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1 Introduction

Typically, higher derivative quantum field theories propagate ghosts, if they are formulated

in the usual ways. The ghosts are unphysical degrees of freedom that cannot be projected

away without violating unitarity. Recently, a new quantization prescription [1, 2] has been

set forth, to quantize various types of degrees of freedom as “fakeons”, i.e. fake particles.

The main virtue of the fakeons is that they can be projected away from the physical

spectrum consistently with unitarity.

The fakeon prescription can be used to turn the ghosts and possibly some physical

particles into fake particles. Its main application is to quantum gravity [1, 3, 4], since

one fakeon χµν of spin two, together with a scalar field φ, is able to make the theory

renormalizable while preserving unitarity.

In this paper we investigate some remarkable features of the classical limits of the

theories of particles and fakeons. We recall that the fakeon quantization prescription has a

truly quantum nature, since it amounts to a nonanalytic operation on the loop diagrams,

called average continuation. The average continuation is the arithmetic average of the

analytic continuations that circumvent the thresholds associated with the processes that

involve fakeons [2, 5].
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Figure 1. Quantization/classicization scheme.

The idea originates from a thorough analysis of the cutting equations, which are di-

agrammatic identities that encode the unitarity relation S†S = 1 [6–8]. The fakeons also

allow us to reformulate and actually better understand the Lee-Wick models [9–13]. For a

review of these topics, see ref. [14].

The backlash of the fakeon prescription on the classical theory turns out to be nontriv-

ial [14], because the quantization process includes an additional step, as shown in figure 1.

The starting local action is just an interim one, being unprojected. The finalized classical

action can be obtained only after the quantization, and emerges from the classicization of

the quantum theory.

The interim classical action of quantum gravity coupled to matter can be expressed in

two ways. The standard way is by means of higher-derivative terms [1]:

SQG(g,Φ) = − 1

2κ2

∫
d4x
√
−g
[
2ΛC + ζR+ α

(
RµνR

µν − 1

3
R2

)
− ξ

6
R2

]
+ Sm(g,Φ).

(1.1)

Here α, ξ, ζ and κ are real positive constants. We make no assumption on the sign of the

cosmological constant ΛC . The Planck mass is MPl = 1/
√
G =

√
8πζ/κ. Moreover, Φ are

the matter fields and Sm is the action of the matter sector. For example, Sm can be the

action of the standard model, or a standard model extension, as long as it is covariantized

and contains all the nonminimal couplings that are compatible with renormalizability.

For simplicity, in this paper we work at ΛC = 0 and view the cosmological constant

as a component of dark energy. An equivalent version of the interim classical action (1.1)

is obtained by means of extra fields, which allow us to remove the higher derivatives.

We find [4]

SQG(g, φ, χ,Φ) = SH(g) + Sχ(g, χ) + Sφ(g̃, φ) + Sm(g̃eκφ,Φ), (1.2)

where g̃µν = gµν + 2χµν and

SH(g) =− ζ

2κ2

∫
d4x
√
−gR, Sφ(g,φ) =

3ζ

4

∫
d4x
√
−g

[
∇µφ∇µφ−

m2
φ

κ2

(
1−eκφ

)2
]
,

Sχ(g,χ) =SH(g̃)−SH(g)+

∫
d4x

[
−2χµν

δSH(g)

δgµν
+

ζ2

2ακ2

√
−g(χµνχ

µν−χ2)

]
g→g̃

. (1.3)

As we see, the theory describes the graviton, a scalar field φ of squared mass m2
φ = ζ/ξ, a

spin-2 fakeon χµν of squared mass m2
χ = ζ/α and the matter fields.

It is easy to show, from the expression of Sχ, that the χµν quadratic action is of the

Pauli-Fierz type, but with the wrong overall sign [4]. For this reason χµν must be quantized
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as a fakeon. At present we do not know whether φ should be quantized as a physical

particle or a fakeon. Thus, we have two possibilities: one is the graviton/scalar/fakeon

(GSF) theory and the other one is the graviton/fakeon/fakeon (GFF) theory. Throughout

this paper, we work with the second option, because we plan to investigate the fakeons in

the Friedmann-Lemaitre-Robertson-Walker (FLRW) scenario, which is not sensitive to χµν .

