
We also point out that the Riccati approach has been extended to 
problems where the complete state is not available for feedback. These 
results are in [8]-[lo] and require solution of two Riccati equations. 
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Fake Algebraic Riccati Techniques and Stability 

MARIE-ANTOINETTE POUBELLE, ROBERT R. BITMEAD, 
AND MICHEL R. GEVERS 

A bstmct-Conditions, sufficient and necessary, for monotonic behav- 
ior of the solutions of the Riccati differential equation and Riccati 
difference equation are derived. For the optimal filtering (respectively, 
control) equation these results are derived without the usual requirement 
of detectability (respectively, stabilizabitity). The monotonic behavior 
allows us to prove stabilizing properties of the solutions subject only to 
requirements on the initial conditions. 

I. INTRODUCTION 

We study stabilization properties of the solutions of the following 
equations of optimal filtering: the discrete-time Riccati difference 
equation (RDE) 

P(t + 1) =FP(t)F’ - FP(t)H’ (HP(t)H’ + R)-’HP(t)F’ + Q 

P(0) = Po; (1) 

Manuscript received May 15, 1987. This work was supported by the Australian 
Telecommunications and Electronics Research Board and was performed while the 
authors were visiting the Temple of the Olympian Zeus, Athens. 

M.-A. Poubelle is with the Department of Systems Engineering, Research School of 
Physical Sciences, Australian National University, Canberra, A.C.T. 2601 Australia, on 
leave from D.G.S.E. 

R. R. Bitmead is with the Department of Systems Engineering, Research School of 
Physical Sciences, Australian National University, Canberra, A.C.T. 2601 Australia. 

M. R. Gevers is with the Laboratoire d’Automatique. de Dynamique et d’Analyse des 
Systemes, Universite Catholique de Louvain, Louvain, la Neuve, Belgium. 

IEEE Log Number 8717001. 

and the continuous-time Riccati differential equation (RDE) 

P(t)  =FP(t)+ P(t)F’ - P(t )H’R-’HP(t )  + Q 

with R > 0 and Q = Q’. 
These equations are part of the Kalman filters associated with linear 

time-invariant systems. By duality, the same equations refer to the 
optimal control problem [l], [2]. 

Connected with these RDE’s are their associated algebraic Riccati 
equations (ARE’S): 

P =  FPF’ - FPH‘ (HPH‘ + R)-‘HPF’ + Q (3) 

and 

0 = FP + PF‘ - PH‘ R I HP + Q. (4) 

Under certain conditions the solution P(t) of the RDE converges to the 
solution P of the associated ARE as t tends to infinity. This shall not 
concern us here. Rather we shall be directing our attention to the stability 
of the linear time-invariant “frozen” closed-loop discrete-time system 

x( t+  1)= { F -  FP(s)H’ [HP(S)H’ + R ] - ’ H } x ( t )  ( 5 )  

or its continuous-time counterpart 

%(t )=  [F-  P(s )H’R-’H]x( t )  (6) 

for fixed s. 
Because stabilization properties of P, the solution of the ARE, are well 

known, we utilize a device pioneered in [3]-[5]-the fake algebraic 
Riccati equations (FARE) associated with the RDE’s (1) and (2), 
respectively, 

Q ( t )  = P ( t )  - FP(t)F’ +FP(t)H’ (HP(t)H’ +R)- ’HP(t )F’  (7) 

indiscreet time, and 

Q(t)=P(t)H’R-’HP(t)-FP(t)-P(t)F’ (8) 

in continuous time. These FARE’S are actually definitions for matrix 
sequences and functions &t). However, as explored in [3]-[5], it is the 
stabilizability of the pair [F, Q1/’(s)] (when Q(s) 2 0) that determines 
the asymptotic stability of (7) or (8), respectively, since then P(s) satisfies 
a legitimate ARE and standard stability results may be invoked. 
Specifically we recall the following. 

Theorem I: Consider the FARE (7) [respectively, (8)] and assume: 
i) [H,  F ]  is a detectable pair, 
ii) Q(s) 2 0 and [F, Ql/’(s)] is a stabilizable pair. 
Then the frozen closed-loop system (5) [respectively, (6)] is asymptoti- 

Subtracting (1) from (7), and (2) from (8) yields 
cally stable. 

Q ( t ) = Q + P ( t ) - P ( t +  1) (9) 

and 

The connection between monotonicity of {P(t)} and stabilizability 
properties of [F, Q1”(t)] then emerges; see [3]. 

