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Abstract—Fairness is an important and interdisciplinary topic
employed in many fields. This article discusses fairness issues
in wireless networks. First, we address various issues in the
study on fairness. In general, we formulate the issues in fairness
research through the three core questions. Finding answers
them leads us to various nuances of fairness studies. Existing
fairness models are summarized and compared. We also look
into the major fairness research domains in wireless networks.
Relationship between fairness, utility and resource allocation are
also discussed. At the end of this article, we provide properties of
fairness and an example fairness management process. We also
state some challenges that point to further work on fairness in
wireless networks. Indeed research on fairness is entangled with
various other aspects such as performance, utility, optimization
and throughput at the network as well as individual (or node)
level. While consolidating various contributions in the literature,
this article tries to explain the nuances of all these aspects clearly
in the domain of wireless networking.

Index Terms—Fairness, Utility, Resource allocation, Wireless
networks, Jain’s index, Entropy, Max-min, Min-max, Propor-
tional fairness

I. INTRODUCTION

The field of wireless networking is experiencing a tremen-

dous growth. Many techniques, protocols, applications and

devices have been continuously addressed by industry as

well as academics. There are some crucial issues in wireless

networking technologies that are brought to fore by researchers

and one of them is fairness. Fairness is an interdisciplinary

research topic which is usually related to resource allocation.

For example, in economics, revenues which are to be divided

amongst shareholders, economic assistance to the persons in

need or resource sharing in a society are all subjected to

questions regarding their fairness. We are exposed to concerns

regarding fairness in every aspect of our lives, which is

also true in technologies. In computer architecture, different

computing resources are supposed to be shared fairly amongst

all processes and their threads. In computer networks, all nodes

expect to gain the bandwidth fairly and also the quality of

service (QoS).

To explain the significance of fairness in wireless networks,

we start with a simple scenario of an ad hoc network as

shown in Fig. 1. Nodes A, B, C, D and E are devices which

communicate with each other via wireless links L1 to L5.

Node C acts as a gateway while other nodes request the

Internet services. Many fairness issues can be explored in this

simple scenario. For instance, nodes should get fair chance

to access the Internet, bandwidth should be fairly shared,

Fig. 1. A simple illustration of a wireless network consisting of five wireless
nodes and six wireless links where the objective of the nodes is to access the
Internet services over Node C which acts as the gateway.

QoS requirements of the nodes should be fairly satisfied,

Energy consumption should be the same when the load is

similar. Further, the cost, link quality, throughput and other

performance aspects should be reasonable and fair . These

issues show the significance and diversity of fairness issues in

wireless networks, and there is no single method or solution

taking the lead here. Though this example is a simple we could

already see multifariousness of interpretations of the notion of

fairness. In this paper we try to capture this aspect of the

notion of fairness which is applicable to wireless networking

in general.

Next question that arises naturally is, what to do when

unfairness happens. This is not thoroughly studied. Mostly,

researchers focused on measuring the fairness in resource

allocations. Devising strategies to mitigate unfairness is also an

important aspect of fairness. There are two kinds of strategies

when unfairness happens:

• Compensating individuals treated unfairly in the previous

resource allocation round and somehow their losses are

addressed in the current round of allocations.

• Adjusting the allocation to reach fairness again, without

any compensation for the individuals treated unfairly.

To illustrate the above aspects, let us take two strategies. In

the first strategy, in Fig. 1, if Node A gets 5% of the network

capacity and B gets 35% and others get 20% each in the first

hour, it is termed unfair. Upon recognizing that the network

capacity allocation is unfair, Node A will get 35% and B will
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get 5% for the next hour to compensate the unfairness in the

first round of assignment. However, in the second strategy,

the system provides A with 20% and B with 20% to achieve

fairness without requiring any compensation.

There is no single way to rate one strategy over the other.

Now, based on the simple strategies mentioned above, we try

to address the following three core questions in this paper:

• Q1 What is fairness?

• Q2 How do we measure whether a system is fair to all

of its individuals?

• Q3 How to make a system fair?

Q1 is about the definition of fairness. It is rather difficult

to arrive at a consensus to provide a universally accepted

definition of fairness. Q2 is about how to measure the fairness

in a system. Q3 implies what to do when unfairness happens.

We discuss these questions based on the current literature

within the scope of wireless networking.

The rest of this paper is organized as follows. We illustrate

fairness issues in general in Section II. The definitions and

classifications are presented. Section III lists the most used

quantitative and qualitative fairness measures and two general

fairness models. They are also compared and analyzed. In

Section IV, the research trends and major fairness issues are

presented. A detailed discussion on the relation between fair-

ness, utility and resource allocation can be seen in Section V.

Furthermore, the properties of fairness models, an example

fairness management process and the challenges of fairness

issues in wireless networks are proposed in Section VI. We

conclude in Section VII.

II. WHAT IS FAIRNESS

In this section, the definition and classification of fairness

issues are discussed.

A. Definition

Definitions of fairness aim at answering Q1. In Oxford En-

glish Dictionary, the definition of fairness is “..., equitableness,

fair dealing, honesty, impartiality, uprightness,...” [1]. There

are some other fairness definitions, e.g., “an allocation where

no person in the economy prefers anyone else’s consumption

bundle over his own” [2] and “A fair allocation is free of

envy ” [3]. Sawyer et al., define fairness as “Equal treatment

to equal individuals and reserving preferred treatment for

those individuals who are in some sense more deserving [4]”.

However, these definitions draw our attention to the ambiguity

in identifying equal individuals in the first place. Furthermore,

equal treatment is another ambiguous term. While all these

definitions are fuzzy, they indicate, in general, the essence of

impartiality, justice, and satisfaction of individuals in general.

Now the task at hand is to translate these values into the

domain of wireless networking.

In Wireless networking domain, generally, fairness is at-

tributed to resource sharing or allocation. The consequence

of an unfair resource allocation among different individuals

may lead to resource starvation, resource wastage or redun-

dant allocation. Fairness has been mostly studied in resource

allocation based on impartial and justified strategies. Fairness

strategies allocate system resources reasonably to individuals

of the system in a distributed or centralized fashion. In this

paper, we use the term Individual (or Node)1 to refer to the

autonomous constituent of a system. A System represents the

conglomeration of individuals. For instance, in a wireless ad

hoc network, nodes are the individuals and ad hoc network

itself is the system.

It is rather difficult to agree on the definition of fairness

since it is subjective. When we consider rational individuals,

each individual evaluates the share of resources they receive

compared to others in the system from their own point of view.

Consequently, the definition of fairness or any effort to define

fairness is influenced by the value ascribed to the resources

by the designer of the system or by the individuals of the

system. Thus, most of the fairness research is around ascribing

a value to the shared resource. However, this is not an easy

task since the requirements by individuals are different and the

prices paid by those individuals also play a role. Further, the

system level resource usage should also be considered. Thus

we only track the efforts, hitherto, in defining fairness from

the literature. On the whole, finding a universally accepted

definition is not an objective of this article.

B. Classification

Equal opportunity provided to the individuals in resource

sharing may not mean equal allocation of resources. On

the other hand, a fair allocation may be an outcome of a

process where individuals do not have equal opportunity.

Therefore, targeted and resultant fairness may not be the same.

Furthermore, there may be temporal changes in the allocation

in a dynamic system. This suggests that fairness may also have

a temporal dimension. Fairness can also be considered from

the point of view of both, system and individuals. Moreover,

individuals of a system may have to carry out various tasks

in which case fairness can be defined per task. Thus in this

section, we dwell on these concerns and classify the fairness

definitions by providing simple but illustrative examples based

on the scenario shown in Fig. 1.

1) Targeted and Resultant Fairness: From the point of

view of resource allocation and utilization, fairness can be

divided into two types: targeted fairness and resultant fairness2.

Targeted fairness try to achieve fair sharing of resources but

resultant fairness aims at fair utilization.

Taking Fig. 1 as an example, all nodes are of the same

priority. When each node is assigned the same bandwidth

(we also refer it as the percentage of the total network

capacity/bandwidth), targeted fairness is achieved. However,

if the quality of Link L1 is worse than that of L3, it takes

longer time for A than B to access the Internet, which means

that A and B do not gain the fair access in the view of resultant

fairness. On the other hand, if we only consider the resultant

fairness, some individuals may starve to death. In the former

example with a contrived assumption that if A’s error rate is

1We use the terms node and individual interchangeably, not to affect the
natural flow while discussing the concepts.

2In [5], these two terms are mentioned as effort and outcome fairness. We
use different terms that could be easily comprehended but carry the same
meaning.
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extremely large, it will keep requesting for more and more

capacity, which will make others to gain lesser and lesser

capacity. In an adequate fairness model, both targeted fairness

and resultant fairness should be considered, and there should

also be a proper balance between them.

2) Short-term and Long-term Fairness: Considering the

time period, fairness can be categorized into short-term and

long-term [5], [6]. Short-term fairness focuses on resource

allocation in a very short time period, or in other words, mea-

surement of the fairness is done at certain selected moments. In

contrast, long-term fairness measures the resource allocation

over a longer time period or at the end of the life cycle. Short-

term fairness has a significant impact on QoS, especially in

real-time applications because of the focus on the current QoS

measurements. Long-term fairness is more important when the

resources are scarce. Since short-term fairness is very difficult

to be guaranteed with scarce resources when many individuals

are vying for it long term measurements are used to fall back

on. For example in Fig. 1 all nodes are assumed to have the

same priority. Let us say that at 18:00 each node gets 20% of

the network capacity, then they reach the short-term fairness

at this moment. However, during the previous hour, average

capacity of allocation were 10%, 20%, 30%, 5% and 35%,

implying that long-term fairness has not been achieved in this

period. We shall now take system and individual level fairness.