We recall that if we quantize every degree of freedom by means of the standard Feyn-

man prescription, the action (1.1) gives the Stelle theory [15–19] (after we drop Sm). In

that case, no projection is possible and the classicization is trivial. However, the Stelle

theory propagates ghosts.

The fakeon projection is inherited from quantum field theory, so it is formulated per-

turbatively. Its classical limit amounts to take the average of the retarded and advanced

potentials [14]. What happens when we try and resum the perturbative expansion of the

classicization? Can we grasp the “exact” classical field equations and the fakeon projec-

tion at the nonperturbative level? In this paper, we investigate these issues and uncover

interesting, and to some extent surprising, properties.

At the quantum level, we are accustomed to build a theory perturbatively, by adding,

so to speak, quantum after quantum, or interaction after interaction. We do not expect

anything like that to occur in a classical framework. One of the surprises of the theory of

quantum gravity built on the fakeon idea is precisely that the classical limit shares many

features with the quantum theory it comes from, including the impossibility to write down

complete, exact field equations. Unless we have knowledge about the nonperturbative sec-

tor of quantum gravity, the projected classical field equations we get are also perturbative.

In general, asymptotic series come into play and nonperturbative corrections may have to

be included. However, in special cases, the resummation can be handled exactly.

We study these issues in a general setting and then concentrate on the FLRW solution

of the classicized theory of quantum gravity. We show that the fakeon projection can be

handled exactly in the cases of radiation, the vacuum energy density and the combination

of both. Instead, in the case of dust it cannot, so asymptotic series are generated and

nonperturbative effects may come into play.

Quantum gravity, as it emerges from the fakeon idea, is in line with high-energy particle

physics. In particular, it follows from the same principles that lead to the standard model:

unitarity, locality and renormalizability [20]. The scattering amplitudes are defined pertur-

batively by means of Feynman diagrams, which can be calculated with an effort comparable

to the one required by analogous computations in the standard model [3, 4].

Several proposals for quantum gravity have appeared in the past decades. We men-

tion string theory [21–24], loop quantum gravity [25–27], holography (the AdS/CFT cor-

respondence) [28–31], lattice gravity [32] and asymptotic safety [33–36]. However, their

predictive powers are limited. Some proposals, like string theory, have a huge space of

free parameters [37, 38]. Others, like the AdS/CFT correspondence, rely on conjectured

dualities. Some, like lattice gravity, asymptotic safety and the AdS/CFT correspondence,

do not admit perturbative expansions and deal with strongly coupled quantum field the-

ory. Others, like string theory and loop quantum gravity, involve mathematics that is not

well understood.
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Here are some of the reasons why we claim that the solution provided by the fakeons

is the right theory of quantum gravity. As far as calculability, predictivity and falsifiability

are concerned, the fakeon solution tops the competitors by far. Actually, it may be turn

out to be the most predictive theory ever, since it is able to cover a huge range of energies

(from the infrared limit up to and beyond the Planck scale) perturbatively and with few

independent parameters.

The masses mφ and mχ of φ and χµν might be smaller, or even much smaller, than

the Planck mass MPl. The perturbative expansion, which is formulated in powers of the

fakeon/graviton fine structure constants αφ = m2
φ/M

2
Pl and αχ = m2

χ/M
2
Pl, makes sense as

long as the renormalization group flow keeps these parameters smaller than unity, which

likely means somewhere above the Planck scale. At some point, up there, nonperturba-

tive effects start to become important. The theory predicts new physics below the Planck

scale [3, 4], at energies around mφ and mχ. At low energies, it reduces to the nonrenor-

malizable theory made of the Hilbert-Einstein action plus the counterterms turned on by

renormalization [39]. Note that the low-energy expansion is independent of the prescription

with which the fields are quantized.

It is important to stress that the fakeon idea does not make assumptions about the

nature of spacetime at infinitesimally small distances. Instead, the new understanding

of spacetime at the microscopic level emerges from the theory itself. It is encoded in the

violation of microcausality [4, 14]: the concepts of space and time, past, present and future,

cause and effect lose meaning at energies larger than the lightest fakeon mass. Our present

knowledge of the laws of physics leaves enough room for this prediction to be accurate,

both from the theoretical and experimental viewpoints.

