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Fairness in Biometrics: A Figure of Merit to Assess
Biometric Verification Systems

Tiago de Freitas Pereira and Sébastien Marcel

Abstract—Machine learning-based (ML) systems are being
largely deployed since the last decade in a myriad of scenarios
impacting several instances in our daily lives. With this vast sort
of applications, aspects of fairness start to rise in the spotlight due
to the social impact that this can get in some social groups. In this
work aspects of fairness in biometrics are addressed. First, we
introduce a figure of merit that is able to evaluate and compare
fairness aspects between multiple biometric verification systems,
the so-called Fairness Discrepancy Rate (FDR). A use case with
two synthetic biometric systems is introduced and demonstrates
the potential of this figure of merit in extreme cases of demo-
graphic differentials. Second, a use case using face biometrics
is presented where several systems are evaluated compared with
this new figure of merit using three public datasets exploring
gender and race demographics.

Index Terms—Biometrics, fairness, face recognition.

I. INTRODUCTION

THE PIPELINE from research to deployment of an ML-
based system can assume several shapes with different

steps. In abstract terms (and allow us to do such simplifi-
cation), such pipeline is composed of i-) Data Collection:
where the “state of the world” is reduced to a set of rows
and columns of data (e.g., face images, bank transactions,
medical data, etc. . .); ii-) Modeling: where the “model” is
supposed to summarize the patterns of the data and be able
to make generalizations (via supervised/unsupervised learning,
etc..); iii-) Benchmarking: where the model is evaluated with
respect to some figure of merit (e.g., accuracy, f1-score, etc..);
iv-) Feedback: where it is decided if the model is “good”
for deployment or not; if not, steps (i) and/or (ii) needs to
be redone; v-) Deployment: ML-System goes to production.1

During the benchmarking stage, it is common to use reference
databases. Such reference databases are supposed to repre-
sent somehow operational conditions and it is hypothesized
that ML-based systems that presents high accuracy, high f1
score, low false-positive rate, low false-negative rate, etc in
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1Usually, feedbacks are also done after deployment, but let’s keep this

simplification as is because it is enough for our purposes.

such benchmarks is a proxy to have the same figures of merit
in operational conditions. Once this is achieved (by any criteria
ML engineers decide), ML is “safe” to be deployed.

Fairness issues arise from the analysis of these figures of
merit in specific demographics groups (e.g., gender, ethnic-
ity, race, revenue levels, or any covariate in general) and the
observation that operational conditions estimated initially can-
not be reproduced in those. In biometrics, this is coined as
demographic differentials. The large-scale deployment of such
systems in so many different scenarios raises the debate about
how these differentials impact people’s lives.

For instance, the book Weapons of Math Destruction [1]
presents several cases where unfair decision-making tools
based on ML impacted the life of city populations negatively.
Such cases cover different applications, such as online adver-
tising tools, automatic resumé evaluations for HR, and credit
score tools for different purposes (e.g., bank or insurance
companies).

Decision-making tools based on biometrics, as part of
this Machine Learning wave, have been largely deployed in
the recent decade. For instance, it is present in our daily
lives for data protection (e.g., unlock mobile phones or
computers), law enforcement, airport e-gates, and other appli-
cations. The public media has been reported several cases
where biometric systems, especially Face Recognition (FR)
technology, present recognition disparities between different
demographic groups. For instance, a simple test executed
in 2018 using a Commercial-Off-the-Shelf (COTS) system
comparing face images from members of the U.S. parlia-
ment found 28 false matches, and most of them occur with
“people of color.”2 In 2020, the Association for Computing
Machinery in New York City recommended the suspension
of private and government use of FR technology due to
“clear bias based on ethnic, racial, gender, and other human
characteristics.”3

This work addresses demographic differential aspects in
biometric systems, and its contributions are twofold. First,
it discusses the factors to consider a biometric verification
system as fair and introduces a figure of merit called Fairness
Discrepancy Rate. Second, a case study of this figure of merit
is presented using face recognition as a biometric trait. We
aim to make this reproducible: all the source code, trained
models, and scores are made publicly available. Details on

2https://www.aclu.org/blog/privacy-technology/surveillance-technologies/
amazons-face-recognition-falsely-matched-28

3https://www.acm.org/binaries/content/assets/public-policy/ustpc-facial-
recognition-tech-statement.pdf
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how to reproduce this work can be found on the provided
link.4

II. RELATED WORK

In this section, we present the related work by first dis-
cussing the Machine Learning community’s efforts to suppress
demographic differentials, and then we move to actions made
by the biometrics community in this direction.

A. Machine Learning Background

Many criteria to assess and address differentials in pattern
recognition problems have been proposed over the years, each
one phrasing the problem in different ways. The recent work
from [4] hypothesizes that most of these criteria described in
the machine learning literature fall into three major categories
of conditional independence, and they are: Independence,
Separation, and Sufficiency.

