
Fairing Wireframes in Industrial Surface Design
Yu-Kun Lai∗, Yong-Jin Liu†, Yu Zang‡, Shi-Min Hu§

Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology,

Tsinghua University, P. R. China

ABSTRACT

Wireframe is a modeling tool widely used in industrial geometric
design. The term wireframe refers to two sets of curves, with the
property that each curve from one set intersects with each curve
from the other set. Akin to the u-, v-isocurves in a tensor-product
surface, the two sets of curves in a wireframe span an underlying
surface. In many industrial design activities, wireframes are usually
set up and adjusted by the designers before the whole surfaces are
reconstructed. For adjustment, the fairness of wireframe has a di-
rect influence on the quality of the underlying surface. Wireframe
fairing is significantly different from fairing individual curves in
that intersections should be preserved and kept in the same order.
In this paper, we first present a technique for wireframe fairing by
fixing the parameters during fairing. The limitation of fixed param-
eters is further released by an iterative gradient descent optimiza-
tion method with step-size control. Experimental results show that
our solution is efficient, and produces reasonably fairing results of
the wireframes.

Keywords: wireframe fairing, industrial design

Index Terms: I.3.5 [Computational Geometry and Object Mod-
eling]: Geometric algorithms, languages, and systems; I.3.5 [Com-
putational Geometry and Object Modeling]: Splines.

1 INTRODUCTION

Wireframe is a useful tool in many industrial design activities. In
these activities, two sets of curves C = {c1,c2, . . . ,cu} and D =
{d1,d2, . . . ,dv} are first laid out by the designer. Each ci and d j has
an intersection point Pi j . Akin to the u-, v-isocurves in a tensor-
product surface, the two sets of curves C,D form a wireframe that
spans an underlying surface. The surface can be generated by using
net surface or other modeling primitives provided by many popu-
lar commercial CAD softwares; e.g., using Gregory patches [4] or
using the curvature-continuous interpolation method [15]. The user
can further modify the wireframe to improve the design quality. As
a useful tool, the fairing of the wireframe is often needed.

Wireframes can be generated from a variety of sources. Often
designers build two sets of intersected curves as an intuitive way
to design and edit a free-form surface. A more typical, but sim-
pler example is to model a surface by spine and sectional curves.
The spine is intersected with all the other curves, and this property
should be maintained after fairing. Another source for wireframes
comes from reverse engineering. For a physical surface without
CAD model, a laser scanner is used to capture the point cloud data
of the given surface. Refer to Fig. 1. To reconstruct the underlying
surface, the scanned data is first intersected with two sets of near

∗e-mail:laiyk03@mails.thu.edu.cn
†e-mail:liuyongjin@tsinghua.edu.cn
‡e-mail:zangyu@eyou.com
§e-mail:shimin@tsinghua.edu.cn

orthogonal planes. For each plane, a B-spline curve is created by
projecting the points nearby onto the plane and approximating them
with a planar curve. The two sets of intersection planes specified by
users thus result in a wireframe. The wireframe may not be smooth
enough due to the existence of scanning noise. So fairing the wire-
frame is necessary. To make the fairing effects shown more clearly,
we have used surface interrogation algorithms introduced in [5] for
visualization throughout the paper.

Fairing of curves and surfaces is a well studied problem in com-
puter aided design [6, 3]. However, wireframe fairing is notably
different since the intersections among curves must be maintained
and kept in the same order. Compared to its wide uses in industrial
design, relatively little work has been reported for wireframe fair-
ing. Recently, Wallner et al. [14] propose an approach to compute
fair webs, which amounts to smooth a set of connected curves to
minimize the sum of integrals of the squared norm of first or sec-
ond derivative, i.e. minimize ∑i

