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Abstract Given a faithful action of a finite group G on an algebraic
curve X of genus gX ≥ 2, we give explicit criteria for the induced
action of G on the Riemann-Roch space H0(X,OX(D)) to be faithful,
where D is a G-invariant divisor on X of degree at least 2gX − 2. This
leads to a concise answer to the question when the action of G on the
space H0(X,Ω⊗mX ) of global holomorphic polydifferentials of order m is
faithful. If X is hyperelliptic, we furthermore provide an explicit basis
of H0(X,Ω⊗mX ). Finally, we give applications in deformation theory
and in coding theory and we discuss the analogous problem for the
action of G on the first homology H1(X,Z/mZ) if X is a Riemann
surface.

1 Introduction

LetX be a connected smooth projective algebraic curve over an algebraically closed
field k equipped with a faithful action of a finite group G of order n. Furthermore,
let D =

∑
P∈X nP [P ] be a G-invariant divisor on X. Then G also acts on the

Riemann-Roch space H0(X,OX(D)) consisting of all meromorphic functions on X
whose order at any point P ∈ X is at least −nP .

A widely studied problem is to determine the structure of H0(X,OX(D)) as a
module over the group ring k[G]. When D is the canonical divisor and k = C,
this amounts to calculating (the character of) the representation of G on the com-
plex vector space H0(X,ΩX) of global holomorphic differentials on the Riemann
surface X and goes back to Chevalley-Weil [CW]. If the canonical projection
π : X → Y from X to the quotient curve Y = X/G is tamely ramified, fairly
general and explicit answers to this problem have been found by Kani [Kan] and
Nakajima [Nak2]. In the case of arbitrary wild ramification the explicit calcula-
tion of the k[G]-isomorphism class of H0(X,OX(D)) is still an open problem, but
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many partial and related results are known, see the recent papers [Bor], [FWK],
[FGM+], [GJK], [Hor], [Kar] and the literature cited there.

In this paper we look at the weaker question of whether the group G acts faithfully
on H0(X,OX(D)). To this end, we first prove formulae for the dimension of the
subspace H0(X,OX(D))G of H0(X,OX(D)) fixed by G, provided the degree of D
is sufficiently large, see Proposition 2.2 and its corollaries.

In Sections 3 and 4 we give explicit criteria for the action on H0(X,OX(D)) to
be trivial and finally criteria for this action to be faithful if the degree of D is at
least 2gX − 2. The latter criteria become particularly concise when D is a positive
multiple of the canonical divisor, see Theorem 3.2 and Corollary 4.5, and can be
summarized as follows.

Let p ≥ 0 denote the characteristic of k and let gX and gY denote the genus of X
and Y , respectively. Furthermore, let m ≥ 1 and suppose that gX ≥ 2. We recall
that a hyperelliptic involution of X is an automorphism σ of X of order 2 such
that the quotient curve X/〈σ〉 is isomorphic to P1

k. Then G acts faithfully on the
space H0(X,Ω⊗mX ) of global (poly)differentials of order m, unless G contains a
hyperelliptic involution and either m = 1 and p = 2 or m = 2 and gX = 2.

If X is a Riemann surface, versions of this result can also be found in Lewittes
paper [Lew] or derived from Broughton’s paper [Bro]. Furthermore, it is possible
to give different and sometimes shorter proofs of parts of this result using deeper
theorems about algebraic curves, see the relevant remarks in Sections 4 and 5.

In Section 5 we look at the particular case when X is hyperelliptic and give an
explicit basis for the space H0(X,Ω⊗mX ). This will yield a ‘hands-on’ proof of the
above result if G is generated by the hyperelliptic involution.

Faithful actions of permutation groups on Goppa codes play an important role in
Coding Theory. In Section 6 we apply Corollary 4.9 to obtain such actions.

The dimension formula proved in Section 2 moreover allows us to compute the
dimension of the tangent space of the equivariant deformation functor associated
with (G,X) provided the group G satisfies a certain assumption, see Theorem 7.1.
This theorem generalizes a main result in [KöKo] and considerably simplifies its
proof.

Finally, in Section 8, we investigate a striking analogy between faithful action
on H0(X,Ω⊗mX ) and faithful action on the first homology H1(X,Z/mZ) if X is a
Riemann surface.

In this final paragraph of the introduction we explain some notations and funda-
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mental facts that we will use throughout the paper. We write

R =
∑
P∈X

δP [P ]

for the ramification divisor of π : X → Y . The Hurwitz formula (see [Har, Ch. IV,
Corollary 2.4]) states that

2gX − 2 = n(2gY − 2) + deg(R) (1)

(where n = ord(G)). Furthermore, Hilbert’s formula states that

δP =
∞∑
j=0

(ord(Gj(P ))− 1), (2)

where Gj(P ) is the jth ramification group at P in lower notation, see [Ser, Ch. IV,
§ 1]. For any P ∈ X, let eP = ord(G0(P )) denote the ramification index at P . For
any Q ∈ Y we write δQ for δP and eQ for eP where P ∈ π−1(Q); recall that the
cardinality of π−1(Q) is n

eQ
. As usual, the sheaf of differentials on X is denoted by

ΩX and its mth tensor power by Ω⊗mX for any m ≥ 2. Sections of Ω⊗mX are called
polydifferentials of order m and, if m = 2, quadratic differentials. We let KY be
a canonical divisor on Y . Then the divisor KX := π∗(KY ) + R is a G-invariant
canonical divisor on X by [Har, § IV, Prop. 2.3] and OX(mKX) and Ω⊗mX are
isomorphic as G-sheaves.

2 Dimension Formulae

In this section, given a G-invariant divisor D on our curve X of sufficiently large
degree, we are going to compute the dimension of the subspace H0(X,OX(D))G

of the Riemann-Roch space H0(X,OX(D)) fixed by the action of the group G.
When D is a multiple of the canonical divisor KX on X, we will in particular
obtain a formula for the dimension of the space H0(X,Ω⊗mX )G of global G-invariant
holomorphic polydifferentials of order m.

We first introduce some notations. Let D =
∑

P∈X nP [P ] be a G-invariant divisor
on X (i.e. nσ(P ) = nP for all σ ∈ G and P ∈ X). For any Q ∈ Y , let nQ be equal
to nP for any P ∈ π−1(Q). Let OX(D) denote the corresponding equivariant
invertible OX-module, as usual. Furthermore let πG∗ (OX(D)) denote the subsheaf
of the direct image π∗(OX(D)) fixed by the obvious action of G on π∗(OX(D))

and let
⌊
π∗(D)
n

⌋
denote the divisor on Y obtained from the push-forward π∗(D) by
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replacing the coefficient mQ of Q in π∗(D) with the integral part
⌊mQ

n

⌋
of

mQ

n
for

every Q ∈ Y . The function fields of X and Y are denoted by K(X) and K(Y )
respectively. For any P ∈ X and Q ∈ Y let ordP and ordQ denote the respective
valuations of K(X) and K(Y ) at P and Q. Finally, let 〈a〉 denote the fractional
part of any a ∈ R, i.e. 〈a〉 = a− bac.
The next (folklore) lemma is the main idea in the proof of our dimension formulae.