We perform two main tasks in this note. We extend the sufficient 
conditions of [3], [4] for monotonicity of P(t) ,  the solution of the RDE, to 
necessary and sufficient conditions. This is done without the usual 
detestability conditions on the pair [H,  F]. By exploiting some novel 
manipulation of the RDE in continuous time, we develop new stabilizabil- 
ity conditions applicable for 0 < P(0)  < P. Previous conditions only 
dealt with 0 < P < P(0). Here P i s  the solution of the ARE (3) or (4). A 
connection with the asymptotic stability of finite horizon optimal control 
strategies will be made. 
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II. DISCRETE-TIME RESULTS 

We first recall a lemma of [4] ,  inspired by a result of Nishimura [6 ] .  
Lemma I: Consider two discrete-time RDE's ( 1 )  with the same F, H ,  

R matrices but possibly different Q matrices, 0 and Q*, and possibly 
different initial conditions. Denote the solutions f i t )  and P*(t) ,  respec- 
tively, and rewrite ( 1 )  as 

P( t+  l)=f(P(t), Q), P*(f+ l )=f (P*( t ) ,  Q*). (11) 

Then 

P(t+ 1) 2 P(t + 1) if kt) 2 P(t) and Q 2 Q*. 

The following three results are immediate consequences. 
Lemma 2: Consider the RDE (1). If for some t, P(t) 2 P(t + 1) 

(respectively, P(t) Q P(f  + l ) ) ,  then P(t + k )  2 P(t + k + 1) 
(respectively, P(t + k) Q P(t + k + 1)) for all k 2 0. 

Proof: From Lemma 1 by considering f i t )  = P(t), P ( t )  = P(t + 
I), and Q = Q* = Q (and vice versa). 

Theorem 2: The sequence { P(t)}  is monotonically nonincreasing 
(respectively, monotonically nondecreasing) if and only if Q(0) 2 Q 
(respectively, Q(0) Q Q). 

Proof: We prove only the nonincreasing result. Note from (9) that 
P(l) - P(0)  = Q - Q(0). Using Lemma 2 the result follows. 

The following special case was partially established by Caines and 
Mayne using more devious means. 

CorolIury 1: If Po = 0, the sequence {P( t ) }  is monotonically 
nondecreasing if Q 2 0, monotonically nonincreasing when Q < 0. 

(12) 

. 

Proof: From Theorem 2 noting that Q(0) = 0. 

III. CONTINUOUS-TIME MONOTONICITY RESULTS 

Thus, P(t) itself satisfies a Lyapunov matrix equation and Lemma 3 
yields, for t 2 to, 

P(t)=@(t ,  to)P(to)@'(t, t o ) .  (19) 

This was also observed in [ 8 ] .  This admits immediately the following 
results. 

Lemma 5: Consider the RDE (2). If for some to, P(t0) 2 0 
(respectively, P(to) Q o), then P(t) 2 o (respectively, P(t )  Q 0) for all 
t 2 to. 

Theorem 3: The solution { P ( t ) }  of ( 2 )  is monotonically nonincreasing 
(respectively, monotonically nondecreasing) if and only if Q(0) 2 Q 
(respectively, Q(0) Q Q ) .  

Proof: Follows by Lemma 5 upon noting (10). 

IV. CONTINUOUS-TIME STABILITY RESULTS 

The connection between asymptotic stability of (6) and monotonicity of 
P ( t )  is studied in [4] by linking the conditions of Theorem 1 with 
monotonicity conditions of Theorem 3, noting the relationship (10) 
between Q(s) and &). In these papers monotonic nonincreasing P ( t ) ,  
i.e., P(t) Q 0, were considered in the development of stability theorems. 
Of necessity, this treats only the case of initial conditions P(0)  which are 
greater than or equal to the steady-state solution P of the ARE (4). We 
shall now present results which guarantee stability of (6) for all s 2 0 
when P(0)  may be less than P .  

The differentiation of the RDE (2) may be carried further by 
differentiating (18) to produce 

P ( t )  = [F- P( t )H'R- 'H]P( t )  + P ( t ) [ F -  P(t)H'R-'Hl'  

-2P(t)H'R-'HP(t)  

We derive the equivalent of the preceding two lemmas, or dilemma, but Or 

now in continuous time. First, we need a preliminary result also found in 
[7, P. 581. 

