
1

Fair Watermarking using
Combinatorial Isolation Lemmas

Jennifer L. Wong, Rupak Majumdar, Miodrag Potkonjak
University of California, Los Angeles, Los Angeles, CA 90095

ABSTRACT

In addition to silicon fingerprinting and forensic engineer-
ing, watermarking is one of the most effective proactive mech-
anisms for intellectual property protection (IPP) of hardware
and software. Numerous watermarking-based IPP techniques
have been proposed that satisfy a spectrum of IPP desiderata,
including full preservation of functionality, low timing, area
and power overhead, transparency to the synthesis and com-
pilation process, and resiliency against attacks. Two objectives
that are very important but until now have not yet been
properly addressed are credibility and fairness.

We present new watermarking techniques that specifically
target credibility and fairness. Leveraging on the Valiant-
Vazirani theorem, we demonstrate how these two desiderata
can be achieved during the watermarking of a satisfiability
(SAT) instance. The effectiveness of the technique is demon-
strated on both specially created examples where the number
of solutions is known, as well as on common CAD and
operational research SAT benchmark instances.

Index Terms—

I. INTRODUCTION

A. Motivation

Historically, the level of integration of a state of the art
system has grown at the rate of 44% annually. In 1970, the
first Intel microprocessor i4004 had 2,250 transistors. Today,
the state of the art microprocessor has up to 287 million
transistors. The growth rate has increased even faster in the
last decade. The ultra high integration level and emerging
system-on-chip technologies create a productivity gap between
the ability of designers to develop integrated circuits and the
potential of silicon. Software, in terms of the number of lines
of code for a typical application, grows at an even faster rate,
almost twice as fast as hardware.

It is widely considered that the reuse of intellectual property
(IP) such as IC cores and software libraries is the most
economically efficient way to close this gap. One of the
prerequisites for hardware and software IP reuse is the de-
velopment of IPP techniques. Several approaches have been
proposed, including fingerprinting of silicon dies and forensic
engineering. It seems, however, that watermarking is the most
effective IPP technique due to its flexibility, strong proof of
authorship, and very low overhead in terms of speed, area, and
power. In the last several years a number of watermarking-
based IPP techniques have been developed at all levels of the

design process, including system synthesis, behavioral synthe-
sis, logic synthesis, and physical design. The key observation
on which all watermarking-based IPP techniques are based
is the fact that many synthesis problems are associated with
computationally intractable or difficult optimization problems
which often have a high number of different solutions with
identical or very similar quality. The key idea of watermarking-
based techniques is to leverage this fact by incorporating the
design signature into the design specification as additional
constraints and therefore ensuring that the completed design
satisfies both the initial specification as well as the new
constraints. Therefore, the design is unique and only the author
of the design knows the encrypted signature. While many of
these techniques perform well in practice, relatively little is
known about their theoretical underpinnings. Two issues, in
particular, deserve more sound and effective treatment: the
calculation of a watermark’s credibility and fairness.

It is important to emphasize that neither credibility nor
fairness can be defined in a unique and ultimately correct way.
This is so because both credibility and fairness are related
to finding a single or multiple solutions of a NP-complete
problem - class of problems that are intrinsically intractable.
Even from the conceptual point of view, it is not clear if
a definition based on the number of solutions or one based
on the required effort (e.g. time) to find a solution is more
adequate. Even if one prefers one of these two options, the
unavoidable logistic problem is that one cannot provide a
unique operational definition for either. In the case of the
number of solutions, since the problem is computationally in-
tractable, it is impossible, to count the number of solutions for
standard benchmarks. While time or memory space required
to find a solution can be measured, both greatly depend on
the particular algorithm and particular system used to solve
the particular instance.

Intuitively, we propose to measure the strength of the proof
that a considered solution is indeed produced after the addition
of watermarking constraints by measuring the likelihood of the
solution being selected at random. Therefore, one can define
credibility as the ratio of the number of solutions that satisfy
the watermarking constraints. We focus our research on the
boolean satisfiability (SAT) problem due to its use to model
many optimization and verification tasks in CAD and other
areas such as artificial intelligence and operational research.
Credibility can be defined as the overall number of solutions
for the initial instance of the SAT problem. In this case, a lower
ratio indicates higher credibility. Therefore, we can conclude
that ultimate credibility is achieved if after the addition of a

2

watermark, only a single solution exists for an instance.
Credibility can also be defined with respect to the effort

required to find a particular solution. One can claim that
credibility is high if after the addition of watermarking con-
straints, all or at least a majority of state-of-the-art solvers will
produce with high likelihood a watermarked solution and that
in the absence of the watermark they will produce with high
likelihood a different solution. Note that many watermarking
techniques can provide very high credibility if the length of
the message is increased. From a practical point of view,
a good aim for addressing credibility would be to evaluate
the technique according to its ability to provide a variety
of tradeoffs: strength of watermarking proof versus quality
of solutions, or in the case of SAT, time required to find a
solution.

Fairness can be formally defined as a function which
takes into account the difficulty of finding a solution after
a variety of watermarks of a specific length are embedded.
The definition of difficulty can be established in multiple
ways. One approach is to define fairness as the number of
solutions after the watermark is embedded. Another approach
is to measure how difficult it is to find a solution once the
signature is embedded, which can be quantified using the
runtime on common solvers. Note that one can define a variety
of statistics that combine the difficulty of specific instances.
For example, if we have n different watermarks and we denote
by xi either the number of solutions or the runtime required to
find solution for the ith watermark, then the following formula
is one such option. Note that one can define a variety of
statistical measures that aggregate the measured difficulties of
a specific set of instances.

n∑

i=0

(xi − x)2

n
(1)

Recently, Qu et al. [1] introduced the first watermarking
technique which embeds instance specific constraints to ensure
fairness. However, that technique is empirical and does not
provide any theoretical guarantees. The new method is based
on the Valiant-Vazirani result that probabilistically guarantees
the isolation of a single solution of the SAT instance. The
Valiant-Vazirani approach uses randomized reduction by suc-
cessively adding constraints to the original formula to produce
a series of formulas that have a monotonically decreasing num-
ber of solutions. By utilizing a binary search one can efficiently
pursue the maximal length of the signature which still does not
make the formula unsatisfiable. Another important property is
that if additional constraints are added at random, there is very
high probability that all signatures will terminate with unique
solutions at very similar watermark lengths.

II. RELATED WORK

The related work can be traced in three different research
directions: the satisfiability (SAT) problem, IPP using water-
marking, and algorithmic techniques for producing instances
with unique solutions.

A. Satisfiability Problem

SAT is an exceptionally important optimization problem.
For example, SAT was the first problem determined to belong
to the class of NP-complete problems [2]. The proof of com-
putational intractability for all other NP-complete problems
has been established by direct or indirect polynomial time
transformations from the SAT problem.

The SAT problem is a decision problem defined for a
boolean expression. The goal is that for a given boolean
expression E, decide if there is some assignment to the
variables in E such that E is true. Formally, Garey and Johnson
[3] define the problem as:

Problem: Boolean Satisfiability
Instance: A set U of variables and a collection C of clauses over U.
Question: Is there a satisfying truth assignment for C?

SAT has numerous applications both in VLSI CAD and
other domains including artificial intelligence, operations re-
search, and combinational optimization. Probably the most
well known application for SAT in CAD is Automatic Test
Pattern Generation (ATPG) [4], [5], [6]. SAT has also been
used for deterministic test pattern generation [7], delay fault
testing [8], logic verification, and timing analysis. In addition,
SAT has been used for FPGA routing [9], [10], logic synthesis
[11], physical design [12], and combinational equivalence
checking which has been developed by [13], [14], [15].

Furthermore, SAT has also been used to solve covering
problems [16], [17], physical design problems [18], linear
integer linear programming problems [19], and finding prime
implicants of boolean functions [20]. Also, it has been used as
an optimization engine for solving 0-1 integer linear problems
(ILP) in CAD and other areas [21], [19], [22], [23].

Several techniques have been developed to solve the SAT
problem which include: backtrack search [24], [25], [26], local
search [27], algebraic manipulation [28], [29], continuous for-
mulation [30] and recursive learning [14], [25]. An excellent
survey on SAT in Electronic Design Automation is [31].

B. Watermarking

Ultra high system-on-chip integration depends on the avail-
ability of third party hardware and software components.
Therefore, to facilitate viable business models, there is a
strong need for a variety of IPP techniques. A number of
IPP techniques such as watermarking [32], [33], [34], [35],
[1], [36], fingerprinting [37], [38], software obfuscation [39],
and forensic engineering [40] have been proposed. We focus
our review of related work on watermarking due to its direct
relevance to this work. There are two conceptually different
domains where watermarking is applied: for static artifacts
and functional artifacts. A variety of techniques have been
developed to watermark static artifacts [41], [42] such as
images [43], [44], video [45], audio [46], and text [47].
Watermarks can also be placed in graphical objects such as 3D
graphics [48], [49] and animation [50]. The essential property
of all watermarking techniques for static artifacts is that
they leverage on the imperfections of human perception. The

3

main objectives of watermarking techniques for static artifacts
include requirements for global placement of the watermark
in the artifact, resiliency against removal, and suitability for
rapid detection.

