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ABSTRACT
In the past few years, there has been much work on incorporating

fairness requirements into the design of algorithmic rankers, with

contributions from the data management, algorithms, information

retrieval, and recommender systems communities. In this tutorial,

we give a systematic overview of this work, offering a broad per-

spective that connects formalizations and algorithmic approaches

across subfields.

During the first part of the tutorial, we present a classification

framework for fairness-enhancing interventions, along which we

will then relate the technical methods. This framework allows us

to unify the presentation of mitigation objectives and of algorith-

mic techniques to help meet those objectives or identify trade-offs.

Next, we discuss fairness in score-based ranking and in supervised

learning-to-rank. We conclude with recommendations for practi-

tioners, to help them select a fair ranking method based on the

requirements of their specific application domain.

CCS CONCEPTS
• Information systems→ Data management systems; • Social
and professional topics → Computing / technology policy.
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1 INTRODUCTION
In the past few years, there has been much work on incorporating

fairness requirements into the design of algorithmic rankers. And

while numerous surveys on fairness in machine learning have been

published, they typically focus on classification [4, 12, 32, 35]. In

this tutorial, we give an overview of the large and growing body

of work on fairness in raking, based on a two-part survey that we

published in ACM Computing Surveys in 2022 [51, 52].

We consider two types of ranking tasks — score-based and super-

vised learning — and discuss how fairness has been operationalized
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for both. In score-based ranking, a given set of candidates is sorted

on the score attribute, which may itself be computed on the fly,

and returned in sorted order. In supervised learning-to-rank, a

preference-enriched training set of candidates is given, with prefer-

ences among them stated in the form of scores, preference pairs,

or lists; this training set is used to train a model that predicts the

ranking of unseen candidates. For both score-based and learning-

to-rank, we typically return the best-ranked 𝑘 candidates, the top-𝑘 .

Set selection is a special case of ranking that ignores the relative

order among the top-𝑘 , returning them as a set.

While supervised learning-to-rank appears to be similar to clas-

sification, there is one crucial difference. The goal of classification

is to assign a class label to each item, and this assignment is made

independently for each item. In contrast, learning-to-rank positions

items relative to each other, and so the outcome for one item is

not independent of the outcomes for the other items. This lack of

independence has profound implications for the design of learning-

to-rank methods and, in particular, for fair learning-to-rank.

To make our discussion of fairness in ranking concrete, we now

present an example from university admissions, a domain in which

ranking and set selection are very natural and are broadly used.

1.1 Running example
Consider a university admissions officer who selects candidates

from a large applicant pool. When making their decision, the officer

pursues some or all of the goals listed below. Some of these may

be legally mandated, while others may be based on the policies

adopted by the university, and include admitting students who:

• are likely to succeed: complete the program with high marks

and graduate on time;

• show strong interest in specific majors like computer science,

art, or literature; and

• form a demographically diverse group in terms of their de-

mographics, both overall and in each major.

Figure 1 shows a dataset C of applicants and illustrates the admis-

sions process. Each applicant submits several quantitative scores,

all transformed here to a discrete scale of 1 (worst) through 5 (best)

for ease of exposition: 𝑋1 is the high school GPA (grade point av-

erage), 𝑋2 is the verbal portion of the SAT (Scholastic Assessment

Test) score, and 𝑋3 is the mathematics portion of the SAT score.

Attribute 𝑋4 (choice) is a weighted feature vector extracted from

the applicant’s essay, with weight ranging between 0 and 1, and

with a higher value corresponding to stronger interest in a specific

major. For example, candidate b is a White male with a high GPA

(4 out of 5), perfect SAT verbal and SAT math scores (5 out of 5), a

strong interest in studying computer science (feature weight 0.9),

and some interest in studying art (weight 0.2).

The admissions officer uses a suite of tools to sift through the

applications and identify promising candidates. These tools include
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candidate 𝐴1 𝐴2 𝑋1 𝑋2 𝑋3 𝑋4 𝑌1 𝑌2 𝑌3

