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ABSTRACT

We present a fairness-aware model for predicting demand for new

mobility systems. Our approach, called FairST, consists of 1D, 2D

and 3D convolutions to learn the spatial-temporal dynamics of a

mobility system, and fairness regularizers that guide the model

to make equitable predictions. We propose two fairness metrics,

region-based fairness gap (RFG) and individual-based fairness gap

(IFG), that measure equity gaps between social groups for new

mobility systems. Experimental results on two real-world datasets

demonstrate the effectiveness of the proposed model: FairST not

only reduces the fairness gap by more than 80%, but achieves bet-

ter accuracy than state-of-the-art but fairness-oblivious methods

including LSTMs, ConvLSTMs, and 3D CNN.

CCS CONCEPTS

· Information systems→ Spatial-temporal systems; Data analyt-

ics; · Applied computing→ Transportation.
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new mobility, spatial-temporal data mining

ACM Reference Format:

An Yan and Bill Howe. 2019. FairST: Equitable Spatial and Temporal Demand

Prediction for NewMobility Systems. In 27th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems (SIGSPATIAL ’19),

November 5–8, 2019, Chicago, IL, USA. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3347146.3359380

1 INTRODUCTION

New mobility systems such as bike-sharing and ride-hailing have

been introduced in many cities, offering affordable and on-demand

transportation options for citizens. Accurate demand prediction is

crucial to guide resource allocation [8] in newmobility systems. For

example, ride-hailing companies predict demand to direct drivers

to high-demand areas [1]. Likewise, bikeshare operators rebalance

bikes from low-demand to high-demand areas based on demand

estimates [9]. However, new mobility services have been shown to

reinforce socioeconomic inequities [7]. Underestimation of resource

demand for the disadvantaged groups may result in insufficient
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Figure 1: FairST is a Fairness-aware Spatial-Temporalmodel

for new mobility systems. By incorporating a fairness reg-

ularizer, it makes equitable demand predictions between

groups defined by, for example, race, age, or education level.

supply to them which can produce a feedback loop: social dispari-

ties are misinterpreted in the model as lack of demand, reinforcing

reduced access to services. Therefore, spatiotemporal demand pre-

diction models for new mobility regimes must consider fairness as

a first-class design requirement.

In this paper, we incorporate fairness in a model for newmobility

resource demand prediction. We address three challenges to achieve

this goal: accurate modeling of the spatial-temporal dynamics of

mobility resource demand, defining novel fairness metrics suitable

for this task, and effective integration of fairness into the model.

Modeling the spatial-temporal dynamics of mobility re-

source demand. Resource demand exhibits complex spatial and

temporal patterns, and is influenced bymany factors such asweather

and road network [8]. We use a 3D convolutional neural network

(3D CNN) as the core building block in our model to capture spatial-

temporal dynamics [10]. To integrate exogenous features, we adopt

a three-stream architecture that fuses together 1D, 2D, and 3D con-

volutional layers, respectively. A 1D CNN is used to extract 1D

temporal features such as city-wide temperature, and a 2D CNN is

used to extract 2D spatial features such as bike lanes.

Designing fairness metrics for mobility resource demand.

Although fairness metrics is an active research area, there do not

exist metrics for continuous spatio-temporal prediction problems.

Many fairness metrics such as statistical parity are designed for clas-

sification [5] and typically require a categorical sensitive attribute

(e.g., white) [2, 3]. However, in our settings, both the prediction

target (e.g. bike demand) and the sensitive attributes (e.g., the per-

centage of white in a region) are usually numerical values. Moreover,

mobility resource demand is associated with zonal population [6],

so fairness metrics should be designed on a per capita basis. To

https://doi.org/10.1145/3347146.3359380
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address these challenges, we interpret fairness in demand predic-

tion as the requirement that individuals of different groups have

access to a similar amount of the resource. We propose two metrics:

region-based fairness gap (RFG) and individual-based fairness gap

(IFG). Both assess the gap between mean per capita demand across

groups over a period of time. However, RFG assumes that a distinct

label (e.g., white) is assigned to a region. IFG instead is assigned a

distribution (e.g., percentage white) based on demographics.