Over the years, the concept of causality has been gradually put aside in quantum

field theory. The reason is that it is not well understood, which makes it hard to elevate

it to the rank of a fundamental principle. A definition that matches the intuitive no-

tion is missing [40] and Bogoliubov’s proposal [41], which implies the Lehmann-Symanzik-

Zimmermann one (i.e. that the fields commute at spacelike separated points), is an off-shell

condition for the Feynman diagrams and the correlation functions. At the experimental

level, the difficulty with causality comes from the fact it is hard to localize particles de-

scribed by relativistic wave packets that are on shell.

The paper is structured as follows. In section 2 we study the fakeons and the classi-

cization in nonrelativistic mechanics. In section 3 we study the asymptotic expansion of

the fakeon projection. In section 4 we analyze the issues that arise at the nonperturbative

level. In section 5 we recall the basic aspects of the classicization of quantum gravity. In

section 6 we study the FLRW solution. In section 7 we give details on how to proceed in

the non-higher-derivative approach (1.2). Section 8 contains the conclusions.

2 Fakeon projection in nonrelativistic mechanics

In this section and the next one we study the fakeon projection and its resummation in

some models of nonrelativistic mechanics, which provide a simple environment where most
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Figure 2. Fakeon average (continuous line) of a Gaussian function (2.6) (dashed line) with τ = 1

and γ = 1/8.

key conceptual issues are already in play. We consider the higher-derivative Lagrangian

LHD =
m

2
(ẋ2 − τ2ẍ2)− V (x, t), (2.1)

where x is the coordinate, m is the mass and τ is a real constant.

The simplest case is V (x, t) = −xFext(t), where Fext(t) is an external force. The

unprojected equation of motion is mKẍ = Fext, where

K = 1 + τ2 d2

dt2
, (2.2)

and the projected one reads

mẍ = 〈Fext〉K . (2.3)

As recalled in the introduction, the classical fakeon average is

〈A〉X ≡
1

2

[
1

X

∣∣∣∣
rit

+
1

X

∣∣∣∣
adv

]
A, (2.4)

the subscripts denoting the retarded and advanced potentials, respectively. We find [14]

mẍ =

∫ ∞
−∞

du
sin(|u|/τ)

2τ
Fext(t− u). (2.5)

2.1 Fakeon averages

Before moving to the cases where the resummation of the fakeon projection plays an im-

portant role, it is useful to check out the fakeon average 〈Fext〉K in some simple examples.

If the external force is Gaussian,

Fext(t) = exp
(
−γ

2
t2
)
, (2.6)

the fakeon average returns a wiggling function, as shown in figure 2:

〈Fext〉K =

√
π

2γ
e−1/(2γ) Im

[
eitErf

(
γt+ i√

2γ

)]
.
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The average 〈Pn(t)〉K of a polynomial Pn(t) of degree n is another polynomial Qn(t)

of the same degree, which can be determined from KQn = Pn. For example, 〈1〉K = 1,

〈t〉K = t, 〈t2〉K = t2 − 2τ2. These results can be also verified by taking the limits

lim
γ→0

〈
Pn(t)e−γt

2/2
〉
K
. (2.7)

Similarly, we find

〈eiωt〉K =
eiωt

1− ω2τ2
, 〈eit/τ 〉K =

eit/τ

4τ
(τ − 2it),

etc., for ω < 1/τ .

The resummation of the fakeon projection often leads to multiple averages, such as

〈〈Fext〉〉, 〈〈〈Fext〉〉〉, etc. If we want to know how to handle these expressions, we must go

back to the origin of the projection, rooted in quantum field theory. In ref. [2] it was shown

that when two or more fakeon thresholds coincide, they must be treated as limits of distinct

thresholds. From this property we can easily prove the identity

lim
ε→0
P
∏n+1

i=1

1

x− εci
=

(−1)n

n!

dn

dxn
P 1

x
, (2.8)

where P denotes the principal value and ci are arbitrary distinct numbers. This formula

allows us to “raise P to arbitrary powers” and so compute the multiple averages.