Lemma 2.1. Let D =
∑

P∈X nP [P ] be a G-invariant divisor on X. Then the

sheaves πG∗ (OX(D)) and OY
(⌊

π∗(D)
n

⌋)
are equal as subsheaves of the constant

sheaf K(Y ) on Y . In particular the sheaf πG∗ (OX(D)) is an invertible OY -module.

Proof. For every open subset V of Y we have

πG∗ (OX(D))(V ) = OX(D)(π−1(V ))G ⊆ K(X)G = K(Y ).

In particular both sheaves are subsheaves of the constant sheaf K(Y ) as stated.
It therefore suffices to check that their stalks are equal. For any Q ∈ Y and
P ∈ π−1(Q) we have

πG∗ (OX(D))Q = OX(D)P ∩K(Y )

= {f ∈ K(Y ) : ordP (f) ≥ −nP}

=

{
f ∈ K(Y ) : ordQ(f) ≥ −nP

eP

}
=

{
f ∈ K(Y ) : ordQ(f) ≥ −

⌊
nP
eP

⌋}
= OY

(⌊
π∗(D)

n

⌋)
Q

,

as desired.

The following proposition computes the dimension of the subspaceH0(X,OX(D))G

of H0(X,OX(D)) fixed by G.

Proposition 2.2. Let D =
∑

P∈X nP [P ] be a G-invariant divisor on X such that

deg(D) > 2gX − 2−
∑
P∈X

∑
j≥1

(ord(Gj(P ))− 1) .

Then we have:

dimkH
0(X,OX(D))G = 1− gY +

1

n
deg(D)−

∑
Q∈Y

〈
nQ
eQ

〉
.
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Remark 2.3. Note that the double sum
∑

P∈X
∑

j≥1 (ord(Gj(P ))− 1) is non-ne-
gative and it is zero if and only if π is at most tamely ramified. Subtracting this
double sum makes the the usual bound 2gX − 2 smaller and hence the statement
stronger, see also the proof of the next corollary.

Proof. We have

deg

⌊
π∗(D)

n

⌋
=
∑
Q∈Y

⌊
n

eQ

nQ
n

⌋
=
∑
Q∈Y

⌊
nQ
eQ

⌋
=

∑
Q∈Y

(
nQ
eQ
−
〈
nQ
eQ

〉)
≥

∑
Q∈Y

(
nQ
eQ
− eQ − 1

eQ

)
=

∑
P∈X

(
nP
n
− eP − 1

n

)

=
1

n

(
deg(D)−

∑
P∈X

(eP − 1)

)

>
1

n

(
2gX − 2−

∑
P∈X

∑
j≥1

(ord(Gj(P ))− 1)−
∑
P∈X

(eP − 1)

)
(by assumption)

=
1

n
(2gX − 2− deg(R)) (by Hilbert’s formula (2))

= 2gY − 2 (by Hurwitz’ formula (1)).

Hence, using Lemma 2.1 and the Riemann-Roch formula [Har, Ch. IV, §1, Theo-
rem 1.3 and Example 1.3.4], we obtain

dimkH
0(X,OX(D))G = dimkH

0
(
Y, πG∗ (OX(D))

)
= dimkH

0

(
Y,OY

(⌊
π∗(D)

n

⌋))
= 1− gY + deg

⌊
π∗(D)

n

⌋
= 1− gY +

∑
Q∈Y

⌊
nQ
eQ

⌋
= 1− gY +

1

n
deg(D)−

∑
Q∈Y

〈
nQ
eQ

〉
,
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as stated.

The following corollary computes the dimension of H0(X,Ω⊗mX )G if gX ≥ 2. (If
gX = 0 or gX = 1, see Example 4.6.) In particular we see that this dimension is

completely determined by m, gY and deg
⌊
mπ∗(R)

n

⌋
.

Corollary 2.4. Let m ≥ 1 and suppose that gX ≥ 2. Then we have:

dimkH
0(X,Ω⊗mX )G =


gY if m = 1 and π is tamely ramified,

(2m− 1)(gY − 1) + deg
⌊
mπ∗(R)

n

⌋
otherwise.

Proof. If π is tamely ramified, then δP = eP − 1 for all P ∈ X and the divi-

sor
⌊
π∗(R)
n

⌋
is the zero divisor. We therefore have⌊
π∗(KX)

n

⌋
=

⌊
π∗(π

∗(KY )) + π∗(R)

n

⌋
=

⌊
nKY + π∗(R)

n

⌋
= KY

and, using Lemma 2.1, we obtain

dimkH
0(X,ΩX)G = dimkH

0
(
Y, πG∗ (OX(KX))

)
= dimkH

0(Y,OY (KY )) = gY ,

as stated.
If π is not tamely ramified, then the double sum

∑
P∈X

∑
j≥1 (ord(Gj(P ))− 1) is

positive. On the other hand, if m ≥ 2, then we have m(2gX − 2) > 2gX − 2 since
we have assumed that gX ≥ 2. So, in either case we have

deg(mKX) = m(2gX − 2) > 2gX − 2−
∑
P∈X

∑
j≥1

(ord(Gj(P ))− 1) .

We temporarily write
∑

P∈X nP [P ] for KX and, as above, for any Q ∈ Y and
P ∈ π−1(Q), we write nQ for nP . Using the previous proposition and Hurwitz
formula (1) we then obtain

dimkH
0(X,Ω⊗mX )G = dimkH

0(X,OX(mKX))G

= 1− gY +
1

n
(m(2gX − 2))−

∑
Q∈Y

〈
mnQ
eQ

〉
= 1− gY +m(2gY − 2) +

m

n
deg(R)−

∑
Q∈Y

〈
mnQ
eQ

〉
= (2m− 1)(gY − 1) + deg

⌊
mπ∗(R)

n

⌋
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because mπ∗(KX)
n

= mπ∗(π∗(KY ))+mπ∗(R)
n

= mKY + mπ∗(R)
n

and deg(R) = deg(π∗(R)).
This finishes the proof of Corollary 2.4.

If m = 1 we reformulate Corollary 2.4 in the following slightly more concrete
way. Let S denote the set of all points Q ∈ Y such that π is not tamely ramified
above Q, and let s denote the cardinality of S. Note that s = 0 if p does not
divide n.

Corollary 2.5. We have

dimkH
0(X,ΩX)G =

{
gY if s = 0,

gY − 1 +
∑

Q∈S

⌊
δQ
eQ

⌋
otherwise.

Proof. We have

deg

⌊
π∗(R)

n

⌋
=
∑
Q∈Y

⌊∑
P 7→Q

δP
n

⌋
=
∑
Q∈Y

⌊
δQ
eQ

⌋
.

Furthermore we have
⌊
δQ
eQ

⌋
= 0 if and only if δQ < eQ, i.e. if and only Q /∈ S. Thus

Corollary 2.5 follows from Corollary 2.4.

