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Fairness-Aware Radio Resource Management in
Downlink OFDMA Cellular Relay Networks

Mohamed Salem, Abdulkareem Adinoyi, Mahmudur Rahman, Halim Yanikomeroglu,
David Falconer, and Young-Doo Kim

Abstract— Relaying and orthogonal frequency division mul-
tiple access (OFDMA) are the accepted technologies for emerg-
ing wireless communications standards. The activities in many
wireless standardization bodies and forums, for example IEEE
802.16 j/m and LTE-Advanced, attest to this fact. The avail-
ability or lack thereof of efficient radio resource management

(RRM) could make or mar the opportunities in these networks.
Although distributed schemes are more attractive, it is essential
to seek outstanding performance benchmarks to which various
decentralized schemes can be compared. Therefore, this paper
provides a comprehensive centralized RRM algorithm for down-
link OFDMA cellular fixed relay networks in a way to ensure
user fairness with minimal impact on network throughput. In
contrast, it has been observed that pure opportunistic schemes
and fairness-aware schemes relying solely on achievable and
allocated capacities may not attain the desired fairness, e.g.,
proportional fair scheduling. The proposed scheme is queue-
aware and performs three functions jointly; dynamic routing,
fair scheduling, and load balancing among cell nodes. We show
that the proposed centralized scheme is different from the
traditional centralized schemes in terms of the substantial savings
in complexity and feedback overhead.

Index Terms—RRM, OFDMA, relaying, routing, scheduling,
fairness, load balancing, proportional fairness.

I. INTRODUCTION AND MOTIVATION

O
RTHOGONAL frequency division multiple access
(OFDMA) is the envisioned air-interface for 4G and

beyond wireless networks mainly due to its robustness to fre-
quency selective multipath fading, and the flexibility it offers
in radio resource allocation [1]. However, in order to truly
realize ubiquitous coverage, the high data rate opportunity
in OFDMA schemes has to reach to user terminals (UTs) in
the most difficult channel conditions, for example, cell edge
UTs. Therefore, relaying techniques have been earmarked as
the best option to address this problem since relay stations
(RSs), with less functionality than a base station (BS), can
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forward high data rates to remote areas of the cell, and
thus overcome the high path losses, while maintaining low
infrastructure cost [2]. Hence, the future network roll-out is
expected to include various forms of relays. We consider
networks enhanced with fixed digital relays deployed by
service providers in strategic locations.

The combination of relaying and OFDMA techniques has
the potential to provide high data rate to UTs everywhere,
anytime. In contrast, conventional opportunistic schedulers
will rarely serve UTs with bad channel conditions such as
cell edge UTs; this defeats the notion of ubiquitous coverage
targeted in future networks, and exposes the importance of
fair RRM algorithms to facilitate location-independent service,
especially when users subscribed to the same service class are
charged similarly regardless of their channel conditions.

In the well-established literature of conventional cellular
networks, several queue/traffic-aware fair scheduling algo-
rithms have been proposed such as the channel state depen-
dent packet scheduling (CSDPS), the channel independent
packet fair queueing (CIF-Q) [3], and the OFDMA-based
algorithms in [4]-[6]. However, such algorithms can not be
directly applied to relay-enhanced networks since the problem
is not just a scheduling problem. Rather, it is in principle,
a joint routing and scheduling problem. In addition, the
desired user fairness may not be attained through the fairness-
aware schemes that rely solely on achievable and allocated
capacities, e.g., proportional fair scheduling (PFS) [7], [8].
The relay-based RRM algorithms developed for single-cell
system models along with their performance results are not
applicable to multi-cell scenarios since inter-cell interference
is not considered, e.g., [9]-[11].

An observed tendency in the literature is to maximize the
total cell capacity, e.g., [12] and [13] whereas capacity does
not map directly to throughput due to the burst traffic. As
such, allocating fair shares of the cell capacity might not result
in actual throughput fairness. Furthermore, the vast majority
of RRM schemes presented in the literature decouple in-
cell routing and resource allocation for simplicity. As such,
limiting the opportunities in spatial diversity and channel
dynamism the scheme could exploit. In fact, pathloss-based
and distance-based relay selection are common and simple
strategies, e.g., [14] and [15]. Finally, by oversimplifying
channel models, a transmission scheme selection algorithm is
proposed in [15] where selection and resource allocation are
solely based on the number of required subcarriers. However,
in order to exploit the multiuser and frequency diversities, an
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RRM scheme has to cope with the channel variations.
Therefore, it is imperative to devise intelligent, dynamic,

and fair RRM schemes to harness the potentials in OFDMA-
based relay networks. In [16], a centralized joint scheduling
and routing algorithm employing indefinite number of hops
is proposed for a single-carrier relay network, based on
CDMA (Evolution-Data Optimized). Therein, several neces-
sary constraints are imposed for operability and reduction
of complexity but preclude implementation in multi-carrier
systems.

In this paper, we propose a novel formulation with a
novel low-complexity centralized algorithm that achieves a
ubiquitous coverage, high degree of user fairness and enables
intra-cell load balancing in downlink OFDMA-based multi-
cell fixed relay networks. The proposed scheme utilizes the
opportunities provided in channel dynamism, spatial, and
queue and traffic diversities. We show that the scheme provides
an efficient tradeoff between network throughput and fairness
to all UTs, even to those at the cell edge. We demonstrate
the learning ability of the dynamic routing strategy. We also
show how substantial savings in complexity and feedback
overhead can be attained distinguishing the proposed scheme
from traditional centralized schemes. To the best of the au-
thors’ knowledge, this contribution is unique among the works
presented so far in the literature.

