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FAITH’S PROBLEM ON R-PROJECTIVITY IS UNDECIDABLE

JAN TRLIFAJ

In memory of Gena Puninski.

Abstract. In [7], Faith asked for what rings R does the Dual Baer Criterion

hold in Mod–R, that is, when does R-projectivity imply projectivity for all

right R-modules? Such rings R were called right testing. Sandomierski proved
that all right perfect rings are right testing. Puninski et al. [1] have recently

shown for a number of non-right perfect rings that they are not right testing,

and noticed that [17] proved consistency with ZFC of the statement ‘each right
testing ring is right perfect’ (the proof used Shelah’s uniformization).

Here, we prove the complementing consistency result: the existence of a
right testing, but not right perfect ring is also consistent with ZFC (our proof

uses Jensen-functions). Thus the answer to the Faith’s question above is unde-

cidable in ZFC. We also provide examples of non-right perfect rings such that
the Dual Baer Criterion holds for small modules (where small means countably

generated, or ≤ 2ℵ0 -presented of projective dimension ≤ 1).

1. Introduction

The classic Baer Criterion for Injectivity [3] says that a (right R-) module M is
injective, if and only if it is R-injective, that is, each homomorphism from any right
ideal I of R into M extends to R. This criterion is the key tool for classification of
injective modules over particular rings.

A module M is called R-projective provided that each homomorphism from
M into R/I where I is any right ideal, factors through the canonical projection
π : R → R/I [2, p.184]. One can formulate the Dual Baer Criterion as follows: a
module M is projective, if and only if it is R-projective. The rings R such that this
criterion holds true are called right testing, [1, Definition 2.2].

Dualizations are often possible over perfect rings. Indeed, Sandomierski proved
that each right perfect ring is right testing [15]. The question of existence of non-
right perfect right testing rings is much harder. Faith [7, p.175] says that “the
characterization of all such rings is still an open problem” – we call it the Faith’s
problem here.

Note that if R is not right perfect, then it is consistent with ZFC + GCH
that R is not right testing. Indeed, as observed in [1], [17, Lemma 2.4] (or [16])
implies that there is a κ+-presented module N of projective dimension 1 such that
Ext1R(N, I) = 0 for each right ideal I of R (and hence N is R-projective, but not
projective) in the extension of ZFC satisfying GCH and Shelah’s Uniformization
Principle UPκ for an uncountable cardinal κ such that card(R) < κ and cf(κ) = ℵ0.
In particular, attempts [4] to prove the existence of non-right perfect testing rings
in ZFC could not be successful.
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2 JAN TRLIFAJ

Moreover, in the extension of ZFC + GCH satisfying UPκ for all uncountable
cardinals κ such that cf(κ) = ℵ0 [6], all right testing rings are right perfect. So it
is consistent with ZFC + GCH that all right testing rings are right perfect.

For many non-right perfect rings R, one can actually prove that R is not right
testing in ZFC: this is the case for all commutative noetherian rings [10, Theorem
1], all semilocal right noetherian rings [1, Proposition 2.11], and all commutative
domains (see Lemma 2.1 below).

It is easy to see that all finitely generated R-projective modules are projective,
that is, the Dual Baer Criterion holds for all finitely generated modules over any
ring. So in order to find examples of R-projective modules which are not projective,
one has to deal with infinitely generated modules. The task is quite complex in
general: in Section 2, we will show that there exist non-right perfect rings such
that the Dual Baer Criterion holds for all countably generated modules, or for all
≤ 2ℵ0 -presented modules of projective dimension ≤ 1.

Some questions related to the vanishing of Ext, such as the Whitehead problem,
are known to be undecidable in ZFC, cf. [5]. In Section 3, we will prove that this is
also true for the existence of non-right perfect right testing rings. To this purpose,
we will employ Gödel’s Axiom of Constructibility V = L, or rather its combinatorial
consequence, the existence of Jensen-functions (see [5, §VI.1] and [8, §18.2]). Our
main result, Theorem 3.3 below, says that the existence of Jensen-functions implies
that a particular subring of Kω (where K is a field of cardinality ≤ 2ω) is testing,
but not perfect.

For unexplained terminology, we refer the reader to [2], [5], [8] and [9].

2. R-projectivity versus projectivity

It is easy to see that for each R-projective module M , each submodule N ⊆ Rn
and each f ∈ HomR(M,Rn/N), there exists g ∈ HomR(M,Rn) such that f = πNg
where πN : Rn → Rn/N is the projection (see e.g. [2, Proposition 16.12(2)]). In
particular, all finitely generated R-projective modules are projective.