∫
s |c′i|2ds or ∑i

∫
s |c′′i |2ds, within the

given underlying surface, or in R3.
Some interesting theoretical results of optimal curve set are pre-

sented in [14], as an extension of the work on energy-minimizing
spline curves on surfaces [8]. These results are mainly developed
for graphics applications such as remeshing, parameterization and
surface restoration. However, they are not suitable for the design in
industry, due to the following reasons: (1) In [14], each intersection
point between two curves is considered as a knot, and each curve
segment between knots is considered as a parameter curve. Thus in
the design process, the wireframe may be split into a huge number
of curve fragments, at the positions of both intersection points and
knots of B-spline curves, where two piecewise polynomial curves
join together. This is very impractical, since after fairing the surface
cannot be edited through interactively modifying the wireframe. (2)
Only optimal states of fairing quantities are studied in [14], while
it is not clear how to add user control to the quantity of how close
the modified wireframe to the original one. (3) The focus of [14] is
to study fair webs constrained to given surfaces (or R3), while our
purpose is to use wireframes to guide the design of surfaces.

Our presented work is also related to the traditional problem of
curve fairing, but in a much more difficult setting. Automatic fair-
ing of B-spline curves is first proposed by Sapidis and Farin [13].
Curvature variation is examined and the position of the point re-
lated to the biggest jump of curvature variation is updated to fair
the given curve. A later work by Bonneau and Hagen [2] consid-
ers the problem of fairing rational splines. The work by Poliakoff
[11] proposes an automatic curve fairing algorithm that generalizes
Kjellander’s method [10] to non-uniformly parameterized curves.
The work by Hahmann generalizes both methods of [13] and [10]
by applying iterative local fairing masks to B-spline surfaces [7].
Such methods mainly adjust “bad” points one by one, and thus it
usually takes tens or hundreds of iterations to achieve desired re-
sult. Zhang et al. [16] extends the method [11] and proposes a
method for fairing cubic splines that updates more than one points
at each iteration, greatly reducing the required number of iterations.
Our work fairs the given wireframe as a whole, minimizing an en-
ergy functional related to integral of curvatures. Moreover, we are
dealing with wireframes, instead of a single spline curve.

(b) The wireframe after fairing

(a) The initial wireframe by projecting

points into two set of orthogonal planes

(c) The curvature plot of the

curve set C after fairing

(d) The curvature plot of the

curve set D after fairing

(e) The net surfaces spanned by the
wireframe before (upper) and after

fairing (lower)

Figure 1: Reconstruct the upper surface of mouse based on scanned point cloud.

In this work, an approach to fair a given wireframe is proposed,
which has the following features: (1) It is guaranteed that each pair
of curves from two sets of curves spanning the wireframe has an
intersection, and the intersection points are ordered as input. This is
necessary to ensure that the faired wireframe can be used to produce
surfaces reasonably close to the input one, without degeneracy; (2)
The topology of wireframe is not changed after fairing; only control
points are changed, allowing easy further editing; (3) A fairness
parameter is provided to allow users to balance between fairness
and closeness to the original wireframes.

For a clear presentation, in Sec. 2, the fairing algorithm with
fixed parameters is proposed. The limitation of fixed parameters is
further released by an iterative optimization method, described in
Sec. 3. Implementation issues and experimental results are given in
Sec. 4 and finally our concluding remarks are presented in Sec. 5.

2 FAIRING ALGORITHM WITH FIXED PARAMETERS

Industrial applications usually require that wireframes after fair-
ing should not deviate much from the original wireframes, or even
controlled by a user-specified error bound. Thus it is practical to
assume that the parameters at intersection points will have little
changes. A stronger, but often useful assumption is simply fixing
the parameters during fairing process, while only optimizing the po-
sition of each control point of spline curves. This section presents
a fairing algorithm under this assumption. In the next section, this
limitation is released by an iterative optimization algorithm which
simultaneously optimizes the parameters at the intersection points
and the positions of control points of spline curves.