Watermarking techniques have also been developed for
functional artifacts, such as software and integrated circuits
design. The common denominator for functional artifacts is
that they must fully preserve their functional specifications and
therefore can not leverage the same principles as used for wa-
termarking static artifacts. Functional artifacts can be specified
and therefore watermarked at several levels of abstraction such
as system level designs, FPGA designs [51], at the behavioral
and logic synthesis levels, and physical designs [33], [34].
Techniques have also been developed for watermarking of DSP
algorithms, sequential circuits, sequential functions [52], [53],
[54], [55], and analog designs [56], [57], [58], [59].

There are two different types of watermarking techniques:
horizontal and vertical [60], [61]. Horizontal techniques embed
watermarks into designs by structurally altering the design
itself. The majority of hardware IPP techniques are vertical
watermarking approaches that embed the watermark into the
design by superimposing additional constraints during synthe-
sis or compilation. The key idea of watermarking is to embed
constraints into the design which represent the user’s signature
in a unique way while introducing low overhead to the design.
The VSI Alliance [62] is currently developing the industry
standard for watermarking hardware.

There are two main advantages of the new technique over
previously published techniques. First, the new technique pro-
vides proof of credibility by enabling the designer to impose
a number of constraints in such a way that there exist only
unique solutions. These solutions correspond to the signature.
Second, the technique provides strong probabilistic proof that
the fairness property is enforced during the watermarking
process.

C. Algorithmic Techniques

The basis for our work is a paper by Valiant and Vazirani
[63]. They proved that the number of solutions of a NP-
complete problem, which can vary from zero to exponentially
many, does not impact its inherent intractability. One of many
corollaries of their result is a lemma for reducing the number
of solutions of an arbitrary SAT instance.

There have been a number of techniques that leverage the
Valiant-Vazirani results. For example, Watanabe [64] used it
as a starting point to develop a framework for testing average
performance of algorithms for a given NP search problem with
respect to some distribution on the instances. Also, Emden-
Weinert et al. [65] proved that some types of graphs have a
unique k coloring solution.

III. PRELIMINARIES

In this Section, we briefly survey the constraint-based wa-
termarking methodology. In particular, we summarize several
answers to frequently asked questions about the most sensitive
steps in the watermarking process. Figure 1 illustrates the
generic watermarking technique. There are two inputs, the

Off-the-shelf

Problem Solver

Overconstrained

Specification

Additional

Constraints

Initial

Specification

Watermarked

Solution

Watermark Evaluation

Signature

bitstream

Fig. 1. Watermarking-Based IPP Process Flow.

initial instance of the optimization problem (which corre-
sponds to optimization synthesis or a compilation problem)
and the owner’s signature. The signature is translated into a
set of additional constraints using the proposed watermarking
technique, which should satisfy tests for randomness. Once
the additional constraints are defined, they are combined with
the original instance specification creating the overconstrained
specification of the problem instance. The overconstrained
instance is then solved using any solver for the problem.
The solution obtained from the solver is a watermarked
solution, since the solution satisfies both the initial instance
specification and the additional constraints added from the
signature bitstream. The last step of the process flow is to
evaluate the effectiveness of the watermark.

In order to generate a bitstream for watermark encoding
which is representative of the encoder’s signature we introduce
the following process shown in Figure 2. By using the PGP
encoding scheme, a sufficiently randomized bitstream is cre-
ated resulting in watermarking constraints which are difficult
to imitate and detect.

The figure illustrates the encoding and verification process
for watermarking. The Pretty Good Privacy (PGP) software
package is used to encode the watermark signature with the
users private key. A seedfile is generated from PGP software
that is used to create a signature-related bit-stream. The bit-
stream which is the output of the RC4 stream cipher is a cryp-
tographically strong pseudorandom bit-stream. This bitstream
is the basic signature which is used by the watermarking
techniques.

To verify a signature, one must show that both the sig-
nature is present in the SAT solution and that the signature
corresponds to the textfile and the PGP public key of the
supposed owner. Demonstrating that the signature exists in the
SAT solution is achieved by demonstrating that the solution
satisfies all the constraints claimed by the author. One can
show that the signature corresponds to the textfile and the
owner’s public key by running PGP.

The crucial observation is that during the creation of addi-
tional constraints suitable for intentional watermarking is that
one has to establish a well defined ordering for the components
of the instance. In the case of the SAT problem the components
are variables and clauses. This can be done in two ways, either
by using industry imposed standards or by using properties

4

PGP

Encoding: private

key

Signature

textfile
Seedfile

Alledged

RC4

Verification:

Signature

textfile
Seedfile

Alledged

RC4

Signature

bitstream

WM

technique
constraints

private

key

Verify

constriants

WM SAT

instance

PGP

Signature

bitstream

Authorship

Proof

Fig. 2. Procedure for translation of arbitrary signature to infinite random
string.

of the designs. For example, for the second option, for the
SAT problem, we can use orderings according to both clauses
and variables. In the case of variables, for example, we can
use rank order rules such as the number of appearances of
variables in all clauses, the number of complemented forms
of each variable, and the number of occurrences of variables
and uncomplemented variables in clauses of odd length. Once
when this well defined ordering is available, we can assign a
specific rank to each variable and to each clause. After this
step, additional constraints can be added in a unique way to the
instance and one can establish a unique relationship between
each bit in the users signature and each new constraint added to
the instance. Furthermore, by following the ordering, one can
conduct reverse engineering of the original signature, which is
one of the key objectives for establishing proof of authorship.

The output of the process is a watermarked design which
can be analyzed according to standard watermarking desider-
ata, which include high credibility, high resiliency against
attacks, low overhead, complete transparency to the standard
problem solving tools, and partial protection and fairness.
The essence of constraint-based watermarking is to restrict
the users solution to the part of solution space which is
characterized by the signature constraints. The key essential
assumption is that there are numerous solutions of high and
very similar quality. In the case of decision problems, such
as SAT, the addition of extra constraints should not change
the positive answer to the initial instance of the problem
to a negative answer after the addition of the watermarking
constraints.

A. Motivational Example

We illustrate the metrics, credibility and fairness, and how
they are achieved using the new watermarking approach on
the following example. For the sake of simplicity, clarity, and
brevity, we adopt the definitions of credibility and fairness
that are based on the number of solutions before and after
watermarking. Consider the following SAT formula over four
variables x1, x2, x3, x4. Originally, this instance has nine sat-
isfying assignments.

f = (x1 ∨x3 ∨x4)(x2 ∨x4)(x1 ∨x2 ∨x3 ∨x4)(x2 ∨x3 ∨x4)

According to the proposed metric for fairness, if all wa-
termarks of a given length reduce the number of solutions
remaining for the instance to the same number, we conclude
that the watermarking approach is completely fair. In that
case, no preference is given by the technique to any particular
signature.

Consider all watermark signatures of length four bits. Table
I shows the 16 different watermark signatures in the first
column. We embed each of the signatures into the SAT
formula f , using three watermarking techniques. The first two
techniques are previously proposed watermarking techniques
[36]: adding clauses (AC) and deleting literals (DL). The
third technique is the proposed isolation lemma-based (IL)
watermarking technique.

The AC clauses technique embeds the signature into the
SAT formula f by creating new clauses over the existing
variables. In this case, we use every two bits of the signature
to create a clause. The first bit of the signature corresponds to
variable x1 and the second to x2. If the bit is zero, the variable
is added to the clause in the uncomplemented form. Otherwise,
it is added in the complemented form. For example, for the
watermarking signature 0011 the following clauses are added
to the SAT formula f : (x1 ∨ x2)(x1 ∨ x2).

For the DL watermarking technique the signature is embed-
ded by removing appearances of variables from a clause. By
removing literals (appearances of variables in either comple-
mented or uncomplemented form) from a clause, the clause
becomes more constrained and therefore more difficult to
satisfy. For every two literals in a clause, we select one of
them to removed based on a bit in the signature. For example,
to embed a signature we consider each clause one at a time.
In the first clause (x1 ∨ x3 ∨x4), we consider the first pair of
literals x1 and x3. If the bit in the signature is zero, we delete
variable x1, if it is 1 then variable x3 is removed. To embed
watermark signature 0011, literal x1 is deleted. Since there is
no other pair of literals in this clause, the second clause is
considered (x2 ∨ x4). The second bit of the signature is a 0,
therefore x2 is removed from the clause. The remaining two
bits of the signature are embedded by removing literal x 2 and
x4 from the third clause. The final SAT formula in this case
is f = (x3 ∨ x4)(x4)(x1 ∨ x3)(x2 ∨ x3 ∨ x4).

The final scheme is the new isolation lemma-based (IL)
approach. The scheme embeds the watermarking signature
into the SAT formula by creating new clauses over variables
selected by the signature. The additional clauses are created
in such a way that they eliminate a subset of the possible
signatures. Note that the proposed watermarking technique
requires at least one bit in the string to be a one, which happens
with high probability even for strings of moderate length.