Remark 2.6. If p > 0 and G is cyclic, then Corollary 2.5 can be derived from
Proposition 6 in the recent pre-print [KaKo] by Karanikolopoulos and Kontogeor-
gis.

3 Faithfulness of Actions on the Space of Global

Holomorphic Differentials

In this section we consider the space H0(X,ΩX) of global holomorphic differentials
on X and prove that the action of the group G on this space is faithful if and only
if G does not contain a hyperelliptic involution or if p 6= 2, see Theorem 3.2. The
proof is based on the following criterion for the action of G on H0(X,ΩX) to be
trivial.

Proposition 3.1. We assume that p > 0, that G is cyclic of order p, that gX ≥ 2
and that gY = 0. Then G acts trivially on H0(X,ΩX) if and only if p = 2.

Proof. Let P1, . . . , Pr ∈ X denote the ramification points of π. We write ei and δi
for ePi

and δP i. Also, for i = 1, . . . , r, we define Ni ∈ N by ordPi
(σ(t)− t) = Ni+ 1
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where t is a local parameter at the ramification point Pi and σ is a generator of
the decomposition group G0(Pi). From Lemma 1 on p. 87 in [Nak1] we know that
p does not divide Ni for i = 1, . . . , r, a fact we will use several times below. We
have δi = (Ni + 1)(p− 1) by Hilbert’s formula (2). Let N :=

∑r
i=1Ni. Using the

Hurwitz formula (1) we then obtain

2gX − 2 = −2p+ (N + r)(p− 1) (3)

and hence

dimkH
0(X,ΩX) = gX =

(N + r − 2)(p− 1)

2
.

Since gX ≥ 0 we obtain r ≥ 1; that is, π is not unramified. As char(k) = p =
ord(G), the morphism π is thus not tamely ramified and the cardinality s defined
at the end of the previous section is not zero. From Corollary 2.5 we conclude that

dimkH
0(X,ΩX)G = gY − 1 +

r∑
i=1

⌊
δi
ei

⌋
= −1 +N + r +

r∑
i=1

⌊
−Ni + 1

p

⌋
.

If p = 2, the dimensions of H0(X,ΩX) and H0(X,ΩX)G are therefore equal (to
N+r−2

2
). This shows the ‘if’ direction in Proposition 3.1.

To prove the other direction we now assume that G acts trivially H0(X,ΩX)
and we suppose that p ≥ 3. We will show that this contradicts our assumption
that gX ≥ 2. For each i = 1, . . . , r, we write Ni = sip + ti with si ∈ N and
ti ∈ {1, . . . , p− 1}. We furthermore put S :=

∑r
i=1 si and T :=

∑r
i=1 ti ≥ r. Then

we have

(N + r − 2)(p− 1)

2
= dimkH

0(X,ΩX) = dimkH
0(X,ΩX)G = N − S − 1.

Rearranging this equation we obtain

(3− p)N − 2S = (r − 2)(p− 1) + 2

and hence
(−p2 + 3p− 2)S = (r − 2)(p− 1) + 2− (3− p)T.

Since −p2 + 3p− 2 = −(p− 1)(p− 2) and p ≥ 3, this equation implies that

S =
(r − 2)(1− p)− 2 + T (3− p)

(p− 1)(p− 2)
.

Because S ≥ 0, the numerator of this fraction is non-negative, that is

0 ≤ (r − 2)(1− p)− 2 + T (3− p)
≤ (r − 2)(1− p)− 2 + r(3− p)
= 2(r − 1)(2− p).
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Hence we have r = 1 and that numerator is 0. We conclude that S = 0 and that
T = 1 or p = 3. If T = 1 we also have N = 1 and finally

gX =
(N + r − 2)(p− 1)

2
= 0,

a contradiction. If T 6= 1 and p = 3 we obtain N = T = 2 and finally

gX =
(N + r − 2)(p− 1)

2
= 1,

again a contradiction.

Theorem 3.2. Suppose that gX ≥ 2. Then G does not act faithfully on H0(X,ΩX)
if and only if G contains a hyperelliptic involution and p = 2.

Remark 3.3. Note that the existence of a hyperelliptic involution σ in G means that
not only the genus of X/〈σ〉 but also the genus of Y = X/G is 0 (by the Hurwitz
formula (1)). Again by the Hurwitz formula, the canonical projection X → X/〈σ〉
cannot be unramified. If p = 2, it can therefore not be tamely ramified and π
cannot be tamely ramified either. Thus, Theorem 3.2 implies that, if the action on
H0(X,ΩX) is not faithful, then we also have that gY = 0 and that π is not tamely
ramified.

Proof. We first show the ‘if’ direction. The hyperelliptic involution contained in G
generates a subgroup of order 2. Since p = 2, this acts trivially by Proposition 3.1,
and hence G does not act faithfully.

We now assume that G does not act faithfully on H0(X,ΩX). By replacing G with
the (non-trivial) kernel H if necessary, we may assume that G is non-trivial and
acts trivially on H0(X,ΩX).

We first prove that π is not tamely ramified. Suppose that π is tamely ramified.
Then by Corollary 2.5 we have:

gX = dimkH
0(X,ΩX) = dimkH

0(X,ΩX)G = gY .

Substituting this into the Hurwitz formula (1) yields the desired contradiction
because gX ≥ 2, n ≥ 2 and deg(R) ≥ 0.

As π is not tamely ramified, the characteristic p of k is positive and the group G
has a subgroup of order p; by replacing G with that subgroup we may assume that
G is cyclic of order p. Now Theorem 3.2 will follow from Proposition 3.1 once we
have shown that gY = 0.
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Corollary 2.5 gives us that

gX = dimkH
0(X,ΩX) = dimkH

0(X,ΩX)G = gY − 1 +
∑
Q∈S

⌊
δQ
p

⌋
where S is the set of all points Q ∈ Y such that π is not tamely ramified above Q.
Substituting this in to the Hurwitz formula (1), we see that

2

(
gY − 1 +

∑
Q∈S

⌊
δQ
p

⌋
− 1

)
= 2p(gY − 1) + deg(R).

Rewriting the previous equation yields

(2p− 2)gY = 2p− 4 + 2
∑
Q∈S

⌊
δQ
p

⌋
− deg(R)

= 2

(
p− 2 +

∑
Q∈S

(⌊
δQ
p

⌋
− δQ

2

))
≤ 2(p− 2).

Hence we obtain gY ≤ p−2
p−1 < 1 and therefore gY = 0, as desired.

The curves occurring in Theorem 3.2 are hyperelliptic curves in characteristic
p = 2. The general standard equation for such curves will be stated in Section 5.
We give a simple example covering every genus gX ≥ 2 already now.

Example 3.4. We suppose that p = 2. Let r be an odd natural number, let k(x, y)
be the extension of the rational function field k(x) given by the Artin-Schreier
equation y2 − y = xr and define π : X → P1

k to be the corresponding cover of
non-singular projective curves over k. Then we have dimkH

0(X,ΩX) = gX = r−1
2

(e.g. see [Köc, Example 2.5]).