3) System and Individual Fairness: Fairness can be con-

sidered both on the system and individual level. The system

fairness addresses the overall fairness amongst all individuals

in the system, and individual fairness indicates whether a

certain individual is treated fairly by the system. For example

in Fig. 1, the system fairness of network capacity can be

defined as equal allocation (every node gets 20%). However,

Node A can be considered to achieve individual fairness when

it gets 20% of the network capacity without the concerns of

other nodes. Therefore in general, we say if a system reaches

system fairness, then all nodes should achieve individual

fairness, and if all nodes achieve individual fairness, then the

system is also fair. However, if one or more individuals are

treated unfairly, then the system is not considered as fair. The

above classification is considered to be pragmatic rather than

absolute. After this classification, we emphasize that fairness

can be very subjective, and researchers have different opinions

about resource allocation for a particular scenario.

III. HOW TO MEASURE FAIRNESS

We came up with three core questions on fairness issues

in Section I. In applications, the last two questions (Q2 and

Q3) are always termed as fairness measures and fairness

optimization models. Fairness measures are tools to measure

fairness level, and fairness optimization models distribute

resources in a fair way. Based on their quantitative ability, the

measures can be classified as quantitative or qualitative. First,

in this section, we present the most used quantitative (Jain’s

index and entropy measure) and qualitative fairness measures

(max-min and proportional fairness). Then a more general

quantitative fairness measure based on “Tian Lan’s” model is

introduced. In the sequel, an example of fairness optimization

model, envy-based, is discussed. At the end of this section, all

measures are compared with each other. We assume that there

is one type of resource whose total amount is x and there are n
individuals sharing this resource. X = (x1, x2, ..., xn) implies

the allocated resources, where xi is the amount of resource

allocated to individuals i = 1, 2, . . . , n. Sum of individually

allocated resources must be less than or equal to the total

amount, which can be written as
∑n

i=1 xi 6 x, where x is the

total amount of the resource.

A. Quantitative Fairness Measures

Quantitative fairness measures are usually real valued. We

define f(X) : R+
n → R

+ as the fairness measure based on

resource allocation X, where n is the number of individuals.

The basic requirements that a quantitative fairness measure

must satisfy are:

R1: f(X) should be continuous on X ∈ R
+
n .

R2: f(X) should be independent of n.

R3: The range of f(X) should be easily mapped on to

[0, 1].
R4: Function f(X) should be easily extendable to multi-

resources case.

R5: f(X) should be easy to implement.

R6: f(X) should be sensitive enough to the variation of

X.

The requirements R1 and R2 imply the generality of fairness

function f(X) with different resource allocations and various

number of individuals. R3 shows the scalability of f(X), and it

gives intuitive and direct impression on the fairness. Require-

ments R4 and R5 make f(X) realistic and implementable.

In the sequel, we review several frequently used quantitative

measures and identify the set of requirements they must satisfy.

1) Jain’s Index: Jain’s index (or simply fairness index)

was first proposed in [7] by Rajendra K. Jain. Four desired

properties of the fairness index were proposed in [7]:

• Independent of population size: The index should be

scalable with number of users (R2).

• Independent of scale and metric: The index should not

change with measures or metrics used. This property

implies that variance can also be a fairness index (R5).

• Boundedness: The index should be finite and it can be a

ratio between 0 and 1 (R3).

• Continuity: The index function should be continuous on

allocations (R1), and it should have the ability to measure

different allocations.

In coherence with the model properties given above, Jain’s

index is defined in [7] as,

f(X) =

[

n
∑

i=1

xi

]2

n

n
∑

i=1

x2
i

, (1)

where 0 6 f(X) 6 1. Jain’s index is one of the earliest

proposed and widely studied fairness measures. It can be used

generally and gives guidelines for fairness study in various
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domains. Fairness in an allocation can be represented by the

index value. A large value of f(X) represents fairer resource

allocation from the system perspective. As an example, Table I

shows different Jain’s index values with different network

capacity allocations for the scenario given in Fig. 1. In this

table, we can see that the allocation tends to be fairer when

Jain’s index is closer to 1.

TABLE I
EXAMPLES OF JAIN’S INDEX. (SEE FIG. 1)

Case 1 Case 2 Case 3 Case 4

xA 0% 5% 10% 20%

xB 5% 40% 30% 20%

xC 30% 50% 30% 20%

xD 0% 5% 10% 20%

xE 65% 0% 20% 20%

f(X) 0.3883 0.4819 0.8333 1

Even though Jain’s index provides insight into the overall

system fairness, it does not help in identifying the unfairly

treated individuals in case of single resource and similarly

weighted individuals. It needs complete information of the

allocation to compute the fairness index. However, it can be

modified and used in multiple resource allocation. In this case

X can be assigned as a combination of various resources.

For example in [8], Jain’s index is adopted and X represents

throughput, input load, and normalized throughput all together

in broad-band fixed wireless access (FWA) systems.

2) Entropy: Entropy was introduced by Shannon [9]. Since

it also reflects fairness aspects, some researchers, for example

in [10]–[12] and [13], employed it as a measure of fairness .

It assumes that the proportions of resource are allocated to n
individuals P = (p1, p2, ..., pn), and

pi =
xi

n
∑

i=1

xi

,

where 0 6 pi 6 1 (i = 1, 2, ..., n) and
∑n

i=1 pi = 1 [9].

The uncertainty of the distribution P, is called the entropy

of the distribution P and is usually measured by H(P) =
H(p1, p2, ..., pn) as given below [9].

H(P) =
n
∑

i=1

(

pi log2 pi
−1
)

. (2)

The Shannon’s entropy has the following basic characteristics

[12]:

• H(P) is a symmetric function of its variables when n >

2.

• H((p, 1−p)) is a continuous function of p for 0 6 p 6 1.

• H((0.5, 0.5)) = 1.

• H((tp1, (1 − t)p1, p2, ..., pn)) = H((p1, p2, ..., pn)) +
p1H((t, 1− t)).

When H(P) is used as a fairness measure, it is similar to

f(X). Only the absolute resource values of X are replaced by

resource proportions P in (2).

Four cases based on the scenario in Fig. 1 are given in

Table II, and we can find that entropy is larger when the

allocations are fairer.

TABLE II
EXAMPLES OF ENTROPY.

Case 1 Case 2 Case 3 Case 4

xA 1% 5% 10% 20%

xB 4% 40% 30% 20%

xC 30% 50% 30% 20%

xD 1% 4% 10% 20%

xE 64% 1% 20% 20%

H(P) 1.2518 1.4971 2.1710 2.3219

Even though H(P) may be employed as a fairness measure,

the quality of measuring the fairness is not clear yet. For

example, how sensitive they are to the allocation changes and

whether they can locate the unfairness. Similar to Jain’s index,

complete information of nodes and resource is required in the

metric.

3) Other Measures: There are some other measures of

variability adopted by researchers to measure fairness. For the

sake completeness we have listed them here.

• Difference or ratio between the highest and lowest values

of particular performance parameter could also as a

fairness measure [14], [15].

• Unfairness as a measure [16] can also be used to measure

fairness.

• Measures of variability such as Lorenz curve and Gini

coefficient can be used since they have the ability to

reflect distribution gap [17], [18]. However, they are not

as widely employed as other measures in fairness studies.

B. Qualitative Fairness Measures

Qualitative fairness measures are not able to provide a

measurement of fairness with a real number representation

however, they can judge whether the allocations achieve

fairness. Two most representative measures are max-min and

proportional fairness. We explicate them in the sequel.

1) Max-min: A feasible allocation3 of resource x to n users,

is max-min fair if for each user i, xi cannot be increased

(while maintaining the feasibility) without decreasing xj ,

where xj 6 xi, (i 6= j) [19]. In other words, a system

reaches max-min fairness, if it cannot increase any individ-

ual’s resource without decreasing another individual’s resource

allocation which is already less than the previous ones. Max-

min fairness (or bottleneck optimality) has been studied widely

and implemented in many applications, such as flow control,

bandwidth sharing, radio channel accessing, etc [19]–[22].

Similar to max-min fairness, we can define min-max fair-

ness which is a feasible allocation of resource x to n users, is

min-max fair if for each user i, xi cannot be decreased (while

maintaining the feasibility) without increasing xj , where xi 6

xj , (j 6= i). Min-max fairness is contrary to max-min fairness,

which is discussed in [19].

In a system with perfect max-min fairness, based on

the above definition, every individual gets exactly the same

amount of resource. For example in Fig. 1, if nodes do not

get the equal network capacity such as 10%, 20%, 30%, 30%

3A feasible allocation indicates that in any allocation round, the resource
can be re-allocated more than once in order to reach fairness amongst
individuals.
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and 10% for A, B, C, D and E, respectively, it is not max-min

fair, because we can increase A’s capacity (10%) by decreasing

B’s (20%) which is not less than A’s. The same results can

be seen in min-max fairness. On the other hand, if all nodes

obtain equal amount of network capacity (20%), then none

of the nodes can increase its capacity without decreasing the

capacity of other nodes which is no more than its own capacity.

