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Abstract—With the spread of data mining technologies and
the accumulation of social data, such technologies and data are
being used for determinations that seriously affect people’s
lives. For example, credit scoring is frequently determined
based on the records of past credit data together with statistical
prediction techniques. Needless to say, such determinations
must be socially and legally fair from a viewpoint of social
responsibility; namely, it must be unbiased and nondiscrimi-
natory in sensitive features, such as race, gender, religion, and
so on. Several researchers have recently begun to attempt the
development of analysis techniques that are aware of social fair-
ness or discrimination. They have shown that simply avoiding
the use of sensitive features is insufficient for eliminating biases
in determinations, due to the indirect influence of sensitive
information. From a privacy-preserving viewpoint, this can be
interpreted as hiding sensitive information when classification
results are observed. In this paper, we first discuss three
causes of unfairness in machine learning. We then propose
a regularization approach that is applicable to any prediction
algorithm with probabilistic discriminative models. We further
apply this approach to logistic regression and empirically show
its effectiveness and efficiency.

Keywords-fairness, discrimination, privacy, classification, lo-
gistic regression, information theory

I. INTRODUCTION

Data mining techniques are being increasingly used for

serious determinations such as credit, insurance rates, em-

ployment applications, and so on. Their emergence has

been made possible by the accumulation of vast stores of

digitized personal data, such as demographic information,

financial transactions, communication logs, tax payments,

and so on. Additionally, the spread of off-the-shelf mining

tools have made it easier to analyze these stored data.

Such determinations often affect people’s lives seriously.

For example, credit scoring is frequently determined based

on the records of past credit data together with statistical

prediction techniques.

Needless to say, such serious determinations must be

socially and legally fair from a viewpoint of social responsi-

bility; that is, they must be unbiased and nondiscriminatory

in relation to sensitive features such as race, gender, religion,

and so on. Blindness to such factors must be ensured

in determinations that affect people’s lives directly. Thus,

sensitive features must be carefully treated in the processes

and algorithms for machine learning.

In some cases, some features must be carefully processed

for reasons other than avoiding discrimination. One such

reason would be contracts between service providers and

customers. Consider the case in which personal information

about customer demographics is collected to recommend

items at an e-commerce site. If the site collects these data

under a privacy policy that restricts the use of the data for

the purpose of recommendation, personal information must

not be used for the selection of customers to be provided

personalized discount coupons. In this case, the use of

unrestricted data would be problematic. Because purchasing

logs are influenced by recommendations based on personal

information, careful consideration would be required for the

use of such data.

Several researchers have recently begun to attempt the

development of analytic techniques that are aware of social

fairness or discrimination [1], [2]. They have shown that the

simple elimination of sensitive features from calculations

is insufficient for avoiding inappropriate determination pro-

cesses, due to the indirect influence of sensitive information.

For example, when determining credit scoring, the feature

of race is not used. However, if people of a specific race

live in a specific area and address is used as a feature for

training a prediction model, the trained model might make

unfair determinations even though the race feature is not

explicitly used. Such a phenomenon is called a red-lining

effect [2] or indirect discrimination [1], and we describe

it in detail in section II-A. New analytic techniques have

been devised to deal with fairness. For example, Calders

and Verwer proposed a naive Bayes that is modified so as

to be less discriminatory [2], and Pedreschi et al. discussed

discriminatory association rules [1].

In this paper, we formulate causes of unfairness in

machine learning, develop widely applicable and efficient

techniques to enhance fairness, and evaluate the effective-

ness and efficiency of our techniques. First, we discuss

the causes of unfairness in machine learning. In previous

works, several notions of fairness have been proposed and

successfully exploited. Though these works focused on
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resultant unfairness, we consider unfairness in terms of

its causes. We describe three types of cause: prejudice,

underestimation, and negative legacy. Prejudice involves a

statistical dependence between sensitive features and other

information; underestimation is the state in which a classifier

has not yet converged; and negative legacy refers to the

problems of unfair sampling or labeling in the training data.

We also propose measures to quantify the degrees of these

causes using mutual information and the Hellinger distance.