To illustrate these criteria, let’s consider X ∈ R
n a ran-

dom variable denoting the input data, D = {d1, d2 · · · dn} a
random variable denoting a set of sensitive attributes (e.g., gen-
der, demographics, etc), Y ∈ {0, 1} (for simplicity) a random
variable denoting the target variable (representing a binary
classifier) and F : f (X, D) the trained predictor (that can
be possibly thresholded). The first non-discrimination criteria,
and the most simplistic one, is independence which requires
that the classifier F must be independent of the sensitive
attributes D, or F ⊥ D. This is also addressed as demographic
parity or statistical parity. For our binary classification case,
this can be rewritten as:

P{F = 1|D = di} = P
{
F = 1|D = dj

} ∀{i, j} ∈ D. (1)

This criterion is largely used in ML, in general, to mitigate
differentials either via regularization [5], [6], representation
learning constraints [7], [8], [9], or post-processing mecha-
nisms [10]. The independence criteria, although popular, have
some limitations. For instance, at training-time, a classifier
might trade false positives to false negatives in a group to
match independence. Other limitations of independence are
largely discussed in [11] and more recently in [4].

The second criterion is separation (or equalized odds crite-
ria), where it explicitly acknowledges that the target variable Y
might be correlated with D. Conditioning in Y might be desir-
able in some scenarios. For instance, a medical doctor might
argue that a particular disease is more likely to be developed in
one demographic group than others, and a “disease” prediction
function F must take this into account. The following condi-
tion independence summarizes this: F ⊥ D|Y . For our binary
classification case, this is equivalent to:

P{F = 1|Y = y, D = di} = P
{
F = 1|Y = y, D = dj

}

∀{i, j} ∈ D

y ∈ {0, 1} (2)

The work from [11] studied different formulations of sep-
aration (e.g., Equalized Odds and Equality of Opportunity)
and proposed different constrained optimization approaches

4https://gitlab.idiap.ch/bob/bob.paper.fdr

to reach separation. Using FICO scores as a case study
demonstrates that such criterion can “remediate” some of the
problems from methods based on independence. The authors
from [12] followed a similar path. In [6] the authors propose
different regularization strategies to reach independence by
making risk scores threshold independent.

The third criterion is sufficiency. F is sufficient to predict Y
independently of the demographic attribute D if the following
conditional probability is matched: Y ⊥ D|F.

In this case:

P{Y = 1|F = s, D = di} = P
{
Y = 1|F = s, D = dj

}

∀{i, j} ∈ D. (3)

Most of the literature that approaches sufficiency estima-
tors does so via calibration of the risk scores by group. One
of the most popular methods to perform such calibration is
Platt scaling [13], which, roughly, consists of fitting a sigmoid
function on uncalibrated scores. More recently, in [14] the
authors propose different optimization mechanisms to achieve
sufficiency.

Those three essential fairness criteria support most of what
was published in the Machine Learning literature explicitly or
implicitly.

B. Fairness in Biometrics

In the biometrics literature, some recent work addresses
demographic differentials for some biometric traits. For
instance, the Face Recognition Vendor Test (FRVT) has a spe-
cial report addressing demographic effects in FR [15]. This
report presents several analysis observing the effect, mostly
of race and gender in terms of False Matches and False
non Matches with more than 100 COTS FR systems. More
recently, a comprehensive survey on demographics differen-
tials on biometrics [16] demonstrated efforts in this direction
on the face, fingerprint, palm vein, iris, and palm print recog-
nition research. In March 2021, the European Association for
Biometrics (EAB) organized an event5 dedicated to such a
topic. Researchers from industry, governments, and academia
from all over the globe shared their expertise in such an effort
to measure and mitigate possible demographic differentials in
biometric systems.

The recent work from [17] describes some underlying fac-
tors that bias COTS face recognition systems concerning race.
For instance, they observed that the “Other Race Effect”,
well known in humans, [18] can also be observed in FR
algorithms; FR systems developed in Asia are more accu-
rate with Asian subjects than with Caucasians, and vice-versa.
Furthermore, they observed that demographic differentials are
frequently observed where low-quality probe samples are used.
The FRVT report also raised such observations about image
quality. Studying race, the work from [19] observed consis-
tently higher False Match Rates (FMR) with African American
cohorts compared with Caucasians using two COTS systems.
Furthermore, this work extended its analysis with ICAO face

5Demographic Fairness in Biometric Systems -
https://eab.org/events/program/237.
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checker.6 They observed that ICAO SDKs work better with
Caucasian subjects than with African Americans. The work
from [20] made an extensive study analyzing several age
cohorts using one COTS system. Among several observations
made, the most impacting one was the high FMR and high
False Non-Match Rates (FNMR) in pairs of images where
age is lower than four years old.

Focusing on face biometrics, the work from [5] introduces
the Racial Faces in the Wild dataset. Such dataset is a sub-
set of the MSCeleb-1M [21] whose identities are organized
in four different races (Caucasians, Black, Indian and Asian).
Using such data, the authors, at training-time, regularized
different deep neural networks by minimizing the Mutual
Information between the face recognition classifier and the
demographic attributes. In [22] the authors leverage from syn-
thetically generated data to train fairer DCNNs for FR. The
authors from [23] propose a framework to automatically cali-
brate the weight of samples at training-time of a DCNN based
on protected attributes. In [24] the authors followed a similar
path in the task of facial attributes classification. The authors
from [25] propose a post-processing mechanism based on
score normalization to deal with demographic discrepancies.

Demographic differentials towards gender were observed
using periocular biometrics. For instance, the work from [26]
demonstrates that several periocular recognition systems per-
form better with male subjects than with female ones.

The NIST SRE7 is the most relevant benchmark for speaker
recognition, and along with last editions, it consistently eval-
uates error rates looking at gender cohorts.