b male White 4 5 5 {cs:0.9; art:0.2} 14 9 1

c male Asian 5 3 4 {math:0.9; cs:0.5} 12 9 1

d female White 5 4 2 {lit:0.8; math:0.8} 11 4 6

e male White 3 3 4 {math:0.8; econ:0.4} 10 7 6

f female Asian 3 2 3 {econ:0.9; math:0.5} 8 5 8

k female Black 2 2 3 {lit:0.9;art:0.8} 7 1 9

l male Black 1 1 4 {lit:0.5; math:0.7} 6 6 2

o female White 1 1 2 {econ:0.9; cs:0.8} 4 7 8
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Figure 1: (a) dataset C of college applicants, with demographic attributes 𝐴1 (sex) and 𝐴2 (race), numerical attributes 𝑋1 (high
school GPA), 𝑋2 (verbal SAT), and 𝑋3 (math SAT), and attribute 𝑋4 (choice) that is a vector extracted from the applicants’
essays; (b) is a ranking 𝝉1 on 𝑌1, computed as the sum of 𝑋1, 𝑋2, and 𝑋3; (c) is a ranking on 𝑌2, predicted based on historical
performance of STEM (cs, econ, math) majors; (d) is a ranking on 𝑌3, predicted based on historical performance of humanities
(art, lit) majors. In all cases, the top-4 candidates will be interviewed in score order, and potentially admitted.

score-based rankers that compute the score of each candidate based

on a formula that the admissions officer gives, and then return some

number of highest-scoring applicants in ranked order. This scoring
formula may, for example, specify the score as a linear combination

of the applicant’s high school GPA and the two components of their

SAT score, each carrying an equal weight. This is done in Figure 1(a),

where a candidate’s score is computed as 𝑌1 = 𝑋1 + 𝑋2 + 𝑋3 and

then ranking 𝝉1 in Figure 1(b) is produced.

Predictive analytics are also among the admissions officer’s toolk-

its. For example, multiple ranking models may be trained (e.g., using

any available learning-to-rank methods, such as RankNet [7] or

ListNet [8]), one per undergraduate major or set of majors, on fea-

tures 𝑋1, 𝑋2, 𝑋3, 𝑋4 of the successful applicants from the past years,

to predict applicant’s standing upon graduation (based, e.g., on their

GPA in the major). These ranking models are then used to predict

a ranking of this year’s applicants. In our example in Figure 1(a),

feature 𝑌2 predicts performance in a STEM major such as computer

science (cs), economics (econ), or mathematics (math) and leads

to ranking 𝝉2 in Figure 1(c), while feature 𝑌3 predicts performance

in a humanities major such as literature (lit) or fine arts (art)
and leads to ranking 𝝉3 in Figure 1(d). The promising applicants

identified in this way—with the help of either a score-based ranker

or a predictive analytic—will then be considered more closely, in
ranked order : invited for an interview and potentially admitted.

Let us recall that, in addition to incorporating quantitative scores

and students’ choices, an admissions officer also aims to admit a

demographically diverse group of students to the university and to

eachmajor. Further, the admissions officer is increasingly aware that

the data on which their decisions are based may be biased, in the

sense that this data may carry results of historical discrimination

or disadvantage [38], and that the computational tools at their

disposal may be exacerbating or introducing new forms of bias, or

even creating a kind of a self-fulfilling prophecy. For this reason, the

officer may elect to incorporate one or several fairness objectives

into the ranking process.

For example, they may assert, for legal or ethical reasons, that

the proportion of the female applicants among those selected for

further consideration should match their proportion in the input.

Further, the admissions officer may assert that, because applicants

are interviewed in ranked order, it is important to achieve propor-

tional representation by sex in every prefix of the produced ranking.

In this tutorial, we give an overview of the technical work that

would allow an admissions officer to compute ranked results under

these and other fairness requirements.

1.2 Scope and contributions
We are aware of several recent tutorials on fairness in ranking

at SIGIR 2019 [9], RecSys 2019 [17], VLDB 2020 [2], and ICDE

2021 [36], covering different approaches and pointing to the need

to systematize the work on fairness in ranking. In this tutorial, we

offer a broad perspective, connecting work across subfields. In the

remainder of this document, we give an overview of the content

of the tutorial, and refer the reader to the survey on which this

tutorial is based for additional details [51, 52].

2 CLASSIFICATION FRAMEWORK:
RECONCILING VALUES WITH TECHNICAL
CHOICES

Which specific fairness requirements a decision maker will assert

depends on the values they are operationalizing and, thus, on the

mitigation objectives. An important goal of our tutorial is to present

a classification framework for fair ranking methods that helps es-

tablish the correspondence between normative dimensions and

technical design choices. Figure 2 presents this classification frame-

work as a mind map.

Operationally, algorithmic approaches to fair ranking differ in

how they represent candidates (e.g., whether they support one or

multiple sensitive attributes, and whether these are binary), in what

fairness measure(s) they adopt, in how they navigate the trade-offs

between fairness and utility during mitigation, and at what process-

ing stage a mitigation is applied. Conceptually, these operational

choices correspond to normative statements about the types of bias

8



Fairness in Ranking: From Values to Technical Choices and Back SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

Normative Dimensions

Group Structure

Bias Type

Equal Opportunity

Worldview

Intersectional

Attribute Cardinality

Binary

Multinary

Attribute Number One

Multiple
Independent

Combination
Yes

No

Pre-existing

Technical

Emergent

Formal

Formal plus

Substantive
Rawlsian

luck-egalitarian

WYSIWYG

WAE

Continuous

Figure 2: A mind map summary of the classification framework for fair ranking methods.