II. SYSTEM DESCRIPTION AND ASSUMPTIONS

In the multi-cellular network, the BS serves � UTs either
directly or through � RSs in a cell. All resources are available
in each cell resulting in aggressive resource reuse. The total
bandwidth is divided into � subchannels, each composed
of a set of adjacent OFDM data subcarriers1. The serving
BS and each of the � RSs in a cell are equipped with
� user-buffers. User packets arrive at the corresponding BS
buffer according to the traffic model. The channel fading is
assumed to be time-invariant within a frame duration. We first
consider a generic scenario that is not restricted to a specific
geographical deployment of RSs. Thus, potentially, any UT
can be connected to any combination of the � RSs yet in
only two hops as RSs are not allowed to exchange user data.
Such unconstrained relay selection or ‘open routing’ exposes
the ability of our routing strategy to dynamically settle for the
best route(s) for each UT given an arbitrary relay deployment.
We also present a constrained mode of operation for the
routing strategy where geographical relay deployment can be
exploited offering substantial savings in feedback overhead.
In the proposed scheme, a UT can receive from a group of
nodes (BS and/or RSs), and any node can transmit as well to
multiple destinations, simultaneously, on different orthogonal
subchannels. In addition, any RS is assumed to have the ability
to receive and transmit concurrently on orthogonal subchan-
nels. A practical concern might arise if orthogonal transmit
and receive subchannels happen to be close in frequency band.
Since RSs are fixed, they can be deployed with two antennas
(if necessary, at different elevations); a directional antenna for

1The number of OFDMA subcarriers comprising a subchannel is such that
its bandwidth is less than the expected coherence bandwidth of the channel.

the feeder link from the BS and an omni-directional antenna
to the UTs, thus, alleviating such concern.

Load balancing is usually incorporated with the connec-
tion admission control mechanisms in conventional cellular
networks and it refers to the hand over (hand-off) of some
UTs between adjacent cells to distribute the traffic load among
BSs network-wide while maintaining users’ quality of service
(QoS). Although this load balancing function will be an inte-
gral part of any prospective RRM scheme, in the literature of
OFDMA-based relay networks, researchers often associate the
term “load balancing" with a different function which aims at
distributing the load evenly among the cell nodes. The number
of OFDM subcarriers handled by a node is often employed
in literature as a good estimate of its traffic load [9], [17].
As such, an even distribution of subcarriers balances the load
among the nodes cell-wide [9], [18]. Although the scheme
in [19] aims at achieving the conventional load balancing
among cells using boundary RSs, it employs the number of
subchannels as a measure of the traffic load. A balanced traffic
load reduces the packet processing delays at the regenerative
relays. Moreover, load balancing results in the so called ‘relay
fairness’; a fair utilization of the energy sources of the RSs
if the network employs battery/solar-powered RSs [20]. The
following section describes the proposed scheme in details and
explains how the load balancing function is integrated.

III. THE BS’S JOINT ROUTING AND FAIR SCHEDULING

The objective is to maximize the total cell throughput while
maintaining throughput fairness among users. The idea is to
operate a throughput-optimal scheduling policy, that stabilizes
user queues at all nodes, in a system that receives equal
inelastic mean arrival rates at only one source node in the
cell which is the BS, using two hops at most. Therefore, the
fair behavior of such policy is a special case due to our cellular
network system model where we consider that all users belong
to the same service class and thus have the same mean arrival
rates and the same QoS requirements. Such policy is perceived
fair given a similar scenario in [16]. In [21], a congestion
control mechanism is proposed with such policy employed to
introduce user fairness, through traffic policing, if the arrival
rates are elastic, i.e., the traffic sources can adapt their rates.
Otherwise, the authors perceive throughput-optimal scheduling
more adequate for inelastic traffic.

Let us define the ‘demand’ metric for any node�-UT� link
on subchannel � as the product of the achievable rate on that
access link and the queue length of the user’s buffer at that
node, as follows

��,�→� = ��,�,��
�
� , 
 = 0, 1, . . . ,�, (1)

whereas the demand of any BS-RS� feeder link on subchannel
� incorporates the queues at the BS (node 0) and those at RS�

and can be expressed as

��,0→� = �0,�,�max
�

{(�0
� −��

� )+}, 
 ∕= 0. (2)

The function (.)+ sets negative arguments to zero. ��
� is the

queue length of UT� at node 
 in bits, bytes, or packets of
equal length (shown in blue bars in Fig. 1). Whereas ��,�,�

and �0,�,� are the achievable rates on the links node�-UT�
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and BS-RS�, respectively, on subchannel �. These rates are
calculated, without loss of generality, using the continuous
rate formula for adaptive modulation and coding (AMC) given

as ��,�,� = � log2

(

1 +
−1.5	�,�,�

ln(5
�)

)

where �,�,� is the the

received signal-to-interference-plus-noise ratio (SINR) from
source � at destination � on subchannel � considering all the
dominant interference observed in the previous transmission.
�� and � are the target bit error rate and the OFDM
subchannel bandwidth, respectively. As an alternative, either
Shannon capacity formula (possibly with some practical SINR
gap or penalty) or a discrete AMC lookup table can be used.

Modulated versions of this metric are used in non-relaying
OFDMA [5] and SDMA/TDMA [6] networks. Although our
results show outstanding performance employing the earlier
metric definition, designing the mathematical structure of the
metric is an interesting problem by itself, since different
emphasizes can be imposed on the rate and link weight
arguments. Nevertheless, it can be easily shown that any
monotonically increasing function of the metric, in its com-
posite form, will result in the same radio resource allocation
(RRA).