For example, consider a substring of the watermarking
signature with its length equal to the number of variables
in the instance. In this case, the SAT formula f has four
variables. In order to embed the signature 0011 into the
instance, we consider the position of the one’s. In this case
there are two one’s and they correspond to variables x3 and
x4. The Valiant-Vazirani isolation lemma-based approach is
used to translate these variables into the following additional
clauses (along with the introduction of a new variable y1):

5

Sig. of AC DL IL
Length 4

0000 8 4 -
0001 5 2 3
0010 6 4 5
0011 5 2 3
0100 5 6 2
0101 6 6 4
0110 4 4 6
0111 3 4 4
1000 6 4 5
1001 4 2 5
1010 7 4 5
1011 4 2 5
1100 5 6 4
1101 3 6 4
1110 4 4 4
1111 6 4 4

Var 1.929 2.133 1.028

TABLE I

MOTIVATIONAL EXAMPLE: NUMBER OF SOLUTIONS REMAINING AFTER

EMBEDDING SIGNATURES OF LENGTH 4 INTO THE SAT INSTANCE USING

THREE DIFFERENT WATERMARKING TECHNIQUES.

(y1∨x3∨x4)(y1∨x3∨x4)(y1∨x3∨x4)(y1∨x3∨x4)(y1). The
detection of the signature 0011, for the motivation example,
can be accomplished by checking that the solution which the
owner claims as his own satisfies this overcontrained SAT
instance.

After embedding each watermark signature using each of
the three watermarking approaches into the above instance,
the number of solutions which satisfy the new SAT formula
is enumerated in Table I. The second column indicates the
number of solutions found using exhaustive search when wa-
termarking with the adding clauses (AC) technique, the third
column corresponds to the deleting literals (DL) technique.
Finally, the last column displays the number of solutions
remaining after embedding the watermarks using the proposed
isolation-lemma (IL) technique. The last row of the table
displays the variance in the number of remaining solutions
for each approach. The variance for the proposed technique
is significantly lower than that of the other two techniques.
This small variance indicates that even on very small examples
using very short messages the technique performs fairly.

In order to illustrate the impact of credibility of a specific
watermarking technique, we consider adding watermarks of
length, 4, 8, 12, 16, 20, 24, 28 and 32 bits to the same
SAT formula using the three techniques. Twenty different
watermarks of each length were embedded using the three
aforementioned techniques. The number of solutions after
embedding the watermark signature was enumerated in each
case and the measured results are presented in Table II. The
first row of the table indicates the length of the watermark
message. For each of the proposed techniques three rows are
given. The first of these rows indicates the average number of
solutions after embedding the twenty randomly selected strings
of the indicated watermark length. The second row shows the
minimum and maximum number of solution which satisfy the
watermarked instance, while the final row denotes the variance
in the number of solutions over the twenty different watermark
signatures.

The results shown in Table II indicate how the number of
solutions for each technique reduces as longer watermarking
signatures are embedded. For the AC watermarking technique,
as the watermark signature increases in length more clauses
are added to the instance. However, many of the added
clauses are identical to each other and therefore place no
additional constraints on the instance. The small signature
lengths significantly reduce the number of solutions, due to
the addition of unique constraints, but as the signature lengths
increase the number of solutions decreases very slowly.

In the case of the deleting literals (DL) technique, only a few
variables can be eliminated from each clause, until the clause
becomes overconstrained (a single variable clause). Therefore
after embedding five bits of the signature, the remaining
watermark signature is not used. This result is seen in the
column for the signature length of eight bits. The average
number of solutions decreases in this case from the four bit
signatures case. However, for all signatures greater than this
length, the results are unchanged.

Finally, for the proposed isolation lemma technique as the
length of the signature increases, the average number of solu-
tions is approximately halved. Therefore, there is a predictable
trade-off between the number of solutions remaining after
watermarking (credibility) and the length of the watermark
that is embedded. Note that the other proposed techniques have
no predictability for the number of solutions as the length of
the watermark signature increases. Furthermore note that the
data in Table II shows low variance between signatures of
equal length which additionally illustrates the fairness of the
technique. A more comprehensive evaluation of the technique
is given in the Experimental Results Section.

IV. CREATING UNIQUE AND FAIR SOLUTIONS TO SAT

In this Section, we present the mathematical foundation for
the new watermarking technique. We start by presenting the
Valiant-Vazirani Isolation Lemma and an illustration of its
application on a small example. We conclude the Section by
briefly discussing how the technique can be applied to other
computationally intractable problems beyond SAT.

A. Valiant-Vazirani Isolation Lemma

The method is based on a combinatorial result of [63] that
isolates a solution of a conjunctive normal form (CNF formula)
by randomized reduction. Given an instance f of SAT, the
method successively conjoins constraints to f to obtain a
series of formulas f1, f2, . . . , fn that will have a decreasing
number of solutions. If f is satisfiable, we can prove that with
probability at least 1

4 , one of the formulas will have a unique
solution. If we choose one of the formulas at random, then the
probability that it has a unique solution is at least 1

4n . This
probability can be boosted as usual. On the other hand, if f is
not satisfiable, then each of the formulas will be unsatisfiable.

The watermarking method will consequently construct,
given an instance of SAT, a formula with a unique satisfying
assignment, and produce the unique assignment as the solu-
tion. The construction will ensure that this assignment satisfies

6

Sig. Length (bits) 4 8 12 16 20 24 28 32

Adding Ave. # of Solutions 5.15 2.7 1.2 0.4 0.05 0.05 0.05 0.0
Clauses Min/Max Solutions 3/8 0/5 0/3 0/3 0/1 0/1 0/1 0/0

Variance 1.40 2.22 1.85 0.88 0.05 0.05 0.05 0.0

Deleting Ave. # of Solutions 4.05 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Literals Min/Max Solutions 1/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6

Variance 2.47 2.64 2.64 2.64 2.64 2.64 2.64 2.64

Isolation Ave. # of Solutions 3.89 1.84 1.11 0.58 0.37 0.16 0.16 0.05
Lemma Min/Max Solutions 2/5 0/3 0/3 0/3 0/3 0/1 0/1 0/1

Variance 0.99 0.70 0.88 0.70 0.58 0.14 0.14 0.05

TABLE II

MOTIVATIONAL EXAMPLE: RELATIONSHIP BETWEEN THE NUMBER OF SOLUTIONS AND THE LENGTH OF THE SIGNATURE.

the original formula f . However, the probability that a random
algorithm picks exactly this satisfying assignment is low.

We now outline the construction. The treatment is from [63].
We omit the proofs of correctness. For an alternate treatment
of the process using 2-universal hash functions, see [66].

We shall select constraints at random from some suitable set.
Ideally, we would like to eliminate each solution independently
with a certain probability. This is not possible with only a poly-
nomial number of random choices. However, the use of GF [2]
inner products with polynomially few vectors over GF [2]n

suffices for our purposes. Let f be a CNF formula over the
variables x1, x2, . . . , xn. We shall view truth assignments to
the variables x1, x2, . . . , xn as n-dimensional {0, 1} vectors
over the vector space GF [2]n. The satisfying assignments of
f form a set of vectors from this space. For u, v ∈ GF [2]n,
let u · v denote the inner product over GF [2] of u and v.

Lemma 1. If f is any CNF formula in x1, x2, . . . , xn and
w1, . . . , wk ∈ {0, 1}n, then one can construct in linear time a
formula f ′

k whose satisfying assignments v satisfy f and the
equations v · w1 = v · w2 = · · · = v · wk = 0. Furthermore,
one can construct a polynomial-size CNF formula fk in
variables x1, . . . , xn, y1, . . . , ym for some m such that there is
a bijection between solutions of fk and f ′

k defined by equality
on the values of x1, . . . , xn.

Proof. We show the lemma for k = 1. The general case
follows easily. The formula f ′

1 is

f ∧ (xi1 ⊕ xi2 ⊕ · · · ⊕ xij ⊕ 1),

where ⊕ denotes the exclusive-or function, and i1, . . . , ij are
the indices of the xi that have value 1 in w1. The function f1

is the CNF equivalent of f ′
1:

f∧(y1 ⇔ xi1⊕xi2)(y2 ⇔ y1⊕xi3) · · · (yj−1 ⇔ yj−2⊕xij)(yj−1⊕1).

The intuition behind the construction is the following sur-
prising fact. Let S be a subset of {0, 1}n. Define the sets

S1 = {v | v ∈ S, v · w = 0} and S ′
1 = {v | v ∈ S, v · w = 1}.

Then, if w is chosen randomly, any S will be partitioned in
this way into two roughly equal halves with high probability.
In our construction, S is the set of satisfying assignments of
f , we choose w1, . . . , wk at random, and constructing fk we
obtain a formula with roughly 2−k|S| satisfying assignments.
Note that we do not know |S| other than it lies between 0
and 2n. Therefore, we need to “guess” the size of |S|. This is
where the random choice of k comes in: with probability 1

n ,
we make the right guess.