P ( t )  = A  ( t ) P ( f )  + P ( t ) A  ' ( t ) -  2P( t )H'R- 'HP(t ) .  (20) 

Lemma 3: Consider the following time-varying Lyapunov equation: That is, P(t)  satisfies a Lyapunov equation. Appealing to Lemma 3 for 
t 2 t o  

S ( t )  =A(t)S(t )  + S(t)A ' ( t )  + W(t ) ,  S(O)= so (13) 

and denote *(t, 7)  the transition matrix of A(t) .  Then the solution is &t)= - 2  s' +(I, r)P(r)H'R-'HP(r)O'(t, 7) dr 
'0 

S(t)= 1' +(t ,  r)W(T)+'(t, 7) d7+3(t ,  O)SoO'(t, 0). (14) 

Proof: By differentiating S(t) in (14) and observing that they are the 
same. 

We now generalize NishimuralLemma 1 .  
Lemma 4: Consider two RDE's (2) with the same F, H ,  R but possibly 

different Q matrices, Q and Q * ,  and possibly different initial conditions, 
$0) and P*(O). Denote the solutions P(t )  and P*( t ) ,  respectively. Then 
P(0)  2 P*(O) and Q 2 Q* implies P(t )  2 P*( t )  for all t 2 0. 

Proof: Denote F(t)  = P(t) - P*( t ) .  Then 

p ( f ) = A ( t ) & f ) + P ( t ) A ' ( t ) +  W ( t )  (15) 

where 
A ( t )  = F - P ( t ) H ' R - ' H  

and W(t) = p(( t )H'R- 'Hp( t )  + Q - Q * .  The result follows 
immediately from Lemma 3. 

It is well known that the continuous-time RDE (2) may be written as a 
Lyapunov-like equation 

P ( f ) = A ( t ) P ( t ) +  P( t )A ' ( t ) +  P( t )H'R- 'HP( t )+  Q (17) 

with A ( f )  = F - P( t )H'R- 'H.  However, the analysis may be carried 
further. Differentiating the RDE (2)  yields directly 

P ( f )  = P(t)[F-P(t)H'R-'Hl ' + [ F -  P ( t )W'R- 'H]P( t )  

or 

P ( f )  = P ( t ) A ' ( t )  + A ( t ) P ( t ) .  (18) 

+ @ ( t ,  to)P(to)O,(t, to) .  (21) 

Thus, should &to) be nonpositive definite, then P(to + t) will remain 
nonpositive definite for all t 2 0. 

We may now return to the stability problem. 
Theorem 4: Consider the solution P ( t )  to the RDE (2) ,  t 2 0. Assume 

i) [ H ,  F] is a detectable pair, and P(0)  = Po is such that 
ii) 0 < Q(0) = PoH'R-'HPo - FPo - PoF' and [F,  Q"*(O) ]  is a 

iii) 0 2 P(0) = (FPo + PoF' - PoH'R-'HP0 + Q ) ( F  - 

the following. 

stabilizable pair, 

PoH'R-IH)' + ( F  - PoH'R-'H)(FPo + PoF' - PoH'R-IHPo + 
Q ) .  

Then the frozen closed-loop system (6) is asymptotically stable for all 
s 2 0. 

Proof: From condition iii) and (21) we have P(t)  < 0 for all t. 
Therefore, P(t  + T)  Q P(t) for all f,  T 2 0. From (10) this yields Q(t 
+ T )  2 Q(t) for all I, T 2 0 and, in particular, this holds for t = 0 and 
T = s. Theorem 1 completes the proof. The expression for P in iii) 
derives from substitution of (2) and (16) in (18). 

We note here that nonpositivity of P(0) replaces the condition of 
nonpositive P(0) in [4] .  Indeed, from (lo), there is no need to exclude 
initial conditions PO which yield P(0) [via (2)] being positive definite, as 
occurs, for example, if Po = 0; see Corollary 1. The condition for 
stability of (6) for all s 2 0 with Po = 0 reduces to i) [ H ,  F] detectable, 
ii) Re [X,(F)] < 0, iii) FQ + QF' Q 0.  Note that ii) implies i). 

For optimal control problems or, more specifically, adaptive control 
problems using LQG feedback control laws, e.g., [9] ,  one is frequently 
concerned with the application of finite horizon LQG laws while 
attempting to achieve closed-loop asymptotic stability. The finite horizon 
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is a design parameter and a meaningful question is to ask for conditions 
under which the closed loop can be guaranteed stable for all horizons 
larger than a certain value. This is directly addressed by the results of 
Theorem 4. 