Remark 3.5. (a) The paper [VM] by Valentini and Madan is about determining
the k[G]-module structure of the space H0(X,ΩX) if G is a cyclic p-group. With
some effort it is also possible to derive major steps of this section from their fine
results.
(b) If X is not hyperelliptic, the following argument yields a very short proof
of (the ‘only-if’ direction of) Theorem 3.2. By Proposition IV.5.2 in [Har] the
canonical morphism X → P(H0(X,ΩX)) is a G-equivariant closed embedding; as
the action of G on X is faithful, the action of G on H0(X,ΩX) has therefore to
be faithful as well. A similar, but more intricate argument based on the deeper
Proposition IV.5.3 in [Har], can actually be used to prove Theorem 3.2 also if X
is hyperelliptic.
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4 Trivial Actions and Faithful Actions on

Riemann-Roch Spaces

The goal of this section is to give both sufficient and necessary conditions for the
action of G on H0(X,OX(D)) to be faithful if deg(D) > 2gX − 2. For instance,
if m ≥ 2, the group G does not act faithfully on the space H0(X,Ω⊗mX ) of global
polydifferentials of order m if and only if G contains a hyperelliptic involution and
m = gX = 2, see Corollary 4.5. We begin with a criterion for the action of G on
H0(X,O(D)) to be trivial.

Theorem 4.1. Let D =
∑

P∈X nP [P ] be a G-invariant divisor on X such that
deg(D) > 2gX − 2. Then the action of G on H0(X,OX(D)) is trivial if and only
if

(n− 1) deg(D) = n

(
gX − gY −

∑
Q∈Y

〈
nQ
eQ

〉)
. (4)

(Recall that nQ := nP for Q ∈ Y and P ∈ π−1(Q).)

Proof. The action of G on H0(X,OX(D)) is trivial if and only if

dimkH
0(X,OX(D)) = dimkH

0(X,OX(D))G.

Using the Riemann-Roch formula [Har, Ch. IV, §1, Theorem 1.3 and Exam-
ple 1.3.4] for the left-hand dimension and the formula given by Proposition 2.2
for the right-hand dimension, we obtain that the action of G on H0(X,OX(D)) is
trivial if and only if

1− gX + deg(D) = 1− gY +
1

n
deg(D)−

∑
Q∈Y

〈
nQ
eQ

〉
.

This condition rearranges to condition (4), as desired.

Corollary 4.2. Let D =
∑

P∈X nP [P ] be a G-invariant divisor on X. We assume
that deg(D) ≥ 2gX , that n ≥ 2 and that gX ≥ 1. Then the action of the group G
on H0(X,OX(D)) is trivial if and only if deg(D) = 2gX , n = 2, gY = 0 and nP is
even for each ramification point P ∈ X.

Proof. The following inequalities always hold under the stated assumptions:

(n− 1) deg(D) ≥ (n− 1)2gX ≥ ngX ≥ n

(
gX − gY −

∑
Q∈Y

〈
nQ
eQ

〉)
.
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Now the first inequality is an equality if and only if deg(D) = 2gX . The second
is an equality if and only if n = 2. The third inequality is an equality if and only

if gY = 0 and
∑

Q∈Y

〈
nQ

eQ

〉
= 0. The latter is the case if and only if each nQ is

divisible by eQ, which, if n = 2, means that nP is even for each ramification point
P ∈ X. Given these observations, Theorem 4.1 implies Corollary 4.2.

Corollary 4.3. Let m ≥ 2. We assume that n ≥ 2 and that gX ≥ 1. Then the
action of G on H0(X,Ω⊗mX ) is trivial if and only if gY = 0 and n = gX = m = 2 .

Proof. As gX ≥ 2 and m ≥ 2 we have that deg(mKX) ≥ 2gX . So, by Corollary 4.2,
the action of G on H0(X,Ω⊗mX ) is trivial if and only if deg(mKX) = 2gX , n = 2,
gY = 0 and, for each ramification point P ∈ X, the coefficient of the divisor mKX

at P is even. Now deg(mKX) = 2gX means that m(2gX − 2) = 2gX , i.e. that
m(gX − 1) = gX , and hence that m = gX = 2. It therefore suffices to prove that,
if n = 2, the coefficient nP of the divisor KX = π∗(KY ) + R at each ramification
point P ∈ X is always even. By definition, the coefficient of the pull-back divisor
π∗(KY ) at P is even. Furthermore, the coefficient δP of R at P is even, see the
proof of Proposition 3.1. Hence also nP is even.

To illustrate the conditions in Corollary 4.3, we now give simple examples of hy-
perelliptic curves of genus 2 and state a basis of the corresponding space of global
holomorphic quadratic differentials.

Example 4.4. If p 6= 2, let k(x, y) be the extension of the rational function field k(x)
given by y2 = (x − x1) · · · (x − x6), where x1, . . . , x6 ∈ k are pairwise distinct.
Then the corresponding natural projection π : X → P1

k is of degree 2 and ramified
exactly over x1, . . . , x6 ∈ P1

k. In particular we have gX = 2 by formulae (1) and (2).

Furthermore, the three quadratic differentials dx⊗2

y2
, x dx⊗2

y2
, x2 dx⊗2

y2
are obviously

fixed by the hyperelliptic involution y 7→ −y and form a basis of H0(X,Ω⊗2X ) by
Theorem 5.1 below. If p = 2, then the curve X considered in Example 3.4 satisfies
gX = 2 when r = 5. Furthermore the quadratic differentials dx⊗2, xdx⊗2, x2dx⊗2

are obviously fixed by the hyperelliptic involution y 7→ y + 1 and form a basis of
H0(X,Ω⊗2X ) by Theorem 5.1 below.

Corollary 4.5. Let m ≥ 2 and suppose that gX ≥ 2. Then G does not act
faithfully on H0(X,Ω⊗mX ) if and only if G contains a hyperelliptic involution and
m = 2 and gX = 2.

Proof. We first prove the ‘if’ direction. The subgroup of G generated by the
hyperelliptic involution is a group of order 2 acting on H0(X,Ω⊗mX ). Since gX =
m = 2, the action of this subgroup is trivial by Corollary 4.3, and this implies that
G does not act faithfully.
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To prove the other direction we apply Corollary 4.3 to the non-trivial kernel of the
action of G on H0(X,Ω⊗mX ).

In the following examples we look at the cases gX = 0 and gX = 1 which are not
covered by the previous corollary.

Example 4.6. Let gX = 0, i.e. X ∼= P1
k. Then the degree of the canonical divisor

KX on X is −2 and so deg(mKX) < 0 for all m ≥ 1. Hence H0(X,Ω⊗mX ) = {0}
by [Har, Ch. IV, Lemma 1.2] and every automorphism of X acts trivially on
H0(X,Ω⊗mX ) for all m ≥ 1.

