. 1].∈ −

kSTTP STTPs s q  The verification keys of these 

secret key shares are computed by = is
iVK g  and 

= STTPj

j

s
STTPVK g  respectively. CH  does not know 

1,...,+ lts s  but he can simulate their verification keys by 

1
1

1

... ⋅
⎛ ⎞= ⎜ ⎟
⎝ ⎠

i

t
t STTP

PK
i VK VK VK

VK λ λ

λ

 for 1 .+ ≤ ≤ lt i  CH  sends 

common parameters ( )11, ,..., , ,...,
kSTTP STTTpPKVK VK VK VKl  

to .A  In Step 2, CH  sends ( )11,..., , ,...,
kt STTP STTPs s s s  to 

.A  Then, the STTP-oblivious is derived as in Theorem 2. ⁪ 

Theorem 6 (Fairness): The weak-STTP protocol satisfies 
fairness of threshold decryption with STTP in Definition 2. 

Proof: From the technical covering condition, there exists a 
weak STTP, ,jSTTP  which t  shareholders trust together. 
Then, all the arguments in Theorem 3 hold similarly and the 
proof of the fairness in Definition 2 is straightforward. ⁪ 

4.3.3 A Variant avoiding the technical covering 
condition 

In the previous multiple-weak STTP fair threshold 
decryption, the reliability graph between shareholders and 
weak STTPs should satisfy the technical covering condition 
to prevent malicious shareholders from receiving all the 
decryption shares of the group in Step 1, where the 
shareholders get decryption shares of his untrustworthy 
STTPs. However, as the threshold ,t  the number of 
shareholders ,l  and the number of weak STTPs k  are 
increasing, the reliability graph is more and more difficult to 
satisfy the technical covering condition. For example, for 
any two shareholders iP  and ,jP  if =i jT U  and ,=j iT U  
then =Ii jT T φ  and the technical covering condition 
cannot be satisfied regardless of the reliability between 
other shareholders and weak STTPs. 

We present a multiple-weak STTP fair threshold  
Hash-ElGamal which works correctly even if the reliability 
graph does not satisfy the technical covering condition. In 
this protocol, each weak STTP sends different decryption 
shares to the shareholders so that any coalition of t 
shareholders cannot collect all the decryption shares of 
weak STTPs until they send READY  signals. If the 
reliability graph satisfies the technical covering condition, 
we do not have to use this protocol since it requires ( )lO  
storage for each weak STTP while the previous one requires 

(1).O  We assume that every shareholder trusts at least one 
STTP and the reliability graph does not have to satisfy the 
technical covering condition. 

Key generation 

D  chooses random (1,1) (1,2) ( , 1), , , ,..., [1.. 2],− ∈ −l kx R R R R q  

and computes: 
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1
( , ) ( , )1

−

=
= −∑k

i k i jj
R R R  

so that ( , )1=
=∑k

i jj
R R  for every [1.. ],∈ li  and computes 

,= xPK g  { }( , )

( , ) 1 ,1
.

≤ ≤ ≤ ≤
=

l

i j

i j

R
STTP

i j k
VK g  D  picks an 

otherwise random degree t  polynomial ( )⋅f  with 
coefficients in [0.. 1]−q  such that (0) ( ) mod .= −f x R q  
Then for all ,1 ,≤ ≤ li i D  computes ( ) mod ,=is f i q  

,= is
iVK g  and sends is  to shareholder .iP  Then for all 

( , ) [1.. ] [1.. ],∈ ×li j k D  sends 
( , ) ( , )=
i jSTTP i js R  to .jSTTP  

Lastly, D  publishes , ,g PK  

{ } ( ){ }
( , ) 11 ,1

, , .
≤ ≤≤ ≤ ≤ ≤ lli jSTTP i ii j k

VK i VK  

Multiple-weak STTP fair threshold decryption 
(variant) 

Let ( ) ( , ),=E m u v  and let [1.. ],⊆ lS  | | 1.= +S t  For each 
,∈i S  let [1.. ]⊆iT k  be the subset of indices of the weak 

STTPs that iP  trusts, and let [1.. ]= −i iU k T  be that of the 
weak STTPs that iP  does not trust. We assume that the 
STTPs know ( , ),u v S  and { } .∈i i S

T  

1 For every [1.. ],∈j k  and for every ∈iP S  such that 
,∈ i jj U STTP  sends ( , )

( , ) =
R i j

i jSTTP u
w  and a zk-proof that 

( ) ( )( , ) ( , )
log log=

i j i jg STTP u STTPdisc VK disc w  to .iP  

2 Each iP  checks the decryption shares it received  
from iU  (the STTPs it does not trust), and halts if  

any is bad. Otherwise, iP  sends = is
iw u  and a  

zk-proof that ( ) ( )log log=g i u idisc VK disc w  to every 
shareholder in .S  When iP  receives good decryption 
shares from all the other shareholders in ,S  then iP  
sends a READY  signal to all the STTPs. 