Second, we then focus on indirect prejudice and develop

a technique to reduce it. This technique is implemented

as regularizers that restrict the learners’ behaviors. This

approach can be applied to any prediction algorithm with

discriminative probabilistic models, such as logistic regres-

sion. In solving classification problems that pay attention

to sensitive information, we have to consider the trade-

off between the classification accuracy and the degree of

resultant fairness. Our method provides a way to control

this trade-off by adjusting the regularization parameter. We

propose a prejudice remover regularizer, which enforces a

determination’s independence from sensitive information. As

we demonstrate, such a regularizer can be built into a logistic

regression model.

Finally, we perform experiments to test the effectiveness

and efficiency of our methods. We compare our methods

with the two-naive-Bayes on a real data set used in a previ-

ous study [2]. We evaluate the effectiveness of our approach

and examine the balance between prediction accuracy and

fairness.

Note that in the previous work, a learning algorithm that is

aware of social discrimination is called discrimination-aware

mining. However, we hereafter use the terms, ‘unfairness’ /

‘unfair’, instead of the ‘discrimination’ / ‘discriminatory’ for

two reasons. First, as described above, these technologies

can be used for complying with laws, regulations, or con-

tracts that are irrelevant to discrimination. Second, because

the term discrimination is frequently used for the meaning

of classification in the machine learning literature, using this

term becomes highly confusing. Worse yet, in this paper, we

target a discriminative model, i.e., logistic regression.

We discuss causes of unfairness in section II and propose

our methods for enhancing fairness in section III. Our

methods are empirically compared with two-naive-Bayes in

section IV. Section V shows related work, and section VI

summarizes our conclusions.

II. FAIRNESS IN DATA ANALYSIS

After introducing an example of the difficulty in fairness-

aware learning, we show three causes of unfairness and

quantitative measures for the degrees of these causes.

A. Illustration of the Difficulties in Fairness-aware Learning

We here introduce an example from the literature to

show the difficulties in fairness-aware learning [2], which

is a simple analytical result for the data set described in

section IV-B. The researchers performed a classification

problem to predict whether the income of an individual

would be high or low.

The sensitive feature, S, was gender, which took a value,

Male or Female, and the target class, Y, indicated whether

his/her income is High or Low. The sensitive feature, S,

was gender, which took a value, Male or Female, and the

target class, Y , indicated whether his/her income is High

or Low. There were some other non-sensitive features, X .

The ratio of Female records comprised about 1/3 of the data

set; that is, the number of Female records was much smaller

than that of Male records. Additionally, while about 30% of

Male records were classified into the High class, only 11%

of Female records were. Therefore, Female–High records

were the minority in this data set.

In this data set, we describe how Female records tend

to be classified into the Low class unfairly. Calders and

Verwer defined a discrimination score (hereafter referred to

as the Calders-Verwer score (CV score) by subtracting the

conditional probability of the positive class given a sensitive

value from that given a non-sensitive value. In this example,

a CV score is defined as

Pr[Y =High|S=Male]− Pr[Y =High|S=Female].

The CV score calculated directly from the original data is

0.19. After training a naive Bayes classifier from data involv-

ing a sensitive feature, the CV score on the predicted classes

increases to about 0.34. This shows that Female records are

more frequently misclassified to the Low class than Male

records; and thus, Female–High individuals are considered

to be unfairly treated. This phenomenon is mainly caused

by an Occam’s razor principle, which is commonly adopted

in classifiers. Because infrequent and specific patterns tend

to be discarded to generalize observations in data, minority

records can be unfairly neglected. Even if the sensitive

feature is removed from the training data for a naive Bayes

classifier, the resultant CV score is 0.28, which still shows

an unfair treatment for minorities. This is caused by the

indirect influence of sensitive features. This event is called

by a red-lining effect [2], a term that originates from the

historical practice of drawing red lines on a map around

neighborhoods in which large numbers of minorities are

known to dwell. Consequently, simply removing sensitive

features is insufficient, and affirmative actions have to be

adopted to correct the unfairness in machine learning.

B. Three Causes of Unfairness

In this section, we discuss the social fairness in data

analysis. Previous works [1], [2] have focused on unfairness

in the resultant determinations. To look more carefully

at the problem of fairness in machine learning, we shall

examine the underlying causes or sources of unfairness.