This not true of countable generated R-projective modules in general - for exam-
ple, by the following lemma, the abelian group Q is Z-projective, but not projective:

Lemma 2.1. Let R be a commutative domain. Then each divisible module is R-
projective. So R is testing, iff R is a field.

Proof. Assume R is testing and possesses a non-trivial ideal I. Let M be any
divisible module. If 0 6= HomR(M,R/I), then R/I contains a non-zero divisible
submodule of the form J/I for an ideal I ( J ⊆ R. Let 0 6= r ∈ I. The r-divisibility
of J/I yields Jr + I = J , but Jr ⊆ I, a contradiction. So HomR(M,R/I) = 0,
and M is R-projective. In particular, if R is testing, then each injective module is
projective, so R is a commutative QF-domain, hence a field. �

However, there do exist rings such that all countably generated R-projective
modules are projective. We will now examine one such class of rings that will be
relevant for proving the independence result in Section 3:

Definition 2.2. Let K be a field, and R the unital K-subalgebra of Kω generated
by K(ω). In other words, R is the subalgebra of Kω consisting of all eventually
constant sequences in Kω.

For each i < ω, we let ei be the idempotent in Kω whose ith component is 1
and all the other components are 0. Notice that {ei | i < ω} is a set of pairwise
orthogonal idempotents in R, so R is not perfect.

First, we note basic ring and module theoretic properties of this particular set-
ting:
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FAITH’S PROBLEM ON R-PROJECTIVITY IS UNDECIDABLE 3

Lemma 2.3. Let R be as in Definition 2.2.
(1) R is a commutative von Neumann regular semiartinian ring of Loewy length

2, with Soc(R) =
∑
i<ω eiR = K(ω) and R/Soc(R) ∼= K.

(2) If I is an ideal of R, then either I = IA =
∑
i∈A eiR for a subset A ⊆ ω

and I is semisimple and projective, or else I = fR for an idempotent f ∈ R
such that f is eventually 1. In particular, R is hereditary.

(3) {eiR | i < ω}∪{S} is a representative set of all simple modules, where S =
R/Soc(R). All these modules are

∑
-injective, and all but S are projective.

(4) Let M ∈ Mod–R. Then there are unique cardinals κ, κi (i < ω) and λ such
that M ∼= S(κ) ⊕N , Soc(N) ∼=

⊕
i<ω(eiR)(κi), and N/Soc(N) ∼= S(λ).

If N = R(µ)/I, then

Soc(N) = (Soc(R(µ)) + I)/I ∼= Soc(R(µ))/(Soc(R(µ)) ∩ I)

and N/Soc(N) ∼= R(µ)/(Soc(R(µ)) + I). Hence for each i < ω, κi is
the codimension of the eiR-homogenous component of Soc(R(µ)) ∩ I in
Soc(R(µ)), while λ is the codimension of (Soc(R(µ)) + I)/Soc(R(µ)) in
R(µ)/Soc(R(µ)) ∼= S(µ).

Proof. (1) Clearly, R is commutative, and if r ∈ R, then all non-zero components
of r are invertible in K, so there exists s ∈ R with rsr = r, i.e., R is von Neumann
regular.

For each i < ω, eiR = eiK
ω is a simple projective module, whence J =∑

i<ω eiR ⊆ Soc(R). Moreover, R/J ∼= K is a simple non-projective module.
So R is semiartinian of Loewy length 2, and J = Soc(R) is a maximal ideal of R.

(2) If I ⊆ Soc(R), then I is a direct summand in the semisimple projective
module Soc(R). Since the simple projective modules {eiR | i < ω} are pairwise
non-isomorphic, I ∼= IA =

∑
i∈A eiR, and hence I = IA, for a subset A ⊆ ω.

If I * Soc(R), then there is an idempotent e ∈ I \Soc(R) and eR+ Soc(R) = R.
Note that e is eventually 1, so in particular, eR ⊇

∑
i∈B eiR where B ⊆ ω is

the (cofinite) set of all indices i such that the ith component of e is 1. Then
I = eR⊕ (

∑
i/∈B eiR∩I). The latter direct summand equals IA for a (finite) subset

A ⊆ ω \B, and I = fR for the idempotent f = e+
∑
i∈A ei.

In either case, I is projective, hence R is hereditary.
(3) By part (2), the maximal spectrum mSpec(R) = {Iω} ∪ {(1− ei)R | i < ω}.