A. Mathematical Formulation of the RRA at the BS

In order to maximize the total cell throughput while sta-
bilizing user queues at all nodes, the RRA scheme needs to
assign the subchannels with the highest capacities at any node
to the outstanding queues at that node. This can be achieved
by optimizing the assignment of subchannels to all links and
the assignment of user buffers to feeder links so that the sum-
demand is maximized at each allocation instant. The resource
allocation at the BS can be formulated as a binary integer
linear programming (BILP) problem as

max
�,�

{ �
∑

�=1


∑

�=0

�
∑

�=1

��,�,���,�,��
�
�

+

�
∑

�=1


∑

�=1

�0,�,��0,�,�max
�

{(�0
� −��

� )+}

}

, (3)

subject to the constraints

��,�,� ∈ {0, 1}, ∀(
, �, �), �0,�,� ∈ {0, 1}, ∀(
,�), (4)


∑

�=0

�
∑

�=1

��,�,� +


∑

�=1

�0,�,� ≤ 1, ∀ �, (5)

�
∑

�=1

�
∑

�=1

�0,�,� +

�
∑

�=1


∑

�=1

�0,�,� ≥ �,

�
∑

�=1

�
∑

�=1

��,�,� ≥ �, ∀
 ∕= 0, (6)

�

�
∑

�=1

(

�0,�,��0,�,� +

�
∑

�=1

�0,�,��0,�,��
�
�

)

≤ �0

�,∀	,

�
�
∑

�=1

��,�,���,�,� ≤ ��
� , ∀(
,	), 
 ∕= 0. (7)

In the above, ��,�,� is the ��ℎ UT binary assignment variable
to the 
�ℎ node, 
 = 0, 1, 2, . . . ,� , on the ��ℎ subchannel

(
 = 0 corresponds to BS, and the rest correspond to
relays). The variable �0,�,� is the 
�ℎ relay binary assignment
variable to the BS node on the ��ℎ subchannel whereas �
is the transmission time of the downlink frame and � =
⌊�/(� + 1)⌋ is the minimum number of subchannels to be
assigned to any node (BS or RS), assuming for now uniform
user distribution with respect to relay deploymet. The binary
indicator ��

� is 1 if user � has the highest queue difference
between the BS and RS�, and 0 otherwise. The constraints
in (4) forces the optimization variables to binary values while
the constraints in (5) ensure that at most one link is active per
subchannel. The constraints in (6) guarantee even distribution
of subchannels among all nodes and hence balances the load.
Finally, the constraints in (7), unlike the majority of works
in the literature, e.g., [9]-[11] and [15], ensure efficient bit-
loading and prevent scheduling errors which could occur if
the total capacity of the links withdrawing from a particular
buffer is greater than the queue length at that buffer. Therefore,
solving the optimization problem in such a novel formulation,
results in the joint routing and fair scheduling, guarantees
efficient use of resources, and balances the load among cell
nodes. A discussion on the routing strategy will follow in the
next subsection. The unique aspects of the problem formula-
tion leading to the outstanding performance of the proposed
scheme are summarized as follows:

∙ No explicit non-linear fairness constraints or functions
are imposed and thus a single linear objective function is
maximized towards achieving a remarkable combination
of both high ubiquitous throughput and user fairness,
under the system model considered.

∙ The formulation does not imply any kind of preset
routes, user partitioning, or resource partitioning, which
are known to be suboptimal simplifying techniques.

∙ Dynamic routing and scheduling are performed jointly
using the ‘differential backlog’ represented by the queue-
length difference between BS and RSs [22]; this is
analogous to the hydrostatic pressure between fluid tanks
connected with pipes of different capacities, which are
controlled by the on-off assignment variables, while UTs
represent the relevant sinks of individual user flows.

∙ Traffic diversity (statistical multiplexing) is exploited
through incorporating the buffer states; this does not
require knowledge of the arrival process statistics.

∙ Load balancing between relay nodes is achieved jointly
as well, as in [20], and not by rearranging the optimal
allocation, e.g., [9].

The computational complexity, however, of such three-
dimensional BILP problem is non-polynomial in time and
can be approximated to �(((� + 1)�)� ). As such, the
complexity might reach prohibitive limits in a system with
high density of UTs and RSs given the expected high number
of subchannels. Therefore, in the next subsection, we propose
a low-complexity iterative algorithm that virtually updates the
buffer states between iterations while satisfying all of the
aforementioned constraints.
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UT3
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Fig. 1. Example partial network of BS and relays showing a snap shot of
user queues and the potential links of the BS and RS2 on subchannel �.

B. A Low-complexity Iterative RRA Algorithm

The formulated problem can be viewed as a three-
dimensional assignment problem in which even subchannel-to-
node assignments are required. The Hungarian algorithm [23]
is an efficient solver, with polynomial complexity, for similar
two-dimensional assignment problems and thus has been used
in different scheduling algorithms for non-relaying networks,
e.g., [4], [24], and [25]. Before we discuss how the Hungarian
algorithm is applied to our assignment problem, we highlight
the following facts: 1) Applying the Hungarian algorithm to
an � -by-�+1 profit matrix results in the optimal one-to-one
assignment. 2) If all the � jobs (> � +1) are required to be
assigned such that each worker (node) handles almost the same
number of jobs (load balancing) while his assignments are
interdependent, due to time (or buffer size) constraints, a close-
to-optimal solution is attained by applying the Hungarian
algorithm �/(� +1) times (iterations) while eliminating the
assigned jobs (subchannels). Note that each iteration is solved
optimally. The algorithm executes the following steps each
allocation instant:

1) The demand metric of each RS� on subchannel � is
calculated as the maximum of � potential links as

��,� = max
�

{��,�,��
�
� }, 
 = 1, 2, . . . ,�. (8)

Thus, ��,� is the best proposal of RS� to use sub-
channel � while the UT associated with that maximum
is marked as the candidate receiver. The demand metric
for the BS node is the maximum metric of � + �
potential links and is expressed as

��,0 = max
�

{��,0→�} , (9)

where ��,0→� is calculated using (1) and (2), and �
denotes any of the potential destinations. Thus, ��,0 is
the best proposal of the BS to use subchannel �. The
destination associated with that proposal is marked as
the candidate receiver. Note that if the destination is a
RS, the UT that achieved the highest queue difference
on that link is marked as well.