For a pair of B-spline curves ci ∈ C and d j ∈ D, assume their

intersection point is Pi j , its parameters in ci and d j are t(c)i j and

t(d)
i j , respectively. Assume after optimization, curves become c̄i(i =

1,2, . . . ,u) and d̄ j(j = 1,2, . . . ,v). The following constraints guar-

antee that intersections between curve sets C,D exist, and in the
same order as input:

c̄i(t
(c)
i j)− d̄ j(t

(d)
i j) = 0, (1)

for i = 1,2, . . . ,u and j = 1,2, . . . ,v.
For each curve ci (d j is handled similarly), assume it is a

B-spline curve of degree k(ci) with (n(ci) + 1) control points
P(ci)

0 ,P(ci)
1 , . . . ,P(ci)

n(ci)
, either uniform or non-uniform. The curve is

formulated as

ci(t) =
n(ci)

∑
l=0

P(ci)
l Nl,k(ci)(t), (2)

where Nl,k(ci) is the l-th B-spline basis function of degree k(ci).
Fairing the curve ci amounts to minimizing the following energy
term E(ci):

E(ci) =
∫ tn(ci)+1

tk(ci)−1

∣∣∣∣c′′i (t)
∣∣∣∣2 dt +α

n(ci)

∑
l=0

∣∣∣
∣∣∣P̄(ci)

l −P(ci)
l

∣∣∣
∣∣∣
2
, (3)

where P̄′s are those control points after fairing. α is a constant
which balances the relative importance of fairness (with smaller α)
and closeness to the original curves (with larger α).

Assume that

B(ci)
rs =

∫ tn(ci)+1

tk(ci)−1

N′′r,k(ci) ·N
′′
s,k(ci), (4)

then
1
2

∂E(ci)

P̄(ci)
r

=
n(ci)

∑
s=0

B(ci)
rs P̄s +α

(
P̄(ci)

r −P(ci)
r

)
, (5)

r = 0,1, . . . ,n(ci). Moreover, the endpoints of each curve should
not be moved, i.e.,

P̄(ci)
0 −P(ci)

0 = 0, P̄(ci)
n(ci)

−P(ci)
n(ci)

= 0. (6)

The wireframe fairing is solved by minimizing

E =
u

∑
i=1

E(ci)+
v

∑
j=1

E(d j), (7)

with 2u+2v+uv constraints described by equations 1 and 6. Since
x,y,z components of each control point is independent, they can be
solved independently, using Lagrange multiplexer approach, i.e.,
to find a set of P̄′s with 2u + 2v + uv Lagrange variables γ1 . . .γ2u,
λ1 . . .λ2v, and δ1,1 . . .δu,v, minimizing

Ē = ∑u
i=1 E(ci)+∑v

j=1 E(d j)

+ ∑u
i=1 γi

(
P̄(ci)

0 −P(ci)
0

)

+ ∑u
i=1 γu+i

(
P̄(ci)

n(ci)
−P(ci)

n(ci)

)

+ ∑v
j=1 λ j

(
P̄(d j)

0 −P(d j)
0

)

+ ∑v
j=1 λv+ j

(
P̄(d j)

n(d j)
−P(d j)

n(d j)

)

+ ∑u
i=1 ∑v

j=1 δi, j

(
c̄i(t

(c)
i j)− d̄ j(t

(d)
i j)

)

(8)

All the unknowns form a vector

U :=
(
. . . P̄(ci)

l . . . P̄(d j)
l . . .γi . . .λ j . . .δi, j . . .

)
. (9)

Minimizing Ē amounts to solving ∂ Ē/∂U = 0. Due to the local
support nature of B-spline curves, a sparse linear system is derived
which can be solved efficiently using, e.g., conjugate gradient on
normal equations.

Handling of NURBS wireframes. NURBS curves can be usually
converted to non-rational representation by homogeneous coordi-
nates. However, for the constraint equations 1 and 6, the homoge-
neous coordinates do not hold. One possibility is to sacrifice the
freedom of optimizing weights w′s and optimize the positions P′s
only. This is practical since NURBS curves are usually used in
CAD systems for accurately representing simple curves like conic
sections; modifying weights are usually not necessary.