We suppose that there are at least three possible causes:
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prejudice, underestimation, and negative legacy. Note that

these are not mutually exclusive, and two or more causes

may compositely lead to unfair treatments.

Before presenting these three causes of unfairness, we

must introduce several notations. Here, we discuss super-

vised learning, such as classification and regression, which

is aware of unfairness. Y is a target random variable to

be predicted based on the instance values of features. The

sensitive variable, S, and non-sensitive variable, X , corre-

spond to sensitive and non-sensitive features, respectively.

We further introduce a prediction modelM[Y |X, S], which

models a conditional distribution of Y given X and S. With

this model and a true distribution over X and S, Pr∗[X, S],
we define

Pr[Y, X, S] =M[Y |X, S]Pr∗[X, S]. (1)

Applying marginalization and/or Bayes’ rule to this equa-

tion, we can calculate other distributions, such as Pr[Y, S]
or Pr[Y |X]. We use P̃r[·] to denote sample distributions.

P̂r[Y, X, S] is defined by replacing a true distribution in (1)

with its corresponding sample distribution:

P̂r[Y, X, S] =M[Y |X, S]P̃r[X, S], (2)

and induced distributions from P̂r[Y,X, S] are denoted by

using P̂r[·].
1) Prejudice: Prejudice means a statistical dependence

between a sensitive variable, S, and the target variable, Y ,

or a non-sensitive variable, X . There are three types of

prejudices: direct prejudice, indirect prejudice, and latent

prejudice.

The first type is direct prejudice, which is the use of a

sensitive variable in a prediction model. If a model with a

direct prejudice is used in classification, the classification

results clearly depend on sensitive features, thereby gen-

erating a database containing direct discrimination [1]. To

remove this type of prejudice, all that we have to do is

simply eliminate the sensitive variable from the prediction

model. We then show a relation between such this direct

prejudice and statistical dependence. After eliminating the

sensitive variable, equation (1) can be rewritten as

Pr[Y, X, S] =M[Y |X]Pr∗[S|X]Pr∗[X].

This equation states that S and Y are conditionally inde-

pendent given X , i.e., Y ⊥⊥ S | X . Hence, we can say that

when the condition Y 6⊥⊥ S |X is not satisfied, the prediction

model has a direct prejudice.

The second type is an indirect prejudice, which is statis-

tical dependence between a sensitive variable and a target

variable. Even if a prediction model lacks a direct prejudice,

the model can have an indirect prejudice and can make an

unfair determination. We give a simple example. Consider

the case that all Y , X , and S are real scalar variables, and

these variables satisfy the equations:

Y = X + εY and S = X + εS ,

where εY and εS are mutually independent

random variables. Because Pr[Y, X, S] is equal to

Pr[Y |X] Pr[S|X] Pr[X], these variables satisfy the

condition Y ⊥⊥ S | X , but do not satisfy the condition

Y⊥⊥S. Hence, the adopted prediction model does not have

a direct prejudice, but may have an indirect prejudice. If

the variances of εY and εS are small, Y and S become

highly correlated. In this case, even if a model does not

have a direct prejudice, the determination clearly depends

on sensitive information. Such resultant determinations

are called indirect discrimination [1] or a red-lining effect

[2] as described in section II-A. To remove this indirect

prejudice, we must use a prediction model that satisfies the

condition Y⊥⊥S.

We next show an index to quantify the degree of indirect

prejudice, which is straightforwardly defined as the mutual

information between Y and S. However, because a true

distribution in (1) is unknown, we adopt sample distributions

in equation (2) over a given sample set, D:

PI =
∑

(y,s)∈D

P̂r[y, s] ln
P̂r[y, s]

P̂r[s]P̂r[s]
. (3)

We refer to this index as a (indirect) prejudice index (PI for

short). For convenience, the application of the normalization

technique for mutual information [3] leads to a normalized

prejudice index (NPI for short):

NPI = PI/(
√

H(Y )H(S)), (4)

where an entropy function H(X) is defined as

−
∑

x∈D P̂r[x] ln P̂r[x]. The range of this NPI is [0, 1].
The third type of prejudice is latent prejudice, which is a

statistical dependence between a sensitive variable, S, and a

non-sensitive variable, X . Consider an example that satisfies

the equations:

Y = X1 + εY , X = X1 + X2, and S = X2 + εS ,

where εY⊥⊥εS and X1⊥⊥X2. Clearly, the conditions

Y ⊥⊥ S | X and Y⊥⊥S are satisfied, but X and S are

not mutually independent. This dependence doesn’t cause a

sensitive information to influence the final determination, but

it would be exploited for training learners; thus, this might

violate some regulations or laws. Recall our example about

personal information in section I. The use of raw purchasing

logs may violate contracts with customers, because the

logs are influenced by recommendations based on personal

information, even if it is irrelevant to the final selection

of customers. Removal of potential prejudice is achieved

by making X and Y independent from S simultaneously.