Integrating fairness into the predictionmodel. Fairness can

be enforced during different stages of the machine learning, includ-

ing data preprocessing, model training, and postprocessing [2, 5].

We propose two regularizers, corresponding to RFG and IFG, to be

encoded as regularizers in the loss function during training. To the

best of our knowledge, our work is the first to incorporate fairness

in a spatial-temporal mobility setting using deep neural networks.

We introduce FairST, a Fairness-aware Spatial-Temporal model

that accounts for dynamics of mobility resource demand and en-

forces fairness through regularizers (Figure 1).Our experiments on

two real-world datasets demonstrate that FairST effectively closes

the fairness gaps while outperforming state-of-the-art but fairness-

oblivious models. FairST can be extended to other spatial-temporal

scenarios with fairness concerns such as crime incidence prediction.

2 USE CASES

2.1 Datasets

We obtained Seattle dockless bikeshare data from the Trans-

portation Data Collaborative operated by the University of Wash-

ington. The data spans from October 1, 2017 to October 31, 2018,

including over 1.6 million trips. We use the number of pickup as a

proxy for demand. RideAustin 1 is a ride-hailing service in Austin,

Texas. Rides data is openly available 2. The data used in this paper

spans from August 1, 2016 to April 13, 2017, including over 1.4

million trips. We use the number of rides as a proxy for demand.

Socioeconomic data such as population and race for Seattle and

Austin at the block group level were obtained from the SimplyAna-

lytics database 3. We obtained 1D weather data such as city-level

temperature for both cities from NCEI 4. We collected 2D urban

data such as bike lanes from open data portals 5.

Data preparation. We place a bounding box around a city and

partition the bounding box into equal-sized squares. We choose a

grid size of 1km by 1km for Seattle Bikeshare and 2km by 2km for

RideAustin. For each grid cell, resource demand forms a time series.

For each hour, the study area can be likened to a frame in a video

and each region can be seen as a pixel with demand as its value.

2.2 Prediction Problem Definition

We aim to build fair models to forecast next time step demand

for mobility resource for a city based on the demand of previous

time steps. For Seattle bikeshare and RideAustin, we aim to predict

hourly demand based on the demand of the last 7 days. For Seattle

bikeshare, we use the data from October 2017 to August 2018 for

1http://www.rideaustin.com/
2https://data.world/ride-austin/ride-austin-june-6-april-13
3EASI/MRI Census US. Retrieved from SimplyAnalyticsdatabase
4https://www.ncei.noaa.gov/access/search/index
5https://data.seattle.gov/, https://data.austintexas.gov/

training and the data from September 2018 to October 2018 for test-

ing. For RideAustin, we use the data from August 2016 to February

2017 for training and the data from March 2017 to April 2017 for

testing. The prediction should balance two objectives: minimizing

prediction accuracy loss and minimizing fairness loss.

3 MODEL AND FAIRNESS METRICS

3.1 Model Architecture

We design a three-stream prediction framework to 1) automatically

capture the spatio-temporal context, and 2) include external features

to help with accuracy. We use a 3D CNN submodel to learn from 3D

historical resource demand, a 1D CNN submodel to learn from 1D

time series features, and a 2D CNN submodel to extract 2D urban

information. The outputs of all submodels were fused together,

on top of which additional convolutional layers were applied to

achieve the final prediction (See Figure 2).

The first submodel is based on 3D convolutions, which model

spatial-temporal information. It consists of three 3D convolutional

layers, followed by a 2D convolutional layer. The third 3D convolu-

tional layer adopts 1 filter to achieve temporal pooling. Finally, a

2D convolution layer is used to integrate information and output

the feature map for submodel fusion.