Example 4.7. Let gX = 1, i.e. X is an elliptic curve. Then the OX-module Ω⊗mX is
free of rank 1 for all m ≥ 1. Hence dimkH

0(X,Ω⊗mX ) = 1 for all m ≥ 1 and the
canonical homomorphism H0(X,ΩX)⊗m → H0(X,Ω⊗mX ) is bijective. We therefore
study the action of Aut(X) on H0(X,Ω⊗mX ) only for m = 1. Let χ : Aut(X)→ k
denote the corresponding multiplicative character and let j ∈ k denote the j-
invariant of X. We are going to describe the kernel of χ and to show that the
image of χ is the group µr(k) of rth roots of unity in k with r given by the
following table.

p 6= 2, 3 6= 2, 3 6= 2, 3 3 3 2 2
j 6= 0, 1728 1728 0 6= 0 0 6= 0 0

r 2 4 6 2 4 1 3

As any basis ω of H0(X,Ω) is translation invariant [Sil, Proposition III.5.1], the
normal subgroup X(k) of Aut(k) consisting of all translations is contained in
the kernel of this action. By [Sil, Theorem III.10.1], the subgroup G of Aut(X)
consisting of those automorphisms which fix the zero point is finite and the canon-
ical homomorphism from G to the factor group Aut(X)/X(k) is bijective. Let
χ̄ : G→ k denote the induced character. We now distinguish the following cases.
(i) Let p 6= 2, 3. By [Sil, Corollary III.10.2], the group G is cyclic of order 2, 4
or 6 depending on whether j 6= 0, 1728, j = 1728 or j = 0. Furthermore, χ̄ is
injective, i.e. the action of G on H0(X,ΩX) is faithful. Indeed, given a Weierstrass
equation y2 = x3 + Ax + B for X, the action of any generator σ of G is given by
(x, y) 7→ (ζ2x, ζ3y) where ζ is a primitive root of unity of order 2, 4 or 6, respec-
tively, see the proof of [Sil, Corollary III.10.2]. As ω = dx

y
[Sil, Section III.5], we

obtain that χ(σ) = ζ−1 and that χ is injective.
(ii) Let p = 3. If j 6= 0, then ord(G) = 2 [Sil, Proposition A.1.2] and, using Case I
in the proof of ibid., the same reasoning as in (i) shows that χ̄ is injective. If
j = 0, the group G is a semidirect product of a normal subgroup C3 of order 3 and
a cyclic subgroup of order 4, see [Sil, Exercise A.1(a)]. The character χ̄ : G→ k is
trivial on C3 because µ3(k) is trivial. Using Case II in the proof of ibid., the same
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reasoning as in (i) shows that the induced character ¯̄χ : C4 → k is injective.
(iii) Let p = 2. If j 6= 0, then ord(G) = 2 [Sil, Proposition A.1.2]. We conclude
that χ̄ is trivial because µ2(k) is trivial. If j = 0, the group G is a semidirect prod-
uct of a cyclic subgroup C3 and a normal subgroup Q isomorphic to the quaternion
group of order 8, see [Sil, Exercise A.1(b)]. Again, as µ8(k) is trivial, the charac-
ter χ̄ is trivial on Q. Using Case IV in the proof of ibid., one easily shows that
the induced character ¯̄χ : C3 → k is injective. Note that here ω = dx, see [Sil,
Proposition A.1.1(c) and Section III.5].

Similarly to the case deg(D) ≥ 2gX in Corollary 4.2, the following corollary gives,
in the case deg(D) = 2gX − 1, necessary and sufficient conditions for the action
of G on H0(X,OX(D)) to be trivial.

Corollary 4.8. Let D =
∑

P∈X nP [P ] be G-invariant divisor on X. We assume
that deg(D) = 2gX − 1, that n ≥ 2 and that gX ≥ 2. Then the action of G on the
space H0(X,OX(D)) is trivial if and only if gY = 0 and one of the following two
sets of conditions holds:

• n = 2 and there is exactly one ramification point P ∈ X for which nP is odd;

• n = 3, gX = 2 and nP is a multiple of 3 for each ramification point P ∈ X.

Proof. As deg(D) = 2gX − 1, we conclude from Theorem 4.1 that the action is
trivial if and only if

(n− 1)(2gX − 1) = n

(
gX − gY −

∑
Q∈Y

〈
nQ
eQ

〉)
.

If n = 2, then this is equivalent to 2gX − 1 = 2gX − 2gY − 2
∑

Q∈Y

〈
nQ

eQ

〉
and

hence to gY = 0 and
∑

Q∈Y

〈
nQ

eQ

〉
= 1

2
, and the latter condition means that there

is exactly one ramification point P ∈ X for which nP is odd.

If n ≥ 3, then, as gX ≥ 2, we have gX ≥ n−1
n−2 which is equivalent to the first

inequality in the following chain of inequalities:

(n− 1)(2gX − 1) ≥ ngX ≥ n

(
gX − gY −

∑
Q∈Y

〈
nQ
eQ

〉)
.

Hence the action is trivial if and only if both inequalities are equalities, which is
the case if and only if n = 3, gX = 2, gY = 0 and eQ | nQ for all Q ∈ Y . When
n = 3, the latter condition means that nP is a multiple of 3 for each ramification
point P ∈ X.
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Corollaries 4.2 and 4.8 yield the following sufficient conditions for the action of G
on a general Riemann-Roch space H0(X,OX(D)) to be faithful.

Corollary 4.9. Let gX ≥ 2 and let D =
∑

P∈X nP [P ] be a G-invariant divisor
on X. Let Xram := {P ∈ X : π is ramified at P}. Then the action of G on
H0(X,OX(D)) is faithful if any of the following four sets of conditions holds:

(a) deg(D) ≥ 2gX + 1;

(b) deg(D) = 2gX and nP is odd for each P ∈ Xram;

(c) deg(D) = 2gX − 1, gX ≥ 3 and nP is even for each P ∈ Xram;

(d) deg(D) = 2gX − 1, gX = 2 and nP is even but not a multiple of 3 for each
P ∈ Xram.

Proof. Suppose the action of G on H0(X,OX(D)) is not faithful. Then there exists
a non-trivial subgroup H of G such that the action of H on H0(X,OX(D)) is in
fact trivial.
If deg(D) ≥ 2gX , Corollary 4.2 implies that deg(D) = 2gX , that the order of H is 2,
that the genus of X/H is 0 and that nP is even for each ramification point P of the
projection X → X/H. In particular, condition (a) cannot hold, and condition (b)
cannot hold because X → X/H is not unramified (by the Hurwitz formula (1))
and because each ramification point of X → X/H is also a ramification point
of π : X → X/G.
Similarly, if deg(D) = 2gX−1, Corollary 4.8 implies that none of the conditions (c)
and (d) can hold. Indeed, each of the conditions (c) and (d) contradicts both the
first and second set of conditions in Corollary 4.8.
So we have proved that, if any of the conditions (a) – (d) holds, then the action
of G on H0(X,OX(D)) is faithful.

Remark 4.10. Let deg(D) ≥ 2gX + 1, which amounts to gX ≥ 3 or (gX = 2 and
m ≥ 3) in Corollaries (4.3) and (4.5). Then, as in Remark (3.5)(b), most of the
results of this section are an immediate consequence of the fact that D is very
ample, see Corollary IV.3.2 in [Har].