Choice of Parameter α . Parameter α is used to balance fairness
and closeness between original and faired wireframes. Larger α
prohibits curves from changing too much while smaller α tends to
produce fairer output curves. α can be specified for each ci and d j
curves, or a consistent value for all the curves if no particular pref-
erence to each individual curve is necessary. Experimental results
on performance of different α are presented in Sec. 4.

Preserving tangents at endpoints. For some applications, not
only the positions of endpoints of each curve should be preserved
after fairing, some particular tangents of curves at endpoints should
also be preserved. This can also be solved by a sparse linear system
with the following difference: since x,y,z components are now cou-
pled, they cannot be treated independently, as before. On the con-
trary, each variable discussed in previous formulae now becomes
three variables with suffix x, y and z, respectively.

Without loss of generality, consider that the tangent of a particu-
lar curve at P0 should be kept. By introducing a new variable d, the
following constraint should be satisfied:

P̄1 = d(P1−P0)+P0. (10)

To use Lagrange multiplexer approach to solve this problem, three
Lagrange variables τx,τy,τz are introduced, and the following term
is added to Ē:

∆Ē = τx (P̄1x−d(P1x−P0x)+P0x)
+ τy

(
P̄1y−d(P1y−P0y)+P0y

)
+ τz (P̄1z−d(P1z−P0z)+P0z) .

(11)

We then have

∂∆Ē
∂
(
P̄1x, P̄1y, P̄1z

) =
(
τx,τy,τz

)
, (12)

∂∆Ē
∂
(
τx,τy,τz

) = (P̄1−d(P1−P0)−P0)x,y,z , (13)

∂∆Ē
∂d

=−τx(P1x−P0x)− τy(P1y−P0y)− τz(P1z−P0z). (14)

Thus the problem can still be solved by the following sparse lin-
ear system:

∂ (Ē +∆Ē)
∂Ū

= 0, (15)

where Ū is the unknown vector combining U and newly introduced
variables τ ′xs,τ ′ys,τ ′zs and d′s.

3 FAIRING ALGORITHM WITH OPTIMIZED PARAMETERS

The algorithm introduced in the previous section is efficient to com-
pute, however, at the cost of producing suboptimal result that may
not be satisfied for the best possible performance. This limitation
is released by using the following iterative optimization algorithm,
i.e., the parameters t(c)i j and t(d)

i j of intersection points of curves ci
and d j are now allowed to be changed, while the ordering of pa-
rameters on a particular curve is still preserved.

Assume V =
(
. . . t(c)i j . . . t(d)

i j . . .
)

represents the parameter vector

to be optimized. Energy functional with Lagrange variables Ē is a
functional of both U and V . For a fixed vector of V , the previous
section already gives the solution to find the optimal Ē(U). V is
initially set to the parameters in the given input wireframe. Starting
from this initial V0, an iterative process is incorporated, producing
a serial of V ′s, until convergence. At a particular step, we have
Vi and want to compute the improved Vi+1 together with unknown
variables Ui+1. Note that given Vi, Ui can be computed with the
method in Sec. 2 by solving ∂ Ē

∂U (Ui,Vi) = 0 with known Vi. To
compute the gradient of E w.r.t. V , ∂U/∂V is first computed at a
particular value of (Ui,Vi). Without loss of generality, consider the
parameter t̄(c)kl = t(c)kl +∆t(c)kl , we have

c̄k(t̄
(c)
kl) = c̄k(t

(c)
kl)+ c̄′k(t

(c)
kl)∆t(c)kl +o(∆t(c)kl). (16)

Denote ∂ Ē/∂U = A(V) ·U +B(V), where A(V) and B(V) are a ma-
trix and a vector solely depend on V . ∆Vi = (0, . . .0,∆t(c)kl ,0, . . . ,0),
and Ui will be changed to Ui +∆Ui so that ∂ Ē