Training objectives. Our loss function is a weighted sum of

an accuracy loss and a fairness loss. The fairness loss acts as a

regularizer for the model. We use Mean Absolute Error (MAE) as

accuracy loss. The overall loss function is defined as

L = Laccuracy + λLf airness (1)

where Laccuracy is MAE, Lf airness is the fairness loss, and λ

is the weight for the fairness loss. In the next section, we describe

details of the proposed fairness loss.

3.2 Fairness Metrics and Regularizers

We consider fairness as individuals of different groups receiving

equal resources. In the mobility setting, fair prediction implies ad-

justing the demand to reduce the difference in per capita demand

among groups. Our definition adapts group fairness that requires

the disadvantaged group to experience similar predicted outcomes

as the advantaged group [5], and vertical equity that requires trans-

portation policies to favor the disadvantaged groups [4].

We therefore propose two fairness metrics: a Region-based Fair-

ness Gap (RFG) and an Individual-based Fairness Gap (IFG). Both

metrics measure the gap between mean per capita demand across

two groups over a certain period of time. However, for RFG, each

geographic region is assigned a categorical group label (e.g., Cau-

casian or non-Caucasian) according to some criteria. For IFG, the

group label is assigned proportionally based on the region’s de-

mographics, so that it is numeric (e.g., percentage of Caucasian).

Although here we focus on a square grid partitioning, these two

metrics can be used for any customized partitioning.

Notation.We start by introducing notation.

• Let si be the ith square region of the study area S.

• Let pi denote the population of square region si divided by

the total population of the city.

• Let ŷi,t and yi,t be the estimated demand and ground truth

demand for region si at time t , respectively.

http://www.rideaustin.com/
https://data.world/ride-austin/ride-austin-june-6-april-13
https://www.ncei.noaa.gov/access/search/index
https://data.seattle.gov/
https://data.austintexas.gov/
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Figure 2: A three-stream network for new mobility resource demand prediction. T, H, W are the number of time steps, height

of input, and width of input, respectively. N and M are the number of 2D and 1D features, respectively.

• Let ET [ŷi,t ] be the average predicted value for the ith square

region in S over time period T .

Region-based Fairness Gap (RFG). Let every region si be as-

signed to one of two groups (e.g., Caucasian and non-Caucasian)

with regard to one sensitive attribute A (e.g., race), denoted by G+

(the advantaged group) and G− (the disadvantaged group). We de-

fine RFG between two groups with regard to sensitive attribute A

over a period of time T as follow:

RFG =

∑

i ∈G+ ET [ŷi,t ]
∑

i ∈G+ pi
−

∑

j ∈G− ET [ŷj,t ]
∑

j ∈G− pj
(2)

Individual-based Fairness Gap (IFG). Letw+i denote the per-

centage of people in the advantaged group in region si and letw−
i

denote the percentage of people in the disadvantaged group. For

example, if a region si is 65% white, thenw+i = 65% andw−
i = 35%.

Formally, we define IFG over T as follow:

IFG =

∑

i ∈S ET [ŷi,t ]w
+

i
∑

i ∈S piw
+

i

−

∑

j ∈S ET [ŷj,t ]w
−
j

∑

j ∈S pjw
−
j

(3)

Fairness loss. Based on the RFG and IFG, we define two corre-

sponding fairness loss terms to incorporate fairness into training.

The Region-based Fairness loss (RF loss) at time t is defined as

LRF (t) =
1

∑

i ∈S yi,t

�

�

�

�

∑

i ∈G+ ŷi,t
∑

i ∈G+ pi
−

∑

j ∈G− ŷj,t
∑

j ∈G− pj

�

�

�

�

(4)

The first term is the estimated per capita demand in group G+

at time t . Likewise, the second term is for group G−.
∑

i ∈S yi,t is a

normalizing factor.