For discrete-time problems such as those in [9], a suitable version of 
Theorem 4 needs to be stated. This would require the development of the 
analog of (20). We believe that such a result is possible but have yet to 
master the arithmetical intricacies. 

V. CONCLUSION 

We have derived sufficient and necessary conditions for monotonic 
behavior of the solutions of the RDE's. This was done without an 
overriding requirement of detectability. New results were developed to 
establish stabilizability properties of these solutions. 
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External Description for Multivariable Systems Sampled 
in an Aperiodic Way 

A. FUSTER 

Abstract-An external description for nonperiodically sampled 
multivariable linear systems has been developed. Emphasis is on the 
sampling period sequence, included among the variables to be handled. 
The computational procedure is simple and no use of polynomial matrix 
theory is required. This input/output description is believed to be a basic 
formulation for its later application to the problem of optimal control 
and/or identification of linear dynamical systems. 

INTRODUCTION 

There are two different ways of describing dynamical systems: i) by 
means of input/output relations; and ii) by means of state variables. 

In the classical or frequency-domain approach, systems are described 
by transfer functions which reflect just the external or inputloutput 
properties of the system. However, this mode of description entails some 
difficulties concerning stability and realization [ 11, [2]. 

The modern or time-domain approach turns around the axiomatic 
concept of state. The method is exact in defining the notion of dynamical 
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systems and also describes all internal couplings among the system 
variables [3], [4]. Nevertheless, the procedure became somewhat 
disappointing due to the necessity of finding state-variable models and to 
the implicit assumption that all state-variables are accessible for direct 
measurement. This assumption is justified in mechanical or electrical 
systems but it is not generally satisfied for plants in chemical, gas, paper, 
and other industries. 

These considerations were responsible for the comeback of transfer 
function methods [5]-[7]. 

On the other hand, the enormous increase in the use of digital 
computers in process control has stimulated studies in the field of discrete 
systems for both types of representation. See [8]-[lo] and also the above- 
mentioned references. All of them are concerned with constant sampling 
period, which is convenient for the simplicity of implementation and 
mathematical treatment. However, the general case of aperiodic sam- 
pling is a priori capable of more favorable solutions to the problem of 
control and/or identification of dynamical systems, and it is also feasible 
with modern time-sharing equipment. 

In this work, an inputloutput modeling technique for aperiodic 
sampling linear systems has been developed. The external description 
includes the sampling sequence among the variables to be handled. The 
system is described by input/output data according to the actual 
experimentation conditions. Although the multivariable case is covered, 
the complexity of the polynomial matrix theory is avoided. 

The procedure is believed to be a basic formulation for its later 
application to the synthesis of linear control systems sampled in an 
aperiodic way, since most of these techniques for nonperiodically sampled 
systems rely exclusively on the state-space equations [ I  lf-[13]. 

I. BASIC ASSUMPTIONS 

Our discussion is restricted to the following: 
1) linear time-invariant multivariable dynamical systems of finite 

order; 
2) systems whose transfer function is a p X rn matrix (m-inputs, p- 

outputs), where the different entries are strictly proper rational functions. 
We end this preliminary section with the following statement. 
Statement: Let (G,) be a family of vector functions 

GI; IR"-+IR" G, E C'(IR", ( R " )  ( I = O ,  1, ..., n )  

Cm(\Rn,  (R")  being the set of infinitely differentiable functions on (R". 
If the following conditions are verified: 
a) there exists an integer r < n such that the elements (G,(z)) are 

b) there exists an integer k > r such that G&) depends linearly on 

Then, there are functionsfo, f,, . . . , f, E Cm(\R", IR) such that the 

linearly independent for all z E If?". 

(Go(z), * * . , GAz)). 

following expression holds: 
n 

C f " - , ( z ) G / ( z ) = O  vz E ( R " .  (1.1) 
/=0 

The previous result is a direct consequence of the Cramer Rule; for more 
details see [15]. 

11. EXTERNAL DESCRIPTION FOR NONPERIODICALLY SAMPLED 
LINEAR SYSTEMS 

A .  Input/Output Modeling Technique 

Let H(s) be the matrix transfer function of a linear time-invariant 
multivariable system. 

H(s)=(H,&)) ( r = 1 ,  ..., p ) , ( q = l ,  ..., m) (2.1) 

let us rewrite H(s) as 
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