The
∑

-injectivity of all simple modules follows from part (1) and [9, Proposition
6.18]. The simple module S is not projective because Iω is not finitely generated.

(4) These (unique) cardinals are determined as follows: κ is the dimension of
the S-homogenous component of M , and κi the dimension of its eiR-homogenous
component (i < ω). The semisimple module M̄ = M/Soc(M) ∼= N/Soc(N) is
isomorphic to a direct sum of copies of the unique non-projective simple module S;
λ is the (S-) dimension of M̄ .

The final claim follows from the fact that P = (Soc(R(µ)) + I)/I is a direct sum
of projective simple modules, while R(µ)/(Soc(R(µ)) + I) a direct sum of copies of
S, so {0, P,N} is the socle sequence of N . �

Next we turn to R-projectivity:

Lemma 2.4. Let R be as in Definition 2.2.
(1) A module M is R-projective, iff it is projective w.r.t. the projection π : R→

R/Soc(R).
(2) The class of all R-projective modules is closed under submodules. If M ∈

Mod–R is R-projective, then all countably generated submodules of M are
projective. In particular, the Dual Baer Criterion holds for all countably
generated modules.
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Proof. (1) First, note that by part (2) of Lemma 2.3, the only ideals I such that
R/I is not projective, are of the form I = IA where A is an infinite subset of ω
(and hence I ⊆ Soc(R) = Iω). So it suffices to prove that if M is projective w.r.t.
the projection π : R → R/Soc(R), then it is projective w.r.t. all the projections
πIA

: R→ R/IA such that A ⊆ ω is infinite.
Let f ∈ HomR(M,R/IA). If Im(f) ⊆ Soc(R)/IA, then there exists a homo-

morphism h ∈ HomR(Soc(R)/IA,Soc(R)) such that πIA
h = id, whence g = hf

yields a factorization of f through πIA
. Otherwise, let ρ : R/IA → R/Soc(R) be

the projection. By assumption, there is g ∈ HomR(M,R) such that ρf = πg. So
ρ(f −πIA

g) = 0, and Im(f −πIA
g) ⊆ Soc(R)/IA. Then f −πIA

g factorizes through
πIA

by the above, and so does f .
(2) The closure of the class of all R-projective modules under submodules follows

from part (1) and from the injectivity of S = R/Soc(R) (see part (3) of Lemma 2.3).
So it only remains to prove that each countably generated R-projective module is
projective. However, as remarked above, for any ring R, each finitely generated
R-projective module is projective. Since R is hereditary and von Neumann regular,
[17, Lemma 3.4] applies and gives that also all countably generated R-projective
modules are projective. �

We finish this section by presenting two more classes of non-right perfect rings
over which small modules satisfy the Dual Baer Criterion.

In both cases, the rings will be von Neumann regular and right self-injective.
Apart from classic facts about these rings from [9, §10], we will also need the fol-
lowing easy observation (valid for any right self-injective ring R, see [1, Proposition
2.6]): a module M is R-projective, iff Ext1R(M, I) = 0 for each right ideal I of R.

Example 2.5. Let R be a right self-injective von Neumann regular ring such that
R has primitive factors artinian, but R is not artinian (e.g., let R be an infinite
direct product of skew-fields). Then all R-projective modules are non-singular, and
the Dual Baer Criterion holds for all countably generated modules.

For the first claim, let M be R-projective and assume there is an essential right
ideal I ( R such that R/I embeds into M . Let J be a maximal right ideal
containing I. By [9, Proposition 6.18], the simple module R/J is injective, so
the projection ρ : R/I → R/J extends to some f ∈ HomR(M,R/J). The R-
projectivity of M yields g ∈ HomR(M,R) such that f = πg where π : R → R/J
is the projection. Then g restricts to a non-zero homomorphism from R/I into the
non-singular module R, a contradiction. Thus, M is non-singular.

For the second claim, we recall from [11, Example 6.8], that for von Neumann reg-
ular right self-injective rings, non-singular modules coincide with the ℵ1-projective
modules. However, each countably generated ℵ1-projective module (over any ring)
is projective. Thus each countably generated R-projective module is projective.

Example 2.6. Let R be a von Neumann regular right self-injective ring which
is purely infinite in the sense of [9, Definition on p.116]. That is, there exists no
central idempotent 0 6= e ∈ R such that the ring eRe is directly finite (where a ring
R is directly finite in case xy = 1 implies yx = 1 for all x, y ∈ R.)