The Individual-based Fairness loss (IF loss) at time t is defined as

LI F (t) =
1

∑

i ∈S yi,t

�

�

�

�

�

∑

i ∈S ŷi,tw
+

i
∑

i ∈S piw
+

i

−

∑

j ∈S ŷj,tw
−
j

∑

j ∈S pjw
−
j

�

�

�

�

�

(5)

4 EXPERIMENTS

We evaluate our method on the Seattle dockless bikeshare dataset

and the RideAustin dataset. We compare FairST without fairness

loss with baseline models in terms of prediction accuracy. We then

incorporate RF or IF loss into our model, and compare against two

existing fairness regularizers on a sensitive attribute (i.e. race).

Implementation: We train FairST using Adam optimizer with

a batch size of 32. The learning rate starts at 0.005 and decays every

5,000 steps with a rate of 0.96. To implement RF loss, we use the

overall city statistics as thresholds to discretize the continuous

sensitive attributes. For example, the percentage of white of Seattle

in 2018 is 65.74%, we then set the regions with more than 65.74%

white as Caucasian group, otherwise as non-Caucasian group.

BaselineModels:We compare the prediction accuracy of FairST

with several other models: 1) Historical Average (HA). We com-

pute ŷi,t using the mean values of all previous observations at loca-

tion si at the same time of the day and the same day of the week. 2)

Autoregressive Integrated Moving Average Model (ARIMA).

We develop an independent ARIMA model for each individual grid

cell. 3)Long short-termmemoryNetwork (LSTM).We train the

LSTM model individually for each square grid. 4) Convolutional

LSTM (ConvLSTM) [11]. ConvLSTM can capture both spatial and

temporal dependencies in one network. 5) 3D CNN. This 3D CNN

model is equivalent to FairST without external features.

Baseline Fairness Regularizers: We compare the proposed

loss functions (RF loss and IF loss) with two existing fairness losses

[2, 3]: 1) Equal Means Loss (EM Loss). Equal Means loss [3] en-

forces the mean prediction to be the same for different groups. 2)

Pairwise Fairness Loss (Pairwise Loss). Pairwise loss is based

on the idea of group fairness [2]. Comparisons of predictions across

groups are based on cross pairs i ∈ G+ and j ∈ G−.

Evaluation Metrics: We evaluate the prediction accuracy of

all models with MAE. We evaluate the fairness of models using

RFG and IFG, as well as the Spearman’s rho, which measures

the strength of monotonic correlation between two variables. We

calculate Spearman’s rho between mean per capita demand over

the test period of a region and the percent of advantaged population

of that region. A positive Spearman’s rho with a p-value less than

0.05 suggests disparities in demand. As discussed in Introduction,

existing fairness metrics cannot be used directly in our setting.

5 RESULTS AND DISCUSSION

5.1 Demand Prediction Accuracy

Table 1 and Table 2 showMAE of all models on the Seattle bikeshare

data and the RideAustin data, respectively. FairST (λ = 0) proposed

by this paper outperforms all other methods. LSTM outperforms

ARIMA and HA, due to its capability of modeling complex non-

linear relationships. ConvLSTM achives better accuracy than LSTM,

as it can learn both spatial and temporal information. The 3D CNN

model performs better than ConvLSTM since the 3D CNN is more

powerful in terms of capturing strong local spatial-temporal corre-

lations in our problem as compared to the recurrent architectures.

5.2 Fair Prediction

We trained FairST with Region-based Fairness loss (RF), Individual-

based Fairness loss (IF), Equal Means loss (Equal Means), and Pair-

wise loss (Pairwise) respectively, on a single attribute, i.e. race on
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Figure 3: Accuracy vs. fairness metrics. Triangles in (c) and

(f) represent statistical significance (p-value < 0.01)

two datasets. Figure 3 illustrates the relationships between MAE

and fairness metrics, each point on a curve corresponds to a λ value,

which increases from left to right of the curve.