3 Each STTP waits for READY  signals from all the 
shareholders of ,S  and then sends its own READY  
signal to all the other STTPs. Each STTP goes on to the 
next step after receiving READY  signals from all the 
other STTPs. 

4 For every [1.. ],∈j k  and for every ∈iP S  such that 
,∈ i jj T STTP  sends 

( , )i jSTTPw  and a zk-proof that 

( ) ( )( , )
log log=

j i jg STTP u STTPdisc VK disc w  to .iP  

5 Each iP  can now decrypt the ciphertext by combining 
the decryption shares: 

( , )
1≤ ≤ ∈

= ⋅∏ ∏ i

i j

rx
STTP i

j k i S

g w wλ  

where 
\{ }

.
∈

=
−∏i b S i

i
b i

λ  

Multiple-weak STTP fair threshold security (variant) 

For brevity, we give a proof sketch of security and fairness, 
which helps to convey some intuition behind our protocol. 

(Sketch) Let F  be a coalition of at most t  cheating 
shareholders. This coalition of dishonest shareholders 
cannot decrypt any ciphertext unless they collect 

{ }( , ) 1≤ ≤i jSTTP
j k

w  for some i  from all the weak STTPs. 

Since each of cheating shareholder iP  receives 
( , )i jSTTPw  

from each jSTTP  he does not trust (i.e., )∈ ij U  in Step 1 
and there is at least one weak STTP which iP  trusts, he 

cannot collect { }( , ) 1≤ ≤i jSTTP
j k

w  by himself until Step 3 even 

when he repetitively initialises and aborts the protocol. 
Since the shareholders of F  have distinct i  values, they 
cannot collect { }( , ) 1≤ ≤i jSTTP

j k
w  for any 1≤ ≤ li  even 

together. Thus, if any shareholder of F  decrypts, that 
implies the protocol proceeds to Step 4 in which the 
shareholders of S  receive the decryption shares of weak 
STTPs they trust. This implies each shareholder of some 
reconstruction group S  has l  decryption shares of the 
shareholders and decryption shares of weak STTPs he does 
not trust. Since each weak STTP sends his decryption share 
to the shareholders who trust him, every shareholder can 
collect enough decryption shares to decrypt and the fairness 
holds. 

5 Optimistic fair threshold decryption 

5.1 Security notions 

Our notion of optimistic fair threshold decryption uses an 
OTTP which is semi-honest but not attending the protocol if 
all the shareholders behave honestly. We do not require 
optimistic protocols to satisfy STTP-assistance because any 

1+t  honest shareholders can decrypt the ciphertext without 
OTTP. We use the following security notions for optimistic 
fair threshold decryption. 

5.1.1 Security for threshold decryption 

Informally, a ( 1)-threshold+t  decryption scheme is secure 
if t number of shareholders cannot decrypt any ciphertext. 
Formally, we say that a threshold scheme is semantically 
secure if any polynomially bounded adversary A  cannot 
win the following game with non-negligible probability. 
The game proceeds between A  and :CH  

1 CH  runs setup and key generation algorithms taking a 
security parameter. CH  gives A  the resulting 
common parameters and t secret key shares. 
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2 A  adaptively makes a polynomial number of queries to 
CH  on ( , )M S  where [1.. ],| | 1.⊆ = +lS S t  For each 
( , ),M S  CH  generates encryption C  of M  and 
responds with C  and the messages each shareholder 
sends in the execution of optimistic decryption on 
( , ).C S  

3 A  adaptively queries for OTTPs responses to .CH  

4 A selects two target messages ( )0 1, .M M  CH  picks 
one message bM  by selecting a random bit {0,1}←b  
and sends a ciphertext bC  of bM  to .A  CH  also 
sends to A  all the intermediate information except 
decryption shares. 