To the best of our knowledge, the works from biometric
literature that addresses somehow demographic differentials
by either analyzing COTS systems or proposing a strategy to
mitigate it do so using different criteria. However, the trend
seems to achieve somehow the statistical parity (or indepen-
dence), even if this detail is not explicitly mentioned. Even
if this is the trend, a figure of merit to directly address it
is nonexistent. For instance, the work from [27] uses the
Area Under the ROC curve as a figure of merit to mea-
sure demographic differentials. ROC curves measure the True
and False Positive Rates (TPR and FPR, respectively) trade-
offs. Although this seems sensible to assess demographic
discrepancies, it has a serious flaw; it assumes that the veri-
fication decision threshold (let us call it τ ; we will formally
define this further) is demographic-specific. Hence, TPR(τ )

and FPR(τ ) is computed under different decision thresholds
depending of the demographic and can give a false impres-
sion that a biometric verification system is fair (this problem
is further discussed in Section III). Furthermore, this does not
represent operational conditions where normally one single
τ is set, and this operational point has to be fair for differ-
ent demographics. This issue with ROC curves was recently
raised in [28]. This problem can be observed also in sev-
eral works that refers to biometric verification; for instance,
in [5], [17], [26], [29], [30].

6https://www.icao.int/Security/FAL/TRIP/Documents/TR - Portrait Quality
v1.0.pdf

7https://sre.nist.gov/

Some works in the biometrics literature explicitly analy-
sis the possibility of τ being demographic-specific, such as
in [31], [32]. Even in [4, Sec. 2, p. 14] (covering a general case
of pattern recognition), the authors work with the possibility
of one τ per demographic. For biometric recognition, strate-
gies in this direction might not be ethical, since it imposes
a disparate treatment on deployed systems. Furthermore, in
practical terms, this can involve another classification task in
the biometric recognition pipeline, which might be error-prone
and subject to disparities.

FRVT goes in the right direction concerning the afore-
mentioned threshold problem by discussing the impact of
demographics in terms of FMR(τ ) and FNMR(τ ) for one
decision threshold only. Such a decision threshold is picked
from an independent zero-effort score distribution, where the
demographic does not play a role. This is the most sensible
evaluation if the goal is to assess demographic differen-
tials in operational conditions. However, FRVT discussess
the impact of FMR(τ ) and FNMR(τ ) separately. Hence, the
trade-off between them is not considered. Furthermore, only
one decision threshold is analyzed, limiting the perception of
demographic differentials under different operational points.
In [6] a similar direction was taken where risk distributions
among the different demographic groups were equalized via
different approximation methods, introducing then threshold
invariant classifiers. However, no analysis in terms FMR(τ )

and FNMR(τ ) was carried out.
Our work tries to fill these evaluation gaps for biomet-

ric verification systems by: (i) - taking into consideration
the above-mentioned threshold problems (ii) - considering the
trade-off between FMR(τ ) and FNMR(τ ) in the demographic
differential assessment, and (iii) - taking into account different
operation points (decision thresholds).

III. FAIRNESS DISCREPANCY RATE: A FIGURE OF MERIT

TO ASSESS FAIRNESS IN BIOMETRIC VERIFICATION

Biometric verification is the task of verifying if a given
sample is from a claimed identity or not. This decision is made
based on a scoring function s(e, p) and a decision threshold
τ , where e is the claimed identity, p is a probe sample (test
sample). If s(e, p) ≥ τ it is said that e and p are from the same
identity. Conversely, if s(e, p) < τ it is said that e and p are
not from the same identity. There are two possible types of
errors that biometric verification systems can make, and they
are the False Match Rate (FMR) and False Non-Match Rate
(FNMR). Worth noting that these two errors are functions of
a decision threshold τ , whose impact is further discussed.

The value of τ plays a decisive role in these two errors.
Its value is usually set by targeting a specific FMR value in a
reference impostor score distribution set.8 Some examples of
such operational points are: τ = FMR10−1 corresponds to the
τ where FMR reaches 0.1 (or 10%) in the impostor distribu-
tion scores; τ = FMR10−3 corresponds to the τ where FMR
reaches 0.001 (or 0.1%) in the impostor distribution scores;

8Impostor score distribution is made of s(e, p) values where e and p are
not from the same identity.
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Fig. 1. Inception Resnet v2 FR system [2]: Genuine comparison pairs
extracted MOBIO Database [3]. The decision threshold is: τ = −0.5298.
Hence, score ≥ τ , the comparison pair is accepted; otherwise it is rejected.

τ = FMR10−6 corresponds to the τ where FMR reaches 10−6

(or 0.001%) in the impostor distribution scores.9

Given a test set, “good” biometric recognition systems
should present FMRx(τ ) around the operational point given by
x and the lowest value as possible for FNMR(τ ). Furthermore,
for a “good” biometric system to be considered fair, it
should present FMRx(τ ) around the operational point x for
all observed demographic groups and approximately “same”
FNMR(τ ) for all observed demographic groups. The impact of
the decision thresholds is illustrated in Figure 1. In this exam-
ple, we chose two comparison scores from male and female
subjects of the MOBIO dataset using one of our tested Deep
Convolutional Neural Network (DCNN) (see Section IV for
further details). Those genuine pairs were cherry-picked by
looking at the score values around the average genuine scores
for each demographic group. τ , in this case, equals −0.5298.
It can be noticed that both comparisons using female subjects
are rejected using this operational point, and the two male
subjects are accepted.