∂U (Ui +∆Ui,Vi +∆Vi)=
0, i.e.,

A(Vi +∆Vi) · (Ui +∆Ui)+B(V) = 0. (17)

Putting equation 16 into equation 17 leads to
(

A(Vi)+∆A(c)
kl (Vi)∆t(c)kl

)
(Ui +∆Ui)+B(V) = o(∆t(c)kl), (18)

where ∆A(c)
kl is also a sparse matrix related to Vi. Since A(Vi) ·Ui +

B(Vi) = 0, we have

∂U

∂ t(c)kl

=−A−1∆A(c)
kl ·Ui. (19)

Note that A only depends on Vi. Putting together, we get

∂U
∂V

=−A(Vi)−1
[
. . .∆A(c)

kl ·Ui . . .
]

(20)

Thus, the computation of ∂U/∂V can be performed efficiently. Par-
ticularly, if P̄ represents the vector of all the control points (which
is part of U), we have ∂ P̄/∂V . To find the optimal V that minimizes
E, a projected gradient descent algorithm is used. Note that from
Eqn. 7, E = P̄T TP̄, where T is a symmetrical matrix. At partic-
ular position (Ui,Vi), the gradient direction for E w.r.t. V can be
computed as:

∂E
∂V

(Vi) = 2P̄T
i T

∂ P̄i

∂V
(Ui,Vi). (21)

The parameter Vi can be updated along this direction, i.e.,

Vi+1 = Vi− t
∂E
∂V

(Vi), (22)

where t is a step-size control to ensure the correct ordering of pa-
rameters of intersection points along each curve and the “signifi-
cant” descent of the energy functional. For the latter requirement,
Armijo rule [9] can be applied. Note that Ui− t∂U/∂V (Ui,Vi) to-
gether with Vi+1 usually do not lie in the solution space of equa-
tion 8; solving Ui+1 from Vi+1 with this equation amounts to pro-
jecting the positions back to the solution space.

Starting from the initial parameters as V0, an iterative process
is used, until convergence. Note that gradient descent method al-
ways converges to a local minimum; however, it is rather reason-
able, since the input parameters are usually good approximations to
the final parameters.

Controllable global error bound. α in equation 3 is used to bal-
ance the fairness and closeness between original and faired wire-
frames. However, the particular value of α is meaningless to the
users in industry. A more intuitive way to them is to fair the wire-
frame with a user-specified global error bound ε . So it is desired
that the program can convert the value ε to the corresponding value
α automatically. This can be achieved by the Newton-Raphson
method [12]. Starting with an initial α , at each step, the devi-
ation error between original and current wireframes is computed
whose value is used by Newton-Raphson method to compute ∆α .
The iteration process is stopped if a prescribed iteration number is
reached or the deviation error is sufficiently closed to the given er-
ror bound. Experimental results on the different error bound control
is presented in the next section.

4 EXPERIMENTAL RESULTS

Figure 2: An example of input wireframe.

Choice of Parameter α . Fig. 2 is an example of input wireframe.
Two sets of curves C,D both contain three curves. Each pair of
curves from both sets has a single intersection. Fig. 3 shows the re-
sults obtained with fixed parameters, no tangent restriction and with
different α ′s. Table 1 shows the energy E before and after fairing,
and the maximal movement of control points in L2 norm where
the largest distance between the two endpoints of curves is normal-
ized to be 1. The computation of fixed-parameter problem can be
performed efficiently by conjugate gradient on normal equations

Figure 3: The faired wireframes with different α: 10−1, 10−3, 10−5

(from top to bottom)

α Eold Enew normalized max. change
10−1 12.70 11.67 0.00295
10−3 12.70 2.47 0.0314
10−5 12.70 0.10 0.101

Table 1: Errors and maximal changes of the wireframes with different
α parameters.