Table 1: Summary of fair score-based ranking methods.

Method Group structure Bias Worldview EOP Intersectional

Rank-aware proportional

representation [46]

one binary sensitive attr. pre-existing WAE luck-egalitarian no

Constrained ranking

maximization [11]

multiple sensitive attrs.;

multinary;

handled independently

pre-existing WAE

luck-

egalitarian

(1 sensitive

attr. only)

no

Balanced diverse

ranking [44]

multiple sensitive attrs.;

multinary;

handled independently

pre-existing;

technical

WAE luck-egalitarian yes

Diverse 𝑘-choice

secretary [43]

one multinary sensitive attr. pre-existing WAE luck-egalitarian no

Utility of selection with

implicit bias [28]

one binary sensitive attr.

pre-existing;

implicit

WAE N/A no

Utility of ranking with

implicit bias [10]

multiple sensitive attrs.;

multinary;

handled independently

pre-existing;

implicit

WAE N/A yes

Causal intersectionally

fair ranking [45]

multiple sensitive attrs.;

multinary;

handled independently

pre-existing WAE Rawlsian yes

Designing fair ranking

functions [1]

any pre-existing any any yes

being observed and mitigated, and to the mitigation objectives. We

now summarize the facets of the classificaiton framework.

Group structure. Fairness of a method is commonly stated

with respect to a set of categorical sensitive attributes (or fea-

tures). We discuss several orthogonal dimensions of group structure,

based on the handling of sensitive attributes. Some methods con-

sider only binary sensitive attributes, while other methods handle

higher-cardinality domains of sensitive attribute values. If a higher-

cardinality domain is supported, methods differ in whether they

consider one of the values to be protected (a single designated group

that has been experiencing discrimination), or if they treat all sensi-

tive attribute values as potentially being subject to discrimination.

Further, some methods are designed to handle a single sensi-
tive attribute at a time (e.g., they handle either gender or race),

while other methods handle multiple sensitive attributes simulta-

neously (e.g., they handle both gender and race). Methods that

support multiple sensitive attributes differ in whether they handle

these independently (e.g., by asserting fairness constraints w.r.t. the

treatment of both women and Blacks) or in combination (e.g., by

requiring fairness w.r.t. Black women).

Intersectional discrimination. Intersectional Discrimination [14,

30] states that individuals who belong to several protected groups

simultaneously (e.g., Black women) experience stronger discrimi-

nation compared to individuals who belong to a single protected

9
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Table 2: Summary of fair learning-to-rank methods.

Method Mitigation
Point

Group structure Bias Worldview EOP Framework

iFair [29] pre-proc.

multiple multinary attr.;

independent

technical WYSWYG formal

DELTR [48] in-proc. one binary attr. pre-existing WAE luck-egalitarian

Fair-PG-Rank [42] in-proc one binary attr. technical WYSIWYG formal

Pairwise Ranking

Fairness [5]

in-proc. one binary attr. ? WYSIWYG formal-plus

FA*IR [47] & [50] post-proc.

one multinary attr.;

combination

pre-existing continuous

formal /

luck-egalitarian

Fair Ranking

at LinkedIn [22]

post-proc.

one multinary attr.;

combination

pre-existing; technicalcontinuous

none /

luck-egalitarian

(1 sensitive attr.)

CFA𝜃 [49] post-proc.

multiple binary attr.;

combination

pre-existing continuous

formal /

substantive

Fairness of

Exposure [41]

post-proc. one binary attr.

pre-existing/

technical

WYSIWYG /

WAE

formal /

luck-egalitarian

Equity of

Attention [6]

post-proc.

one multinary attr.;

independent

technical /

emergent

WYSIWYG formal

group (e.g., White women or Black men), and that this disadvan-

tage compounds more than additively. This effect has been demon-

strated by numerous case studies, and by theoretical and empirical

work [13, 15, 33, 40]. An immediate interpretation for ranking is

that, if fairness is taken to mean proportional representation among

the top-𝑘 , then it is possible to achieve proportionality for each gen-

der subgroup (e.g., men and women) and for each racial subgroup

(e.g., Black, and White), while still having inadequate representa-

tion for a subgroup defined by the intersection of both attributes

(e.g., Black women).