5 Global Holomorphic Polydifferentials

on Hyperelliptic Curves

In this section we assume that the curve X is hyperelliptic of genus g ≥ 2 and
give an explicit basis of H0(X,Ω⊗mX ) for any m ≥ 1, see Theorem 5.1 below.
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If furthermore G is the cyclic group of order 2 generated by the hyperelliptic
involution σ, this quickly leads to another proof of Theorem 3.2 and Corollary 4.5.

We fix an isomorphism X/G ∼= P1
k and consider the projection

x : X → X/G ∼= P1
k

as an element of the function field K(X). By Proposition 4.24 and Remark 4.25
in Chapter 7 of [Liu], there exists an element y ∈ K(X) such that K(X) = k(x, y)
and such that y satisfies a quadratic equation over k(x) of the following type:

Case p 6= 2: y2 = f(x)
where f(x) ∈ k[x] is a polynomial without repeated zeroes.

Case p = 2: y2 − h(x)y = f(x)
where f(x), h(x) ∈ k[x] are non-zero polynomials such that h′(x)2f(x) + f ′(x)2

and h(x) have no common zeroes in k.

We recall that the stated condition on the polynomial(s) f(x) (and h(x), respec-
tively) means that the affine plane curve defined by the quadratic equation is
smooth, see [Liu, Chap. 7, Remark 4.25].

Let m ≥ 1 and let the meromorphic polydifferential ω ∈ Ω⊗mK(X)/k be defined as
follows:

ω :=
dx⊗m

ym
if p 6= 2 and ω :=

dx⊗m

h(x)m
if p = 2.

Theorem 5.1. The following polydifferentials form a basis of H0(X,Ω⊗mX ):
ω, xω, . . . , xg−1ω if m = 1;

ω, xω, x2ω if m = 2 and g = 2;

ω, xω, . . . , xm(g−1)ω; yω, xyω, . . . , x(m−1)(g−1)−2yω otherwise.

Remark 5.2. The case m = 1 of the previous theorem is for instance also treated
in Proposition 4.26 of Chapter 7 in [Liu].

We now briefly explain that Theorem 5.1 yields a new proof of Theorem 3.2 and
Corollary 4.5 if X is hyperelliptic and G is generated by the hyperelliptic invo-
lution. By definition, the hyperelliptic involution σ fixes x and maps y to −y if
p 6= 2 and to y − h(x) if p = 2. We therefore have σ(ω) = ω if p = 2 or if m
is even. In particular, Theorem 5.1 implies that σ acts trivially on H0(X,Ω⊗mX )
if either m = 1 and p = 2 or m = 2 and g = 2, as stated in Theorem 3.2 and
Corollary 4.5. On the other hand, if p 6= 2 and m is odd, then σ(xiω) = −xiω for
i = 0, . . . ,m(g − 1), so G does act faithfully on H0(X,Ω⊗mX ). Finally, if m ≥ 3
or g ≥ 3, the second half of the list of basis elements given in Theorem 5.1 is
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non-empty and σ does not act trivially on those basis elements if p = 2 or if m is
even, and so, again, G does act faithfully on H0(X,Ω⊗mX ).

Proof (of Theorem 5.1). We first observe that the stated family of polydifferentials
is linearly independent over k. This follows from the elementary facts that ω
is a basis of the vector space ΩK(X)/k over K(X) = k(x, y), that 1 and y are
linearly independent over k(x) and that 1, x, x2, . . . are linearly independent over k.
Furthermore it is easy to see that the number of elements in the stated family is
equal to {

g if m = 1

(2m− 1)(g − 1) if m ≥ 2

which in turn is equal to dimkH
0(X,Ω⊗mX ) by the Riemann-Roch theorem ([Har,

IV, Theorem 1.3, Examples 1.3.3 and 1.3.4]). It therefore suffices to prove that
each polydifferential in our family is indeed globally holomorphic.
For each a ∈ P1

k, let Pa denote the unique point in X above a, if a is a branch
point of x, and let Pa, P

′
a denote the two points above a otherwise. We write Da

for the divisor

Da = x∗([a]) =

{
2[Pa] if a is a branch point of x;

[Pa] + [P ′a] otherwise.

Then we obviously have:
div(x) = D0 −D∞.

Recall that R denotes the ramification divisor of x. By Theorem 3.4.6 of [Sti]
(which implies the Hurwitz formula (1)) we have:

div(dx) = x∗(divP1
k
(dx)) +R = R− 2D∞.

We will prove below that

div(y)
div(h(x))

}
= R− (g + 1)D∞

{
if p 6= 2

if p = 2.
(5)

If p 6= 2 this equation implies that

div(y) ≥ −(g + 1)D∞ (6)

and, if p = 2, we will prove this inequality separately. For any i ≥ 0, we then
obtain that

div(xiω) =

{
i div(x) +m div(dx)−m div(y) if p 6= 2

i div(x) +m div(dx)−m div(h(x)) if p = 2

= i(D0 −D∞) +m(R− 2D∞)−m(R− (g + 1)D∞)

= iD0 + (m(g − 1)− i)D∞
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and hence that

div(xiyω) = div(xiω) + div(y)

≥ iD0 + (m(g − 1)− i)D∞ − (g + 1)D∞

= iD0 + ((m− 1)(g − 1)− 2− i)D∞.

Thus xiω is holomorphic for i = 0, . . . ,m(g − 1), and xiyω is holomorphic for
i = 0, . . . , (m− 1)(g − 1)− 2, as was to be shown.
We now prove statements (5) and (6). We first consider the case p 6= 2. Then the
degree of f(x) is equal to 2g + 1 or 2g + 2 by [Liu, Chap. 7, Prop. 4.24(a)]. Let
a1, . . . , adeg(f(x)) ∈ k be the zeroes of f(x). By formulae (1) and (2) we have

R = [P1] + . . .+ [P2g+2]

where Pi := Pai for i = 1, . . . , deg(f(x)) and P2g+2 := P∞ if deg(f(x)) = 2g + 1.
We then obtain that

div(y) =
1

2
div(y2) =

1

2
div(f(x))

=

{
[P1] + . . .+ [P2g+2]− (g + 1)D∞ if deg(f(x)) = 2g + 2;

[P1] + . . .+ [P2g+1]− (2g + 1)[P∞] if deg(f(x)) = 2g + 1.