Similar to a PI, the degree of a latent prejudice can be

quantified by the mutual information between X and S.

2) Underestimation: Underestimation is the state in

which a learned model is not fully converged due to the

finiteness of the size of a training data set. Given a learning

645



algorithm that can acquire a prediction model without indi-

rect prejudice, it will make a fair determination if infinite

training examples are available. However, if the size of the

training data set is finite, the learned classifier may lead to

more unfair determinations than that observed in the training

sample distribution. Though such determinations are not

intentional, they might awake suspicions of unfair treatment.

In other words, though the notion of convergence at infinity

is appropriate in a mathematical sense, it might not be in a

social sense. We can quantify the degree of underestimation

by assessing the resultant difference between the training

sample distribution over D, P̃r[·], and the distribution in-

duced by a model, P̂r[·]. Along this line, we define the

underestimation index (UEI) using the Hellinger distance:

UEI =
(1

2

∑

y,s∈D

(

√

P̂r[y, s]−

√

P̃r[y, s]
)2)1/2

=
(

1−
∑

y,s∈D

√

P̂r[Y, S]P̃r[Y, S]
)1/2

. (5)

Note that we did not adopt the KL-divergence because it can

be infinite and this property is inconvenient for an index.

3) Negative Legacy: Negative legacy is unfair sampling

or labeling in the training data. For example, if a bank has

been refusing credit to minority people without assessing

them, the records of minority people are less sampled in

a training data set. A sample selection bias is caused by

such biased sampling depending on the features of samples.

It is known that the problem of a sample selection bias

can be avoided by adopting specific types of classification

algorithms [4]. However, it is not easy to detect the existence

of a sample selection bias only by observing training data.

On the other hand, if a bank has been unfairly rejecting

the loans of the people who should have been approved,

the labels in the training data would become unfair. This

problem is serious because it is hard to detect and correct.

However, if other information, e.g., a small-sized fairly

labeled data set, can be exploited, this problem can be

corrected by techniques such as transfer learning [5].

Regulations or laws that demand the removal of potential

prejudices are rare. We investigate UEIs in the experimental

sections of this paper, but we don’t especially focus on

underestimation. As described above, avoiding a negative

legacy can be difficult if no additional information is avail-

able. We therefore focus on the development of a method to

remove indirect prejudice.

III. PREJUDICE REMOVAL TECHNIQUES

We here propose a technique to reduce indirect prejudice.

Because this technique is implemented as a regularizer,

which we call a prejudice remover, it can be applied to

wide variety of prediction algorithms with probabilistic

discriminative models.

A. General Framework

We focused on classification and built our regularizers

into logistic regression models. Y , X , and S are random

variables corresponding to a class, non-sensitive features,

and a sensitive feature, respectively. A training data set

consists of the instances of these random variables, i.e.,

D = {(y,x, s)}. The conditional probability of a class

given non-sensitive and sensitive features is modeled by

M[Y |X, S;Θ], where Θ is the set of model parameters.

These parameters are estimated based on the maximum

likelihood principle; that is, the parameters are tuned so as

to maximize the log-likelihood:

ℓ(D;Θ) =
∑

(yi,xi,si)∈D

lnM[yi|xi, si;Θ]. (6)

We adopted two types of regularizers. The first regular-

izer is a standard one to avoid over-fitting. We used an

L2 regularizer ‖Θ‖22. The second regularizer, R(D,Θ), is

introduced to enforce fair classification. We designed this

regularizer to be easy to implement and to require only

modest computational resources. By adding these two regu-

larizers to equation (6), the objective function to minimize

is obtained:

−ℓ(D;Θ) + ηR(D,Θ) +
λ

2
‖Θ‖22, (7)

where λ and η are positive regularization parameters.