“weighted max-min fairness” was proposed in [21] by

involving various individual weights in allocation. With a

weight set W = {wi|wi ∈ R
+}, X is weighted max-min fair

if xi cannot be increased (while maintaining the feasibility)

without decreasing xj , where xj/wj 6 xi/wi, (i 6= j). A

more general definition was given in [22], where the weight set

W was replaced by a weight function u(X). These definitions

provide a flexibility in achieving fairness, but poses other

issues such as the assignment of the weight set W and framing

the function u(X).
Max-min and min-max fairness are well-studied topics

in wireless networks. Max-min fairness has many modified

versions [23]–[34]. Many allocation methods based on max-

min fairness has been proposed in the literature. A max-min

fairness framework for flow control in ad hoc networks on

MAC layer was proposed in [35]. Additionally, several max-

min algorithms were provided, which were based on a flow

contention graph. Max-min rate allocation always results in

strictly equal rates in lifetime-limited ad hoc networks [36],

with any of the other constraints such as channel, topology,

choice of routes, and power. Trying to achieve equal rates may

result in severe inefficiency in wireless networks. However, as

shown in [36], in several cases max-min fairness does not

lead to equality in wired networks, clustered networks and

in long-term average power constraint of wireless networks.

It is shown in [19] that max-min fairness does not exist in

some cases based on theoretically feasible rate sets. Several

max-min and min-max algorithms are proposed both with and

without weight. A redefinition of max-min fairness in flow

control and rate allocation were proposed in [24] by treating

the occupying time of flows as resources. There are still many

other formulations by defining different optimization problems

based on max-min or min-max fairness. Some examples are

multiple resource max-min fairness and distributed max-min

fairness [19], [24], [33], [37]–[39]. There are some confusions

regarding max-min fairness and maximizing minimal-value

problems. Max-min fairness is a measure to judge whether

allocations are fair or not. However, the maximizing minimal-

value problems are optimization problems trying to equalize

the allocations. Here is an example,

max
X∈χ

(min
xi∈X

(xi)), (3)

where χ is the set of all possible resource allocation among

individuals.

Another variation of maximizing minimal-value problems

is the minimizing maximal-value problems, and an example is

given in Eq. (4).

min
X∈χ

( max
xi,xj∈X

|xi − xj |). (4)

The purpose of maximizing minimal-value optimizations is

to try to improve the resources of the individuals who get the

least amount of resource. However, minimizing maximal-value

optimizations attempt to decrease the largest gap between

individuals in a resource allocation. If xi is simply the amount

of resource, then the optimistic allocation in both these cases

will be the equal distribution amongst individuals. Even though

max-min fairness is different from the maximizing minimal-

value optimizations, the former may be achieved by latter ones

in resource allocation.

2) Proportional fairness: Proportional fairness was first

proposed by Frank Kelly in [40] based on changing rate

control for elastic traffic in computer network services. Propor-

tional fairness is proposed in multi-resource allocation. Since

proportional fairness was first presented for routing allocations

in [40], we rewrite it as a common fairness measure by

updating our basic model proposed in the beginning of this

section.

Consider a system with a set of resources Λ = {Ψj |j =
1, 2, · · · ,m}, and let Cj be the finite capacity of resource Ψj ,

and Xj = (xj1, xj2, · · · , xjn) is the allocation of resource Ψj

among n individuals, and xjk is the amount of resource Ψj

allocated to the individual k. An individual i’s allocation can

be written as, xi = (x1i, x2i, · · · , xmi), where i ∈ 1, 2, · · · , n.

Allocation for user i is proportional fair if it satisfies the

following three conditions [40].

• xji > 0.

•
∑n

i=1 xji 6 Cj .

• For any other allocation x∗
i , the sum of differences

between x∗
i and xi is zero or negative. That is,

m
∑

j=1

x∗
ji − xji

xji

6 0. (5)

Proportional fairness measures multi-resource allocation and

it is based on the view of single individual instead of one

kind of resource. Fairness for each individual on the different

kinds and amounts of resources allocated to it is measured.

Proportional fairness may become max-min fairness under

certain conditions, and further details can be found in [40].

A compact comprehensive convex utility set is necessary

to achieve the trade-off between fairness and utility [40]. An

example of individual utility function for xij is also given

in [40], which is u(xij) = log(xij). The system utility can be

written as
∑

i

∑

j log(xij). There are some other utility func-

tions in the literature along with the proportional fairness [41],

[42]. For instance, the utility functions in [40] are generalized

to a certain strictly log-convex and non-compact sets with an

example of SINR-based utility functions in wireless networks.

It is proved in [36] that proportional fairness is robust and

can achieve better trade-off between utilities than max-min

fairness when particular utility-metrics are involved during rate

allocation in ad hoc networks.

There are some variations of proportional fairness in the

literature. A (p, α)− proportional fairness4 was proposed in

[43]. Let P = (p1, · · · , pm) be the weight of an individual i

4(p, α) − proportional is also named as weighted α − proportional
fairness in [10].
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and α be a positive number. xi is (p, α)− proportional fair

if it satisfies the following conditions [43]:

• xji > 0.

•
∑n

i=1 xji 6 Cj .

• For any other allocation x∗
i ,

∑

j

pj
x∗
ji − xji

xα
ji

6 0. (6)

In (p, α) − proportional fairness, vector P assigns differ-

ent weights for different resources in multi-resource allo-

cation, which provides flexibility and controllability in the

allocation procedure. When pi = pj(i 6= j) and α = 1,

(p, α)−proportional fairness reduces to proportional fairness,

and when α becomes very large, it converges to max-min

fairness [43].

An optimization problem is discussed in [43] maxi-

mizes utilities (as
∑

i

piu(xji)) and guarantees a (p, α) −

proportional fairness simultaneously when utility function is

as defined below,

uα(x) =

{

log x if α = 1
(1− α)−1x1−α if α 6= 1.

(7)

Mo J. and Walrand J. have proved in [43] that when u = uα,

the allocation Xi reaches maximal utility if and only if Xi

is (p, α)− proportional fairness. Furthermore, it is shown in

[10] that (p, α)− proportional fairness can be characterized

by using the α − divergence measure. Uchida M. et al.,

proposed a new utility function in [10] by multiplying log(x)
by weights. A similar utility function can be seen in [44].

(p, α)− proportional fairness-utility trade-off mechanisms

were proved to have some advantages, it is not sure that these

utility functions can imply the real network performance. For

example, it is hard to predict the influence of rate allocation on

packet delay, because there are other factors which influence

the packet delay, such as the link quality and computational

capacity of hosts. To build a reasonable uniform utility func-

tion is even harder. Additionally, proportional fairness requires

the whole allocation information, which makes it difficult to

be used in distributed wireless networks. Therefore, most work

in the literature uses numerical methods.

C. Tian Lan’s Model

Tian Lan’s model was first proposed in [11]. As a quantita-

tive fairness measure, it is able to converge to Jain’s index, en-

tropy, max-min and proportional fairness with different values

of its parameters. It provides a general research platform for

fairness measures. We rewrite this model with more commonly

used symbols to make it coherent with the rest of this paper.

We first present the kernel of Tian Lan’s fairness. It satisfies

five axioms. We list the five axioms of fairness measure f(X)
below [11],

• Axiom of Continuity: f(X) is continuous on R
+
n , ∀n

(R1).

• Axiom of Homogeneity: f(X) is a homogeneous function

of zero degree; f(X) = f(tX), ∀t > 0. Without loss

of generality, for a single user, we take |f(X1)| for all

X1 > 0, i.e., fairness is a constant for n = 1.

• Axiom of Asymptotic Saturation: f(X) eventually be-

comes independent of the number of users,

lim
n→∞

f(ln+1)

f(ln)
= 1, (8)

where ln is a vector of length n.

• Axiom of Irrelevance of Partition: If we partition the ele-

ments of X into two parts X = [X(1),X(2)], the fairness

index f(X(1),X(2)) can be computed recursively (with

respect to a generating function g(y)) and is independent

of the partition, i.e.,

f(X(1),X(2)) = f(ω(X(1)), ω(X(2)))

g−1(

2
∑

i=1

sig(f(s
(i)))), (9)

where ω(X(1)) and ω(X(2)) denote the sum of resource

vectors X
(1),X(2), and g(y) is a continuous and strictly

monotonic function that can generate the following func-

tion h,

h = g−1

(

2
∑

i=1

sig(f(X
(i)))

)

, (10)

with positive weights satisfying
∑

i

si = 1 such that h

qualifies as a means of {f(X(i)), ∀i}.

• Axiom of Monotonicity: For n = 2, fairness measure

f(θ, 1 − θ) is monotonically increasing as an absolute

difference between the two elements, i.e. |1− 2θ| → 0.

Based on these five axioms, a unified representation of fairness

measure is proposed in [11],

fβ(X) = sign(1− β)









n
∑

i=1









xi
∑

j

xj









1−β







1

β

, (11)

where the sign(·) is the sign function and β is a constant for

an allocation. When β ∈ (0, 1)∪(1,∞), fβ(X) is proportional

fairness. When β → 0 it turns out to be the entropy fairness.

When β = −1, it becomes Jain’s index. Further details of its

convergence results and proofs can be found in [11].

Since five axioms for fairness measure are more general than

others, Tian Lan’s model provides guidelines for future design

of fairness metrics. However, it still requires the complete

information of the system, which limits the applicability

of distributed network algorithms and their implementation.