Specifically, if F̃ext(ν) is the Fourier transform of Fext(t), we have

〈Fext〉K = P
∫ +∞

−∞

dν

2π

e−iνtF̃ext(ν)

1− τ2ν2
.

“Squaring the average” by means of (2.8), we find

〈〈Fext〉K〉K = 〈Fext〉K +
1

2

d

dt
[〈tFext〉K − t〈Fext〉K ]

=

∫ ∞
−∞

du

4
(sin |u| − |u| cosu)Fext(t− τu). (2.9)

With the help of a limit like (2.7), it is easy to check that 〈〈1〉K〉K = 1, 〈〈t〉K〉K = t

and 〈〈t2〉K〉K = t2 − 4τ2. In analogous ways, formulas for more repeated averages can be

worked out.

2.2 Harmonic oscillator with an external force

The resummation of the projection is important in the next example, which is the harmonic

oscillator with an external force:

V (x, t) =
m

2
ω2x2 − xFext(t).

We view ω2 as the expansion parameter. The unprojected equation of motion is

mKẍ+mω2x = Fext = mK̃

(
d2

dt2
+ Ω2

)
x, (2.10)

– 6 –
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where

Ω =
1

τ
√

2

√
1−

√
1− 4τ2ω2, Ω̃ =

1

τ
√

2

√
1 +

√
1− 4τ2ω2, K̃ = τ2Ω̃2 + τ2 d2

dt2
.

The resummed projected equation, which makes sense for ω < 1/(2τ), can be quickly

obtained by inverting the operator K̃ according to the classical fakeon prescription. The

result is

m

(
d2

dt2
+ Ω2

)
x = 〈Fext〉K̃ =

∫ ∞
−∞

du
sin
(

Ω̃|u|
)

2τ2Ω̃
Fext(t− u). (2.11)

If we expand the average back in powers of ω2, we find

〈Fext〉K̃ = 〈Fext〉K + τ2ω2(1 + τ2ω2)〈〈Fext〉K〉K + τ4ω4〈〈〈Fext〉K〉K〉K +O(ω6),

which shows that the identity (2.8) is crucial to deal with the multiple averages that lead

to the projected equation (2.11) from the unprojected equation (2.10).

The fakeons that are projected away are the solutions of K̃x = 0, i.e.

x(t) = C cos
(

Ω̃t+ ϕ
)
.

The result of the resummation highlights some nontrivial, nonperturbative effects that

come into play beyond the convergence radius of the expansion. Indeed, for ω > 1/(2τ)

the frequencies Ω and Ω̃ become complex and the fakeon projection jumps into another

“phase”, where all four independent solutions are unacceptable and must be projected away.

In more complicated cases it may be hard to tell what the fakeon projection becomes

nonperturbatively. In principle, settling this issue requires knowledge of the nonperturba-

tive sector of quantum field theory. However, workarounds are available in lucky situations,

as we show in section 6.

3 Fakeon projection by asymptotic expansion

When the potential V contains anharmonic terms, the equations must be treated self con-

sistently. One way to handle the fakeon projection, which we investigate in this section, is

by means of an iterative procedure. The projected equations that we obtain are nonpoly-

nomial and must in general be interpreted as asymptotic expansions.

To begin with, let us consider the Lagrangian (2.1) with the potential

V =
m

2
ω2x2 +

λ

4!
x4. (3.1)

The unprojected equation of motion is

m

(
d2

dt2
+ τ2 d4

dt4
+ ω2

)
x = mK̃

(
d2

dt2
+ Ω2

)
x = −λx

3

3!
. (3.2)

We assume ω < 1/(2τ). If we resum the expansion in powers of ω2 as explained in the

previous section, we obtain the projected equation

m

(
d2

dt2
+ Ω2

)
x = − λ

3!
〈x3〉K̃ , (3.3)

which must still be understood perturbatively in λ.

– 7 –
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One way to deal with (3.3) is to search for a solution of the form

x(t) = x0(t) +
∞∑
n=1

λ̃nxn(t),

where λ̃ = λ/m and x0(t) solves the homogeneous equation ẍ0 = −Ω2x0. We get(
d2

dt2
+ Ω2

)
x1 = − 1

3!
〈x3

0〉K̃ ,
(

d2

dt2
+ Ω2

)
x2 = −1

2
〈x1x

2
0〉K̃ ,

etc., which can be solved by means of the fakeon averages and the rules outlined before.