5 Repeat Step 2. 

6 A outputs ′b  (and wins if ).′ =b b  

5.1.2 OTTP obliviousness 

We say that a threshold scheme is OTTP-oblivious if  
any polynomially bounded adversary A  cannot win the 
following game with non-negligible probability. The game 
proceeds between A  and :CH  

1 CH  runs setup and key generation algorithms taking a 
security parameter. CH  gives A  the resulting 
common parameters and OTTPs secret key. 

2 A adaptively makes a polynomial number of queries to 
CH  on ( , )M S  where [1.. ],| | 1.⊆ = +lS S t  For each 
( , ),M S  CH  generates encryption C  of M  and 
responds with C  and the messages each shareholder 
sends in the execution of optimistic decryption on 
( , ).C S  

3 A selects two target messages ( )0 1, .M M  CH  picks 
one message bM  by selecting a random bit {0,1}←b  
and sends a ciphertext bC  of bM  to .A  A  participates 
in a decryption protocol on ( ),bC S  on behalf of the 
OTTP. 

4 Repeat Step 2. 

5 A outputs ′b  (and wins if ).′ =b b  

5.2 Optimistic fair threshold Hash-ElGamal 

5.2.1 Description 

The main idea of this protocol is that all the shareholders of 
S  exchange the promises of decryption shares before they 
exchange the decryption shares. A promise of decryption 
share is an encrypted value containing partial information of 
the decryption share using OTTPs public key. It assures the 
receiver that he can obtain the decryption shares with the 
help of OTTP. Thus, once each shareholder receives all the 

promises, it can obtain all the decryption shares even when 
some shareholders behave maliciously. 

In this protocol, the OTTP does not respond to any 
query before all the promises are exchanged. To guarantee 
this, each shareholder sends its signed READY  signal to 
all the other shareholders of ,S  so that only shareholders 
who receive all the signed READY  signals can query to 
the OTTP in order to get the decryption shares that they 
have not received. The OTTP accepts only queries enclosed 
with all the signed READY  signals of S. (We can regard it 
as OTTPs decryption policy.) Once the OTTP receives a 
query with the signed READY  signals, it can be assured 
that the shareholders of S  already received all the promises 
of .S  At this moment, the OTTP sends all the signed 
READY  signals to the other shareholders of .S  It 
guarantees that the shareholders have the right to query to 
the OTTP. 

One main tool is verifiable encryption, which allows 
someone to prove that an encrypted value is the  
discrete logarithm of an unencrypted value (with respect  
to an unencrypted base). Let ENC be a public key 
encryption scheme that supports verifiable encryption as in 
Camenisch-Shoup (Camenisch and Shoup, 2003). The 
details of the protocol are as follows. 

Key generation 

A dealer initialises common parameters of ordinary 
threshold Hash-ElGamal as in Section 2.2. OTTP creates a 
key pair ( ),OTTP OTTPSK PK  for ( ).⋅ENC  

Optimistic fair threshold decryption 

Let ( ) ( , ),=E m u v  [1.. ],| | 1.⊆ = +lS S t  We assume that all 
of the shareholders agree on the session information inf  
which includes , ( ).S E m  

1 In Round 1, for every , :∈i j S  

a iP  sends the following promise to jP  (unfair, 

blinded, partially signed): ( /, , inf, ,ir
i i g αα β  

( ) ( )(, , log i
OTTP i i i g iENC s proof disc VK ββ σ

)) ,= i isβ  where [1.. 1]∈ −i i R qα β  chosen  

by iP  and iσ  is the signature by iP  of 

( )( )/inf, , .ir
OTTP i ig ENC sα β  The disclog proof is 

Camenisch-Shoup style on the verifiably encrypted 
value .i isβ  

b jP  checks if the promise from iP  is valid:  
well-formed, well-signed, well-blinded, disclog 
proof. 

c If iP  receives 1+t  valid promises of S  (including 
its own), iP  proceeds to Round 2. 

 



150 J. Hong et al.  

2 In Round 2, for every :∈i S  
a iP  sends ( , inf)READY  and its signature to the 

other shareholders in .S  
b If iP  receives 1+t  signed ( , inf)READY  signals 

of S  (including its own) from S  or (possibly) 
OTTP, iP  proceeds to Round 3. 

3 In Round 3, for every :∈i S  
a iP  sends to the other shareholders in :S  

( ) ( )( )( ), log log .=i i
r

rs rs
g ig

g proof disc g disc VK  

Here, the proof is an ordinary zk-proof for equality 
of discrete logs. 

b If iP  receives 1+t  good decryption shares 
(including its own), then iP  decrypts as in ordinary 
(robust) threshold decryption, and halts. Otherwise, 
iP  proceeds to Round 4. 