Figure 3 (a), (b), (d), and (e) show that RF and IF regularizer are

very effective in controlling both RF and IF gaps. The use of fairness

loss actually may improve the MAE over the baseline (λ = 0) for

small values of λ (see Table 1). For example, IF regularizer (λ = 0.2)

brings IFG down while keeping better accuracy than FairST with λ

= 0. The reason is that the fairness terms may provide a regularizing

effect on accuracy. Figure 3 (c) and (f) show the fairness of models

evaluated by Spearman’s rho. The use of RF or IF loss effectively

"decorrelates" the predicted demand and the percent of Caucasian.

For example, in Seattle bikeshare case, FairST without fairness

would result in an unfair prediction (see Table 1). Models with an

IF or a RF regularizer bring down the Spearman’s rho to around

zero, and the predictions are no longer significantly correlated with

race as λ increases. In contrast, Spearman’s rhos of models with an

Equal Means or a Pairwise regularizer stay positive throughout.

Table 1 shows the results of FairST for Seattle bikeshare. Both

the RF and IF regularizer bring down about 85% IFG (from 31.915

to 3.363 and 4.902, respectively) while keeping better MAE than 3D

CNN. Similarly, table 2 shows the results for RideAustin. Compared

to 3D CNN, RF regularizer brings down about 99.5% RFG (from

62.004 to 0.347) and IF regularizer brings down 80.5% IFG (from

48.713 to 9.473) while keeping better accuracy.

In summary, FairST is able to achieve an accuracy better than

the state-of-the-art baseline models while closing more than 80% of

fairness gap. The proposed fairness regularizers are more effective

than baseline fairness regularizers in reducing unfairness.

6 CONCLUSION

In this paper, we proposed FairST, a fairness-aware spatial-temporal

model based on 3D CNN for predicting new mobility resource de-

mand. A key feature of FairST is the integration of fairness regu-

larizers to the model to encourage equitable prediction. We also

proposed two fairness metrics that measure equity gaps between

social groups for urban mobility systems. Experiments on two real-

world newmobility datasets demonstrate that FairST is able to close

more than 80% of fairness gap while achieving better accuracy than

state-of-the-art but fairness-oblivious baseline methods.

Table 1: FairST compared to baselines for Seattle bikeshare

λ MAE RFG IFG Spearman’s rho

Ground Truth / / 112.568 38.969 0.016

HA / 0.484 194.454 79.906 0.565

ARIMA / 0.538 319.032 129.447 0.569

LSTM / 0.468 280.685 116.023 0.522

ConvLSTM[11] 0.00 0.432 74.485 22.907 0.210∗∗

3D CNN 0.00 0.408 100.878 31.915 0.091

FairST 0.00 0.382 83.127 25.073 0.168∗∗

FairST + RF 0.02 0.379 79.570 24.694 0.144∗∗

FairST + RF 0.50 0.404 10.627 3.363 -0.076

FairST + IF 0.20 0.379 63.130 15.281 0.085

FairST + IF 1.50 0.406 38.473 4.902 -0.070
∗∗ . Correlation is significant at the 0.05 level.

∗ . Correlation is significant at the 0.01 level.

Table 2: FairST compared to baselines for RideAustin

λ MAE RFG IFG Spearman’s rho

Ground Truth / / 80.120 59.742 0.120∗

HA / 0.662 48.457 33.550 0.118∗

ARIMA / 0.597 82.587 61.457 0.117∗

LSTM / 0.570 61.329 42.101 0.073

ConvLSTM[11] 0.00 0.567 66.428 46.534 0.073

3D CNN 0.00 0.532 62.004 48.713 0.051

FairST 0.00 0.472 76.340 54.274 0.073

FairST + RF 0.05 0.475 56.703 49.092 -0.034

FairST + RF 0.80 0.524 0.347 32.436 -0.059

FairST + IF 0.06 0.463 67.358 50.357 0.131∗

FairST + IF 1.20 0.515 -27.397 9.473 -0.100
∗∗ . Correlation is significant at the 0.05 level.

∗ . Correlation is significant at the 0.01 level.
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