In this work, a biometric verification system is consid-
ered fair if statistical parity between groups is reached in
terms of both FMR and FNMR for a given decision thresh-
old τ . More formally, given a set of demographic groups
D = {d1, d2, . . . , dn}, and τ = FMRx,10 a biometric verifi-
cation system is considered fair with respect to FMR if the
following premisse holds.

Premisse 1: FMRdi(τ ) ≥ FMRdj(τ ) − ε ∀di, dj ∈ D.
Such premisse can be written with the following equation:

A(τ ) = max
(∣∣∣FMRdi(τ ) − FMRdj(τ )

∣∣∣
)

≤ ε ∀di, dj ∈ D, (4)

where ε is a relaxation constraint.
Conversely, in terms of FNMR, a biometric verification

system is considered fair if the following premisse holds.
Premisse 2: FNMRdi(τ ) ≥ FNMRdj(τ ) ∀di, dj ∈ D.

9Examples on how this is set in practice can be seen in this report
https://pages.nist.gov/frvt/reports/11/frvt_11_report.pdf section 1.1.

10τ is set using an independent zero-effort impostor score distribution with
scores from all demographics.

Such premisse can be written with the following equation:

B(τ ) = max
(∣∣∣FNMRdi(τ ) − FNMRdj(τ )

∣∣∣
)

≤ ε ∀di, dj ∈ D.

(5)

Since 4 and 5 are functions of τ , both can be summarized
in one figure of merit, that we refer as Fairness Discrepancy
Rate (FDR) which is defined as:

FDR(τ ) = 1 − (αA(τ ) + (1 − α)B(τ )), (6)

where α is a hyper-parameter that defines the weight of A(τ )

in the figure of merit (the importance of False Matches).
The values that FDR can take varies from 0 (maximum dis-

crepancy between two demographic groups) to 1 (minimum
discrepancy between two demographic groups). Worth noting
that we have chosen to compute maximum differences in the
computation of A(τ ) and B(τ ) instead of scaling them using
some statistics (e.g., z-norm) or ratios between false matches
or false non-matches of different demographic groups. We
have chosen this path, so we can better explore the differentials
for a large range of τ , where FNMRdi(τ ) = 0 is a possibil-
ity for some ranges and, the computation of such statistics in
these cases leads to arithmetical problems.

In the computation of A(τ ), only false matches from
biometric-references and probe pairs from homogeneous
groups are considered (e.g., comparison scores between Black-
White, Female-Male, . . . , samples). Several works in the
literature [15], [20], [33] show that the number of false
matches from non-homogenous groups is substantially lower
than with homogenous groups. Hence, to enforce parity
between homogenous and non-homogeneous groups seems
counter-productive since non-homogeneous comparison pairs
present naturally lower false-matches. As with equations (4)
and (5) FDR can be possibly thresholded with a slack variable
ε and an overall threshold defining what is fair and what is
not can be defined as:

{
fair if FDR(τ ) ≥ 1 − ε

unfair otherwise
(7)

The role of ε is discussed further in this section.
The following subsection presents one example of a desired

fair biometric recognition system and one example of an unde-
sired unfair biometric verification system that illustrates how
FDR evaluates these two systems.

A. Fairness Discrepancy Rate Using Synthetic Data

Figure 2 shows a canonical fictional example of a fair bio-
metric recognition system. Each box plot shows the score
distributions from both zeroth effort impostors (in red) and
genuines (in blue) of three abstract demographics (labeled as
0, 1, and 2). It is possible to visually inspect that the score dis-
tribution from the three demographics is systematically aligned
in all quartiles, which indicates that Premisses 1 and 2 can hold
for both FMR and FNMR for any given τ . In this experiment
τ = FMRx(τ ) where x varies from 10−3 to 10−6. Conversely,
on the other side of the spectrum, an example of an unfair
biometric verification system is presented in Figure 3. As it
can be noticed, the score distributions from both zeroth effort
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Fig. 2. Example of a canonical fair biometric verification system with three
demographics (0, 1, 2) and four operational thresholds (depicted with the
dashed lines). Performance measures in terms of FMR(τ ) and FNMR(τ ) can
be found in Table I. The zero-effort impostor scores are represented in red;
genuine scores are represented in blue.

Fig. 3. Example of a canonical UNfair biometric verification system with
three demographics (0, 1, 2) and four operational thresholds (depicted with
the dashed lines). Performance measures in terms of FMR(τ ) and FNMR(τ )

can be found in Table II. The zero-effort impostor scores are represented in
red; genuine scores are represented in blue.

impostors and genuines are not as aligned as in the previous
example (see Figure 2). Intuitively, one can argue that hav-
ing a single threshold τ that holds premisses 1 and 2 can be
problematic.

Let us now test FDR using these two theoretical systems.11

Table I presents FNMR(τ ), FMR(τ ) and FDR(τ ) for different
values of τ of the fair synthetic biometric system presented
in Figure 2. In this experiment τ = FMRx(τ ) where x varies
from 10−3 to 10−6. It is possible to observe that FDR(τ ) is
stable and higher than 0.99 for all values of x, which indicates
non-discrepant behavior concerning these abstract demograph-
ics. To analyse the other side of the spectrum, Table II presents
FNMR(τ ), FMR(τ ) and FDR(τ ) for different values of τ of
the unfair synthetic biometric system presented in Figure 3.
The values of τ are set in the same way as in the previous

11This example is available in the following link:
https://github.com/tiagofrepereira2012/fdr/.