Besides, it cannot identify the unfairly treated individuals.

D. Fairness Optimization Model

Fairness optimization models focus on methods and strate-

gies to optimize fairness and utilities. These models have a

“decision-phase” during resource allocation, and they affect

allocations and utilities simultaneously. Envy is a measure

of degree of dissatisfaction of individuals to the resource

allocation. It was proposed in [45], wherein the measurement
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of fairness was based on different types of envy and degree,

e.g., pairwise envy, individual envy, group envy, ex post

unfairness/dispersion of envy, and ex ante unfairness. All these

are based on the individual utility functions ui(xj), which is an

evaluation function to measure the influence of the allocation

to i’s utility, and 0 6 ui(xj) 6 1, where ui is utility of

individual i, and xj is the amount of resource allocated to

individual j.

Pairwise envy reflects the envy degree between two indi-

viduals, and is calculated from the utilities of two individuals.

Sum of all pairwise envy levels of a node with respect to

all other nodes is the individual envy. Group envy, ex post

unfairness and ex ante unfairness is related to the dissatisfac-

tion of a group, the distribution of envy, and the sensitivity

of envy, respectively. Resource allocation is decided based on

both fairness and system utility. The details of envy functions

proposed in [45] are listed as follows.

• Pairwise envy: taking ui(xi) as the utility function, for

a given allocation X, the envy of individual i against

individual j is defined as,

eij(X) = uj(xj)− ui(xi). (12)

If eij(X) > 0, individual i is envious of j’s handle of

resources compared to its own.

• Individual envy: the envy of individual i is,

ei(X) =





1

n− 1

n
∑

j=1,j 6=i

eij(X)



 , (13)

where n is the number of individuals. The individual envy

is the average of its pairwise envies.

• Group envy: eG(X), the group envy is defined as,

eG(X) =
1

m

∑

i∈η

ei(X), (14)

where η is a set of m individuals. The group envy is the

average of individual envies in a group.

• Ex post unfairness/dispersion of envy: the ex post

unfairness is defined as,

IP (X) =
4

n

∑

i

(ei(X)− e(X))2, (15)

where e(X) is the mean value of ei(X). IP (X) is the

variance of individual envies.

• Ex ante unfairness: let A be the set of available actions

and S be the set of possible states s; a ∈ A is an

allocation and a(s) = (x1, x2, · · · , xn) represents action

a resulting in an allocation (x1, x2, · · · , xn). p(s) is the

probability that a particular state s is the best state that

can be chosen for allocation. Then the average expected

envy may be written as,

E(e(a)) =
∑

s∈Sa

p(s)e(a(s)), (16)

where E[e(a)] denotes the expected value of envy .

Further, IA(a), the ex ante unfairness, is defined as

follows:

IA(a) =
4

n

∑

i

(E[ei(a)]− E[e(a)])2. (17)

• Fairness: group envy and ex post unfairness are inde-

pendent additive fairness if (eG(X), IP (X); eG(X
′),

IP (X
′)) and (eG(X), IP (X

′); eG(X
′), IP (X)) are

judged equally fair, where Xand X
′ are different al-

locations. Then these two imply the form G(X) =
−KDeG(X) −KP IP (X), where KD and KP are non-

negative scaling constants. G(X) is an intermediate fair-

ness measure for an allocation X.

Then, fairness function F (a) is defined as,

F (a) =

[

∑

s∈Sa

p(s)G(a(s))

]

−KAIA(a) + 1, (18)

where KD + KP + KA = 1 indicates the relative

importance of the three parameters defined earlier –

eG(x), IP (x) and IA(a), respectively. The range of F (a)
is 0 (least fair) to 1 (most fair).

• Efficiency: fairness and efficiency are discussed jointly

in the envy-based fairness. V (a), the overall evaluation

of an action a, is expressed as a function of both fairness

(F (a)) and as a measure of efficiency. The measure of

efficiency should satisfy [45]:

– Pareto Optimality: if the utilities of all individuals i
(i 6= j) are the same under actions a1 and a2 and

the utility for individual j is greater under action a2
than under a1, then the aggregated utility function

should imply that a2 is preferred to a1.

– Anonymity: if u(X) = (u1(x1), · · · , un(xn) is a

permutation of u(X′) = (u1(x
′
1), · · · , un(x

′
n)), then

uG(X) = uG(X
′).

The efficiency is given by,

uG(X) =
1

n

∑

i

ui(xi). (19)

Further, efficiency for an action a is given by,

uG(a) =
∑

s∈Sa

p(s)uG(a(s)). (20)

V (a) is a non-decreasing function of fairness F (a) and

efficiency uG(a). An additive form,

V (a) = KUuG(a) +KFF (a), (21)

is the preference for action a, which may be appropriate

and justified to the group. Other forms (such as multi-

linear) of social preference may also be defined.

The procedure of making allocation decisions is presented

in Fig. 2 [45]. With a given resource allocation decision,

individual utilities are calculated first. Then, pairwise envy and

efficiency is obtained based on individual utilities. Computing

base of group envy, ex ante unfairness, ex post unfairness, and

individual envy is derived from pairwise envy. Finally fairness

is found by considering group envy, ex ante unfairness and

ex post unfairness. Both efficiency and fairness are employed

in the evaluation of allocation. The envy-based fairness is a
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Fig. 2. The working of envy-based fairness (redrawn from [Fig 3 in [45]]).

generic model without specific utility functions and strategies,

which give the possibility to be implemented in diverse

applications. Trade-off between system utility and fairness is

taken into account. Individual weights may be defined by

employing different utility functions, and individuals treated

unfairly can be identified too. A framework and guidelines

for fairness and allocation decisions are demonstrated in this

model. However, there are still some open issues, such as how

to tune envy-based fairness for specific scenarios, how to find

concrete utility functions and select the constants.

E. Comparison of Measures

Both quantitative and qualitative fairness measures have

many advantages and shortcomings. For example, the quan-

titative measures provide a real number revealing the level of

allocations. With this it is easy to compare two allocations

and choose the fairer one. However, these measures need

the complete information, which is not easy in distributed

systems. Based on qualitative measures optimization problems,

generally, simplify the decision-making procedure for fair

allocation. However formulation of utility is still an open issue.

We compare these measures in Table III considering various

attributes. The first three attributes, Definition, Measurability

and Capability , are based on the core questions Q1 , Q2

and Q3 . Weight gives individuals priorities in allocation.

Utility reflects on whether measures consider trade-off between

utility and fairness. Control discusses whether the system

is distributed or centrally controlled. Data indicates whether

the measure requires complete information of the system.

Requirements denotes the requirements (R1 to R6) that are

satisfied by measures. These requirements are proposed at the

beginning of this section. Complexity describes the complexity

of the computation of the measures – three levels simple,

medium and complex are used here for comparison. Table III

shows that none of the existing measures can perform well

with respect to all the attributes, thus combination of different

measures in resource allocation may be an option.

IV. FAIRNESS ISSUES IN WIRELESS NETWORKS

Research on fairness in wireless networks has increased

rapidly in the last decade. This increase does not only imply

the growth of wireless technologies and applications, but also

reveals the growth of interest in fairness research. We can find

several steps in its evolution.

1) Analysis-phase: Most of fairness discussions in this

period treats fairness as equality, and there was no spe-

cific measuring method used, for example, in [46]–[48].

Another example is first-in first-out queuing strategy.

This is treated as the fairest case in [49] using head-

of-line servicing.

2) Notional-phase: Some simple fairness measures for

wireless networks were introduced in this period. For

instance, in [50] a “uniform fairness”, which is the

difference between the maximum and minimum val-

ues, was proposed as a constraint in optimal channel-

selection scheme. Fairness was defined as the growth

of queue in [51] during bandwidth allocation for ATM

networks.

3) Development-phase: Many fairness indices and optimal

models such as Jain’s index, max-min and proportional

fairness are evolved and applied until now. For exam-

ple, a combination of max-min fairness and spectrum

efficiency was adopted in [52]. Proportional fairness

was analyzed in multi-channel and multi-rate wireless

networks in [44], [53] and [54].

Topics on fairness were studied in both resource alloca-

tion and utility optimization. Therefore, we classify these

topics from the points of view of resource allocation and

utility/performance measure. Some examples are shown in

Table. IV. To show explicitly where exactly these fairness

issues are used, they are also categorized into different layers:

Physical, MAC, LLC, Network, Transport, and Application

layers. In Table IV we introduce fairness topics in wireless

networks.

Since most of these topics require cross-layer design, we

summarize and discuss the research on fairness in wireless

networking based on the application domain instead of the

layers of OSI model. Fairness needs to be considered in

almost all resource allocation related problems in wireless

networks. In this paper, fair energy consumption control,

power control, topology control, link and flow scheduling,

channel assignment, rate allocation, congestion control and

routing protocols are discussed. These issues are not isolated

from each other, because many of them may co-exist and

influence each other. For instance, fair energy consumption

may be influenced by all other fairness issues in a multi-

channel ad hoc network. However, the ambit of these fairness

issues is different. Fair energy consumption is to enhance the

network’s life time. Fair power control is to assign powers

fairly to wireless nodes. To find the best logical topology in a
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TABLE III
COMPARISON OF FAIRNESS MODELS.