[12]. Note that intersection points are kept after fairing. Smaller α
leads to fairer output wireframe (with smaller Enew but at the cost
of larger maximal change of control points). It can be easily found
that the wireframes are significantly smoother after the fairing op-
eration, especially with smaller parameter α .

Tangent preservation. Using the sparse linear system Eqn. 15,
tangents at some or all of the end points can be preserved after fair-
ing. This is extremely useful when the wireframe is used in con-
junction with nearby surfaces. Fig. 4 gives such an example. Note
that the curves used are space curves embedded in R3 and each
pair of curves from different sets always has a single intersection in
this example. The input wireframe is faired without and with tan-
gent preservation, respectively. It can be noticed that using tangent
preservation guarantees that faired wireframe has the same tangent
directions as input at end points, at the cost of slightly higher Enew
(for the same α). For this example, Enew are 0.3634 and 0.5406 for
the results without and with tangent preservation.

Controllable global error bound. Fig. 5 shows a wireframe with
C = {c1,c2,c3,c4} and D = {d1,d2,d3}. The length of each curve
is l(C) = {224.4mm,178.6mm,182.1mm,169.7mm} and l(D) =
{241.7mm,245.4mm,218.1mm}. The wireframes after fairing with
different error bounds 26mm,17.5mm,7.15mm,1.45mm are illus-
trated in Fig.5(c1-c4). It clearly shows that the larger the error
bound specified by users, the more straightness the resulted curves

in wireframes. The property of fixed endpoints of each curve is also
demonstrated in Fig. 5(b).

Industrial applications. Wireframe is a useful tool in industrial
design. One application is reverse engineering as shown in Fig. 1
in which the user spans a wireframe by interactive design based
on the scanned points. The bounding box of the mouse model in
Fig. 1 is 104.8mm× 45.3mm× 31.5mm. The error bound between
the original (see Fig. 1b) and the faired (see Fig. 1c) wireframes is
0.991mm.

Another application is to clean the surface fragments by replac-
ing them with a single whole patch. Refer to Fig. 6. The surfaces
used in industry usually go through many design phases. In each
phase, different functionality is considered and surface is modified;
e.g., to enhance the developability in some central region, design-
ers trim a hole in-between and re-fill a small developable patch with
smooth connectivity to the boundary surface. So after some design
activities, the surface may consist of many patch fragments though
it is overall still smooth (ref. Fig. 6a). Finally, at the manufacturing
step, it is desired by users to use a single surface as a whole rather
than lots of fragments. In this case, the users span a wireframe by
interactively setting up cutting planes to obtain intersection curves.
After fairing, a net surface is generated from wireframe to serve
as the single surface merging all the fragments (ref. Fig. 6b). The
approximation error can be controlled by the number of curves in
wireframe and further in the fairing process. In the example in
Fig. 6, the whole surface is about 3557mm× 1046mm, and the er-
ror bound is 57.1mm. The fairness of the wireframe obviously has
effect on the resulting net surface. In the example shown in Fig. 6,
highlight line method [1] is used to inspect the surface quality.

We implemented our algorithm as a plugin module to a commer-
cial CAD system with C++. The experiments were carried out on a
Intel Core2Duo 2GHz Laptop with 2GB memory. Examples shown
in the paper took within 3 seconds to compute; the times are dom-
inated by solving a few sparse linear systems. Thus our method is
sufficiently fast for interactive wireframe editing.

5 CONCLUSIONS AND FUTURE WORK

In this paper, a simple yet effective wireframe fairing method is
proposed. Optimal algorithms with both fixed parameter and op-
timized parameters are discussed in details. Experimental results
show that this method is feasible to produce valid and reasonably
faired wireframes suitable for industrial surface design in an inter-
active way.