For example, the endomorphism ring of any infinite dimensional right vector
space over a skew-field has this property, see [9, p. 116].

We claim that the Dual Baer Criterion holds for all ≤ 2ℵ0 -presented modules M
of projective dimension ≤ 1. Indeed, assume that such module M is R-projective.
By [9, Theorem 10.19], R contains a right ideal J which is a free module of rank 2ℵ0 .
If the projective dimension of M equals 1, then there is a non-split presentation
0→ K → L→M → 0 where K and L are free of rank ≤ 2ℵ0 . Thus Ext1R(M,J) 6=
0, in contradiction with the R-projectivity of M . This shows that M is projective.
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In particular, if the global dimension of R is 2, and all right ideals of R are
≤ 2ℵ0 -presented (which is the case when R is the endomorphism ring of a right
vector space of dimension ℵ0 over any field of cardinality ≤ 2ℵ0 under CH - see
[13]), then the Dual Baer Criterion holds for all right ideals of R.

Remark 2.7. As mentioned in the Introduction, for any non-right perfect ring R,
Shelah’s Uniformization Principle UPκ (for an uncountable cardinal κ such that
card(R) < κ and cf(κ) = ℵ0) and GCH imply the existence of a κ+-presented
R-projective module N of projective dimension equal to 1.

If we choose R to be the endomorphism ring of a right vector space of infinite
dimension < ℵω over a skew-field of cardinality < ℵω, then, on one hand, we can
take κ = ℵω, so the module N above can be chosen ℵ+

ω -presented. On the other
hand, Example 2.6 gives a lower bound for the possible size of N : it has to be
> 2ℵ0 -presented.

3. The consistency of existence of non-perfect testing rings

In this section, we return to the setting of Definition 2.2, so K will denote a
field, and R the subalgebra of Kω consisting of all eventually constant sequences
in Kω. In order to prove that it is consistent with ZFC that R is testing, we will
employ the notion of Jensen-functions, cf. [12] and [8, §18.2]:

Definition 3.1. Let κ be a regular uncountable cardinal.
(1) A subset C ⊆ κ is called a club provided that C is closed in κ (i.e., sup(D) ∈

C for each subset D ⊆ C such that sup(D) < κ) and C is unbounded (i.e.,
sup(C) = κ). Equivalently, there exists a strictly increasing continuous
function f : κ→ κ whose image is C.

(2) A subset E ⊆ κ is stationary provided that E ∩C 6= ∅ for each club C ⊆ κ.
(3) Let A be a set of cardinality≤ κ. An increasing continuous chain, {Aα | α <

κ}, consisting of subsets of A of cardinality < κ such that A =
⋃
α<κAα,

is called a κ-filtration of the set A.
Similarly [5, IV.1.3.], if M is a ≤ κ-generated module, then an increasing

continuous chain, (Mα | α < κ), consisting of < κ-generated submodules of
M such that M =

⋃
α<κMα, is called a κ-filtration of the module M .

(4) Let E be a stationary subset of κ. Let A and B be sets of cardinality
≤ κ. Let {Aα | α < κ} and {Bα | α < κ} ) be κ-filtrations of A and B,
respectively. For each α < κ, let cα : Aα → Bα be a map. Then (cα | α < κ)
are called Jensen-functions provided that for each map c : A→ B, the set
E(c) = {α ∈ E | c � Aα = cα} is stationary in κ.

Jensen [12] proved the following (cf. [8, Theorem 18.9])

Theorem 3.2. Assume Gödel’s Axiom of Constructibility (V = L). Let κ be a
regular infinite cardinal, E ⊆ κ a stationary subset of κ, and A and B sets of
cardinality ≤ κ. Let {Aα | α < κ} and {Bα | α < κ} ) be κ-filtrations of A and B,
respectively. Then there exist Jensen-functions (cα | α < κ).

Now, we can prove our main result:

Theorem 3.3. Assume V = L. Let K be a field of cardinality ≤ 2ℵ0 . Then all
R-projective modules are projective.

Proof. Let M be an R-projective module. By induction on the minimal number of
generators, κ, of M , we will prove that M is projective. For κ ≤ ℵ0, we appeal to
part (2) of Lemma 2.4, and for κ a singular cardinal, we apply [17, Corollary 3.11].