We dealt with a classification problem in which the target

value Y is binary {0, 1}, X takes a real vectors, x, and S
takes a discrete value, s, in a domain S. We used a logistic

regression model as a prediction model:

M[y|x, s;Θ] = yσ(x⊤
ws) + (1− y)(1− σ(x⊤

ws)), (8)

where σ(·) is a sigmoid function, and the parameters are

weight vectors for x, Θ = {ws}s∈S . Note that a constant

term is included in x without loss of generality. We next

introduce a regularizer to reduce the indirect prejudice.

B. Prejudice Remover

A prejudice remover regularizer directly tries to reduce

the prejudice index and is denoted by RPR. Recall that the

prejudice index is defined as

PI =
∑

Y,S

P̂r[Y, S] ln
P̂r[Y, S]

P̂r[S]P̂r[Y ]

=
∑

Y,X,S

M[Y |X, S;Θ]P̃r[X, S] ln
P̂r[Y, S]

P̂r[S]P̂r[Y ]
.

∑

X,S P̃r[X, S] can be replaced with
∑

(xi,si)∈D, and the

argument of logarithm can be rewritten as P̂r[Y |si]/P̂r[Y ],
by reducing P̂r[S]. We obtain

∑

(xi,si)∈D

∑

y∈{0,1}

M[y|xi, si;Θ] ln
P̂r[y|si]

P̂r[y]
.
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The straightforward way to compute P̂r[y|s] is to marginal-

ize M[y|X, s;Θ]P̂r[X, s] over X . However, if the domain

of X is large, this marginalization is computationally heavy.

We hence take a drastically simple approach. We replace

X with x̄s, which is a sample mean vector of x over a set

of training samples whose corresponding sensitive feature is

equal to s, {(yi,xi, si) ∈ D s.t. si = s}, and we get

P̂r[y|s] =M[y|x̄s, s;Θ], (9)

P̂r[y] =
∑

s∈S

P̂r[s]M[y|x̄s, s;Θ]. (10)

Finally, the prejudice remover regularizer RPR(D,Θ) is

∑

(xi,si)∈D

∑

y∈{0,1}

M[y|xi, si;Θ] ln
P̂r[y|si]

P̂r[y]
, (11)

where P̂r[y|s] and P̂r[y] are equations (9) and (10), respec-

tively. This regularizer becomes large when a class is de-

termined mainly based on sensitive features; thus, sensitive

features become less influential to the final determination.

In the case of logistic regression, the objective function (7)

to minimize is rewritten as

−
∑

(yi,xi,si)

lnM[yi|xi, si;Θ]+RPR(D,Θ)+
λ

2

∑

s∈S

‖ws‖
2
2, (12)

where M[y|x, s;Θ] is equation (8) and RPR(D,Θ) is

equation (11). In our experiment, this objective function is

minimized by a conjugate gradient method starting from the

initial condition ws = 0, ∀s ∈ S, and we obtain an optimal

parameter set, {w∗
s}.

The probability of Y = 1 given a sample without a class

label, (xnew, snew) can be predicted by

Pr[Y =1|xnew, snew; {w∗
s}] = σ(x⊤

neww
∗
snew

).

IV. EXPERIMENTS

We compared our method with Calders and Verwer’s

method on the real data set used in a previous study [2].

A. Calders-Verwer’s 2-Naive-Bayes

We briefly introduce Calders and Verwer’s 2-naive-Bayes

method (CV2NB), which was found to be the best method

in the previous study using the same dataset [2]. This

method targets a binary classification problem. The number

of sensitive features is one and the feature is binary. The

generative model of this method is

Pr[Y,X, S] =M[Y, S]
∏

i

M[Xi|Y, S]. (13)

M[Xi|Y, S] models a conditional distribution of Xi given

Y and S, and the parameters of these models are estimated

by the similar way in the estimation of parameters of a naive

Bayes model.M[Y, S] models a joint distribution Y and S.

Because Y and S are not mutually independent, the final

1 Calculate a CV score, disc, of the predicted classes by the current model.

2 while disc > 0
3 numpos is the number of positive samples classified by the current model.