Models Jain’s index Entropy Max-min Proportional Tian Lan’s Envy-based

Definition Yes No Yes Yes Yes Yes

Measurability Yes Yes No No Yes Yes

Locating unfairness No No No No No Yes

Weight No No Yes Yes No No

Utility No No No Yes No Yes

Control Centralized Centralized Both Centralized Centralized Both

Data Full Full Both Full Full Both

Requirements R1, R2, R3, R5, R6 R1, R2, R5, R6 No No R1, R2, R3, R6 R1, R2, R3, R4

Algorithm Simple Simple Complex Complex Complex Complex

TABLE IV
EXAMPLES OF FAIRNESS ISSUES IN WIRELESS NETWORKS.

Layers
Fairness issues

Resource allocation Performance/utility measuerments

Application Network resources should be shared fairly among
different applications such as Internet bandwidth. For
example, the on-line video application for two users
in a LAN should share the bandwidth fairly.

The applications on one wireless device or different
devices should have fair utility in a wireless environ-
ment. For instance, two devices running online video
application should provide fair continuous realtime
playing and quality of videos.

Transport Flow control at transport layer, multiplexing ports,
and data buffering.

Quality of Service (QoS) among different end termi-
nals such as congestion control, reliability, end-to-
end communication and data loss rate.

Network Routing path choices, routing discovery, message
forwarding, and flow control on network layer.

Load balancing for wireless routers and security on
network layer amongst nodes.

Data link
LLC Flow control on LLC, Error detections, and multi-

plexing among different upper layer protocols such
as IP.

Bit error rates (BER) and packet delay.

MAC Multiple channel accessing such as collision avoid-
ance using TDMA or CSMA/CA, data packet queu-
ing and scheduling on physical layer, channel sharing
among different wireless technologies, such as Blue-
tooth, WiFi and zigbee, and flow control on MAC
layer.

Environment interference among nodes, and trans-
mission power control.

Physical Transmission power assignment on antennas and
battery energy allocation.

Lifetime, energy consumption, and other equipment
performance.

fair way is the main goal of fair topology control. Fair link and

flow scheduling focus on fairly allocating links to flows. Fair

channel assignment allocates channels fairly to nodes. Fair rate

allocation and congestion control balances the rates on links

without causing any congestion. Fair routing protocol mainly

balances the load amongst nodes acting as routers. Because

of different focuses and purposes, these fairness issues are

discussed separately to give a clear view of fairness study in

wireless networks.

A. Fair Energy Consumption Control

Most of fairness studies are concerned with the energy is-

sues in battery operated networks, in order to achieve increased

lifetime, energy balancing and saving strategies are required.

For example, to prolong the network lifetime significantly,

energy consumption in the backbone nodes is reduced in

[55]. Fair energy consumption is mostly studied in energy-

efficient routing protocols and combinatorial strategies of sleep

scheduling and topology control in wireless networks.

Energy consumption is significantly affected by the routing

protocols, especially for routers in wireless networks. Hence,

cross-layer design between MAC and network layer is mostly

employed. Energy consumption constraints were set for every

node in sensor networks [56] in order to balance the energy

consumption. Since no flow generation and routing of pack-

ets are allowed when the energy consumption exceeds the

threshold, nodes save energy and extend the network lifetime.

An intra-cluster routing protocol was proposed in [57] for

sensor networks. The residual energy in nodes is considered

when routing paths are chosen, which brings in fair energy

consumption and extends network lifetime. A similar fair

energy consumption study can be found in [58], [59]. Similar

rate of energy consumption as the fairest case is the goal of

these studies.

Sleep scheduling is always considered together with topol-

ogy control. Four states for nodes are involved: sleep, idle,

receive and transmit [60], [61] in most scheduling. In order to

guarantee the functionalities of the network while some nodes

sleep, clustering strategies are normally adopted. Clustering

strategies choose the cluster head periodically and the cluster

head changes topologies by scheduling sleep nodes, in order to

balance energy consumption. In this case, fairness is treated as

one of the performance indices of the network. For example,

an energy-efficient MAC protocol could use virtual clusters in

an ad hoc sensor network [62]. It has resulted in reduction of

per-node fairness and latency, but end-to-end fairness is not

affected much. Different cluster heads are chosen over time

to balance energy consumption [63]. Combination of cluster

head selection and sleeping schedule is discussed in [64]. Fair
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sleep scheduling, by giving all nodes equal opportunity to

be in backbone path is discussed in [65]. Sleeping period of

nodes was assigned due to its rate in [66], which partially

guarantees the rate-based-weighted fairness. Both rotational

sleep scheduling and fair use of residual energy – for energy-

efficient operation – is considered in the algorithm proposed in

[67] for mobile ad hoc networks. Even though fairness is con-

sidered with respect to sleep scheduling by many researchers,

it is still treated simply as equal sleep time without involving

any advanced models.

In the current literature, notion of fair energy consumption

is still being seen as “equal energy consumption”. Max-

min, proportional fairness, and even Jain’s index are seldom

used in measuring and reaching energy fairness. We believe

that all these fairness measures and the concept of weighted

fairness and utilities should be considered in fair energy

consumption and control. No significant studies on its impact

on the performance of the network, traffic, energy consumption

are provided. These aspects should be recognized as general

requirements while balancing of energy consumption.

B. Fair Power Control

Power control assigns transmission power levels to nodes.

Network topologies can be changed by power assignment,

which influence channel assignment, link scheduling, routing

and rate allocation significantly. Therefore, power control may

extend lifetime and increase the channel efficiency [68] too.

Two types of fair power control studies are seen in the

literature most of the time. First type treats fairness as a

separate utility. The second one studies fairness properties via

fairness of throughput and delay.

In the first type of fair power control, fairness is assigned

with a separate utility function. For example, in [69] the utility

function for proportional fairness as defined in [43] is adopted.

Proportional and max-min fairness are formulated together in

[30] with power control and rate allocation by rewriting the

utility function in [43]. Some trade-off can also be found

between fairness and other utilities, when it is formulated

individually. The study in [70] shows that power control may

cause unfairness in TDMA ad hoc networks if only the slot

utilization is considered. A trade-off between fairness and

delay can be seen when power control strategies are adopted

[69].

An optimization problem on maximizing network through-

put via power control was proposed in [71], and individual

throughput fairness was adopted as a constraint. A fairness

coefficient was proposed in [71] which is similar to Jain’s in-

dex, and only measures the overall system fairness. A fairness

threshold was set during power control, which guaranteed the

system fairness at a certain level, but unfairness and starving

of individuals may still happen. Short distance packets are

transmitted much more than long distance packets in IEEE

802.11 networks and a Power Controlled Multiple Access

Protocol (PCMA) is proposed in [68]. PCMA is based on

variable power bounds which can achieve fairness amongst

nodes in accessing the channel. Lujun [72] extended PCMA by

a novel power function with distances, which provided better

results in throughput, delay and fairness at the same time.

Fairness was treated as an input of the power control strategies

in the form of average link quality constraints in [73]. Zhu et

al., believed that the maintenance of equal average link quality

ensured fairness between links.

The main challenge in fair power control is that it involves

multiple layers in wireless networks, such as network layer

dealing with fair routing strategy [25], MAC layer for fair

spectrum access [28], [29], [68], [72], and physical layer

for transmission power management [26], [27], [38], [74].

Thus, cross-layer design for power control makes it even

more difficult and complex for achieving fairness. Another

problem is that, even though fairness notions are referred in

power control tremendously, only few articles have mentioned

advanced fairness measures, such as max-min and proportional

fairness. We believe that the involvement of new fairness

measures may change power control strategies in the future.

C. Fair Topology Control

Topology control in wireless networks is done by controlling

transmission power and thus managing the range of each node.

Both topology and power control have some common objec-

tives: minimizing interference, reducing MAC collisions and

energy conservation [75]. Power control focuses on MAC and

physical layer, such as power assignment to antennas. While

topology control normally works mostly at the network layer.

Graph theoretic approach, game theory and other analytical

tools are always adopted by topology control mechanism to

find the best logical topology for a particular application.

Fair topology control adds fairness as another objective

to the general topology control. Unfairness is more widely

discovered in small topologies than in large topologies when

CSMA/CA based medium access protocols are applied [76].

The unfairness is mainly caused by unfairly treating the border

nodes, which indicates the importance of fair topology control.

Similar to fair power control, two types of fair topology

controls are defined. In the first type fairness is distinguished

from other utilities and a separate fairness function is used

to measure fairness. The second one measures the fairness of

utilities, such as interference fairness and fairness in resource

access probability. For example, a separate fairness function

was adopted in [28], [43], [77]. A distributed method was

proposed in [77] for aloha networks, which only required

two-hop information to achieve proportional fairness. Pro-

portional fairness was considered during network topology

establishment in [28]. Fairness is treated as a congestion

measurement tool in [78] for logical network topology, and

max-min fairness is reached by maximizing the minimal free

bandwidth on logical links. Jain’s index is also adopted in

this work as a quantitative fairness measure for the flows, and

the fairness function in [73] is also used. A novel method

of combining routing protocols and auxiliary graphs based on

virtual network topologies are proposed in [79]. Load fairness,

as one main purpose of this method, is measured by Jain’s

index under various offered traffic.

The main challenge of fair topology control is to find the

influence of fairness models on wireless topologies, and how to
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dynamically measure and adjust fairness in topology control.

More advanced and particular fairness functions based on

the targeted application should also be developed. Cross-layer

and joint design with fair power control, link and channel

scheduling, routing protocols and congestion control are the

other prominent challenges in this regard.