Another way is to write a generic expansion for the right-hand side,(
d2

dt2
+ Ω2

)
x = x

∞∑
n=1

λ̃nτ2n−2
n∑
k=0

cn,kx
2n−2k(τ ẋ)2k, (3.4)

insert it into the unprojected equation (3.2) and determine the unknown coefficients cn,k
by matching the monomials. So doing, we can build the projected equation to arbitrarily

high orders in λ̃. To the first order, we obtain

(
d2

dt2
+ Ω2

)
x = −

λ̃x
[
(Ω̃2 − 7Ω2)x2 − 6ẋ2

]
6τ2(Ω̃2 − Ω2)(Ω̃2 − 9Ω2)

+O(λ̃2).

At higher orders we find very involved expressions. For the sake of simplicity, from this

point onwards we take ω = 0 (which means Ω = 0, Ω̃ = 1/τ). Every result can be

generalized straightforwardly to nonvanishing ω. To the third order we obtain

ẍ = − λ̃x
6

(
x2 − 6τ2ẋ2

)
− λ̃2τ2x

12

(
x4 − 48τ2x2ẋ2 + 372τ4ẋ4

)
− λ̃

3τ4x

6

(
x6 − 156τ2x4ẋ2 + 4572τ4x2ẋ4 − 31152τ6ẋ6

)
+O(λ̃4). (3.5)

The truncation of the projected equation to a finite order n in λ̃ is polynomial. The

expansion is asymptotic and the coefficients grow very fast, although slower than (4n)!. In

this table we give the orders of magnitude of the coefficients cn,0 and cn,n for various values

of n, which we have computed up to n = 25:

n 5 10 15 20 25

cn,0 100 106 1013 1022 1032

cn,n 109 1028 1052 1078 10107

(3.6)

Note that the expansion we are dealing with does not coincide with the “low-energy”

expansion in powers of τ2, which treats the higher-derivative term τ2d2/dt2 as small.

Instead, we are expanding in the dimensionless parameter λ̃, so each truncation gives

a solution that in principle holds for all times. The price we pay is that we have to

handle more involved truncations. Indeed, the coefficient cn,k, which is multiplied by

λ̃nτ2n+2k−2, becomes relevant at the nth order of the expansion in powers of λ̃, but only

– 8 –
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Figure 3. Solution x(t) of the truncated equation (3.5) for x(0) = 1, ẋ(0) = 0, m = τ = 1,

λ = 1/10. The sparsely dashed line is n = 1. The densely dashed line is n = 2, while the

continuous line is n = 3. The solution remains stable from n = 3 to n = 10.

at the (n+ k + 1)th order of the expansion in powers of τ2. As we see already from (3.5),

the latter grows much more slowly than the former.

The expansion of the projected Lagrangian L can be worked out in a similar way. We

write a generic expansion in x, ẋ and determine its coefficients by demanding that the

Lagrange equations be equivalent to (3.5). The result is

L
m

=
ẋ2

2
− λ̃x2

4!

(
x2 + 12τ2ẋ2

)
+
τ2λ̃2x2

72
(x4 − 54τ2x2ẋ2 + 372τ4ẋ4) +O(λ̃3).

The energy E can be obtained from L or, again, by writing the most general expansion

and working out the coefficients that make dE/dt vanish on the solutions of (3.5):

E

m
=
ẋ2

2
+
λ̃x2

4!

(
x2 − 12τ2ẋ2

)
− τ2λ̃2x2

72
(x4 + 54τ2x2ẋ2 − 1116τ4ẋ4) +O(λ̃3).

For each truncation to order n, the projected equations can be solved numerically. If

we compare the solutions for growing n, we observe the typical behaviors of the asymptotic

solutions. The lowest values of n give results that are acceptable, but not very accurate.