Assume κ is a regular uncountable cardinal. Let G = {mα | α < κ} be a minimal
set of R-generators of M . For each α < κ, let Gα = {mβ | β < α}. Let Mα be the
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submodule of M generated by Gα. ThenM = (Mα | α < κ) is a κ-filtration of the
module M . Possibly skipping some terms of M, we can w.l.o.g. assume that M
has the following property for each α < κ: if Mβ/Mα is not R-projective for some
α < β < κ, then also Mα+1/Mα is not R-projective. Let E be the set of all α < κ
such that Mα+1/Mα is not R-projective.

We claim that E is not stationary in κ. If our claim is true, then there is a club
C in κ such that C ∩ E = ∅. Let f : κ → κ be a strictly increasing continuous
function whose image is C. For each α < κ, let Nα = Mf(α). Then (Nα | α < κ)
is a κ-filtration of the module M such that Nα+1/Nα is R-projective for all α < κ.
By the inductive premise, Nα+1/Nα is projective, hence Nα+1 = Nα ⊕ Pα for a
projective module Pα, for each α < κ. Then M = N0⊕

⊕
α<κ Pα is projective, too.

Assume our claim is not true. We will make use of Theorem 3.2 in the following
setting. We let A = G and B = R. The relevant κ-filtration of A will be (Gα |
α < κ). For B, we consider any κ-filtration (Rα | α < κ) of the additive group
(R,+) consisting of subgroups of (R,+) (which exists since card(K) ≤ ℵ1 implies
card(R) ≤ ℵ1 ≤ κ; if card(K) is countable, the filtration can even be taken constant
= R). By Theorem 3.2, there exist Jensen-functions cα : Gα → Rα (α < κ) such
that for each function c : G → R, the set E(c) = {α ∈ E | cα = c � Gα} is
stationary in κ.

By induction on α < κ, we will define a sequence (gα | α < κ) such that
gα ∈ HomR(Mα, S) as follows: g0 = 0; if α < κ and gα is defined, we distinguish
two cases:

(I) α ∈ E, and there exist hα+1 ∈ HomR(Mα+1, S) and yα+1 ∈ HomR(Mα+1, R),
such that hα+1 � Mα = gα, hα+1 = πyα+1 and yα+1 � Gα = cα. In this case
we define gα+1 = hα+1 + fα+1ρα+1, where ρα+1 : Mα+1 → Mα+1/Mα is the
projection and fα+1 ∈ HomR(Mα+1/Mα, S) is chosen so that it does not factorize
through π (such fα+1 exists because α ∈ E by part (1) of Lemma 2.4. Note that
gα+1 � Mα = hα+1 � Mα = gα.

(II) otherwise. In this case, we let gα+1 ∈ HomR(Mα+1, S) be any extension of
gα to Mα+1 (which exists by the injectivity of S).

If α < κ is a limit ordinal, we let gα =
⋃
β<α gβ . Finally, we define g =

⋃
α<κ gα.

We will prove that g does not factorize through π. This will contradict the R-
projectivity of M , and prove our claim.

Assume there is x ∈ HomR(M,R) such that g = πx. Then the set of all α < κ
such that x � Gα maps into Rα is a closed and unbounded subset of the regular
uncountable cardinal κ, so it contains some element α ∈ E(x � G). For such
α, we have gα+1 = πx � Mα+1 and x � Gα = cα. So α is in case (I), because
gα+1 � Mα = gα, gα+1 = π(x � Mα+1), and (x � Mα+1) � Gα = cα.

Let zα+1 = x � Mα+1 − yα+1. Then zα+1 � Gα = x � Gα − yα+1 � Gα = cα −
cα = 0. So there exists uα+1 ∈ HomR(Mα+1/Mα, R) such that zα+1 = uα+1ρα+1.
Moreover,

πuα+1ρα+1 = πzα+1 = πx � Mα+1 − πyα+1 = gα+1 − hα+1 = fα+1ρα+1.

Since ρα+1 is surjective, we conclude that πuα+1 = fα+1, in contradiction with our
choice of the homomorphism fα+1. �

Corollary 3.4. Let K be a field of cardinality ≤ 2ℵ0 . Then the statement ‘R is a
testing ring’ is independent of ZFC + GCH. Hence Faith’s problem is undecidable
in ZFC + GCH.

Proof. Assume UPκ for some κ such that card(R) < κ and cf(κ) = ℵ0 . Then R is
not testing by [17, Lemmas 2.2 and 2.4] (see also [16, Theorem 1.5] and [1, Theorem
2.7]).

Assume V = L. Then R is testing by Theorems 3.2 and 3.3. �
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