D. Fair Link and Flow Scheduling

Link and flow scheduling mechanisms build interference

maps between links and then allocate the collision-free links

to flows dynamically. Interference maps are collision maps

for links which cannot transmit or receive packets at the

same time because of interference. Link allocation tries to

allocate as many possible non-interfering links under current

data flow requests attempting to reach high throughput and

low packet delay. In fair link and flow scheduling, the flows

are the individuals that are assigned with links as resource.

Hence, the problem is to find whether flows are treated fairly.

Two measures of fairness in the literature: fair transmission

opportunity and fair bandwidth allocation.

Fair transmission opportunity among flows is known as

TXOP in the study of IEEE 802.11 MAC protocols. A rate

adaptive mechanism was proposed in the study of MAC pro-

tocol in [80]. Packet drop rates in different flows are presented

and compared to show the fairness property of the proposed

MAC protocol. However, no quantitative measurements were

provided and strict equality were believed as fairness in [80].

A similar fairness notion can be found in another rate adaptive

TXOP mechanism for IEEE 802.11e in [81], which ensures

long-term fairness. However, most of studies of TXOP fairness

in the literature simply consider equality problems and hardly

discuss the priorities of flows.

Bandwidth allocation is the other aspect of link scheduling,

which treats link bandwidth as resources and allocates them

amongst flows. For fair bandwidth allocation, flows are trying

to get fair link capacity. Strict bandwidth fairness among flows

can improve the isolation between nodes, predict network

performance more easily and discover bottlenecks as shown

in [82]. A relative fairness bound was adopted as fairness

measure, which is the maximal bandwidth difference between

any two flows. It is a simple bandwidth fairness measurement

which tries to achieve equality in allocated bandwidth amongst

flows. The same relative fairness bound was employed in [83],

and bandwidth fairness were jointly considered in multiple

resource allocation. A similar joint bandwidth and resource

allocation can be found in [84] however max-min fairness

was used. Trade-off between fairness and throughput was

discussed during bandwidth allocation in [85]. A demand

satisfied factor (DSF) was employed in their algorithm, and

fairness is achieved by maximizing the minimal DSF of flows.

An algorithm was proposed in [86] to guarantee fairness by

allocating the capacity of links amongst flows by setting ca-

pacity thresholds for flows and adopting a strategy of slapping

penalties. A “rate anomaly” problem in IEEE 802.11 Wireless

LAN employing Distributed Coordination Function (DCF)

option can be found in [44]. The essence of this problem is the

unfair bandwidth usage among wireless devices in the same

LAN. Proportional fairness and weights based utility function

was proposed, and it ensures fair bandwidth sharing.

Fair link and flow scheduling influence node and network

performance significantly and in many aspects, for example

network capacity, packet delay, and energy consumption.

Therefore, the main challenge in fair link and flow scheduling

is the trade-off between fairness and utilities. We also suggest

that weighted flows should be considered in fair link and flow

scheduling since not each flow is equally important.

E. Fair Channel Assignments

Channel assignment is mostly considered in multi-channel

networks, such as cognitive radio networks (CRNs), het-

erogeneous wireless networks and wireless mesh networks

(WMNs). The major function of channel assignment is to

allocate radio and channel resources to flows or links and

achieving seamless transmission. Fair channel assignment adds

the notion of fairness into radio allocation, which guarantees

the fair sharing of channels amongst flows and links.

Heterogeneous wireless networks integrate different types of

wireless technologies and try to achieve successful migration.

Hence, fair channel sharing is required amongst different

flows, nodes and networks. Throughput, capacity, delay and

other performance should be considered at the same time dur-

ing channel allocation. For example three channel assignment

schemes (least channel, minimizing interference and maximiz-

ing capacity) were proposed in [87] considering both internal

and external interference, and Jain’s index was adopted to

measure the fairness amongst flows. Capacity is regarded as

the main goal of the channel assignment scheme in [88], and

weighted fairness is adopted as one of the constraints. Channel

hopping brings easy migrations among networks, but it may

increase the energy consumption, delay and packet drop rate.

Therefore trade-off between hopping overhead and flexibility

is considered in [89]. Fairness of successfully transmitted

flows was simply compared with different throughput in [89],

but further study on how to guarantee fairness was not pre-

sented. Fair channel assignment is always studied in a cross-

layer fashion with routing protocols, bandwidth allocation, rate

allocation, etc. For instance in [90], routing protocols were

combined with fair channel assignment. A simple fairness

constraint for routing was set to prevent starvation. Logical

topology control, interference control, and routing protocols

are jointly considered in [78]. Cross-layer design of rate

allocation, flow scheduling and channel assignment can be

seen in [91], which also adopt Jain’s index as the fairness

measure.

In cognitive radio networks the radio channels are reused

when they are not occupied by primary users. Spectrum

management in CRNs allocates white space to secondary

users. The sharing and assignment of spectrum becomes a

crucial issue in cognitive radio networks [30], [92] since it

influences the network performance directly. Two interference

models for CRN channel assignment can be found in the

literature based on: (a) signal to interference noise power ratio

(SINR) and (b) graph theory based.

SINR based channel assignment builds the interference

map between channels by fading models. Hence, SINR based
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channel assignment is always studied together with power

control. For example in [93] both SINR and fairness con-

straints are considered during channel assignment in CRNs

and Jain’s index measures the fairness of SINR of secondary

users. Both power and rate control were jointly studied with

channel assignment based on SINR. Optimization problems

were formulated based on max-min and proportional fairness

were in [30]. A trade-off between fairness and network utilities

in SINR based channel assignment was addressed in [94], in

which proportional fairness was employed.

Graph theory based channel assignment addresses collisions

between channels using graph theoretic approaches, in which

traditional graph theoretic algorithms are applied. Fairness in

this type of CRN channel assignment studies are mostly treated

as maximizing one of the network utilities. For instance,

in [95], a maximum matching and multiple coloring algo-

rithm based channel assignment were proposed. It is proved

that network adopting max-min fairness could achieve good

throughput under congestive traffic. Similarly, application of

graph coloring problems can be found in [96] and the access

fairness among secondary users are also described. Several

graph coloring algorithms are proposed in [97] and the notion

of fairness here is to provide equal rates to each user. Similar

problem formulations can also be seen in [98]–[101].

There are several major challenges in fair channel assign-

ment. One of them is precise collision modelling (interfer-

ence mapping), which may combine SINR, graph theoretic

approach and dynamic sensing techniques. Furthermore, joint

and cross-layer design is required in channel assignment,

which has to manage many resources as well as the system

utility. It is difficult to address the relationship between fair-

ness, resources allocation and performance due to the unpre-

dictability of wireless networks. Advanced fairness models and

measures should also be introduced in fair channel assignment.

F. Fair Rate Allocation and Congestion Control

Rate allocation apportions different flows on links simulta-

neously without causing congestion and performance degra-

dation in multi-rate wireless networks (or multiple-input-

multiple-output, MIMO wireless networks). Link scheduling

is different from rate allocation. In link scheduling, links are

treated as resources and allocated to flows and the focus is

on choosing links. Hence, it is always studied jointly with

power control and topology control strategies. While rate

allocation treats packets and flows as resources and allocates

them simultaneously to already existing links. Hence, they are

always studied with congestion control and energy efficient

strategies. Fair rate allocation is mostly applied at different

levels. Fairness of nodes can be used as a feedback during the

congestion control [113]. Packet level fairness was studied via

proportional fairness in MIMO wireless networks in [102],

and fairness in transmission delay, transmission time, and

services were also examined. Fair rate control is applied to

links [42], and a modified proportional fairness was proposed

to measure the rate of achieving fairness. Channel occupation

period of nodes can be treated as a method to achieve fair

rate allocation too [106], and two types of unfairness are

found in IEEE 802.11 distributed coordination function (DCF):

(a) performance anomaly and (b) up/downlink unevenness.

Some remedies for unfairness are adjustment of occupation

period of nodes at the MAC layer and maintenance of fair

transmission rate at the Transport layer.

Some trade-off between fairness and performance can be

seen, for example, trade-off between fairness and efficiency

in ad hoc networks [36], trade-off between fairness and

throughput [103], and trade-off between throughput fairness

and total network throughput [105]. Max-min and proportional

fairness was studied in ad hoc networks. Proportional fairness

achieves better trade-off between fairness and throughput than

max-min fairness [103]. Unfairness in rate allocation based

on IEEE 802.11 networks was studied and trade-off between

short-term and long-term fairness in rate allocation can be

seen [104]. An important aspect of fair rate allocation is

congestion control. Fairness is always treated as an extra

performance metric in congestion control strategies, because

unfair rete allocation may cause starvation amongst flows

citeSathiaseelan2007Multimedia. During congestion, fairness

amongst flows can be guaranteed by dynamic updating of

weight, when weighted Jain’s index is used [107]. Similar

congestion control can be achieved in upstream [108]. Indi-

vidual unfairness5 on both TCP and MAC can be caused by

TCP congestion control in IEEE 802.11 networks [110], since

the cumulative acknowledgment mechanism of TCP tends to

assign wider window for sending nodes than receiving nodes.

A cross-layer scheme was proposed in [110] to eliminate this

unfairness, which took feedback from MAC to adjust the TCP

congestion window.