= R− (g + 1)D∞

which proves both statements (5) and (6) in the case p 6= 2.
We finally turn to the case p = 2. We write h(x) =

∏k
i=1(x − ai)

mi with
m1, . . . ,mk ∈ N and pairwise distinct a1, . . . , ak ∈ k. Then a1, . . . , ak are the
only branch points of x in A1

k and we let Pi := Pai for i = 1, . . . , k. Furthermore,

let d := deg(h(x)) =
∑k

i=1mi and bi := y(Pi) for i = 1, . . . , k. By the Nakayama
Lemma, y− bi is a local parameter at Pi. By Hilbert’s formula (2) we then obtain

δPi
= ordPi

(σ(y − bi)− (y − bi)) = ordPi
(−h(x)) = 2mi

for i = 1, . . . , k. We hence have

R =
k∑
i=1

2mi[Pi] + (g + 1− d)D∞ (7)

because deg(R) = 2g + 2 by the Hurwitz formula (1). We therefore obtain

div(h(x)) =
k∑
i=1

2mi[Pi]− dD∞ = R− (g + 1)D∞.
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This proves equality (5) in the case p = 2.
We finally prove inequality (6) by contradiction. We first note that deg(f(x)) ≤
2g + 2 by [Liu, Chap. 7, Prop. 4.24(a)]. If ∞ is a branch point of x, then we have
d < g+1 by formula (7). Now, supposing that inequality (6) does not hold implies
that ordP∞(y) < −2(g+1) (which is less than −2d = ordP∞(h(x))) and hence that

−4(g + 1) > 2 ordP∞(y) = ordP∞(y(y − h(x))) = ordP∞(f(x)) ≥ −2(2g + 2)

which is a contradiction. If∞ is not a branch point of x, we have deg(h(x)) = g+1
by formula (7). Now, supposing that inequality (6) does not hold means that
ordP (y) < −(g + 1) (which is equal to ordP (h(x))) for P = P∞ or P = P ′∞ and
hence that

−2(g + 1) > 2 ordP (y) = ordP (y(y − h(x))) = ordP (f(x)) ≥ −(2g + 2)

which again is a contradiction.
This concludes the proof of Theorem 5.1.

6 Automorphism Groups of Geometric Goppa

Codes

Permutation automorphism groups of Goppa codes play an important role in Cod-
ing Theory (e.g. see [Sti], [JK] or [GK] and the literature cited there). In this
section we are going to explain how Corollary 4.9 can be used to obtain permuta-
tion groups that act faithfully on geometric Goppa codes. A slightly more explicit
account of the basic idea can also be found in Chapter 3 of [FW].

Let X be a geometrically connected, smooth, projective curve over a finite field Fq.
Let D =

∑
P∈X closed nP [P ] be a divisor on X and let E be a set of Fq-rational

points on X none of which belongs to the support of D. Then we have a natural
evaluation map

evD,E : H0(X ,OX (D))→ Maps(E,Fq)

the image of which is called a geometric Goppa code and denoted by C = C(D,E).
Note that the target space of evD,E is usually denoted by Frq where r is the number
of points in E. Our notation Maps(E,Fq) simplifies the discussions below.

The group Sym(E) of permutations of E acts on Maps(E,Fq). The subgroup of
Sym(E) consisting of those σ ∈ Sym(E) that induce an automorphism of C is
called the permutation automorphism group of C and denoted by AutPerm(C).
Note that AutPerm(C) acts on C, but not necessarily faithfully.
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Now we furthermore assume that G is a finite subgroup of Aut(X/Fq), that the
divisor D is G-invariant and that σ(E) = E for all σ ∈ G. Then G acts on both
the source and target of the evaluation map evD,E and evD,E is G-equivariant. In
particular we have the following composition of obvious group homomorphisms:

G→ AutPerm(C)→ AutFq(C).

Lemma 6.1. If the cardinality |E| of E is bigger than deg(D) and G acts faithfully
on H0(X ,OX (D)), then this composition is injective.

Proof. If |E| > deg(D), then the evaluation map evD,E is injective by [Sti, Corol-
lary 2.2.3] and we have the following obvious commutative diagram:

G //

��

AutPerm(C)

��
AutFq(H

0(X ,OX (D))) ∼ // AutFq(C).

Now Lemma 6.1 is obvious.

If |E| > deg(D) and G acts faithfully on H0(X ,OX (D)), then Lemma 6.1 allows
us to view G as a subgroup of both AutPerm(C) and of AutFq(C). Furthermore,
when applied to the curve X = X ×Fq F̄q over the algebraic closure F̄q of Fq,
Corollary 4.9 gives us sufficient conditions for the action of G on H0(X,OX(D)) =
H0(X ,OX (D))⊗Fq F̄q to be faithful. (Note that here, by abuse of notation, D also
denotes the divisor onX induced by the divisorD on X .) Under the assumptions of
Corollary 4.9 and of Lemma 6.1 we thus obtain that G is a subgroup of AutPerm(C)
that acts faithfully on the Goppa code C. This strengthens Proposition 8.2.3 in
[Sti] in the case deg(D) ∈ {2gX − 1, 2gX , 2gX + 1} and gX ≥ 2. A related result
can be found in [JK].

7 Computing the Dimension of the Tangent Space

of the Equivariant Deformation Functor

This section depends only on Section 2.

The equivariant deformation problem associated with (G,X) is to determine in
how many ways X can be deformed to another curve that also allows G as a group
of automorphisms. In [BM], Bertin and Mézard have shown that the tangent
space of the corresponding deformation functor is isomorphic to the equivariant

20



cohomology H1(G, TX) of (G,X) with values in the tangent sheaf TX = Ω∨X . In this
section, we apply Corollary 2.4 to prove the following formula for the dimension of
H1(G, TX), provided the space MG of invariants and the space MG of coinvariants
have the same dimension for every finitely generated k[G]-module M .

Theorem 7.1. Let gX ≥ 2. If dimkM
G = dimkMG for every finitely generated

k[G]-module M , then we have

dimkH
1(G, TX) = 3gY − 3 +

∑
Q∈Y

⌊
2δQ
eQ

⌋
. (8)

The following lemma implies that the assumption of the previous theorem is satis-
fied if G is cyclic and its order is a power of p. In particular, Theorem 7.1 general-
izes Corollary 2.3 in [KöKo] which proves formula (8) under the assumption that
G is cyclic and its order is a power of p. Moreover, the proof of Theorem 7.1 at
the end of this section considerably simplifies the proof of Corollary 2.3 in [KöKo]
which ultimately relies on a comparatively fine and deep theorem in the last section
of Borne’s paper [Bor].

Lemma 7.2. Suppose that the finite group G has a normal subgroup N such that
p does not divide the order of N and such that G/N is cyclic. Then we have
dimkM

G = dimkMG for every finitely generated k[G]-module M .

Proof. By replacing N with the preimage of the non-p-part of the cyclic group G/N
under the canonical projection G→ G/N , we may assume that the order of G/N
is a power of p = char(k). We need to show that dimk(M

N)G/N = dimk(MN)G/N
for every finitely generated k[G]-module M . As p does not divide the order of N ,
the canonical map MN → MN is obviously an isomorphism of k[G/N ]-modules.
We may therefore assume that G is cyclic and that the order of G is a power of p.
Then, both dimkM

G and dimkMG are equal to the number of summands in a
representation of M as a direct sum of indecomposable k[G]-modules, as one can
easily see from the explicit description of indecomposable k[G]-modules as given
for example in the second paragraph of Section 2 in [KöKo].