4 In Round 4, for every :∈i S  

a Let Ŝ  be the subset of S  which did not send iP  a 
good decryption share in Round 3. 

b iP  sends OTTP all the signed ( , inf)READY  
signals of ,S  and the partially signed promise 

( )( )/inf, , ,ir
OTTP j j jg ENC sα β σ  from every 

shareholder j  in ˆ.S  

c OTTP checks all the signed ( , inf)READY  signals 

of S  and all the signed part of promises of ˆ.S  If 
any of them is invalid, OTTP rejects the query. 

d If it is the first query of the session inf,  OTTP 
sends all the signed ( , inf)READY  signals of S  
to all the shareholders of S  to finish their waiting 
in Round 2. 

e OTTP notifies each jP  in Ŝ  that iP  asks OTTP 
so that jP  does not wait for ’siP  decryption share 
in Round 3. 

f OTTP decrypts all the ( )( ) ˆ .
∈OTTP j j j S

ENC sβ  

g OTTP computes and sends to iP  all the 

( )/

ˆ
.

∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

j j
j

sr

j S

g
βα  

h iP  now unbinds all the ( )/

ˆ
.

∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

j j
j

sr

j S

g
βα  using all 

the ( ) ˆ, .
∈j j j S

α β  iP  can obtain the plaintext as in 

ordinary threshold decryption, and halts. 

Remark 1: The promises of Step 1 are ‘blinded’ so that  
the OTTP cannot compute any decryption share even  
if it responds to a number of queries. In the blinded 
promises, we use two random numbers ,i iα β  to hide  

the secret key shares and the decryption shares from  
the OTTP. Any shareholder, who receives a blinded 

promise, can verify its validity by checking ( )/ =
i

ir rg g
αα  

and ( )( )log .=i
g i iiproof disc VK sβ β  

Remark 2: This protocol does not satisfy a useful property 
timely termination (Asokan et al., 2000) with which a 
shareholder can leave the protocol immediately in a fair 
manner without waiting for the responses of other 
shareholders. For instance, let’s consider the following case 
in which a shareholder iP  is in Round 2, and the other 
shareholders in Round 3 do not send their decryption shares 
for a long-time. In this case, iP  can neither go to Round 3 
since he has not collected all the signed READY  signals, 
nor leave the protocol since the other shareholders will 
succeed in decryption by querying the OTTP. Nevertheless, 
this protocol is fair since iP  can succeed in decryption 
whenever another shareholder succeeds in decryption if he 
has not leaved the protocol. We can modify this protocol so 
that timely termination is satisfied. For space constraints, 
this variant will be presented in the full version. 

Communication cost 

Each shareholder’s communication cost is ( )O t  and the 

total communication cost is ( )2 .O t  

5.2.2 Security proof of OTTP version 

Theorem 7: (Security for threshold decryption) Under the 
CDH assumption, unforgeability of the signature scheme 
and the security of verifiable encryption, the above 
optimistic protocol is a semantically secure threshold 
decryption protocol in the random oracle model. 

Proof: The proof is very similar with the proof for  
Theorem 2. Assume that A  able to break security for 
threshold decryption. Using this adversary ,A  we can build 
an algorithm to solve the CDH problem with non-negligible 
probability: Given an instance of CDH problem ( ), , ,x yg g g  

the algorithm computes .xyg  CH  initialises ,= xPK g  

1,..., [0.. 1],∈ −t Rs s q  and 1
1 ,..., .= = ts s

tVK g VK g  For  

each [ 1.. ],∈ + li t  CH  sets 
1

1

1/

...
.⎛ ⎞= ⎜ ⎟

⎝ ⎠

i

t
t

PK
i VK VK

VK λ λ

λ

 CH  

also generates ( ), .OTTP OTTPSK PK  A  is given  

public parameters ( )1, ,..., ,l OTTPPK VK VK PK  and t  

secret key shares ( )1,..., .ts s  In Step 2, for each query 
( , )M S  of ,A CH  responds with 1+t  decryption  

shares ( ){ } .
∈

=
r

j j
j S

w VK  He also computes 1+t   

promises with the simulated signatures iσ  and zk-proofs 
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( )( )log .i
g i iiproof disc VK sβ β=  In Step 4, for given two 

messages 0 1,M M  from ,A CH  picks one message bM  and 

sends a dummy ciphertext ( )ˆ .bEnc M  CH  also simulates 
promises, signatures and zk-proofs. Under the 
unforgeability of the signature scheme, ’sA  query to the 
OTTP on input created by A  cannot pass the validity test of 
the input. Moreover, under the security of verifiable 
encryption, no information is revealed from the promises in 
Round 1. READY  signals in Round 2 do not contain any 
information about the plaintext. Thus, similar to Theorem 2, 
A  can win the game in polynomial time with  
non-negligible probability only by querying xyg  to the 
random oracle, which contradicts to the CDH assumption. ⁪ 