2) After calculating the (� + 1) demand metrics on each
subchannel, the algorithm solves a one-to-one optimiza-
tion problem to maximize the total demand by applying

…

…

…

…

…

…

DN,MDN,2DN,1DN,0nN

…

D10,MD10,2D10,1D10,0n10

…

D6,MD6,2D6,1D6,0n6

D5,MD5,2D5,1D5,0n5

D1,MD1,2D1,1D1,0n1

RSMRS2RS1BS

Fig. 2. The demand matrix during one iteration. Rows with assigned entries
are crossed out and eliminated. Bold red entries reflect on the queue updates
due to the previous iteration.

the Hungarian algorithm to the � × (� + 1) demand
matrix [��,�] (see Fig. 2).

3) The algorithm virtually updates the affected UTs’
queues according to the decisions of the previous it-
eration:

��(�+1)

� = (��(�)

� − ⌊�
(�)

� � ⌋)+ . (10)

In the above, ��(�)

� is the input queue length to iteration

� and �
(�)

� is the rate of the link assigned by the
Hungarian algorithm to node 
 as a result of iteration
�. Note that the queues at destination RSs are not incre-
mented between iterations because the transmissions on
all subchannels occur simultaneously and the algorithm
has to obey the causality law.

4) The rows with assigned subchannels are eliminated.
5) Steps 1-4 are repeated for the unassigned subchannels

until all enqueued packets are scheduled or the subchan-
nels are exhausted.

Due to the one-to-one assignment, each iteration will only
assign � + 1 subchannels to the � + 1 nodes. As a result,
each node is linked to only one destination per iteration; this
prevents, along with step 3, the same queue length from being
involved in the activation of more than one link as discussed
earlier. Furthermore, if � mod (� + 1) = 0, each node will
be assigned exactly �/(� + 1) subchannels. Hence, load
balancing is inherent in the algorithm.

Routing of user data is thus performed dynamically and
jointly with its resource allocation. Such dynamic routing
strategy uses the maximum differential backlog represented
by max�{�0

� − ��
� } to establish the routes. Several works

have employed this dynamic routing strategy such as [16]-
[22], based on the throughput-optimal link scheduling policy
developed in [26] for multihop packet radio networks where
routes can comprise indefinite number of hops. However, by
‘open routing’ in the cellular network we mean that a UT
can be connected to any set of RSs while the algorithm is
not informed a priori of which RS(s) to use for that UT.
Note that a route is comprised of two hops only as RSs are
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not allowed to exchange user data amongst them. Therefore,
in the open routing mode, initial accumulation of the user’s
data may occur at some RS(s). For instance, let us assume
that RS in Fig. 1 has a heavily shadowed link to UT3

while the BS has forwarded some UT3 data to RS , In this
situation, these packets neither will be forwarded to UT3 nor
will they be absorbed by a neighboring RS. However, the
algorithm exploits the presence of these trapped data, as they
reflect on the quality of the second-hop link, by reducing the
likelihood of further nominating UT3 data on BS-RS feeder
link, irrespective of the channel. That is, while some other
user queues at RS are being discharged from one iteration to
another, UT3 may no longer achieve the maximum difference
�0

� − �
� . The algorithm therefore, possesses the ability to

learn from the previous forwarding mistakes to improperly
selected RSs in previous iterations.

To further demonstrate the feasibility of the dynamic rout-
ing and its learning ability, another mode of operation for
the dynamic routing strategy named ‘constrained routing’ is
examined and compared to the open routing mode. In that
mode, routing constraints are imposed on BS-RS transmissions
accounting for the geographical distribution of the RSs and
user locations. As such, the dynamic routing is allowed to
operate on only ����� (≤ �) closest RSs to each UT; this
is done by ignoring the user buffers at the irrelevant (far)
RSs while calculating the differential backlogs2. Intuitively,
faster routing convergence is expected due to fewer forwarding
mistakes. More interestingly, the improvement comes along
with substantial savings in feedback overhead due to the
eliminated links as discussed in Section VI.

We note that the iterative algorithm is the practical im-
plementation of such joint policy. In a scenario where the
distribution of UTs is not uniform with respect to the deploy-
ment of RSs, the algorithm should be run in the constrained
routing mode. Since the Hungarian algorithm excludes the
columns with zero entries (including those RSs with empty
buffers), the one-to-one assignment will attempt to achieve
the load balancing among only the active RSs (where UTs are
clustered).

The computational complexity has been significantly re-
duced, compared to the BILP problem, using the iterative
algorithm since each iteration has a polynomial complexity of
�(�3

�), where �� is the number of unassigned subchannels
which is usually greater than � + 1. Given that � + 1
subchannels are eliminated each iteration, the complexity of
iterations rapidly decreases in cubic polynomial manner as ��

decreases. Since the total complexity of step 1 is �(��), the
complexity of the whole algorithm is loosely upper-bounded
by �( �4

+1 ), � + 1 ≤ � . A more precise complexity

estimate is down to �(�
2(�++1)2

4(+1) ), � + 1 ≤ � ; that

approximation holds for reasonable � satisfying �� ≪ �2.
Unlike the majority of algorithms, the complexity decreases
as � , the number of RSs, increases. For the limiting case
� +1 = � , both estimates coincide at the asymptote �(�3)
which implies the optimal one-shot Hungarian solution. For
further illustration, a pseudocode for the algorithm follows

2This selection of relay sets is adopted for simplicity. A more appropriate
selection could be based on pathloss rather than distance only.