Note that the Schur-Zassenhaus theorem tells us that, under the assumptions of
Lemma 7.2, the group G is in fact a semidirect product of N and G/N provided we
assume without loss of generality that the order of G/N is a power of p. Examples
of such semidirect products may be obtained as follows. Suppose q is a prime
number such that p divides q − 1 and let H be a (cyclic) subgroup of (Z/qZ)×

whose order is a power of p. Then H acts on Z/qZ by multiplication, and the
semidirect product H n Z/qZ is of the considered type.
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The following simple example shows that the assumption of Theorem 7.1 cannot
be expected to hold true if G is a non-cyclic group whose order is a power of p.

Example 7.3. Let G be the finite group Z/pZ × Z/pZ, represented as the matrix
group  1 Z/pZ Z/pZ

0 1 0
0 0 1

 ,

and let M be the standard representation k3 of G. Then one easily checks that
both MG and the kernel of the canonical map M →MG are generated by the first
standard basis vector of k3, so dimkM

G = 1 but dimkMG = 2.

The following lemma will be used in the proof of Theorem 7.1. It generalizes and
simplifies the considerations in Section 2 of [Kon]. We use the notation ∗ for the
k-dual of a vector space over k or of a k-representation of G.

Lemma 7.4. Let G be a finite group and let M be a finitely generated k[G]-module.
Then we have a canonical isomorphism

(MG)∗
∼−→ (M∗)G.

Proof. The dual of the canonical projection M → MG induces a natural map
αM : (MG)∗ → (M∗)G. Given a representation

k[G]s → k[G]r →M → 0

of M , we obtain the following commutative diagram with exact rows:

0 // (MG)∗ //

αM

��

((k[G]r)G)∗ //

αk[G]r

��

((k[G]s)G)∗

αk[G]s

��

0 // (M∗)G // ((k[G]r)∗)
G // ((k[G]s)∗)

G
.

It therefore suffices to proof Lemma 7.4 for M = k[G] in which case it is easy to
check.

Proof of Theorem 7.1. A simple spectral-sequence argument (see Proposition 3.1
in [Kon]) shows that

H1(G, TX) ∼= H1(X, TX)G.

22



We therefore obtain:

dimkH
1(G, TX) = dimkH

1(X, TX)G

= dimk(H
0(X,Ω⊗2X )∗)G (by Serre duality, see [Har, III, 7.12.1])

= dimk(H
0(X,Ω⊗2X )G)∗ (by Lemma 7.4)

= dimkH
0(X,Ω⊗2X )G

= dimkH
0(X,Ω⊗2X )G (by assumption)

= 3(gY − 1) + deg

⌊
2π∗(R)

n

⌋
(by Corollary 2.4)

= 3gY − 3 +
∑
Q∈Y

⌊
2δQ
eQ

⌋
,

as was to be shown.

8 When does an Automorphism of a Riemann

Surface Act Trivially on its First Homology?

Let X be a connected compact Riemann surface of genus g ≥ 2, let m ≥ 2
and let σ be an automorphism of X of order n 6= 1. Rather than the action
of σ on H0(X,Ω⊗mX ), we now study the action of σ on the first homology group
H1(X,Z/mZ) of X with values in Z/mZ. The object of this section is to point
out a striking analogy between these two actions being trivial.

We recall that Corollary 4.3 states that (in fact for any connected smooth pro-
jective curve X of genus at least 2 over any algebraically closed field) the auto-
morphism σ acts trivially on H0(X,Ω⊗mX ) if and only if m = gX = 2 and σ is
a hyperelliptic involution. The following theorem addresses the analogue of the
‘only-if’ direction of this statement.

Theorem 8.1. If σ acts trivially on H1(X,Z/mZ), then m = 2 and σ is an
involution.

Proof. This follows from the theorem at the end of Section V.3.4 in [FK]. We
remark that the proof of that theorem is based on a well-known fact (deduced by
Serre) about torsion in principal congruence subgroups.

The next theorem is about the analogue of the ‘if’ direction of Corollary 4.3.

Theorem 8.2. Let σ be an involution. Then the implications (a)⇔ (b)⇒ (c)⇔ (d)
hold for the following statements.
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(a) g = 2 and σ is a hyperelliptic involution.

(b) For every simple closed curve α on X, the curve σ(α) is freely homotopic
to α or −α.

(c) There exists a basis B of H1(X,Z) such that σ(x) = ±x for all x ∈ B.

(d) The involution σ acts trivially on H1(X,Z/2Z).

Proof. The equivalence (a) ⇔ (b) follows from Theorem 1 and Theorem 2 in the
paper [HS] by Haas and Susskind and from the fact that any two biholomorphic
automorphisms of X that are homotopic to each other are in fact equal, see [Lew,
Corollary 2].
The implication (b) ⇒ (c) follows from the well-known fact that there exists a
basis B of H1(X,Z) consisting of classes of simple closed curves. It also follows
from Theorem 8.3 below.
The implication (c) ⇒ (d) is trivial because H1(X,Z/2Z) ∼= H1(X,Z) ⊗ Z/2Z.
To prove the converse (d) ⇒ (c), we observe that for any x ∈ H1(X,Z), the

classes of x+ σ(x) and x− σ(x) in H1(X,Z/2Z) are zero; hence x+ := x+σ(x)
2

and

x− := x−σ(x)
2

are well-defined elements in H1(X,Z) such that σ(x±) = ±x± and
x = x+ + x−. The union of bases for E±(σ) := {x ∈ H1(X,Z) : σ(x) = ±x} is
therefore a basis B of H1(X,Z) with the required property.

The following final theorem shows that after dropping the assumption g = 2 in
statement (a) of the previous theorem, the implication (a) ⇒ (c) still holds. In
contrast to Corollary 4.3, the implication (d) ⇒ (a) is therefore not true.

Theorem 8.3. If σ is a hyperelliptic involution, then σ acts by multiplication
with −1 on H1(X,Z).

Proof. Topologically, the hyperelliptic involution σ ‘rotates X by 180◦ around an
axis L’ as depicted in Figure 1. Let α1, . . . , αg, β1, . . . , βg be the standard basis
elements of H1(X,Z) as given in Figure 1. Then we obviously have σ(αi) = −αi
in H1(X,Z) for all i = 1, . . . , g. Furthermore σ(β1) and β1 and also σ(βg) and
βg are homotopic to each other (but with different orientation); hence we have
σ(β1) = −β1 and σ(βg) = −βg in H1(X,Z). To see that σ(βi) = −βi also for
i = 2, . . . , g − 1, let Xi be the ‘left-hand (or right-hand) part of the surface X
bounded by βi ∪ σ(βi)’. Being the oriented boundary of the oriented surface Xi

the class βi + σ(βi) vanishes in the homology H1(Xi,Z) of the subspace Xi of X
and hence also in H1(X,Z), as was to be shown.
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Figure 1

We end with the following problem.

Problem. Give a geometric characterization of those involutions σ ∈ Aut(X) for
which condition (c) of Theorem 8.2 holds.
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[BM] J. Bertin and A. Mézard. Déformations formelles des revêtements
sauvagement ramifiés de courbes algébriques. Invent. Math., 141(1):195–
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