/* Precondition: f is of the form x1 ⊕ x2 ⊕ . . . xk ⊕ 1 */
convertT oCNF (formula f){

let {y1, y2, . . . , yk} be new variables;
/* let a ⇔ b ⊕ c denote the CNF formula
(a ∨ b ∨ c)(a ∨ b ∨ c)(a ∨ b ∨ c)(a ∨ b ∨ c) */
return ((y1 ⇔ x1 ⊕ x2)(y2 ⇔ y1 ⊕ x3) . . .

(yk−1 ⇔ yk−2 ⊕ xk)(yk−1 ⊕ 1)); }
formula addOneConstraint(formula f){

pick n bitsfor w from signature bitstream;
let {i1, . . . , ik} be positions of the 1 entries in w ;
return f ∧ convertT oCNF (xi1 ⊕ xi2 ⊕ · · · ⊕ xik

⊕ 1); }
/* Precondition: f is a CNF formula over variables

{x1, . . . , xn} */
formula
generateConstrainedFormula(formula f){

get t from {1, . . . , n} from signature bitstream;
for (i = 1 to t) do

f = addOneConstraint(f);
od }

Fig. 3. Pseudo code for watermarking using combinatorial isolation lemmas.

The overall construction is simply the following: Given
a CNF formula f , choose an integer k at random from
{1, . . . , n}, randomly choose vectors w1, . . . , wk and output
fk. We now give the technical result that formalizes the above
intuition.

Lemma 2. Let S ⊆ {0, 1}n. Suppose w1, . . . , wk are chosen
at random. For each i ≤ n, let Si = {v | v ∈ S, v · w1 =
· · · = v · wi = 0}, and let Pn(S) be the probability that, for
some i ≤ n, |Si| = 1. Then:

i. Pn(S) ≥ 1
4 ;

ii. if w1, . . . , wn are chosen to be linearly independent in
addition, then Pn(S) ≥ 1

2 .
Proof. This is the main construction of [63].
Figure 3 shows the algorithm to produce the final for-

mula (conjoined with the additional constraints). The func-
tion addOne-Constraint() adds one more constraint to the
current formula, thus making the number of solutions drop
to roughly half the original number (with high probability).
The function generateConstrainedFormula() is a loop
that calls addOneConstraint k times. Note that every call
effectively reduces the number of satisfying assignments by
half. The function convertT oCNF takes a formula of the
form x1⊕· · ·⊕xk ⊕1 and converts it to a CNF formula (with
new variables).
Example. As an example of the application of method, con-

7

sider the CNF formula

f = (x1 ∨ x2 ∨ x3)(x1 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4)

over the variables {x1, x2, x3, x4}. This ex-
pression has ten satisfying assignments, namely
{0000, 0001, 0011, 0110, 0111, 1001,
1011, 1101, 1110, 1111}. The watermarking process begins
with generateConstrainedFormula. In this step, we select
a number t from our bitstream which is between 1 and n,
where n is the number of variables in the original instance
specification. In our case, n = 4. Suppose that our bitstream
generates t = 2. Therefore, addOneConstraint(f) is called
twice.

In the first invocation, we select a watermark string w1 from
the bitstream of length equal to the number of variables in the
original instance. Suppose the first watermark w1 is 0101. We
associate each bit of the watermark with a single variable in
the original instance. Therefore, x1 is associated to 0, x2 to
1, x3 to 0, and x4 to 1. In this case, there are two 1’s in the
watermark that are associated with x2 and x4. The following
formula f1 is then created and passed to the convertToCNF
function.

f1 = (x2 ⊕ x4 ⊕ 1) = (y1 ⇔ x2 ⊕ x4)(y1 ⊕ 1)

In convertToCNF, the formula f1 is converted to CNF form.
In this case, the first term (y1 ⇔ x2 ⊕ x4) translates into four
new CNF clauses (y1 ∨ x2 ∨ x4)(y1 ∨ x2 ∨ x4)(y1 ∨ x2 ∨
x4)(y1 ∨ x2 ∨ x4). The final term (y1 ⊕ 1) translates solely
to a single clause, (y1). These clauses are appended to the
original formula f creating f ′ and returned to generateCon-
straindFormula.

f ′ = (x1 ∨x2 ∨x3)(x1 ∨x3 ∨x4)(x2 ∨x3∨x4)(y1 ∨x2 ∨x4)

(y1 ∨ x2 ∨ x4)(y1 ∨ x2 ∨ x4)(y1 ∨ x2 ∨ x4)(y1)

Formula f ′ now has four satisfying assignments
{0000, 0111, 1101, 1111}. In this first step, the number
of solutions was reduced from 10 to 4, approximately half.
In the second iteration, addOneConstraint is called with f ′.
Note, only the original variables (xi) are used to watermark
the instance throughout the watermarking process despite the
fact that new variables (yi) are created. A second watermark
string from the signature bitstream is selected, w2 = 0011.
In this case, the 1’s correspond to variables x3 and x4. The
constraint below, f2, is created and encoded to CNF form.

f2 = (x3 ⊕ x4 ⊕ 1) = (y2 ⇔ x3 ⊕ x4)(y2 ⊕ 1)

The formula f ′′ is the overconstrained instance after
both w1 and w2 have been encoded into the original for-
mula f . This formula has only three satisfying assignments
{0000, 0111, 1111}. The assignment 1101 was eliminated by
the constraint (y2 ∨ x3 ∨ x4). Note, that now the instance has
the following form.

f ′′ = (x1∨x2∨x3)(x1∨x3∨x4)(x2∨x3∨x4)(y1∨x2 ∨x4)

(y1 ∨ x2 ∨ x4)(y1 ∨ x2 ∨ x4)(y1 ∨ x2 ∨ x4)(y1)

(y2 ∨ x3 ∨ x4)(y2 ∨ x3 ∨ x4)(y2 ∨ x3 ∨ x4)(y2 ∨ x3 ∨ x4)(y2)

The beauty of the technique is that the final algorithm is
extremely simple (it involves only some random choices), yet
it yields optimal results with high probability.

B. Beyond SAT

In this Subsection, we briefly discuss potential applications
of the new watermarking technique to other optimization
problems. All the proposed applications have one common
aspect: they leverage the ability to polynomially transform
an instance of an intractable optimization problem into an
instance of the SAT problem. We begin with three examples
from literature and finish this Subsection with an example.

Barth presented the generalization of the Davis-Putnam
enumeration technique for solving the SAT problem in such
a way that the procedure can be used to solve an arbitrary
0-1 integer linear program [19]. Three years later, a new SAT
algorithm, GRASP, was proposed as an optimization engine
for computation of prime implicants via solving the binate
covering problem [20]. These techniques have been further
generalized within frameworks of SAT-based linear search and
SAT-based branch and bound procedures to further enhance
experimental results [31].

Recently, several, conceptually similar, approaches has been
developed that enable reduction of a particular 0-1 ILP prob-
lem into a SAT instance with a pseudopolynomial overhead
[21], [22], [23]. These techniques conduct translation of each
ILP constraint into a linear number of SAT constraints. The co-
efficient in front of the linear term is a logarithmic function of
the constants that appear in the corresponding ILP constraint.

One can also construct customized pseudopolynomial ap-
proaches that do not require any specific SAT algorithm and
that only leverage the transformation to an instance of the
SAT problem. We will demonstrate one such approach by
transforming an arbitrary instance of the maximal independent
set (MIS) problem into an instance of the SAT problem. The
transformation is pseudo-polynomial, i.e. the instance size of
the SAT problem is a polynomial function which has as the
largest exponent the value of the cardinality of the MIS.

Therefore, it can be used either for watermarking small to
medium MIS solutions, or parts of large MIS solutions. The
MIS problem can be stated in the following way. A graph G
with n vertices is given. Also, the incident matrix with entries
eij is given, where a value of 1 indicates that there is an edge
between nodes i and j in G. Otherwise, the entry has a value
of zero. The goal is to find a set of elements with cardinality
at least K , such that no two nodes that are elements of the
set have an edge between them. The starting point for the
transformation is the specification of the MIS problem as an
instance of 0-1 linear program. Specifically, with each node i,
we associate variable xi that has value 1 if the node is selected
for the MIS solution and has value 0 otherwise. The objective
function is to maximize the sum of xi. The constraints are that
for each entry (i,j) that has value 1, we have constraint that
xi + xj ≤ 1.

An instance of the 0-1 linear program can be translated
into an instance of SAT in the following way. Each variable
xi corresponds to variable xi in the SAT instance. We use

8

Input: k number of variables.
m number of solutions.

Output: SAT instance and solutions.
Algorithm:
createSATInstance() {
1. generateSolutions(k, m);
2. orderVariables();
3. eliminateNonSolutions();
4. Addition of Confusion(); }
5. generateSolutions(k, m) {
6. Random number generation of m

solutions using linear hash function; }
7. orderVariables() {
8. Order pairs of variables according to

their constancy. }
9. eliminateSolutions() {
10. Create clauses which prevent non-solutions

from being solutions. }
Fig. 4. Algorithm for the creation of a SAT instance with a specific number
of solutions.