A Pseudocode for the Iterative Algorithm

Initialization: � = �
while ∥�∥ ∕= 0 and

∑

Qm ∕= 0

for each � ∈ �
for 
 = 1 �� �
��,� = max�{��,�,� ��

� }
��,� = argmax�{��,�,� ��

� }

��,0→� = �0,�,�max�{(�0
� −��

� )+}, � ∈ � −��
cnst

�� = argmax�{�0
� −��

� }
end for

��,0→� = �0,�,��
0
�

��,0 = max�{��,0→�}, � ∈ �
∪

ℳ
��,0 = argmax�{��,0→�}

end for

% D = [��,�] is the demand matrix
(n̂, m̂) ⇐= Hungarian(D) % Vectors of indices
� = � − {n̂}, ��������� = ∥n̂∥ = ∥m̂∥
%��������� ≤ min{� + 1, ∥�∥}

for � = 1 to ���������

�̂ = n̂(�), 
̂ = m̂(�), �̂ = ��̂,�̂

if �̂ ∈ ℳ then

�̂ = ��̂,
�0

�̂
= (�0

�̂
− ⌊�0,�̂,�̂ � ⌋)+

else

��̂

�̂
= (��̂

�̂
− ⌊�

�̂,�̂,�̂
� ⌋)+

end if

end for

end while

where � , � , �, ℳ, and ��
cnst denote the sets of unassigned

subchannels, all subchannels, UTs, RSs, and buffers ignored
under constrained routing at RS�, respectively.

IV. PFS-BASED RRM IN OFDMA RELAY NETWORKS

In this section we consider the Proportional Fair Schedul-
ing (PFS) concept [7], [27]. PFS is known in literature to
provide an efficient throughput-fairness tradeoff for conven-
tional (non-relaying) networks. Therefore, integrating PFS
with the most commonly adopted RRM techniques in the
literature of OFDMA relay networks represents a reasonable
reference scheme. The generic framework is to partition the
UTs into clusters around the chosen serving nodes (BS and
RSs), partition resources among nodes accordingly, then allow
individual nodes to perform PFS as adopted in OFDMA-based
systems [13], [28]. Some essential details of the PFS-based
scheme are shown in Fig. 3 and summarized as follows:

∙ The closest serving node is chosen by the UT. As such,
the direct BS transmission to �0 UTs occurs within a
radius of half the distance between the BS and RSs while
�� =

∑

�=1�� UTs are relayed, �0 +�� = � .
∙ Based on such connections, the BS reserves �0 =
� �

�0+2��
subchannels to allocate among its direct UTs

and feeder links. The remaining �−�0 subchannels are
partitioned among the RSs in proportion to the numbers
of their connected UTs. The total power available at each
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Fig. 3. User and frequency partitioning in the relay-aided PFS scheme.

node is divided equally among the subchannels of its
allocated partition.

∙ The PFS at each node updates the average rates after
allocating a subband of the available subchannels. The
number of the subbands � is a parameter in the imple-
mentation of PFS in OFDMA-based systems [29], [30],
and affects the choice of the averaging window size ��

in (11). This is a low-complexity implementation of PFS
in multicarrier systems [8].

∙ At each RS�, subchannel � is assigned to user �∗ =
argmax�

�	,
,�

�
(�−1)
, � ∈ ��

�, where ��
� is the set

of active UTs (with buffered data at RS�), ��(�) is
the exponentially weighted average rate of user � after
allocating the current subband and defined as

��(�) = (1−
1

��

)��(�− 1) +
1

��

∑

�∈�


��,�,�, (11)

where �� is the set of the subchannels assigned to UT�.
The relevant user buffer is updated after the subchannel
assignment.

∙ At the BS, subchannel � is assigned to one of the
contending destinations (direct UTs and RSs); �∗ =
argmax�

�0,�,�

��(�−1)
, � ∈ ��

0

∪

ℳ�, where ℳ� is the set

of active RSs in which any RS has at least one connected
UT with buffered data at the BS and ��(�) is defined as

��(�) = (1−
1

��

)��(�− 1)+
1

��∥��
0,�∥

∑

�∈�	

�0,�,�.

(12)
In the above, �� is the set of the subchannels assigned
to the feeder of RS�. If the subchannel is assigned to
the feeder of RS�, the buffered data at the BS of some
relayed user � ∈ ��

0,� ⊆ �� is scheduled on that
feeder following a round-robin sequence. The relevant
user buffer is updated after the subchannel assignment.

Through the strategy described earlier, some heuristics have
integrated PFS into combined relay and OFDMA technologies
such as in [31], [28], and the partial proportional fair (PPF)

scheduler in [32]. Since the BS node is required to allocate
the resources among the direct UTs and the feeder links
of the RSs, a priority metric, similar to that in (12), for
such feeders to contend with direct UTs has been proposed
in [31]. For the relay-enhanced scheme proposed in [28],
a potential improvement in proportional fairness sense can
be realized through the clustering (routing) criterion of UTs
which aims as well at maximizing the proportional fairness
metric,

∑

� log��.

V. SIMULATED NETWORK PERFORMANCE

A. Simulation Models and Parameters

The simulated network and channel parameters are given in
Table I.3 The cellular network consists of 19 non-sectorized
hexagonal cells enhanced with 3 or 6 RSs per cell. These
relays are placed at a distance of 0.65 of the cell radius from
the BS and with a uniform angular spacing. UTs are uniformly
distributed within the cell area. Independent Poisson packet
arrival processes are assumed at BS queues. The average
arrival rate is 632 packets (188 bytes each) per second per
UT. The path-loss model used is �� = 38.4 + � log10( )
where � = 23.5 for BS-RS links and � = 35.0 for all other
links. RSs transmit to UTs with an omni-directional antenna
and receives with a highly directive antenna from the BS.
Independent lognormal shadowing is assumed for all links but
with different standard deviations. Time-frequency correlated
Rician fading is assumed for (LOS) BS-RS links while all
other (NLOS) links are assumed to experience time-frequency
correlated Rayleigh fading.