Intersectional concerns also arise in more subtle ways. For exam-

ple, when constraints are stated on individual attributes, like race

and gender, and the goal is to maximize score-based utility subject

to these constraints, then a particular kind of unfairness can arise:

utility loss can be particularly severe in historically disadvantaged

intersectional groups [44].

Type of bias. that a fair ranking method attempts to mitigate

— pre-existing, technical bias [3, 6] or emergent bias [34], as de-

fined by [20] — is another important technical dimension with

far-reaching normative consequences. We give examples of how

each type of bias may arise in ranking, and classify fair ranking

methods based on which bias type they aim to mitigate.

Mitigation objectives. This is a rich normative dimension of

our classification framework that includes both theworldviews fram-

ing of Friedler et al. [19], and the recently-proposed re-interpretation

of equality of opportunity (EO) doctrines for algorithmic fairness by

Arif Khan et al. [27].

We classify some fair ranking methods as those that are consis-

tent with formal EO, interpreted as either fairness through blindness

or formal-plus EO [18]. These methods require calibrated perfor-

mance across groups [24, 28]. We classify other fair ranking meth-

ods as those that are consistent with substantive EO. These are, in

turn, subdivided into backward-facing (i.e., correcting for a history

of disadvantage and taking the luck-egalitarian perspective [16, 39])

and forward-facing (i.e., ensuring equitable access to opportunity

over a lifetime and taking the Rawls’ Fair EO perspective [37]).

3 FAIRNESS IN SCORE-BASED RANKING
In score-based ranking, we categorizemitigationmethods into those

that intervene on the score distribution, on the scoring function,

or on the ranked outcome. Methods that intervene on the score
distribution aim to mitigate disparities in candidate scores, either

before these candidates are processed by an algorithmic ranker

or during ranking. Methods that intervene on the ranking function
identify a function that is similar to the input function but that

produces a ranked outcome that meets the specified fairness criteria.

Methods that intervene on the ranked outcome impose constraints

to require a specific level of diversity or representation among the

top-𝑘 as a set, or in every prefix of the top-𝑘 .

We present a selection of approaches for fairness in score-based

ranking listed in Table 1. All methods we present are mapped to

our classification framework, bringing out their commonalities

and differences that go beyond the purely technical choices, and

allowing us to reason about trade-offs.

4 FAIRNESS IN LEARNING-TO-RANK
In supervised learning, we categorize mitigation methods into pre-

processing, in-processing, and post-processing. Pre-processingmeth-

ods seek to mitigate discriminatory bias in training data, and have

the advantage of early intervention on the pre-existing bias. In-
processing methods aim to learn a bias-free model. Finally, post-
processingmethods re-rank candidates in the output subject to given

fairness constraints [23]. To mitigate unfairness, two main lines

of work on fairness-enhancing interventions have also emerged

over the past several years: probability-based [46, 47] and exposure-

based [3, 26]. During the tutorial, we give an overview of the meth-

ods listed in Table 2.
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5 PRACTICAL GUIDANCE
The final part of the tutorial consists of a discussion regarding the

practical aspects of fair ranker design, and recommendations for

the evaluation of fair ranking methods [25, 31].

For example, those methods that explicitly incorporate a notion

of utility into their fairness objective, namely Biega et al. [6], Lahoti

et al. [29], Singh and Joachims [42], and the disparate treatment and

disparate impact definition of Singh and Joachims [41]) generally

lean towards the WYSIWYG worldview and are consistent with

formal EO. In contrast, methods that explicitly exclude a utility

measure from the fairness definition (Geyik et al. [22], Zehlike et al.

[47], Zehlike and Castillo [48], Zehlike et al. [49], and the demo-

graphic parity definition of Singh and Joachims [41]), generally

lean towards the WAE worldview and substantive EO. Additionally,

some methods explicitly allow continuous interpolation between

two worldviews WAE and WYSIWYG, either by introducing a slid-

ing parameter or by allowing a range of values for the fairness con-

straints (Geyik et al. [22], Zehlike et al. [47], Zehlike and Castillo

[48], Zehlike et al. [49]). With these recommendations, we aim to

establish best practices for the development, evaluation, and deploy-

ment of fair ranking algorithms, and to avoid potentially harmful

uninformed transfer of methods between application domains.

As an interactive component of the final portion of the tutorial,

we discuss the fair ranking method by García-Soriano and Bonchi

[21]. This method proposes to trade off the WAE and WYSIWYG

worldviews in a specific way. The goal of the discussion is to situate

this method within the classification framework of Section 2, and to

compare it with some of the other surveyed methods based on the

normative dimensions that are induced by the technical choices.
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