-3 3 -3 3-3 3

-2 2 -2 2

-4 4 -4 4

-1 1

(1 4) (-1 -4)

(1 -2 4)

(-1 -2 3 4)

Fig. 5. Branch and Bound Tree for the creation of a SAT instance
with four variable and five solutions.

the same notation for both problem formulations to enhance
intuition. It is easy to see that each constraint corresponds
to a clause. In order to ensure that at least K variables are
assigned to 1, we create all clauses of size K +1 that contain
all combinations of the variables. There are (n over K) such
clauses. All that is required is to conduct the watermarking
procedure on the instance of the SAT problem in order to
create a watermarked solution of the MIS instance.

V. SOFTWARE EXPERIMENTAL ENVIRONMENT

In this Section, we present the software environment which
is used for experimental evaluation of the new watermarking
technique. Specifically, we have developed three programs: (i)
a procedure that generates an instance of the SAT problem with
a user specified number of solutions for a requested number
of variables (ii) a program for a branch and bound-based
exhaustive enumeration of the solutions of a SAT instance,
and (iii) a program for watermarking SAT instances using
the combinatorial isolation lemmas. In addition, we also used
several public domain SAT solvers.

At the intuitive level the program for creating an instance of
SAT with a known number of solutions consists of four phases.

First, we use a random number generator and linear hash
function-based algorithm for avoidance of collision to generate
n different assignments of variables which will constitute
solutions to the instance of the created SAT problem. In the
second phase, we order the variables according to the diversity
of their mutual literal appearance. Note, that two variable x i

and xj can appear in a total of four combinations together:
xixj , xixj , xixj , xixj . We order the variable pairs which
appear in the fewest number of combinations first in order to
cut the solution space as rapidly as possible. Next, we add
clauses to eliminate all non-valid solutions. Finally, in the last
phase we alter some of the clauses and add additional clauses
to better hide the structure of the instance. Figure 4 shows
pseudo code for the creation of the SAT instance.

To clarify the process, consider the following example.
Our goal is to create a SAT instance defined using four
variables x1, x2, x3, x4 and five solutions. Using the random
number generator and linear hash function we generate the
following assignments of variables, which are the solutions to
the instance.

(x1, x2, x3, x4)(x1, x2, x3, x4)(x1, x2, x3, x4)
(x1, x2, x3, x4)(x1, x2, x3, x4)

Now, we order the variables according to the least number
of pair combinations. As a result of pair x1 and x4 appearing
together in only two forms x1x4 and x1x4, we order these two
variables first. We then compare the rest of the variables to
the previous pair. The resulting ordering is x1, x4, x2, x3. We
begin adding clauses by building a branch and bound binary
search tree as shown in Figure 5. We begin by adding variable
x1. By examining our solutions, we see that x1 appears in
both forms x1 and x1, therefore we can not terminate any
branches. We continue for x4. We see that no solutions have
the form x1, x4 or x1, x4. We terminate these branches and
create clauses that eliminate all solutions of these forms. In this
case, we add clauses (x1∨x4) and (x1∨x4). We continue this
process until all branches which lead to non-valid solutions
have been terminated by the creation of appropriate clauses.
The created instance is as follows.

f = (x1 ∨ x4)(x1 ∨ x4)(x1 ∨ x2 ∨ x4)(x1 ∨ x2 ∨ x3 ∨ x4)

The last step is to add additional clauses and to alter the
clauses to hide the structure of the instance and increase the
complexity of the instance.

The second program, also uses the branch and bound
technique to enumerate all solutions of a given instance. We
implemented the algorithm shown in Figure 3 for watermark-
ing SAT instances using the combinatorial isolation lemmas.
The watermarked instances were tested on the following public
domain SAT solvers: WalkSAT [67], zChaff [68], and Rel SAT
[69].

VI. EXPERIMENTAL RESULTS

In this Section, we present simulation results that evaluate
the effectiveness of the combinatorial isolation lemma-based
watermarking technique. We first present the experimental re-
sult related to credibility. Then we present experimental results

9

Instance # Vars # Clauses Orig. WalkSAT Orig. zChaff
(sec) (sec)

par8-1-c.cnf 64 254 0.1 0.01
jnh1.cnf 100 850 0.7 0.01

uf225-097.cnf 225 960 0.1 4.86
par16-3-c.cnf 334 1332 9.6 4.38

f600.cnf 600 2550 1.3 -
hanoi4.cnf 718 4934 12.2 2.67
ii8c2.cnf 950 6689 0.1 0.05
f1000.cnf 1000 4250 0.4 -

par16-1.cnf 1015 3310 7.9 1.46
par32-2-c.cnf 1303 5206 12.7 -

ii16a1.cnf 1650 19368 0.2 -
ii16b1.cnf 1728 24792 0.4 57.51

g125.17.cnf 2125 66272 63.3 -
par32-1.cnf 3176 10277 10.9 -

TABLE III

DIMACS INSTANCES WITH ORIGINAL RUNTIME ON WALKSAT [67] AND ZCHAFF SOLVERS.

for fairness. Both techniques are analyzed using measures
based on the number of solutions as well as required runtime.

SAT is a decision problem. Therefore, there is no overhead
in terms of impact on the quality of the solution. All solutions
are of equal quality. The overhead in terms of runtime can be
directly recorded from the increase in runtime of the solvers.
The proposed watermarking technique is completely transpar-
ent to all available SAT solvers. SAT instances are intrinsicly
non-partitionable and therefore it is inappropriate to discuss
partial protection in the this case. Finally, it is important to
emphasize that the main protection of any integrated circuit
watermarking technique against an arbitrary attack is not that
the attacker can not reuse a part of the solution to find
another solution, but in the inherent structure of the design
process where alternation of the design at the higher levels of
synthesis process inevitably have as a side effect requirements
for more comprehensive alternations of the solution at lower
levels of abstractions. Therefore, the attacker is forced to spend
significant time and effort to find a suitable new solution;
essentially he/she must redo the entire design.

There are two main conceptual difficulties in evaluating
the proposed watermarking technique. The first is that the
technique is used to watermark instances of an NP-complete
problem. Therefore, it is unlikely that one can guarantee to find
a solution, and even less likely to find all solutions. The second
problem is that the exact performance of an experimentally
evaluated watermarking technique is most likely correlated, at
least to some unknown extent, to a particular solver used to
solve the instances of the SAT problem.

In order to resolve these two conceptual problems and
to quantify the effectiveness of the proposed watermarking
approach, we conducted two sets of experiments. The goal of
the first set was to establish how well the technique performs
on standard benchmarks. Note that for this type of instances,
the number of solutions is unknown. The set consists of
popular DIMACS examples shown in Table III. In order to
enhance the diversity, we selected examples that significantly
differ in terms of the number variables, number of clauses,
and the ratio of number of clauses to number of variables.
The last criteria, ratio of number of clauses to number of

variables, is often a good measure of the difficulty to solve
the instance. We present the name of the instance along with
the number of variables and number of clauses for a subset of
the DIMACS instances. The last two columns indicates the
runtime, in seconds, to solve the initial instance using the
WalkSAT solver and the zChaff solver. The second set of
experiments was performed on a set of instances that were
constructed in such a way that the number of solutions is
known, as described in the previous Section.

A. Credibility

We first evaluated runtime-based credibility using DIMACS
instances. In Figure 6, we present the average normalized
runtime for each DIMACS instance after 100 watermarks
of each signature length are embedded. The length of the
watermark signatures are 1, 2, 5, 10, 25, 50, 100 times the
number of variables in each instance. On the two horizontal
axes we present the DIMACS instances and the length of the
embedded watermarks. On the vertical axis, the normalized
runtime using the WalkSAT solver is shown in seconds. Note
that the new watermarking technique provides a continuous
smooth trade-off between the length of watermark and runtime
and therefore it is well suited to be used as a high credibility
IPP technique.

Additionally, we performed an identical analysis using the
zChaff solver. The normalized runtime for instances which
could be solved by the zChaff solver after embedding the
various length watermarks are shown in Table IV. Instances
which are not listed in this Table, could not be solved by
zChaff under the standard time limit.

In order to evaluate credibility trade-offs using a measure
that is based on the number of solutions, we tested the
approach on instances with the known number of solutions.
These instances were created using the approach presented in
Section V. The number of variables for each instance varied
from 10 to 10,000 and the number of solutions ranged from
10 to 25,000. One hundred watermarks of lengths 1, 2, 3, 4,
5, and 10 times the number of variables in each instance were
embedded using the proposed technique. After the addition

10

par8-1-c jnh1.cnf uf225-097 par16-3-c hanoi4 ii8c2 par16-1 ii16b1 ii16a1

1x 0.10 1.70 0.42 2.35 1.68 1.62 0.80 1.14 0.96
2x 0.73 1.60 1.25 1.18 1.35 1.82 1.21 1.54 0.93
5x 0.10 1.70 0.42 2.35 1.68 1.62 0.80 1.14 0.88
10x 9.60 7.78 1.54 - - 2.38 - 1.12 1.39
25x - - 108.15 - - 2611.47 - 32.20 -
50x - - - - 0.04 - - - -

100x - 416.00 - 299.86 - - - - -

TABLE IV

THE CREDIBILITY IS DEMONSTRATED BY CONTINUOUS TRADE-OFF BETWEEN THE STRENGTH OF WATERMARK (LENGTH) AND REQUIRED RUNTIME

(ZCHAFF) ON DIMACS EXAMPLES.

of the watermark, the number of solutions still valid were
enumerated. In Figure 7 we present the results. The created
instances are labelled as the number of solutions - the number
of variables and are denoted on one horizontal axis. The other
horizontal axis shows the length of the watermark. The average
normalized number of solutions remaining after the embedding
of the watermark of a given length is shown on the vertical
axis.