Some studies of fair rate allocation can be found in wireless

video services because of their high traffic. Equal average

video quality is considered as the main goal in it [111],

[111]. Max-min fairness is employed in [112] to ensure

the equal video distortions amongst users. Amongst all the

fairness studies in rate allocation, simple equality, max-min

and proportional fairness measures are the most famous. We do

not think simple equality addresses fairness in all the scenarios.

The weighted measures might help some times. Even though

some advanced max-min fairness models are available in the

literature – for instance the price based max-min fairness in

[114] – most of the studies show that proportional fairness is

much better than max-min fairness during rate allocation. For

example, max-min fairness always leads to equality with few

exceptions, while proportional fairness can reach better trade-

off between fairness and efficiency in energy constrained ad

hoc networks [36], [103]. Therefore, in rate allocation studies

proportional fairness may be a better choice.

G. Fair Routing Protocols

Routing protocols address path discovery and path selection

in wireless networks. Path discovery mainly focuses on build-

ing network topology and maintaining the connectivity, while

path selection chooses the best paths for flows. It is shown in

[115] that routing protocols based on only hop count are not

5Node unfairness was called per-station unfairness in [110]. To keep a
coherent view in this paper, we use the term “individual unfairness”.
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suitable and efficient in wireless networks, since link quality

and congestion are not considered. A well-organized summary

of routing in wireless networks is available in [75]. We study

fairness topic in routing protocols concentrating more on its

influence on resource allocation and network performance.

The essential fairness issue in routing protocols is in path

selection strategies, which fairly distribute flows and packets

to paths. Because path selection in higher layer influences the

load on the nodes and links, different load lead to different

performance. Furthermore, since energy consumption and QoS

is influenced by flows, a joint study of fair routing with other

fairness issues is necessary. For example power control may

influence the network topology and impact routing eventually.

Link scheduling and topology control may completely change

routing tables. Fair rate allocation reduces congestion in net-

works and provides more abate routing environment. A joint

study of routing with power control and link scheduling is

presented in [116]. It tries to maximize fairness and throughput

together by adopting all constraints from link layer and con-

straints imposed due to power control and routing protocols.

A routing protocol in sensor networks with the purpose of

prolonging network lifetime is proposed in [117], which also

achieves fairness amongst flows. A cross-layer study in [103]

combined rate control, routing and scheduling in multi-channel

wireless mesh networks altogether and proposed algorithms to

maintain fairness.

There are still many open issues in fair routing. An impor-

tant one is the trade-off between fairness and network through-

put. Negotiation and compromise amongst nodes and, between

nodes and networks make the situation more complicated.

Multi-radio and multi-channel wireless networks require cross-

layer design of their routing protocols to make full use of the

channels and offer fairness at the same time [118]. Fair routing

protocol in distributed wireless networks is more complex

because of the negotiation strategies among neighbours and

the lack of information about the networks [119]. The effect

of routing protocols on fairness makes it difficult to develop

a good enough algorithm to achieve fairness with better

performance at the same time. Thus, a more advanced fairness

model is needed to cope with the cross-layer design issues.

V. FAIRNESS, RESOURCE ALLOCATION AND UTILITY

In the literature, most of the works do not distinguish

fairness, utility and resource allocation. Note that the notion

of utility may mean performance or efficiency in most of the

cases and scenarios. For instance, it is often simply defined

as throughput, delay, or other performance metrics [4], [28],

[120]. The term “utility” in this paper indicates the metric

which can indicate whether the resources allocation satisfies

an individual. It is usually converted from performance indices

except the fairness.

These three notions (fairness, resource allocation and utility)

are different:

• Fairness aims at the quality of equal treatment to equal

individuals of a system.

• Resource allocation tries to distribute resources amongst

individuals in a system.

• Utility of a resource or multiple resources is mainly

related to satisfaction or perceived value of the resource

to an individual or the whole system. Rational individ-

uals aim at maximizing the satisfaction of the resources

allocated to them which in turn impacts the performance.

Fairness can be measured both in allocation and utility

as “allocation fairness” and “utility fairness”. Meanwhile,

allocation fairness can be treated as a special case of system

utilities. Since resource allocation influences utilities directly,

achieving acceptable utility is a fundamental principle in

resource allocation. Another essential principle for allocation

is to guarantee reasonable fairness. Hence, resource allocation

is the action while fairness and utility are two rules that

constrain allocation. In this section, we explore the properties

for each of them and also the interdependence in detail.

A. Resource Allocation

Resource allocation involves the complete procedure of

resource distribution in a system. However, in this paper we

mainly focus on the allocation strategies which is tightly bound

to fairness. We classify resource allocation as the following

types.

• Possession: The possession reflects the owners of re-

source. We adopt two possession types: global and in-

dividual resources. Global resources belong to systems

and allocated at the system level. By contrast, individual

resources are held by individuals and allocated at the indi-

vidual level. For example, channels in wireless networks

are global resources but battery-energy is an individual

resource.

• Consumability: It indicates whether the resource is con-

sumable. For instance, energy in batteries is consumable

whereas channels are non-consumable.

• Allocability: Allocability considers whether resources

are able to be re-allocated. In wireless networks, band-

width can be re-allocated to different nodes at the same

time. However, some resources are individual in nature

such the battery as a resource for a node is only used by

that node.

• Quantity: Single-resource or multi-resource allocations

describe the quantity of resource allocation. When only

one type of resource is processed in an allocation, it is

a single-resource allocation. In contrast, when several

types of resources are considered at the same time

in an allocation, it is a multi-resource allocation. For

example, channel assignment in wireless networks is

a single-resource allocation. However, when it is con-

sidered jointly with bandwidth, the allocation becomes

multi-resource allocation. Multi-resource allocation usu-

ally considers correlated resources at the same time,

such as rate, radio and power together, or channels and

battery energy together. The complex relation between

these resources and their influence on the network per-

formance makes multi-resource allocation more difficult

than single-resource allocation.

• Management: Allocation can either be controlled cen-

trally or distributedly. In centralized management, a con-
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trol unit makes allocation decisions normally based on

complete information of the system. Whereas in dis-

tributed management, the nodes make allocation deci-

sions themselves, mostly based on partial information of

the system. Mostly distributed management is not as fair

as centralized control because of the lack of information.

However, less management communication overhead, less

computation, shorter information collection time can be

seen in distributed allocation. Besides, sometimes it is

impossible to get complete information. Considering a

mobile ad hoc network (MANET) with thousands of

nodes, where nodes are mobile, it is not realistic to gather

complete details of the whole network.

• Scope: Based on the scope of allocation it is classified

as global or local. Global allocation allocates resources

at the overall system level however the local allocation

considers the allocation locally. Global allocations may

contain multiple local allocations. For example, channel

allocation in a large-area wireless network includes mul-

tiple local allocations, because channels can be allocated

in different local areas if no interference is caused.

• Static and Dynamic Individual Set: Resource allocation

can also be classified as static individual and dynamic

individual allocations by knowing whether the individual

set is static. For instance, in MANETs, wireless nodes

join and leave the networks dynamically, which requires

the resource allocation to consider topology changes.

While in WLAN, the nodes are relatively static.

B. Utility

In wireless networks, utility is often always simply treated

as single or multiple performance aspects of network or nodes.

However, originally in economics, utility is considered as

a measure of satisfaction [121]. We adopt this concept of

utility in this article and describe it in the domain of wireless

networks.

The notion of utility in this paper is defined as the mea-

surement of satisfaction. Satisfaction in wireless networks is

indicated via one or more performance metrics. Node perfor-

mance and network performance exist in wireless networks.

For example, in Fig. 1, the throughput of Node A is the node

performance. However, the overall network capacity represents

the performance of the whole network. With both of these

perspectives, a network can be evaluated. Therefore, utility

can be divided into individual and system utility as shown in

Fig. 3. Performance metrics used can be merged into single

satisfaction term which is individual utility. Similarly, the

system utility can be obtained by system performance. Utility

can also be classified by the functions used. For example,

the functions can either provide an enumeration measurement

from performances to utilities, or the order of preference, both

of which can describe the satisfaction feature of utilities.

C. Fairness, Resource Allocation and Utilities

The relationship between fairness, resource allocation and

utility is shown in Fig. 3. Fairness can be measured both in

resource allocation and utility. Fairness can be either targeted

or resultant. The targeted fairness measures allocation, while

the resultant fairness measures the utilities. Therefore, fairness

in resource allocation and utility should be distinguished

and measured separately. Furthermore, fairness can also be

treated as a type of utility. During the evaluation of utility

from performance metrics, fairness can be considered as one

of the elements deriving to utilities. On the other hand, in

feedback mechanisms, the historical utility information of the

system may provide feedback to the fairness mechanisms and

influences it. One of the goals of resource allocation is the fair

distribution. Especially in wireless networks, starvation due to

lack of resources may lead to severe drawback in utility. An-

other goal of resource allocation is to maximize the system and

individual utilities. Resource allocation can influence utilities

directly, because different amount of resources allocated may

lead to large variation in performance. However, the utility

may provide feedback to the resource allocation algorithm in

order to achieve higher utility.