TABLE I
CANONICAL FAIR BIOMETRIC VERIFICATION SYSTEM: FNMR(τ ),
FMR(τ ), AND FDR(τ ) PER DEMOGRAPHIC (DEMOG.) WHERE THE

OPERATIONAL POINTS ARE DEFINED AS τ = FMRx
*

TABLE II
CANONICAL UNFAIR BIOMETRIC VERIFICATION SYSTEM: FNMR(τ ),

FMR(τ ), AND FDR(τ ) PER DEMOGRAPHIC (DEMOG.) WHERE THE

OPERATIONAL POINTS ARE DEFINED AS τ = FMRx
*

Fig. 4. DET curves for the canonical fair and unfair synthetic verification
systems. It can be observed that analyzing this curves gives a false impression
that the unfair synthetic verification system is fair.

experiment. It is possible to observe that FDR(τ ) is consis-
tently higher for the fair biometric system than with the unfair
one, which indicates consistency in this figure of merit in the
evaluation of demographic differentials. On the other hand,
Figure 4 shows the Detection Error Tradeoff (DET) curves of
these two synthetic examples and the three demographics. It is
possible to observe that all six DET curves present the same
trends, overlapping each other. This example gives the false
impression that the unfair synthetic verification system is fair,
which is not as we could spot with the FDR.
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Fig. 5. FDR as a function of τ from two synthetic biometric systems from
Figures 2 and 3.

It is possible to plot FDR as a function of x (or τ ) to com-
pare two biometric systems. Figure 5 presents how the two
biometric systems can be compared under this figure of merit.
It is possible to observe that FDR is stable for all values of
x for the fair biometric system. FDR substantially decreases
once x decreases (when fewer false-matches are allowed)
for the unfair biometric system. Another way to establish a
comparison between two systems concerning demographic dis-
crepancies is by analyzing the Area Under FDR. For a given
range of τ (estimated by using x), the Area Under FDR can be
calculated by merely integrating the FDR(τ ) over x. The value
of x is scaled from 0 to 1, so Area Under FDR is bounded
to this range. However, by scaling it, the range of x has to
be reported. Hence, only Area Under FDR whose range of x
matches can be fairly compared. It is also possible to observe
that, using this figure of merit, the system that was intuitively
considered as fair (see Figure 2) presents a Area Under FDR
of 0.99 and the one that was intuitively considered as unfair
presents a Area Under FDR of 0.88 (see Figure 3).

B. The Role of Alpha

The hyper-parameter α ∈ [0, 1] in equation (6) has a
crucial role in the computation of FDR(τ ). As previously
mentioned, it controls the weight of False Matches in the
FDR computation. Such value is a business/application deci-
sion. For instance, a bank that deploys a biometric verification
system in an ATM might prefer to favor parity towards
False Non-Matches and, for this reason, α can assume low
values. On the other hand, in a border control scenario,
where false matches are critical, decision-makers might favor
False-Matches’ parity. Hence, α should be high.

Figure 6 shows the α trade-off between the two synthetic
systems; the fair ones are represented by the solid lines and
the unfair by the dashed lines. It is possible to observe that
the fair system presents a FDR(τ ) ∼ 0.98 no matter the value
of α. For the unfair system, FDR(τ ) presents a stepper decay
once α decreases. This also can be seen via the Area Under
FDR. As can be noticed in Table III, for the unfair biometric

Fig. 6. FDR(τ )|α for different values of α (see equation (6)). Solid lines
represent the FDR(τ )|α for the synthetic fair verification system. Dashed lines
represent the FDR(τ )|α for the synthetic unfair verification system.

TABLE III
AREA UNDER THE FDR FOR DIFFERENT VALUES OF α FOR x VARYING

FROM 10−3 TO 10−6

system, the Area Under FDR substantially changes once α

changes.

C. The Role of Epsilon

Another hyper-parameter in this figure of merit is the values
that ε can assume. As mentioned in equation (7), this value is
supposed to define what is fair and what is not with respect to
FDR(τ ). To the best of our knowledge, there is no reference
value that we can rely upon. In some particular cases, there
are some guidelines. For instance, as mentioned in [4, Sec. 2,
p. 19], the U.S. Equal Employment Opportunity Commission12

states that a disparate behavior between two groups occurs if
the probability of selection between them differ from more
than 20%. We can reasonably agree that having ε ∼ 0.20 in
equation (7) is not realistic for a biometric verification system.

This work will not draw a line to define what is fair and what
is not for biometric verification systems. As mentioned before,
there is no legal or technical basis for such, and the ones that
do exists are not suitable for biometrics. Instead, we will use
both FDR and Area Under FDR to compare different biometric
verification systems in terms of demographic differentials.