B. Simulation Results and Discussion

Figure 4 shows scatter plots of UT time-average throughput
against UT distance from the BS for 6 and 3 RSs with 25
UTs/cell. Each point in the plot represents the time-average
throughput (over 100 allocation time frames) for a particular
UT within a drop with fixed location and shadowing. The
time average is calculated over the downlink frame duration
which is 2/3 of the total TDD frame duration. Statistics are
collected from 7 cells (the center cell and the surrounding 6
cells) for each of 30 drops. The performance of the proposed
algorithm in its open and constrained routing modes and that
of the reference PFS scheme are compared. The distance-
based conditional mean of user throughput is approximated
by fitting curves of the scatter points as a means of averaging
out shadowing. A 7�ℎ-degree polynomial well captures the
mean coverage behavior of the PFS scheme while only a
3��-degree polynomial is adequate for the proposed scheme.
For the proposed scheme, the uniform average throughput
across the cell area is clearly evident and demonstrated by
the almost flat performance from BS to cell edge. This implies
that a fair service and ubiquitous coverage are provided for all
users regardless of their locations, channels, and interference
conditions. Some throughput gain is further achieved when the
algorithm operates with 6 RSs in its more practical constrained
routing mode due to better routing convergence.

3Adopted from the WiMAX Forum based on IEEE 802.16e and 802.16m.
The PL model, RS antenna pattern, and BS-RS channel PDP are adopted
from the EU’s 6

�ℎ framework project, IST WINNER: www.ist-winner.org.
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Fig. 4. Time-average user throughput as function of user location and shadowing with 25 UTs/cell using 3 and 6 RSs.

TABLE I
SIMULATION PARAMETERS

Parameter Value
BS-BS distance 1 Km

RS distance from BS 0.65 × cell radius
UT min. close-in distance to BS 35 m

BS Tx. antenna gain 15 dB
RS Tx. antenna gain 10 dB

RS Rx. antenna �3
� = 20∘ /9
UT Rx. antenna gain 0 dB

Shadowing � for NLOS links 8.9 dB
Shadowing �, for LOS links (BS-RS) 4 dB

Rician K-factor for BS-RS links 10 dB
Carrier frequency 2.5 GHz
Total bandwidth 20 MHz

UT mobility 20-90 Km/hr
BS-RS links max. Doppler spread 4 Hz

Number of channel taps 6
Number of channel taps (BS-RS) 8

TDD frame length 2 msec
Downlink : Uplink ratio 2:1

DL Tx. time in OFDM data symbols 11 symbols
OFDM subcarrier bandwidth 10.9375 KHz

OFDM symbol duration 102.86 �sec
Subchannel width 18 subcarriers

Total number of subchannels 102
CR-QAM target BER 10−3

Noise power density at Rx. nodes -174 dBm/Hz
BS total Tx. power �� 46 dBm
RS total Tx. power �� 37 dBm

PFS averaging window size � 5
PFS number of subbands � 7

PFS radius of direct Tx. region 0.325 × cell radius

On the contrary, the coverage of the PFS reference scheme
is significantly distance dependent as the mean throughput
depreciates when users move away from the serving node,
especially at the cell edge. That is mainly due the fact that
spatial diversity is not exploited (due to static routing) while
scheduling a UT on the available subchannels partially exploits
the frequency diversity and, moreover, may not overcome large
pathloss (e.g., due to heavy shadowing) which dominates all
the UT’s subchannels. This results in a very poor time-average

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r (Mbps)

F
(r

)

CDF of time−average user throughput in Mbps with 25 UTs and 6 RSs per cell

 

 

Algo. (Open)

Algo. (N
cnst

=4)

Algo. (N
cnst

=3)

Algo. (N
cnst

=2)

Algo. (N
cnst

=1)

PFS 

M=6 RSs

Fig. 5. CDF of the time-average user throughput with 25 users and 6 RSs
per cell.

throughput for such UT (i.e., points at the bottom of the
scatter plot). Whereas, the scatter points for the proposed
algorithm have high throughput and narrow spread. This
indicates the ability of the dynamic routing strategy to find
the appropriate path(s) for such UTs and to deliver a fair
service. The difference in performance is further emphasized
in the scenario with 3 RSs as more users are expected
to have poor link qualities from their serving RSs in the
PFS scheme. However, the proposed scheme still offers a
reasonable ubiquity and substantial throughput gains over the
reference scheme, especially at the cell edge.

Note that the traditional PFS is not queue-aware and ex-
pected to provide performance inferior to the shown here
where the PFS at a serving node excludes the users with
empty buffers. Although such practical constraint enables the
reference PFS to partially exploit the traffic diversity, it does
not prevent resource under-utilization.

Figure 5 shows the CDF of the time-average throughput
with both the open and constrained routing modes. Different
����� are considered. The 5th-percentile throughput of such
CDFs is associated with cell-edge users in LTE evaluation
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Fig. 6. Lower tail behavior of the CDF of the time-average user throughput
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methodology [28], [33]. First, a substantial 5th-percentile
throughput advantage of 540% is realized for the proposed
scheme in its open routing mode as compared to the PFS
scheme which possesses a poor lower tail behavior. Second,
the performance gaps between different cases of the con-
strained routing mode and the open mode of the dynamic
routing strategy are generally narrow (8.6% at most). Such
close performance implies that the open routing mode has an
inherent capability of avoiding the poor routes to the UTs
using the differential queue length information as discussed
earlier in Subsection III-B. However, some throughput losses
are inevitable due to initial forwarding mistakes and after
occasional improvements of the poor links (due to small-
scale fading and/or co-channel interference). Note that the
constrained routing mode also utilizes the same learning
ability to establish routes using fewer yet better candidate RSs
for each UT. This can be observed in Fig. 6 (Fig. 5 with zoom-
in).