4 if numpos < the number of positive samples in D then

5 N(Y =1, S=0)← N(Y =1, S=0) + ∆N(Y =0, S=1)
6 N(Y =0, S=0)← N(Y =0, S=0)−∆N(Y =0, S=1)
7 else

8 N(Y =0, S=1)← N(Y =0, S=1) + ∆N(Y =1, S=0)
9 N(Y =1, S=1)← N(Y =1, S=1)−∆N(Y =1, S=0)
10 if any of N(Y, S) is negative then

cancel the previous update of N(Y, S) and abort

11 Recalculate Pr[Y |S] and a CV score, disc based on updated N(Y, S)

Figure 1. naive Bayes modification algorithm

NOTE: N(Y =y, S=s) denotes the number of samples in D,
whose class and sensitive feature are y and s, respectively. In
our experiment, ∆ was set to 0.01 as in the original paper.

determination might be unfair. While each feature depends

only on a class in the case of the original naive Bayes, every

non-sensitive feature, Xi, depends on both Y and S in the

case of CV2NB. It is as if two naive Bayes classifiers are

learned depending on each value of the sensitive feature;

that is why this method was named by the 2-naive-Bayes.

To make the classifier fair, M[Y, S] is initialized by the

sample distribution P̃r[Y, S], and this model is modified by

the algorithms in Figure 1. A model parameter M(y, s)
is derived by N(y, s)/

∑

Y,S N(y′, s′). This algorithm is

designed so as to update Pr[Y, S] gradually until a CV score

becomes positive. Note that we slightly modified the original

algorithm by adding line 10 in Figure 1, which guarantees

the parameters, N(Y, S), to be non-negative, because the

original algorithm may fail to stop.

B. Experimental Conditions

We summarize our experimental conditions. We tested a

previously used real data set [2], as shown in section II-A.

This set includes 16281 data in an adult.test file of the

Adult/Census Income distributed at the UCI Repository

[6]. The target variable indicates whether or not income is

larger than 50M dollars, and the sensitive feature is gender.

Thirteen non-sensitive features were discretized by the pro-

cedure in the original paper. In the case of the naive Bayes,

parameters of models,M[Xi|Y, S], are estimated by a MAP

estimator with multinomial distribution and Dirichlet priors.

In the case of our logistic regression, discrete variables are

represented by 0/1 dummy variables coded by a so-called

1-of-K scheme. The regularization parameter for the L2

regularizer, λ, is fixed to 1, because the performance of

pure logistic regression was less affected by this parameter in

our preliminary experiments. We tested six methods: logistic

regression with a sensitive feature (LR), logistic regression

without a sensitive feature (LRns), logistic regression with

a prejudice remover regularizer (PR), naive Bayes with

a sensitive feature (NB), naive Bayes without a sensitive

feature (NBns), and Caldars and Verwer’s 2-naive-Bayes

(CV2NB). We show the means of the statistics obtained by

the five-fold cross-validation.
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Table I
A SUMMARY OF EXPERIMENTAL RESULTS

method Acc NMI NPI UEI CVS PI / MI

LR 0.851 0.267 5.21E-02 0.040 0.189 2.10E-01
LRns 0.850 0.266 4.99E-04 0.036 -0.033 1.06E-03
PR η=0 0.850 0.265 4.94E-02 0.038 0.185 2.01E-01
PR η=0.1 0.850 0.264 4.11E-02 0.036 0.170 1.68E-01
PR η=0.3 0.774 0.149 7.53E-03 0.127 -0.095 5.47E-02
PR η=1 0.720 0.124 1.29E-05 0.148 -0.004 1.12E-04
PR η=10 0.676 0.013 2.13E-01 0.259 -0.472 1.84E+01

NB 0.822 0.246 1.12E-01 0.068 0.332 4.90E-01
NBns 0.826 0.249 7.17E-02 0.043 0.267 3.11E-01
CV2NB 0.813 0.191 3.64E-06 0.082 -0.002 2.05E-05

NOTE: 〈n1〉E〈n2〉 denotes n1 × 10n2 .