Our proposed method has been implemented as a plugin module
for a commercial CAD software with extensive testing. To further
fulfill the diverse requirements of real applications, we plan to ex-
plore the use of criteria other than energy functional minimization,
e.g. improving the monotonicity or convexity of curvature plots
in the future. Besides improving the fairness of individual curves
while preserving necessary restrictions, it may be desirable to also
consider the problem of improving the layout of curves so that re-
sulting curves will have more uniform spacing.

ACKNOWLEDGMENT

The work was supported by the National Natural Science Founda-
tion of China (Project No. 90718035, 60603085, 60736019), the
National High Technology Research and Development Program of
China (Project No. 2007AA01Z336) and the Project funded by Ts-
inghua Basic Research Foundation.

REFERENCES

[1] K. P. Beier and Y. Chen. Highlight-line algorithm for realtime surface-
quality assessment. Computer-Aided Design, 26(4):268–277, 1994.

[2] G.-P. Bonneau and H. Hagen. Variational design of rational bézier
curves and surfaces. In Curves and Surfaces in Geometric Design,
pages 51–58, 1994.

[3] G. Farin. Curves and Surfaces for CAGD: A Practical Guide. Aca-
demic Press, 5th edition, 2002.

[4] J. A. Gregory. N-sided surface patches. In The Mathematics of Sur-
faces, pages 217–232, 1986.

[5] H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. Wordenwe-
ber, and P. Hollemann-Grundstedt. Surface interrogation algorithms.
Computer Graphics and Applications, 12(5):53–60, 1992.

[6] H. Hagen and G. Schulze. Automatic smoothing with geometric
surface patches. Computer Aided Geometric Design, 4(3):231–235,
1987.

[7] S. Hahmann. Shape improvement of surfaces. Geometric Modelling,
Computing [Suppl.], 13:135–152, 1998.

[8] M. Hofer and H. Pottmann. Energy-minimizing splines in manifolds.
In Proceedings of ACM SIGGRAPH, pages 284–293, 2004.

[9] T. Kelley. Iterative Methods for Optimization. SIAM, 5th edition,
1999.

[10] J. Kjellander. Smoothing of cubic parametric splines. Computer-Aided
Design, 15(3):175–179, 1983.

[11] J. Poliakoff. An improved algorithm for automatic fairing of non-
uniform parametric cubic splines. Computer-Aided Design, 28(1):59–
66, 1996.

[12] W. Press, S. Teukolsky, W. Vettering, and B. Flannery. Numerical
Recipes in C++. Combrdige University Press, 2nd edition, 2002.

[13] N. Sapidis and G. Farin. Automatic fairing algorithm for b-spline
curves. Computer-Aided Design, 22(2):121–129, 1990.

[14] J. Wallner, H. Pottmann, and M. Hofer. Fair webs. The Visual Com-
puter, 23(1):83–94, 2007.

[15] X. Ye. Curvature continuous interpolation of curve meshes. Computer
Aided Geometric Design, 14:169–190, 1997.

[16] C. Zhang, P. Zhang, and F. Cheng. Fairing spline curves and sur-
faces by minimizing energy. Computer-Aided Design, 33(13):913–
923, 2001.

Figure 4: Fairing a given wireframe (left) without (middle) and with (right) tangent preservation.

(a) The original wireframe (c1) Error bound 26mm (c2) Error bound 17.5mm

(c3) Error bound 7.15mm (c4) error bound 1.45mm (b) The alignment of the original and

faired wireframes in (c1) (c) Fairing wireframes

Figure 5: Fairing wireframes with different user-specified error bounds.

(a) The initial design of a smooth wing surface with many patch fragments

The C set of curves in the original wireframe; The C set of curves in the wireframe after fairing

The D set of curves in the original wireframe; The D set of curves in the wireframe after fairing

(b) Wireframes before and after fairing; Curvature plot for each curve in wireframe is also drawn

The control points of the net surface Surface quality inspection by hightlight-line method

(c) The net surface spanned by the wireframe after fairing

Figure 6: Surface fragments cleaning with wireframes.