In Fig. 6, a slight cell-edge throughput improvement of
2.76% is attained by excluding the farthest 2 RSs (����� = 4)
as compared to the open routing mode. Using only the
3 closest RSs (����� = 3), yields the best improvement
(8.6%) as the ‘far’ RSs with potentially poor links to UTs
have been excluded along with the associated throughput
loss. As expected, further elimination of RSs reduces the
spatial diversity the dynamic routing exploits and thus the
performance degrades slightly from ����� = 3 to ����� = 2
and significantly at ����� = 1, where only the closest RS
is allowed, resulting in a degradation of 2.9% relative to the
open mode. As an alternative interpretation of these results; at
a target average throughput of 1 Mbps, the outage probability
of the proposed scheme ranges between 2.8% in the open
mode and 2% in the constrained mode ����� = 2 or 3 as
compared to 25.6% with the PFS scheme.

Figure 7 shows the total average cell throughput, as function
of the number of UTs per cell, employing 3 and 6 RSs. The
behavior in these curves is in agreement with the multiuser
diversity concept and emphasizes the ability of the proposed
scheme to maximize the total cell throughput by exploiting the
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Fig. 7. Total average cell throughput for the proposed and PFS schemes.

multiuser, frequency, spatial, and traffic diversities. We employ
the IEEE 802.16m fairness index [34] and Jain’s fairness
index [35] to assess the performance of the proposed and
the reference schemes in terms of the time-average fairness
and the long- and short-term fairness, respectively. Although
the two metrics have different mathematical properties, both
metrics are symmetric for all user rates, and in both, ideal fair
situation will be indicated by exact unity values. This is in line
with our system model considering users with same priority.

The IEEE 802.16m fairness index represents the ratio of a
user’s throughput rate to the average of � users’ throughput
rates and thus takes a value between 0 and � as

!�(�) =
��(�)

1
�

∑�

�=1 ��(�)
. (13)

The time-average throughput rates, for 15 and 25 UTs with
3 and 6 RSs, are collected from all drops to plot the CDFs
shown in Fig. 8. It can be observed that the same outstanding
fairness behavior is achieved by the open and constrained
routing modes with � = 6 at the different loading levels.
While it becomes more difficult to maintain fairness as the
number of users increases, there is insignificant degradation
with the proposed scheme at 25 UTs/cell as opposed to the
PFS scheme. Furthermore, reducing the number of RSs to 3
with 15 UTs has almost no impact on the fairness behavior
of the proposed scheme and only a slight degradation with 25
UTs/cell; this however does not hold for the PFS scheme.

Jain’s index has been widely used in relevant works,
e.g., [4], [28], and [36], and it is recommended by the WiMAX
Forum [37] for fairness assessment of proponents’ algorithms.
It is defined as

!��
=

(

∑�
�=1 ��,��

)2

�
∑�

�=1 �
2
�,��

, (14)

where ��,��
is the ��ℎ user’s average throughput rate achieved

during the ��ℎ time window "� . As such, the index is a positive
fraction that is lower-bounded by 1/� .

Therefore, in Fig. 9, the closer the CDF to a unit step
at unity the more long-term fairness the scheme achieves
after a time window of 20 frames. Although short- and
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long-term fairness are much more stringent than time-average
fairness, the relative behavior observed in Fig. 8 matches
that observed in Fig. 9 and Fig. 10 for long- and short-
term (instantaneous) fairness, respectively. Generally, queue-
awareness allows RRM schemes to compensate the overlooked
user buffers, if any, and potentially improve user fairness, at
least, in the long term sense. However, PFS relies on metrics
based solely on allocated channel capacities. Furthermore,
under static routing, as the number of users increases with
fewer RSs employed, more UTs links to the serving nodes
experience large pathlosses and thus only low achievable
rates are left for the PFS to apply its fairness criterion.
In contrast, the proposed scheme circumvents the problem
of heavy shadowing and/or large pathloss through dynamic
in-cell routing. This explains its ability to further improve
fairness as time evolves and to exploit the spatial diversity
when the number of RSs is increased, yielding such a wide
gap in performance as compared to the reference PFS scheme.

It is worth mentioning that such outstanding performance
in terms of throughput and fairness is achieved without over-
loading any node in the system. We demonstrate the intra-
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transmitting nodes under open routing and uniform distribution of UTs.

cell load-balancing behavior of the proposed scheme through
Fig. 11 which shows a normalized histogram for the number of
subchannels assigned to each node in a cell of a BS and 4 RSs
during a drop of 100 time frames. It can be observed that each
node is persistently assigned 20 subchannels, what is equal to
�

+1 . We note that this is achieved with the exception that if
a node has no buffered data, then this node is excluded from
the assignment and the load balancing is maintained among
the active nodes only. Thus, the very limited perturbations
shown deliberately in the figure occur only during the first
few initialization frames when RSs start receiving data with
empty buffers while resources are assigned among the BS and
only the active RSs. received data to forward. In addition to
distributing the traffic load among cell nodes and thus reducing
the packet processing delays at the regenerative RSs, the load
balancing feature also spatially spreads (randomizes) the co-
channel interference across the network exploiting the uniform
geographical relay deployment.
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VI. SIGNALLING OVERHEAD AND DELAYS