We present the normalized average number of solutions
remaining after the addition of the watermark of a given length
for each instance in Table V. The normalization is conducted
against the initial number of solutions before watermarking. It
is easy to see that in Figure 7 and Table V, the number of so-
lutions scales almost exactly as predicted by the combinatorial
isolation lemma.

B. Fairness

To evaluate the fairness of the proposed technique, we
evaluated both runtime and solution count-based measures. Ex-
periments were performed on the DIMACS instances, shown
in the columns of Table VI. The original runtime required
by the WalkSAT solver to solve each instance (in seconds)
is shown in the second row. For each instance, we embedded
100 watermarks of 5, 10, 25, 50 and 100 times the number
of variables in the instance. For each watermark length, we
present five rows of measured parameters: average runtime,
minimum runtime, maximum runtime, best and worst case

g125.17

par32-1

hanoi4

par16-3-c

par32-2-c

par16-1

f600

jnh1

f1000

ii16b1

par8-1-c

ii16a1

uf225-097

ii8c2

1x

2x

5x

10x

25x

50x

100x

0

50

100

150

200

250

300

350

400

Ins
tan

ce
s

Length of Embedded Watermark

N
o
rm
a
li
z
e
d
 R
u
n
ti
m
e
 (
s
e
c
o
n
d
s
)

Fig. 6. The credibility is demonstrated by continuous trade-off
between the strength of watermark (length) and required runtime
(walkSAT) on DIMACS examples.

100
s-10

v50s
-10

v250
00s

-150
v100

0s-5
0v100

0s-1
000

v100
0s-2

5v
1x

2x

3x

4x

5x

10x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lengt
h of E

mbedde
d Waterm

arkInstances

N
o
rm
a
li
z
e
d
 N
u
m
b
e
r
o
f
S
o
lu
ti
o
n
s

100
00s

-200
v100

s-20
v100

s-20
00v10s

-100
00v

Fig. 7. Experimental results for credibility on created SAT instance
with known number of solutions.

difference in runtime, and the variance in runtime. In the case
of par32-1 and g125.17 watermarks of 100x the number of
variables we added, but the WalkSAT solver was unable to
find a solution in a reasonable amount of time. Note that if
variance is used as the measure, zero indicates perfect fairness.
In more than 90% of the cases the variance is less than 0.1,
and in 95% of cases the worst case difference is less than 0.1.
Additionally, in all cases where there is high variance (greater
than 1), this is due to a few outlier runtimes, which in all cases
were runtimes below the average.

Evaluation of the technique using instances with the known
number of solutions was performed on examples created with
a specified number of variables and solutions. For this purpose
we used the same instances evaluated in the experimental
results for credibility validation. As in the case of the DIMACS
instances, data for the average, minimum, maximum, worst
case (WC) number of solutions and variance in the number of
solutions are presented in Table VII. The maximum variance
between the number of solutions remaining after the addition
of the watermark of given length is 0.009. In all but one case
when the worst case (WC) difference in number of solutions
is greater than 1, there were a few watermarks which resulted
in no remaining solutions.

VII. CONCLUSION

We present a new SAT watermarking technique that pro-
vides mechanisms for producing high credibility and strong
fairness. This is accomplished by establishing a connection

11

1x 2x 3x 4x 5x 10x
Average 0.502 0.251 0.122 0.061 0.035 6.2e-4

TABLE V

EXPERIMENTAL RESULTS FOR CREDIBILITY. AVERAGE RUNTIME FOR CREATED INSTANCES WHERE NUMBER OF SOLUTIONS IS KNOWN.

Instance uf225-097 ii8c2 ii16a1 f1000 ii16b1 jnh1 f600 par16-1 par16-3-c par32-1 hanoi4 par32-2-c g125.17
Orig Runtime 0.1 0.1 0.2 0.4 0.4 0.7 1.3 7.9 9.6 10.9 12.2 12.7 63.3

5x

Ave Runtime 9.42 12.09 17.08 11.67 25.84 11.9 10.66 10.99 10.4 14.6 12.03 14.87 33.76
Min Runtime 9.4 12.0 16.9 11.6 25.6 11.8 10.4 10.9 10.3 14.4 11.9 14.8 33.5
Max Runtime 9.5 12.2 17.2 11.8 26.1 12.0 10.8 11.1 10.5 14.7 12.1 14.9 34.1

WC Difference 0.011 0.017 0.018 0.017 0.019 0.017 0.038 0.018 0.019 0.021 0.017 0.007 0.018
Variance 0.002 0.010 0.011 0.005 0.029 0.002 0.020 0.005 0.002 0.007 0.005 0.002 0.027

10x

Ave Runtime 10 13.77 18.05 14.16 24.42 11.69 13.03 13.78 11.35 17.59 14.07 16.36 31.76
Min Runtime 9.9 13.6 13.5 14.1 24.3 11.6 12.8 13.7 11.3 17.3 13.9 16.3 31.6
Max Runtime 10.1 13.9 19.4 14.2 24.8 11.8 13.1 13.9 11.5 18.5 14.2 16.5 31.9

WC Difference 0.020 0.022 0.327 0.007 0.020 0.017 0.023 0.015 0.018 0.068 0.021 0.012 0.009
Variance 0.002 0.007 2.787 0.003 0.026 0.003 0.009 0.004 0.005 0.170 0.011 0.005 0.012

25x

Ave Runtime 13.33 18.26 23.74 19.09 27.55 12.58 17.99 19.32 16.2 24.86 19.42 20.81 34.97
Min Runtime 13.1 18.2 23.4 19.0 27.0 12.5 17.8 19.2 16.1 24.4 19.3 20.7 34.6
Max Runtime 13.5 18.4 25.1 19.2 28.0 12.6 18.1 19.5 16.3 25.5 19.6 21.0 35.5

WC Difference 0.030 0.011 0.072 0.010 0.036 0.008 0.017 0.016 0.012 0.044 0.015 0.014 0.026
Variance 0.013 0.005 0.247 0.005 0.074 0.002 0.008 0.008 0.011 0.094 0.008 0.017 0.062

50x

Ave Runtime 18.33 24.93 30.82 25.72 34.35 15.6 23.51 25.92 21.43 34.71 25.45 27.64 43.21
Min Runtime 18.1 24.8 22.2 25.6 34.1 15.5 23.4 25.8 21.3 34.2 22.5 27.4 43.0
Max Runtime 18.6 25.1 32.2 25.9 34.9 15.7 23.7 26.0 21.5 35.9 25.9 27.9 43.5

WC Difference 0.027 0.012 0.324 0.012 0.023 0.013 0.013 0.008 0.009 0.049 0.134 0.018 0.012
Variance 0.016 0.007 9.231 0.008 0.058 0.004 0.008 0.004 0.007 0.250 1.083 0.027 0.028

100x

Ave Runtime 25.49 36.44 45.05 36.49 47.68 22.29 32.99 36.98 29.39 - 36.51 39.28 -
Min Runtime 25.3 36.3 44.7 36.3 47.2 22.1 32.7 36.8 29.1 - 36.4 39.1 -
Max Runtime 25.6 36.6 45.7 36.8 49.4 22.6 33.2 37.6 29.5 - 36.7 39.6 -

WC Difference 0.012 0.008 0.022 0.014 0.046 0.022 0.015 0.022 0.014 - 0.008 0.013 -
Variance 0.010 0.016 0.069 0.023 0.440 0.025 0.025 0.060 0.019 - 0.010 0.033 -

TABLE VI

FAIRNESS RESULTS FOR THE DIMACS BENCHMARKS. THE FIRST COLUMN INDICATES MEASURED PARAMETER. THE NEXT THIRTEEN COLUMNS

INDICATE THE DIMACS INSTANCES. THE SECOND ROW SHOWS THE RUNTIME TO FIND A SOLUTION OF THE ORIGINAL INSTANCE. EACH SET OF FIVE

ROWS FOLLOWING SHOW THE AVERAGE, MINIMUM, MAXIMUM RUNTIME, WORST CASE (WC) DIFFERENCE IN RUNTIME, AND THE RUNTIME VARIANCE

FOR 100 WATERMARKS OF EACH LENGTH.

between the Valiant-Vazirani combinatorial isolation lemma
and the watermarking process. We add clauses used by the
Valiant-Vazirani lemma in such a way that they correspond to
the owner’s binary signature which is generated as a random
binary stream by the cipher whose key corresponds to the
user’s secret text message. We validated our technique on
a variety of application-derived SAT instances and created
SAT instances with specified structure. We demonstrate a
close match between the theoretically predicted credibility and
fairness and the ones obtained after the use of the standard
SAT solvers: WalkSAT and ZChaff.