IV. FACE VERIFICATION USE CASE

This section presents a case study of the Fairness
Discrepancy Rate using three FR systems based on DCNNs
and one Commercial-Off-The-Shelf System (COTS). The first
DCNN system is based on the Inception-Resnet v2 archi-
tecture [2]. This model was trained with the MS-Celeb-1M

12https://www.eeoc.gov/laws/guidance/employment-tests-and-selection-
procedures
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dataset using a joint loss function combining the cross-entropy
loss and center loss. Check in [34, p. 147] more details on how
this DCNN was trained. The second DCNN is the ArcFace
model [35] from InsightFace (ArcFace-InsightFace).13 This
model is based on Resnet-101 architecture [36], and trained
using the ArcFace loss. The third is Resnet-50 based archi-
tecture [36] trained using the ArcFace loss. Such a model was
trained using the VGG2Face dataset [37]. More details on this
DCNN was trained can be found in.14 For these three biomet-
ric systems, comparisons between samples are made with the
embeddings of each DCNN using the cosine distance metric.
Given the embeddings e and p for enrollment and probing,
respectively, the distance s(e, p) is given by:

s(e, p) = 1 − e · p

‖e‖ · ‖p‖ (8)

Finally, the fourth face verification system a COTS
developed by RankONE.15

A. Dataset Setup

Several datasets are publicly available in the literature with
privacy-sensible attributes where FR systems assessments can
be carried out. The most recent ones available are based on
images from celebrities scraped from the Web, such as Racial
Faces in the Wild (RFW) [5], Balanced Faces in the Wild [29]
and, IARPA Janus Benchmark C (IJB-C) [38]. Although all
the aforementioned datasets contain meta-information that can
be used to assess demographic differentials, they were cap-
tured in the so-called “in a wild” conditions. Several factors
of variation, such as pose, illumination, occlusion, and image
quality, can play a role in the final recognition rates, which
might interfere with this initial FDR assessment. Since this is
the first work with this figure of merit, we have focused on
three datasets where capture conditions are “less in the wild”
and whose demographic attributes are available.

NIST developed the MEDS II database to support and
assists their biometrics evaluation program. Five hundred eigh-
teen identities compose it from both men/women (labeled as
M and F) and five different race annotations. They are Asian,
Black, American Indian, Unknown, and White (labeled as
A, B, I, U, and W). Unfortunately, the distribution of gen-
der and race is hugely unbalanced. Furthermore, only 256
subjects have more than one image sample (obviously, it is
impossible to do a biometric evaluation with one sample per
subject). For this reason, we have performed our evaluation
in a subset of this dataset, which is composed only of 223
subjects composed of White and Black men only (where we
have 109 white subjects and 114 back subjects). More details
about the organization of this evaluation setup can be found
on its website13.

Although dating from 2008, the MORPH dataset is get-
ting some traction recently [17], [19], [28] mostly because of
its richness concerning sensitive attributes. It is composed of
55,000 samples from 13,000 subjects from men and women

13https://github.com/deepinsight/insightface
14https://gitlab.idiap.ch/bob/bob.bio.face
15https://www.rankone.io version 1.22.1

TABLE IV
MEDS II - ARCFACE-INSIGHTFACE: FNMR(τ ), FMR(τ ), AND FDR(τ )

PER DEMOGRAPHIC (DEMOG.) IN THE TEST SET. THESE FIGURES OF

MERIT ARE FRAGMENTED BY THE RACE OF THE SAMPLES USED FOR

ENROLLMENT AND THE RACE OF THE SAMPLES USED FOR PROBE

(“(E-P)” IN THE TABLE.)*

and five race clusters (called ancestry), and they are the fol-
lowing: African, European, Asian, Hispanic, and Others. More
details about the organization of this evaluation setup can be
found on its website13.

The MOBIO dataset is a video database containing bi-modal
data (face/speaker). One hundred fifty-two people compose it
(split in the two genders male and female), mostly Europeans,
split into five sessions (few weeks time lapse between ses-
sions). The database was recorded using two types of mobile
devices: mobile phones (NOKIA N93i) and laptop computers
(standard 2008 MacBook). In this paper, we only use mobile
phone data. As with other datasets, its evaluation protocol is
also published as a python package.16

B. Experiments

This section discusses the demographic differentials of the
four FR systems using the Fairness Discrepancy Rate. Each
one of the following subsections discusses each database in
isolation. Both False Matches and False Non-Matches have the
same weight; therefore, α is equal to 0.5. As aforementioned,
we will not set a value for ε; instead, we will use FDR and
Area Under FDR to compare different biometric verification
systems concerning demographic discrepancies.

C. MEDS II Database (Demographic Differentials
Concerning Race)

Table IV presents the FMR(τ ), FNMR(τ ) and FDR(τ ) in
the test set for the ArcFace-InsightFace system. For the sake
of brevity, we present only this system in this comprehen-
sive manner. Please, check the supplementary material to have
information about the other systems. In this experiment, τ was
set at different operational points in the impostor score distri-
bution from an independent set (development set in this case).
It is worth noting that such impostor score distribution con-
tains samples from all races, which is the closest scenario to
operational conditions, where one single threshold has to be
fair to all demographic groups. Both FMRx(τ ) and FNMRx(τ )

tables are fragmented by demographics (race in this case).

16https://gitlab.idiap.ch/bob/bob.db.mobio
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Fig. 7. MEDS II: Fairness Discrepancy Rate of different face verification
systems for different decision thresholds.

Hence, in Table IV, “White - White” means biometric refer-
ences from White subjects compared with probe samples from
White subjects, and so on.

In terms of FMRx(τ ) it is possible to observe that for
x = 10−1 and x = 10−2 (τ = FMR10−1 or τ = FMR10−2 )
the face verification system tends to have more false alarms
for comparison between biometric references and probes from
Black subjects. We can also observe that the number of false
alarms using the comparison scores from different races (e.g.,
“White-Black” and “Black-White”) is substantially lower than
the number of false alarms using the pair gallery-probe from
the same race. This behavior was observed and reported in
several publications [15], [20], [33]. In terms of FNMRx(τ ),
it is possible to notice that such a system tends to reject more
White subjects than Black for x > 10−4.