In order for an RRM scheme to exploit the multiuser
and frequency diversities, the allocation process should be
conducted periodically with a period not greater than the
shortest channel coherence time which is determined by the
highest user mobility supported. Therefore, if the allocation is
conducted at the beginning of each TDD frame, the feedback
is required that frequent for maximum mobility users, e.g.,
90 Km/hr based on our adopted frame duration as per the
WiMAX Forum. However, for lower mobility, the feedback
can be acquired as less frequently as each ⌊��/�� ⌋ frames.
That is the maximum integer number of TDD frames less than
the user’s coherence time of the channel (4 TDD frames in
the simulated scenario). As such, the RRA algorithm can be
invoked that often while the allocation result will be applied
to the transmissions of the intermediate frames until the
following allocation instant. Such relaxed resource allocation,
however, less exploits the traffic diversity for highly burst
traffic. We hereby discuss the following items to quantify
the amount of feedback information required each allocation
instant:

∙ Implementing the constrained routing mode provides
substantial savings in feedback overhead. That is because
no feedback is required from the UT for the eliminated
RS-UT links.

∙ In practice, AMC lookup tables are used and therefore re-
porting the indices of the achievable AMC levels per link
significantly saves in signalling overhead as compared to
reporting a wide range of continuous SINRs; this applies
to both UTs and RSs.

∙ Our dynamic routing strategy, either in open or con-
strained mode, allows the UT to be connected to more
than one node; having many users per cell, this implies
that only very few subchannels are used per each node-
UT link. As such, with potentially marginal performance
losses, further savings in overhead can be achieved if
UTs report only the ‘best’ fraction of subchannels in
term of achievable rates4. Although examining the impact
of such partial feedback is outside the scope of this
paper, auxiliary studies considering only the best 50%
of link subchannels show no performance degradation,
even when the number of reported links is limited by
constrained routing.

The following formula can be used to estimate the feedback
overhead per UT in the system taking into account the previous
items:

��� =
�����ℎ (����� + 1) �AMC

�� ⌊��/�� ⌋
bps. (15)

In the above, �����ℎ and ����� denote the number of reported
subchannels per link and the number of RSs allowed for the
constrained routing, respectively. Whereas �AMC denotes the
number of bits used to indicate the index of the achievable
AMC mode on a subchannel. We note that if the algorithm
needs to allocate all the subchannels to evacuate the system
buffers while the UTs provide partial feedback, the parameter

4Either fixed number of the best subchannels or every subchannel whose
quality is above a certain threshold.

�����ℎ can be decreased as the number of admitted UTs
increases.

Based on the frame structure, the minimum delay a relayed
packet encounters is ��+2# where # is the OFDM transceiver
transmission time. Although the current simulation platform
is quite advanced, individual packet delays are intractable.
However, as the results show, the algorithm is designed to
maximize throughput while stabilizing all queues and avoiding
build ups. Hence, once the algorithm converges to the proper
routes, it is expected to minimize the queuing delay as a
consequence.

VII. INTRA-CELL RESOURCE REUSE

The vast majority of schemes in literature resort, in the
first place, to suboptimal techniques in allocating the premium
resources to simplify the problem. Among these techniques
are static partitioning of users based on their locations, static
routing or relay selection, partitioning of resources among
different cell regions or nodes, and excluding the traffic and
queue status. We observe that employing intra-cell reuse on
top of such suboptimal start does not produce an optimal
solution for any given objective. Rather, the gains from intra-
cell reuse might improve the resource utilization and thus
compensate for some of the losses. However, no significant
additional gains are expected from further aggressive intra-cell
reuse among RSs, beyond the reuse among BS and RSs [13].
On the contrary, by exploiting all the aforementioned degrees
of freedom without planning or partitioning of any kind, our
proposed scheme does not treat the fundamental resource
allocation problem superficially. It seeks, in the first place,
a ubiquitous and fair high-data-rate coverage through efficient
management of the premium resources.

Moreover, since our proposed scheme does not rely on the
geography of the network, the cell region in our scheme can
be shrunk to a sector of the cell (with a directional BS antenna
and fewer RSs and UTs) without intra-sector reuse as in [28].
Also, the cell can be shrunk to one of the 3 cells forming an
eNB in LTE-A architecture. In both cases, resources are reused
three times in the original service area providing opportunity
for higher spectral efficiencies. This might be infeasible for
other schemes that rely on the geographical distribution of
RSs. It is however observed that the vast majority of works
apply static intra-cell spatial reuse patterns based solely on
user locations, e.g., reusing the channels assigned to RS-UT
links in the BS-UT links within the close vicinity of the
BS [11], [13]. Nevertheless, further increase in our system
capacity could be achieved if opportunistic intra-cell reuse
is employed utilizing instantaneous channel conditions and
antenna directivity [38], rather than the static spatial reuse
patterns commonly adopted in literature. In such case, least
co-channel interference levels are attained, and under-utilized
resources, if any, are used first.

VIII. CONCLUSIONS

Efficient RRM schemes are required to harness the oppor-
tunities in the future relay-enhanced OFDMA-based networks
in which user fairness is crucial. This paper provides a novel
fairness-aware joint routing and scheduling algorithm for such
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networks in cellular environments. The proposed algorithm
exploits the opportunities in the frequency, spatial, and traffic
diversities irrespective of the geographical relay deployment.
As such, its performance is superior to that of a proportional
fair relaying scheme in terms of ubiquitous coverage, cell-edge
throughput, short- and long-term user fairness, as well as load
balancing. Simulation results prove the learning ability and the
efficacy of the dynamic open routing strategy which converges
to better routes, even under the challenging uniform relay
deployment considered. The dynamic constrained routing is
shown to be the practical mode of operation due to the
substantial savings in feedback overhead. The inherent load-
balancing feature works independently from the traffic load at
adjacent cells, results in spatial spreading of the co-channel
interference across the network, and minimizes the packet
processing delays at the regenerative relays.
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