REFERENCES

[1] G. Qu, J. Wong, and M. Potkonjak, “Fair watermarking techniques,” in
Asia and South Pacific Design Automation Conference, 2000, pp. 55–60.

[2] S. Cook, “The complexity of theorem proving procedures,” in ACM
Symposium on Theory of Computing, 1971, pp. 151–158.

[3] M. R. Garey and D. S. Johnson, Computers and intractability: a guide
to the theory of NP-completeness. W. H. Freeman, 1979.

[4] T. Larrabee, “Test pattern generation using boolean satisfiability,” Trans-
actions on Computer-Aided Design, pp. 6–22, 1992.

[5] J. Marques-Silva and K. Sakallah, “Robust search algorithms for test
pattern generation,” in Fault-Tolerant Computing Symposium (FTCS),
1997, pp. 1–10.

[6] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Combinational test generation using boolean satisfiability,” IEEE Trans-
actions on Computer-Aided Design, vol. 15, no. 9, pp. 1167–1176, 1996.

[7] I. Hamzaoglu and J. Patel, “New techniques for deterministic test pattern
generation,” Journal of Electronic Testing, vol. 15, no. 1-2, pp. 63–73,
1998.

[8] C. Chen and S. Gupta, “A satisfiability-based test generator for path de-
lay faults in combinational circuits,” in Design Automation Conference,
1996, pp. 209–214.

[9] G. Nam, K. Sakallah, and R. Rutenbar, “Satisability based FPGA
routing,” International Conference on VLSI Design, pp. 574–577, 1999.

[10] G.-J. Nam, K. A. Sakallah, and R. A. Rutenbar, “Satisfiability-based
layout revisited: Detailed routing of complex FPGAs via search-based
boolean SAT,” in International Symposium on Field-Programmable Gate
Arrays, 1999, pp. 167–75.

12

Instance 50s-10v 100s-10v 100s-20v 1000s-25v 1000s-50v 10s-10000v 10000s-200v 1000s-1000v 25000s-150v 100s-2000v
Orig Solns 50 100 100 1000 1000 10 10000 1000 25000 100

1x

Ave Solns 0.484 0.48 0.506 0.5008 0.4991 0.54 0.5027 0.5001 0.499496 0.506
Min Solns 0.46 0.48 0.49 0.497 0.492 0.4 0.4992 0.495 0.49712 0.48
Max Solns 0.52 0.48 0.53 0.505 0.504 0.6 0.5076 0.504 0.5018 0.53
WC Solns 0.124 0 0.079 0.0159 0.0240 0.37 0.0167 0.018 0.009 0.099
Variance 0.00096 0 0.0004 4.18E-06 1.23E-05 0.009 7.87E-06 6.77E-06 3.41E-06 0.0002

2x

Ave Solns 0.212 0.27 0.252 0.2503 0.2512 0.28 0.25131 0.25 0.250336 0.246
Min Solns 0.2 0.27 0.24 0.245 0.247 0.1 0.2451 0.247 0.2482 0.21
Max Solns 0.24 0.27 0.28 0.254 0.255 0.4 0.255 0.254 0.25244 0.28
WC Solns 0.188 0 0.158 0.0359 0.0318 1.071 0.0393 0.028 0.0169 0.284
Variance 0.0003 0 0.0003 1.13E-05 9.51E-06 0.0084 9.25E-06 4.22E-06 2.34E-06 0.0005

3x

Ave Solns 0.12 0.114 0.127 0.1251 0.1374 0.11 0.1262 0.1252 0.124748 0.113
Min Solns 0.12 0.11 0.12 0.122 0.122 0 0.1244 0.124 0.1234 0.09
Max Solns 0.12 0.13 0.13 0.128 0.252 0.3 0.1316 0.126 0.126 0.15
WC Solns 0 0.175 0.0787 0.0479 0.946 2.727 0.057 0.0159 0.021 0.530
Variance 0 7.11E-05 2.33E-05 4.32E-06 0.0016 0.009 4.17E-06 4.00E-07 7.27E-07 0.0004

4x

Ave Solns 0.04 0.065 0.06 0.0629 0.0627 0.06 0.0624 0.0679 0.062528 0.066
Min Solns 0.04 0.05 0.06 0.062 0.06 0 0.0593 0.06 0.0618 0.06
Max Solns 0.04 0.08 0.06 0.064 0.064 0.1 0.0652 0.123 0.0634 0.08
WC Solns 0 0.461 0 0.0318 0.0638 1.666 0.0945 0.928 0.0255 0.303
Variance 0 0.00025 0 7.67E-07 1.57E-06 0.0026 3.28E-06 0.0003 3.12E-07 4.89E-05

5x

Ave Solns 0.036 0.036 0.023 0.0341 0.0372 0.06 0.03103 0.0315 0.031324 0.028
Min Solns 0 0.03 0 0.029 0.03 0 0.0276 0.03 0.03004 0
Max Solns 0.06 0.04 0.03 0.063 0.063 0.2 0.0324 0.032 0.03248 0.04
WC Solns 1.66 0.277 1.304 0.997 0.887 3.333 0.154 0.0635 0.0779 1.428
Variance 0.00096 2.67E-05 0.00015 0.0001 0.0001 0.004 2.38E-06 5.00E-07 5.36E-07 0.0001

10x

Ave Solns 0 0 0 0.0021 0.0005 0 0.0009 0.0017 0.001008 0
Min Solns 0 0 0 0 0 0 0 0 0.00084 0
Max Solns 0 0 0 0.008 0.002 0 0.0013 0.004 0.0012 0
WC Solns - - - 3.809 4 - 1.44 2.353 0.357 -
Variance - - - 6.77E-06 7.22E-07 - 1.24E-07 1.34E-06 1.10E-08 -

TABLE VII

EVALUATION OF FAIRNESS USING THE INSTANCES WITH KNOWN NUMBER OF SOLUTIONS. THE FIRST COLUMN INDICATES MEASURED PARAMETER. THE

NEXT TEN COLUMNS REPRESENT THE CREATED SAT INSTANCES. EACH SET OF FIVE ROWS FOLLOWING SHOW THE AVERAGE, MINIMUM, MAXIMUM

NUMBER OF SOLUTIONS FOUND, WORST CASE (WC) DIFFERENCE IN NUMBER OF SOLUTIONS, AND THE VARIANCE FOR 100 WATERMARKS OF EACH

LENGTH.

[11] L. A. Entrena and K.-T. Cheng, “Combinational and sequential logic
optimization by redundancy addition and removal,” IEEE Transaction
on CAD, pp. 909–916, 1995.

[12] S. Devadas, “Optimal layout via boolean satisfiability,” in IEEE Inter-
national Conference on Computer-Aided Design, 1989, pp. 294–297.

[13] A. Gupta and P. Ashar, “Integrating a boolean satisfiability checker
and BDDs for combinational equivalence checking,” in International
Conference in VLSI Design, 1998, pp. 222–225.

[14] W. Kunz and D. Stoffel, Reasoning in Boolean Networks. Kluwer
Academic Publishers, 1997.

[15] J. Silva and T. Glass, “Combinational equivalence checking using
satisability and recursive learning,” in Design Automation and Test in
Europe Conference, 1999, pp. 145–149.

[16] O. Coudert, “On solving binate covering problems,” in Design Automa-
tion Conference, 1996, pp. 197–202.

[17] V. Manquinho and J. Marques-Silva, “On using satisfiability-based
pruning techniques in covering algorithms,” in Design Automation and
Test in Europe, 2000, pp. 356–363.

[18] N. Sherwani, Algorithms for VLSI physical design automation. Kluwer
Academic Publishers, 1993.

[19] P. Barth, “A Davis-Putnam based enumeration algorithm for linear
pseudo boolean optimization,” Max-Planck-Institut fur Informatik, Tech.
Rep., 1995.

[20] V. Manquinho, A. Oliveira, and J. Marques-Silva, “Models and algo-

rithms for computing minimum-size prime implicants,” in International
Workshop on Boolean Problems (IWBP), 1998, pp. 83–92.

[21] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Generic ILP
versus specialized 0-1 ILP: an update,” in ICCAD, 2002, pp. 450–457.

[22] J.P.Warners, “A linear-time transformation of linear inequalities info
conjunctive normal form,” in Inf. Proc. Letters, ser. 2, vol. 68, 1998,
pp. 63–68.

[23] H. Xu, R. Rutenbar, and K. Sakallah, “sub-SAT, a formulation for re-
lated boolean SATisfiability with approximate routing,” in International
Symposium on Physical Design, 2002, pp. 182–187.

[24] M. Davis, G. Logemann, and D. Loveland, “Machine program for
theorem-proving,” in Communications of the ACM, vol. 5, 1962, pp.
394–397.

[25] J. Marques-Silva and K. Sakallah, “GRASP: a search algorithm for
propositional satisfiability,” Transactions on Computers, vol. 48, no. 5,
pp. 506–521, 1999.

[26] H. Zhang, “SATO: An efficient propositional prover,” in Conference on
Automated Deduction and LNAI 1249, 1997, pp. 272–275.