Sometimes, it may not be possible to guarantee the indi-

vidual fairness and the system utility at the same time. For

example in Fig. 1, let us take network throughput as the system

utility, and network throughput here can be defined as the data

transfer per second through Link L6. During Internet access,

we assume that Node B does not offer routing service for A

and C. We also assume that the quality of Link L1 is worse

than L3, e.g., capacity of L1, L2 and L6 are 1 MBps, 2MBps

and 8 MBps and the others are 1.5 MBps. The sharing of L6

to access the Internet in three cases is shown in Table V. In

Case 1, all nodes get 20% of the 8 MBps capacity of Link L6

to access the Internet. In this case, the network throughput

of Node A is min{8 × 20%(MBps), 1(MBps)}, which is

between the amount of L6’s capacity allocated to Node A

(8 × 20%(MBps)) and the capacity of Link L1 (1(MBps)).
Similarly, the throughput of other nodes can be obtained.

Therefore, the network throughput in Case 1 can be calculated

as min{8 × 20%, 1} + min{8 × 20%, 2} + 3 × min{8 ×
20%, 1.5} = 7.1(MBps).

TABLE V
EXAMPLES OF UTILITY IN FAIRNESS BASED ON FIG. 1.

Case 1 Case 2 Case 3

Node A (via L1) 20% 5% 35%

Node B (via L3) 20% 35% 5%

Node C 20% 20% 20%

Node D 20% 20% 20%

Node E 20% 20% 20%

Throughput 7.1 (MBps) 7.3 (MBps) 6.3 (MBps)

In Case 2 and 3, A and B get different shares, and C, D

and E get the average share of the link capacity, and the

throughput is also shown in Table V. Case 1 is fairer than

Case 2 and 3 in a general sense, because all nodes get equal

capacity. However, network throughput in Case 1 is larger

than 3 but less than Case 2. As a decision maker, Case 3

will be abandoned because of less gain in both fairness and

throughput. The question is which one should be picked from

the Cases 1 and 2, Case 1 is fairer but throughput is less than

that of Case 2. This problem suggests that there is a trade-off

between fairness and utility. Another example is the trade-off
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Fig. 3. Fairness, resource allocation and utilities.

between the utilization of time-slots and fairness in ad hoc

networks [70].

VI. DISCUSSIONS

We introduce some basic properties for fairness manage-

ment, then an example fairness management process is pre-

sented.

A. Properties of Fairness management Process

To allocate the wireless network resources in a fair way, the

fairness models in these networks should have the following

properties.

Measurement of Fairness: A fairness model should provide

a real number to imply the fairness experienced by the

individuals and the system, which is the basic requirement

of a fairness model.

Identification of Unfairly Treated Individuals: Unfairness

and improper allocations can be identified by a fairness model,

then resource allocation can be adjusted.

Optimization Mechanisms: Mechanisms should be used to

optimize the fairness.

Assignment of Weights: Different individuals may have

different priorities. Requirements, contributions, historical re-

source and other elements determine the weights of indi-

viduals. Therefore, a fairness model should incorporate a

mechanism to assign weights to individuals.

Distributed Management: Distributed algorithms should be

considered in a fairness model, especially when there is no

centralized management mechanism is available.

Group or Sub-system Fairness Mechanisms: In some

wireless network scenarios groups/clusters and sub-

systems/networks act as single individuals during network

resource allocation. A fairness model should also consider

fairness amongst different clusters and sub-networks.

Generality: A generic fairness model in wireless networks

can be used in various kinds of resource allocation instead of a

tight correspondence between particular model and a particular

scenario.

Adaptability: Adaptability should be considered with re-

spect to three dynamic aspects – individuals, weights and

resources. In some wireless networks, nodes may join or leave

the network with time, especially in mobile networks. Their

weights should be updated due to requirements of individuals,

information history, reputation and other factors dynamically

before every channel allocation. Resource availability in wire-

less networks may change with time too. A fair model should

be able to adapt due to the changing of environment quickly.

B. An Example Fairness Management Process

The process of fairness management fits in the “Plan-Do-

Check-Act” model (PDCA or Deming’s cycle) very well [122].

PDCA is a four step business model to iteratively control and

improve a certain process or a product [122]. Hereby, we adapt

the fairness management process into PDCA and illustrate the

main functionalities of each stage as shown in Fig. 4. Note that

all “individual(s)” can be replaced by group(s)/user cluster(s)

or sub-system(s)/network(s) in these modules.

The Plan, Check and Act stages answer the questions

Q1 , Q2 and Q3 , respectively. The Plan stage mainly

collects resource information, allocates weights to individ-

uals, formulates the allocation problem and finds the opti-

mal/accepted solution. Then the allocation solution is handed

to the Do stage, in which resources are allocated and results

are collected. The Check stage measures both fairness and

utilities based on the actual results. The Act stage compares

the actual results to the expected results in the Plan stage,

then it provides suggestions for adjustments. For example re-

allocating weights, compensating unfairly treated individuals

and improving utilities. These suggestions are adopted in next
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Fig. 4. Fairness management process in PDCA.

Plan stage to obtain better performance iteratively. The de-

tailed functionalities, inputs and outputs of PDCA for fairness

management are shown in Table VI.

A simple energy control mechanism is simulated based on

the process shown in Fig. 4. In this process, energy available

at each node is the resource and we “allocate” it by setting

thresholds for the energy consumption of nodes in the next

minute. When the energy consumption of a node exceeds

its threshold, the node turns to “sleep” mode and will wake

up at the beginning of the next minute. Fig. 5 shows the

network lifetime and network throughput for both with and

without energy control mechanisms. When the traffic is low,

energy is mainly consumed for maintenance rather than for

communication for both cases – with and without energy

control. When traffic increases energy is consumed at highest

rate for both with and without energy control. Therefore,

we see in Fig. 5(a) that the network lifetime for the above

two cases join together at the beginning and at the end.

Between these two extremes, we can see that network lifetime

is much longer when there is energy control, because the

fairness mechanism keeps balancing energy consumption be-

tween nodes, which extends the network lifetime significantly.

In Fig. 5(b), network throughput without energy control is

larger than the case with energy control, because the energy

consumption threshold limits throughput. However, if traffic

reaches the processing limits of nodes or capacity of links,

then network throughput achieves the maximal capacity of the

network either with or without power control.

The results in Fig. 5 show that the fairness mechanism based

on the process (in Fig. 4) maintaining fairness very well with

respect to energy consumption.

C. Challenges

Though many studies on Fairness have been reported al-

ready, there are still some open questions and challenges. We

report significant challenges that could be of interest to the

research community. We list them below.

• Multiple dynamic resources and mobile nodes must be

considered, instead of single resource and only a certain

number of nodes.

(a) Network lifetime, till the first node dies.

(b) Network throughput, sum of all node throughput in one minute.

Fig. 5. Simulation results for the scenario in Fig. 1 with and without energy
control mechanism(as in Fig. 4).

• How to identify unfairly treated individuals is not consid-

ered by mostly of existing fairness measures, therefore,

further study on this issue is needed.

• Corrective strategies when unfairness happens – either

re-allocating resources or adjusting current allocations –

need to be studied in more depth.

• Weights are the priorities of nodes getting resource in

resource allocations. Two more questions come to the

fore here: (a) “How to assign weights to individuals, or

what factors need to be taken into account while assign-

ing weights to individuals?” and (b) “How to allocate

resources according to individual weights?” The former

implies the strategies to distribute the weights, while the

latter focuses on strategies for resource allocation based

on individual weights. Many investigations have been

done on the latter one. However, the weight assignment

strategies should also be given due attention.

• As far as wireless networks are concerned, distributed

scenarios with partial information of the system must be
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TABLE VI
INPUT, OUTPUT AND FUNCTIONALITIES OF FAIRNESS MANAGEMENT IN PDCA.

Stage Input Output Functionalities

Plan Improving
suggestions

Resource allocation solu-
tions 1) Resource management: collecting the information about re-

sources, individuals and requests
2) Weight allocation: allocating weights to individuals based on

the collected information
3) Problem formulation: setting fairness and utility targets, and

formulating allocation constrains
4) Optimization: finding the best allocation solution

Do Resource alloca-
tion solutions

Actual results
1) Resource allocation
2) Collection of actual results

Check Actual results Fairness and utility mea-
sures 1) Fairness measurement: measuring the system and individual

fairness, and identifying unfairness
2) Utility measurement: measuring the system and individual

utilities based on the results

Act Fairness and util-
ity measures

Improving suggestions
1) Result comparison: comparing the expected and actual results,

then analysing the reasons of the difference
2) Suggestions: re-allocating weights, compensating unfairness,

and adjusting the accuracy of the optimizing algorithms for
the Plan stage

considered while designing fairness strategies or algo-

rithms.

• The computational complexity of fairness algorithms

should be acceptable, since nodes in wireless networks

in view of real-time applications always have energy and

computational limitations.

• The interference/relationship between fairness and utility

is another crucial issue to be looked into in more depth.

• System utility is mostly considered in earlier studies,

however influence of system utility on the individual

utility is not considered yet. Both system and individual

utility should be taken into account during allocation

especially in networks which consists of autonomous

nodes.

VII. CONCLUSIONS

In this paper we described, in depth, the fairness issues and

in particular its influence on the wireless networking research.

We raised three core questions, to begin with, to explore the

essence of investigations hitherto with respect to fairness in

wireless networks. Based on these questions, we summarized

general analytical models of fairness, and compared them.

Then, fairness issues in wireless networks were classified and

analyzed. We also studied the relationship between fairness,

utility and resource allocation. The properties for a fairness

model and an example fairness management process were

provided to explain various aspects of research on fairness.

At the end we also listed challenges in this particular research

domain. Many open issues still exist in the study of fairness

notion applied to wireless networks. Further studies are needed

to address these challenges.
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