Figure 7 presents the FDR plot of the four different bio-
metric systems covering the same decision thresholds showed
in Table IV. We can observe that all the four FR systems
tend to have more discrepancies between x = 10−1 and
x = 10−2. This reflects the amount of the false alarms raised
in these operational points (see Table IV). The system based
on Inception-Resnet-v2 presents more discrepancies than the
other ones for all operational points. This possibly indicates
that the recent state-of-the-art approaches are naturally fairer
than the past approaches, even if fairness constraints are not
considered in the current approaches (see [35]).

Table V (a) presents the Area Under FDR (varying from
10−1 to 10−5) of every biometric verification system. With
this summarized figure of merit, we can spot some of the
trends spotted with Figure IV. Furthermore, we can observe
that the current state-of-the-art FR approaches are fairer than
the evaluated COTS.

D. MORPH Database (Demographic Differentials
Concerning Race)

Table VI presents the FMR(τ ), FNMR(τ ) and FDR(τ ) in
the test set (Male subjects only) for the ArcFace-InsightFace
verification system. As with the last section, only this system
will be presented in this extensive manner for brevity. In this

TABLE V
AREA UNDER THE FAIRNESS DISCREPANCY RATE FOR (A) MEDS II,

(B) MORPH AND (C) MOBIO

Fig. 8. MORPH: Fairness Discrepancy Rate of different face verification
systems for different decision thresholds.

experiment, τ was set at different operational points in the
impostor score distribution from the development set. Both
FMRx(τ ) and FNMRx(τ ) tables are fragmented by demo-
graphics (race in this case) in the same manner as in the
previous experiment. However, in this one, we have four demo-
graphic groups, and they are the following: Asian, Black,
Hispanic, and White (samples labeled as “Others” were left
aside).

In terms of FMRx(τ ) it is possible to observe that from
x = 10−1 to x = 10−2 (from τ = FMR10−1 to τ = FMR10−2 )
the face verification system tends to have more false alarms
for comparisons between biometric references and probes from
Hispanic, Asian and Black subjects. Interesting to observe that
for x = 10−1, a significant amount of false alarms are observed
between Asian biometric references with Hispanic Probes and
vice-versa. In terms of FNMRx(τ ), it is possible to notice that
such a system tends to reject more Hispanic subjects from
x ≥ 10−4 and more White subjects from x ≥ 10−5.

Figure 8 presents the FDR plot of the four different biomet-
ric verification systems covering the same decision thresholds
showed in Table VI. We can observe that the four face
verification systems present demographic differentials from
x = 10−1 to x = 10−3 mostly due to false matches. From
x = 10−3 to x = 10−6 the ArcFace-InsightFace and the COTS
presents very little demographic differentials. Both operate at
FDR(τ ) ≥ 0.99. Demographic differentials from Resnet50 and
Inception-Resnet-v2 substantially increase from x > 10−3,
mostly due to the differences in false non-matches.

Table V (b) presents a full picture of the above obser-
vations with the Area Under FDR (x varying from 10−1



DE FREITAS PEREIRA AND MARCEL: FAIRNESS IN BIOMETRICS: FIGURE OF MERIT TO ASSESS BIOMETRIC VERIFICATION SYSTEMS 27

TABLE VI
MORPH - ARCFACE-INSIGHTFACE: FNMR(τ ), FMR(τ ), AND FDR(τ ) PER DEMOGRAPHIC (DEMOG.) IN THE TEST SET. THESE FIGURES OF MERIT

ARE FRAGMENTED BY THE RACE OF THE SAMPLES USED FOR ENROLLMENT AND THE RACE OF THE SAMPLES USED FOR PROBE (“(E-P)” IN THE

TABLE.)*

to 10−8)17 of every biometric verification system. We can
observe, in this experiment, that the ArcFace-InsightFace is the
fairest FR system, followed by the Resnet50, both based on
the ArcFace loss. COTS and the Inception-Resnet-v2 systems
present similar FDR (≈ 0.82).

E. MOBIO Database (Demographic Differentials
Concerning Gender)

Table VII presents the FMR(τ ), FNMR(τ ) and FDR(τ )

in the test set for the ArcFace-InsightFace system. MOBIO
dataset is composed basically of Caucasians, and for that
reason, this experiment focuses on gender differentials only.
Hence, FMRx(τ ) and FNMRx(τ ) tables are fragmented by
gender in the same manner as in the previous experiments.
In this setup, τ is set at different operational points in an
independent zero-effort impostor score distribution (from the
development set).

In terms of FMRx(τ ) it is possible to notice that from
x = 10−1 to x = 10−2 (from FMR10−1(τ ) or FMR10−2(τ ))
the face verification system tends to have more false alarms
for comparison between biometric references and probes from
female subjects. We can also observe that the number of
false alarms using the comparison scores from different gen-
ders (e.g., “Male-Female” and “Female-Male”) is substantially
lower than the number of false alarms from comparison scores
from the same gender. These are the same trends observed
before with race and, as already mentioned, the same trends
observed in the literature. In terms of FNMRx(τ ) such a
system tends to slightly reject more Male subjects at x = 10−5.

Figure 9 presents the overall picture about demographic
differentials using FDR. We can observe that the four face

17In this experiment, we have enough scores to place a τ at 10−6.