[27] B. Selman, H. Levesque, and D. Mitchell, “A new method for solving
hard satisability problems,” in AAAI, 1992, pp. 440–446.

[28] J. Groote and J. Warners, “The propositional formula checker Heer-
hugo,” The National Research Institute for Mathematics and Computer
Science in the Netherlands, Tech. Rep. SEN-R9905, 1999.

[29] M. Sheeran and G. Stalmarck., “A tutorial on Stalmarck’s proof pro-

13

cedure for propositional logic,” in International Conference on Formal
Methods in Computer-Aided Design, 1998, pp. 82–99.

[30] Y. Shang and B. W. Wah, “A discrete lagrangian-based global-search
method for solving satisfiability problems,” Journal of Global Optimiza-
tion, vol. 12, no. 1, pp. 61–100, 1998.

[31] J. Marques-Silva and K. Sakallah, “Boolean satisfiability in electronic
design automation,” in ACM/IEEE Design Automation Conference, 2000,
pp. 675–680.

[32] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, H. Wang,
and G. Wolfe, “Constraint-based watermarking techniques for design IP
protection,” IEEE Transactions on CAD, vol. 20, no. 10, pp. 1236–1252,
2001.

[33] A. Kahng, S. Mantik, I. Markov, M. Potkonjak, P. Tucker, H. Wang,
and G. Wolfe, “Robust IPP watermarking methodologies for physical
design,” in Design Automation Conference, 1998, pp. 782–787.

[34] D. Kirovski, Y.-Y. Hwang, M. Potkonjak, and J. Cong, “Intellectual
property protection by watermarking combinational logic synthesis so-
lutions,” in International Conference on Computer-Aided Design, 1998,
pp. 194–198.

[35] G. Qu and M. Potkonjak, “Analysis of watermarking techniques for
graph coloring problem,” in International Conference on Computer-
Aided Design, 1998, pp. 190–193.

[36] G. Qu, J. L. Wong, and M. Potkonjak, “Optimization-intensive water-
marking techniques for decision problems,” in DAC Design Automation
Conference, 1999, pp. 33–36.

[37] A. Caldwell, H. Choi, A. Kahng, S. Mantik, M. Potkonjak, G. Qu, and
J. Wong, “Effective iterative techniques for fingerprinting design IP,” in
Design Automation Conference, 1999, pp. 843–848.

[38] G. Qu and M. Potkonjak, “Fingerprinting intellectual property using
constraint-addition,” in Design Automation Conference, 2000, pp. 587–
592.

[39] C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation - tools for software protection,” Transactions on Software
Engineering, vol. 28, no. 2, pp. 735–746, 2002.

[40] D. Kirovski, D. Liu, J. L. Wong, and M. Potkonjak, “Forensic engineer-
ing techniques for VLSI CAD tools,” in Design Automation Conference,
2000, pp. 581–586.

[41] F. Hartung and M. Kutter, “Multimedia watermarking techniques,”
Proceedings of IEEE, vol. 87, no. 7, pp. 1079–1107, 1999.

[42] G. Voyatzis and I. Pitas, “The user of watermarks in the protection of
digital multimedia products,” IEEE Special Issue on Identification and
Protection of Multimedia Information, vol. 87, no. 7, pp. 1197–1207,
1999.

[43] ——, “Applications of toral automorphisms in image watermarking,” in
International Conference on Image Processing, 1996, pp. 237–240.

[44] R. Wolfgang and E. Delp, “A watermark for digital images,” in Inter-
national Conference on Images Processing, 1996, pp. 219–222.

[45] R. B. Wolfgang, C. I. Podilchuk, and E. J. Delp, “Perceptual watermarks
for digital images and video,” International Conference on Security and
Watermarking of Multimedia Contents, vol. 3657, pp. 40–51, 1999.

[46] I. Cox, J. Killian, T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for images,” in International Conference on
Image Processing, 1996, pp. 243–246.

[47] J. T. Brassil, S. Low, and N. F. Maxemchuk, “Copyright protection for
the electronic distribution of text documents,” in Proceedings of the
IEEE, vol. 87, 1999, pp. 1181–1196.

[48] R. Ohbuchi, H. Masuda, and M. Aono, “Watermarking three-
dimensional polygonal models,” in ACM International Multimedia Con-
ference, 1997, pp. 261–272.

[49] ——, “Shape-preserving data embedding algorithm for NURBS curves
and surfaces,” in Computer Graphics International, 1999, pp. 180–187.

[50] P. Su, J. Kuo, C.-C., and H. Wang, “Blind digital watermarking for
cartoon and map images,” The International Society for Optical Engi-
neering, vol. 3657, pp. 296–306, 1999.

[51] J. Lach, W. Mangione-Smith, and M. Potkonjak, “FPGA fingerprinting
techniques for protecting intellectual property,” in Proceedings of CICC,
1998, pp. 299–302.

[52] R. Chapman, T. Durrani, and A. Tarbert, “Watermarking DSP algorithms
for system on chip implementation,” International Conference on Elec-
tronics, Circuits and Systems, vol. 1, pp. 377–380, 1999.

[53] R. Chapman and T. Durrani, “IP protection of DSP algorithms for system
on chip implementation,” IEEE Transactions on Signal Processing,
vol. 48, no. 3, pp. 854–861, 2000.

[54] I. Torunoglu and E. Charbon, “Watermarking-based copyright protection
of sequential functions,” in Custom Integrated Circuits Conference,
1999, pp. 35–38.

[55] A. Oliveira, “Techniques for the creation of digital watermarks in se-
quential circuit designs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, no. 9, pp. 1101–1117, 2001.

[56] R. Newbould, J. Carothers, J. Rodriguez, and W. Holman, “A hierar-
chy of physical design watermarking schemes for intellectual property
protection of IC designs,” in IEEE International Symposium on Circuits
and Systems, vol. 4, 2002, pp. 862–865.

[57] R. Newbould, D. Irby, J. Carothers, and J. Rodriguez, “Watermarking
ICs for IP protection,” in IEE Electronics Letters, vol. 38, no. 6, 2002,
pp. 272–274.

[58] R. Newbould, D. Irby, J. D. Carothers, J. J. Rodriguez, and W. T.
Holman, “Mixed signal design watermarking for IP protection,” in
Symposium on Mixed Signal Design, February 2001.

[59] D. Irby, R. Newbould, J. D. Carothers, J. J. Rodriguez, and W. T.
Holman, “Placement of watermarking of standard-cell designs,” in
Symposium on Mixed Signal Design, February 2001.

[60] I. Hong and M. Potkonjak, “Behavioral synthesis techniques for intel-
lectual property protection,” in Design Automation Conference, 1999,
pp. 849–854.

[61] A. Oliviera, “Robust techniques for watermarking sequential circuit
designs,” in Design Automation Conference, 1999, pp. 837–842.

[62] V. Alliance, “http://www.vsi.org/.”
[63] L. Valiant and V. Vazirani, “NP is as easy as detecting unique solutions,”

Theoretical Computer Science, vol. 47, pp. 85–93, 1986.
[64] O. Watanabe, “Test instance generation for promised NP search prob-

lems,” in Structure in Complexity Theory Conference, 1994, pp. 205–
216.

[65] T. Emden-Weinert, S. Hougardy, and B. Kreuter, “Uniquely colourable
graphs and the hardness of colouring graphs of large girth,” Combina-
torics Porbability & Computing, vol. 7, no. 4, pp. 375–386, 1998.

[66] M. Luby and A. Wigderson, “Pairwise independence and derandom-
ization,” University of California at Berkeley CSD-95-880, Tech. Rep.,
1995.

[67] B. Selman, H. Kautz, and B. Cohen, “Local search strategies for
satisfiability testing,” in Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challeng, 1993, pp. 521–532.

[68] L. Zhang and S. Malik, “Conflict driven learning in a quantified boolean
satisfiability solver,” in International Conference on Computer Aided
Design, 2002.

[69] R. Bayardo and R. Schrag, “Using CSP look-back techniques to solve
exceptionally hard SAT instances,” in Principles and Practice of Con-
straint Programming. USENIX, 1996, pp. 46–60.

Jennifer L. Wong received her B.S. degree in Computer Science and
Engineering and M.S. in Computer Science from the University of California,
Los Angeles in 2000 and 2002. Currently, she is undergoing her Ph.D.
studies at the University of California, Los Angeles. Her research interests
include intellectual property protection, optimization for embedded systems,
and mobility in ad-hoc sensor networks.

Rupak Majumdar Biography text here.

Miodrag Potkonjak received his Ph.D. degree in Electrical Engineering
and Computer Science from University of California, Berkeley in 1991. In
1991, he joined C&C Research Laboratories, NEC USA, Princeton, NJ.
Since 1995, he has been with Computer Science Department at UCLA.
He received the NSF CAREER award, OKAWA foundation award, UCLA
TRW SEAS Excellence in Teaching Award and a number of best paper
awards. His watermarking-based Intellectual Property Protection research
formed a basis for the Virtual Socket Initiative Alliance standard. His research
interests include system design, embedded systems, computational security,
and intellectual property protection.