Theorem 8 (OTTP-obliviousness): Under the CDH 
assumption, the optimistic fair threshold satisfies  
OTTP-obliviousness. 

Proof: The proof is the same as the proof for Theorem 7 
except: A  is given SKOTTP instead of t secret shares. Still, 
it is clear that unless ,i iα β  are given, A  cannot learn 
anything about is  from the partially signed promises. Thus, 

the only way to win the game is to make a query on .xyg  
Again, it contradicts to the CDH assumption. ⁪ 

Theorem 9 (Fairness): Under the CDH assumption, 
unforgeability of the signature scheme, security of the 
verifiable encryption, the optimistic protocol satisfies 
fairness of threshold decryption with OTTP in Definition 2. 

Proof: Let F  be a coalition of at most t  cheating 
shareholders. All the information which F can receive 
comes from the promises in Round 1, the READY  signals 
in Round 2, and the decryption shares in Round 3. Since 
READY  signals have nothing to do with any secret 
information, we only need to consider promises and 
decryption shares. 

Claim 1: If F  decrypts the ciphertext without querying to 
the OTTP, all the honest shareholders of S  can decrypt it 
too. 

If F  does not receive decryption shares from the 
shareholders in Round 3, F  fails to decrypt by Theorem 7. 
Otherwise, there exists at least one honest shareholder iP  in 
Round 3 who sends its decryption share to .F  In Rounds 1 
and 2, iP  received all the promises and the signed 
READY  signals of .S  It implies that iP  can obtain all the 
decryption shares with the help of the OTTP whenever it 
wants. Furthermore, from the signed READY  signals 
which iP  received, it is obvious that all the honest 
shareholders had received all the promises in Round 1 and 
proceeded to (at least) Round 2. When iP  queries to the 
OTTP, all the honest shareholders in Round 2 can proceed 
to Round 3 due to the signed READY  signals from the 

OTTP. Then, all the honest shareholders of S  can decrypt 
the ciphertext with the help of the OTTP and Claim 1 holds. 

Claim 2: If F  decrypts the ciphertext by querying to the 
OTTP, all the honest shareholders of S  can decrypt it too. 

F  can query to the OTTP only when he has all the signed 
READY signals. It implies that all the shareholders of S  
have sent their signed READY  signals to .F  It also 
implies that all the honest shareholders had received all the 
promises in Round 1 and proceeded to Round 2. Thus, 
whenever F  queries to the OTTP, all the honest 
shareholders can proceed to Round 3 by receiving the 
signed READY  signals which the OTTP sends. Then, all 
the honest shareholders of S  can query to the OTTP and  
Claim 2 holds. 

By both claims, F  cannot cause any unfairness 
whatever they do. Thus, the OTTP protocol satisfies the 
fairness of Definition 1. 

6 Conclusions 

In this paper, we formally define the notion of fairness in 
threshold decryption and present various fair threshold 
decryption schemes to address realistic trust scenarios. 
When a strong-STTP is available, one strong-STTP suffices 
to achieve fairness, while multiple weak-STTPs are required 
in weaker trustful situations. We also propose optimistic fair 
threshold decryption scheme where no STTP attend the 
protocol when all the shareholders behave honestly. All our 
schemes are provably secure under CDH assumption in the 
random oracle model. 

Although we describe our schemes using a simple 
hashed version of ElGamal encryption, our methods 
generalise to other threshold decryption schemes and 
threshold signature schemes as well. We expect that our 
ideas are applicable to other fair computational problems 
too. 
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Notes 
1 Some previous work in fair exchange used the term ‘OTTP’ 

to indicate offline third party which is fully-trusted rather than 
semi-trusted. 

2 This can be regarded as a passive collusion among the STTPs 
and t  shareholders where the colluding shareholders provide 
the STTPs with their secret key shares. 