C. Experimental Results

Table I shows accuracies (Acc), NPI and UEI in section II,

and CV scores (CVS). MI denotes mutual information be-

tween sample labels and predicted labels, NMI was obtained

by normalizing this MI in a process similar to NPI. PI / MI

quantifies a prejudice index that is sacrificed by obtaining a

unit of information about the correct label. This can be used

to measure the efficiency of the trade-off between prediction

accuracy and prejudice removal. A smaller PI / MI value

indicates higher efficiency in this trade-off.

We first compare the performance of our method with that

of baselines in Table I. Compared with NBns, our method

was superior both in accuracy and NPI at η = 0.1. Because

LRns successfully removed prejudice without sacrificing

accuracy unlike NBns, our PR at η = 1 was better in

PI / MI, but accuracy was fairly degraded. Note that two

methods, PR at η = 0 and LR, behaved similarly, because

our PR is almost equivalent to LR if the prejudice remover

is eliminated by setting η = 0.

We next moved on to the influence of the parameter, η,

which controls the degree of prejudice removal. We expected

that the larger the η, the more prejudice would be removed,

whereas accuracy might be sacrificed. According to Table I,

as η increased, our PR generally become degraded in accu-

racy, but was also not fully improved in prejudice removal.

To further investigate the change of performance depend-

ing on this parameter η, we demonstrated the variations in

accuracy (Acc), normalized prejudice index (NPI), and the

trade-off efficiency between accuracy and prejudice removal

(PI / MI) in Figure 2. We focus on our PR method. Overall,

the changes were rather unstable in all statistics. The reasons

for this instability would be the sub-optimality in solutions

stemming from the lack of convexity of the objective func-

tion (12) and the approximation by replacing the marginal

values of X with their sample means. The increase of η
generally damaged accuracy because a prejudice remover

regularizer is designed to remove prejudice by sacrificing

correctness in prediction. NPI peaked at η = 1, though
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Figure 2. The change in performance according to the parameter η

NOTE: Horizontal axes represent the parameter η, and vertical
axes represent statistics in each subtitle. Solid, chain, dotted,
and broken lines indicate the statistics of PR, CV2NB, LRns,
and NBns, respectively.
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we expected that more prejudice would be removed as η
increased. We postulate that this would be due to the approx-

imation in the marginalization of X; further investigation is

required for this point. The peak in trade-off efficiency was

observed at η = 1, but accuracy was fairly damaged at this

point.

We next compared our PR with other methods. The

performance of CV2NB was fairly good, and our PR was

inferior except for accuracy at the lower range of η. When

compared to the baseline LRns, by tuning the parameter η,

our PR could exceed in all statistics. However, it failed to

exceed in both accuracy and prejudice removal at the same

η.

In summary, our PR could successfully reduce indirect

prejudice, but accuracy was sacrificed for this reduction. We

must further improve the efficiency in the trade-off between

accuracy and prejudice removal.

V. RELATED WORK

Several analytic techniques that are aware of fairness or

discrimination have recently received attention. Pedreschi

et al. emphasized the unfairness in association rules whose

consequents include serious determinations [1], [7]. They

advocated the notion of α-protection, which is the condition

that association rules were fair. Given a rule whose conse-

quent exhibited negative determination, it would be unfair if

the confidence of the rule substantially increased by adding a

condition related to a sensitive feature to the antecedent part

of the rule. The α-protection constrains the rule so that the

ratio of this increase is at most α. They also suggested the

notions of direct discrimination and indirect discrimination.

A direct discriminatory rule directly contains a sensitive

condition in its antecedent, and while an indirect discrimi-

natory rule doesn’t directly contain a sensitive condition, the

rule is considered to be unfair in the context of background

knowledge that includes sensitive information. Their work

has since been extended [8]. Various kinds of indexes for

evaluating discriminatory determinations were proposed and

their statistical significance has been discussed. A system for

finding such unfair rules has been proposed [9]. Calders and

Verwer proposed several methods to modify naive Bayes

for enhancing fairness as described in section IV-A [2].