TABLE VII
MOBIO - ARCFACE-INSIGHTFACE: FNMR(τ ), FMR(τ ), AND FDR(τ )

PER GENDER IN THE TEST SET. THESE FIGURES OF MERIT ARE

FRAGMENTED BY THE GENDER OF THE SAMPLES USED FOR

ENROLLMENT AND THE RACE OF THE SAMPLES USED FOR PROBE

(“(E-P)” IN THE TABLE.)*

verification systems present demographic differentials from
x = 10−1 to x = 10−2 mostly due to false matches. As in the
previous experiment, the ArcFace-InsightFace and the COTS
presents very little demographic differentials from x = 10−3 to
x = 10−5; with both operating at FDR(τ ) ≥ 0.99. The FDR
for the systems based on Inception-Resnet-v2 and Resnet50
decreases from x ≥ 10−3, mostly due to false non-matches.
Finally, Table V (c) presents the Area Under FDR. We can
observe that, in this experiment, the COTS is the fairest
FR system, followed by the ArcFace-InsightFace by a short
margin.

F. Discussion

This section presented a case study using the proposed
Fairness Discrepancy Rate to assess demographic differentials.
Experiments with three open-source FR baselines based on
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Fig. 9. MOBIO: Fairness Discrepancy Rate of different face verification
systems for different decision thresholds.

DCNNs and one COTS system were used along with three
databases where gender and racial differentials were studied.
We could notice that FDR could summarize and compare
the demographic differentials concerning FMR and FNMR
between several FR systems. Furthermore, the Area Under
FDR gives a single scalar estimate of such differentials where
further rankings can be made.

With this assessment, we could notice that the current state-
of-the-art Face Recognition systems based on ArcFace loss are
fairer than the state-of-the-art from a few years ago and with
the evaluated COTS system. Worth noting that the DCNNs
based on ArcFace do not have any fairness constraints. We
can hypothesize that the margins imposed in the ArcFace
loss play a role in minimizing within-class variability and
maximizing between-class separation (embeddings from the
same identity tends to be more compact than DCNNs train-
ing “vanilla” cross-entropy loss). This possibly impacted the
scoring behavior allowing us to “safely” use fair decision
thresholds.

We could observe in Table VI with the MORPH dataset
that false alarms are more frequent with Asian, Hispanic,
and Black subjects (using operation points around 10−2). The
same trends were observed with female subjects using the
Mobio dataset. We can also observe the number of false alarms
using the comparison scores between non-homogeneous sam-
ples (gallery and probe samples from different demographics)
is substantially lower than homogeneous samples (gallery and
probe samples from the same demographic groups). This
corroborates with the findings of the literature [15], [20], [33].

FDR can be trivially extended to other biometric recog-
nition tasks, such as closed-set or opened-set identification.
For instance, for closed-set identification, it is possible to
compute the differentials between the rank-n [39, ch.21] of dif-
ferent demographic groups as a figure of merit of fairness. For
opened-set, it is possible to stablish an aggregation figure of
merit between Detection and Identification Rate (DIR(τ )) and
False Alarm Rate (FAR(τ )) for different demographic groups.
Further assessment of those extensions for identification will
be carried out as future work.

V. CONCLUSION

This work introduced the Fairness Discrepancy Rate (FDR)
to assess demographic differentials in biometric verification
systems. FDR tackles a threshold problem, which is the main
issue of how the biometric community addresses such dif-
ferentials. A substantial amount of works in the biometrics
community assess demographic differentials in verification
systems by comparing DET curves or ROC curves of differ-
ent demographic groups separately. This type of comparison
assumes that decision thresholds are demographic-specific,
which is not feasible or ethical in operational conditions. FDR
addresses that by assessing demographic differentials assum-
ing single decision thresholds. In this work, we consider that
fair biometric recognition systems are fair if a decision thresh-
old τ is “fair” for all demographic groups concerning FMR(τ )

and FNMR(τ ) and FDR proxies this behavior. Furthermore,
the FMR(τ ) and FNMR(τ ) trade-off with respect to fair
behavior can be set by addressing the value α in Equation (6).
Finally, the Area Under FDR provides a general overview of
demographic differentials under a range of decision thresholds
and allows a quick comparison between different biometric
verification systems.

Two groups of experiments were carried out to evaluate
this new figure of merit. In the first one, a case study using
synthetic data was presented, and it was demonstrated how
FDR behaves in extreme cases of fair and unfair scenarios. In
the second, a case study using four different face verification
systems and three databases was carried out. We could observe
via the FDR plots that all evaluated face verification systems
presents gender and racial biases to some degree. Furthermore,
it was possible to quickly compare different face recognition
systems concerning their demographic discrepancies using the
Area Under FDR. Worth noting that neither FDR nor Area
Under FDR is direct proxies for how “accurate” a biometric
verification system is. Possible error rates have to be ana-
lyzed in parallel to picture the trade-off between accuracy vs.
fairness fully.

We also briefly presented a possible trivial extension of
such a figure of merit to closed and opened-set identification
problems. Further work in this direction will be carried out.

For reproducibility purposes of the work, all the source
code, trained models, and recognition scores are made publicly
available.

We hope that these tools are useful for the biometrics com-
munity to assess demographic differentials, and we advocate
for some standardization towards ISO/IEC 19795-10.18 Hence,
the demographic differential can be easily assessed as any
other figure of merit, such as FMR or FNMR.
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