Luong et al. proposed a notion of situation testing, wherein a

determination is considered unfair if different determinations

are made for two individuals all of whose features are equal

except for sensitive ones [10]. Such unfairness was detected

by comparing the determinations for records whose sensitive

features are different, but are neighbors in non-sensitive

feature space. If a target determination differs, but non-

sensitive features are completely equal, then a target variable

depends on a sensitive variable. Therefore, this situation

testing has connection to our indirect prejudice. Dwork et al.

argued a data transformation for the purpose of exporting

data while keeping aware of fairness [11]. A data set held

by a data owner is transformed and passed to a vendor who

classifies the transformed data. The transformation preserves

the neighborhood relations of data and the equivalence

between the expectations of data mapped from sensitive

individuals and from non-sensitive ones. In a sense that

considering the neighborhood relations, this approach is

related to the above notion of situation testing. Because

their proposition 2.2 implies that the classification results

are roughly independent from the membership in a sensitive

group, their approach has relation to our idea of prejudice.

In a broad sense, fairness-aware learning is a kind of

cost-sensitive learning [12]. That is to say, the cost of

enhancing fairness is taken into account. Fairness in machine

learning can be interpreted as a sub-notion of legitimacy,

which means that models can be deployed in the real

world [13]. Gondek and Hofmann devised a method for

finding clusters that were not relevant to a given grouping

[14]. If a given grouping contains sensitive information, this

method can be used for clustering data into fair clusters.

Independent component analysis might be used to maintain

the independence between features [15].

The removal of prejudice is closely related to privacy-

preserving data mining [16], which is a technology for min-

ing useful information without exposing individual private

records. The privacy protection level is quantified by mutual

information between the public and private realms [17]. In

our case, the degree of indirect prejudice is quantified by mu-

tual information between classification results and sensitive

features. Due to the similarity of these two uses of mutual

information, the design goal of fairness-aware learning can

be considered the protection of sensitive information when

exposing classification results.

Regarding underestimation, the concepts of anytime algo-

rithms in planning or decision making [18] might be useful.

As described in section II-B, the problem of negative

legacy is closely related to transfer learning. Transfer learn-

ing is “the problem of retaining and applying the knowledge

learned in one or more tasks to efficiently develop an effec-

tive hypothesis for a new task” [5]. Among many types of

transfer learning, the problem of a sample selection bias [4]

would be related to the negative legacy problem. Sample

selection bias means that the sampling is not at random, but

biased depending on some feature values of data. Another

related approach to transfer learning is weighting samples

according the degree of usefulness for the target task [19].

Using these approaches, if given a small amount of fairly

labeled data, other data sets that might be unfairly labeled

would be correctly processed.

VI. CONCLUSIONS AND FUTURE WORK

The contributions of this paper are as follows. First,

we proposed three causes of unfairness: prejudice, under-

estimation, and negative legacy. Prejudice refers to the

dependence between sensitive information and the other
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information, either directly or indirectly. We further clas-

sified prejudice into three types and developed a way to

quantify them by mutual information. Underestimation is

the state in which a classifier has not yet converged, thereby

producing more unfair determinations than those observed

in a sample distribution. Negative legacy is the problem of

unfair sampling or labeling in the training data. Second,

we developed techniques to reduce indirect prejudice. We

proposed a prejudice remover regularizer, which enforces

a classifier’s independence from sensitive information. Our

methods can be applied to any algorithms with probabilistic

discriminative models and are simple to implement. Third,

we showed experimental results of logistic regressions with

our prejudice remover regularizer. The experimental results

showed the effectiveness and efficiency of our methods. We

further proposed a method to evaluate the trade-offs between

the prediction accuracy and fairness.

Research on fairness-aware learning is just beginning;

thus, there are many problems yet to be solved; for example,

the definition of fairness in data analysis, measures for

fairness, and maintaining other types of laws or regulations.

The types of analytic methods are severely limited at present.

Our method can be easily applied to regression, but fairness-

aware clustering and ranking methods are also needed.

The use of data mining technologies in our society

will only become greater with time. Unfortunately, their

results can occasionally damage people’s lives [20]. On the

other hand, data analysis is crucial for enhancing public

welfare. For example, exploiting personal information has

proved to be effective for reducing energy consumption,

improving the efficiency of traffic control, preventing in-

fectious diseases, and so on. Consequently, methods of

data exploitation that do not damage people’s lives, such

as fairness/discrimination-aware learning, privacy-preserving

data mining, or adversarial learning, together comprise the

notion of socially responsible mining, which it should be-

come an important concept in the near future.
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