Then we find stable results in a certain window n1 6 n 6 n2, which provides the best

approximation of the exact solution. Finally, unreliable behaviors appear for n > n2. On

general gounds, n2 is proportional to 1/λ̃. Asymptotic expansions cannot be arbitrarily

precise, but in several situations the window n1 6 n 6 n2 is precise enough.

For example, with the initial conditions x(0) = 1, ẋ(0) = 0 and m = τ = 1, λ = 1/10,

we find the trajectories of figure 3. The solution with n = 1 is not very accurate, while

the one with n = 2 is considerably better. The trajectory remains stable in the window

3 6 n 6 10. The robust stability is a benefit of the stability of the potential (3.1). With

different values of λ we find n2 ∼ 1/λ.

4 The nonperturbative fakeon projection

The nonperturbative fakeon projection can only follow from the knowledge of the nonper-

turbative sector of quantum field theory. Indeed, it is easy to show that, when asymptotic

expansions are the best we have, at the nonperturbative level the arbitrariness associated

with the essential singularities takes us back to the unprojected equations.

– 9 –
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Let SHD(φ, λ, τ) denote a higher-derivative action that depends on the fields φi,

i = 1, . . . N , and their first M time derivatives. Let λ denote the couplings, such that

SHD(φ, 0, τ) is free. Let τ denote the parameters that multiply the higher-derivative cor-

rections, such that SHD(φ, λ, 0) is the non-higher-derivative action.

We assume that all the degrees of freedom due to the higher derivatives are quantized as

fakeons. We focus on the dependence on the time coordinate t and ignore any dependence

on the space coordinates x, y, z. It is understood that, when we talk about initial or

integration “constants”, they may be functions of x, y and z. We also assume that the

fields φi are “bosonic”, so the field equations depend on φi, φ̇i and φ̈i at τ = 0.

We have three versions of the classical equations:

(a) the higher-derivative equations

EiHD(φ, λ, τ) = 0, (4.1)

which are exact, but unprojected; they are satisfied by the acceptable solutions, but

also by the fakeon solutions, which must be discarded;

(b) the projected equations

EiP(φ, λ, τ) = 0 (4.2)

which are understood perturbatively in λ;

(c) the exact projected equations

EiPnP(φ, λ, τ) = 0, (4.3)

which can in principle be determined by studying the nonperturbative sector of the

parent quantum field theory.

In the example treated above, (a) are (3.2) and (b) are (3.3). We assume that (c) are not

known. However, we assume that they exist.

Now, let

φi = f i(t, λ, τ, cia) (4.4)

denote the solutions of (4.1), where cia are the integration constants (a = 1, . . .M) that

parametrize the initial conditions. The solutions of the exact projected equations (4.3) are

particular cases of (4.4). They have the form

φi = f i(t, λ, τ, dia(ai, bi, λ, τ)), (4.5)

where the constans dia are not independent, but functions

dia(ai, bi, λ, τ) (4.6)

of λ, τ and 2N independent integration constants ai, bi. The solutions of (4.2) are particular

cases of (4.5),

φi = f i(t, λ, τ, cia(ai, bi, λ, τ)), (4.7)
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where the functions cia(ai, bi, λ, τ) are only known as asymptotic expansions in powers of

λ and coincide with the asymptotic expansions of (4.6).

The difference dia(ai, bi, λ, τ) − cia(ai, bi, λ, τ) is made of essential singularities for

λ → 0, which cannot be worked out from the sole knowledge of (a) and (b). If we at-

tempt a resummation (with the Borel method, for example, when applicable), the solution

will unlikely satisfy (4.1). The space of functions that have the same asymptotic expan-

sions and satisfy (4.1) at the same time obviously coincides with the space of unprojected

solutions (4.4).

This means that, unless we have direct knowledge about the nonperturbative sector

of the parent quantum field theory, we cannot write “exact” classical field equations and

mostly have to work with their perturbative form.

However, workarounds may be available in special cases by means of resummations.

Even in quantum field theory we have example of exact results that can be derived form the

perturbative expansion. We mention the anomalies (which are one-loop exact), the renor-

malization group flow (which allows us to resum the leading logs, the next-to-leading logs,

etc.), the particle self-energies, obtained by resumming the bubble diagrams (which give the

particle lifetimes, among other things), and so on. Similarly, there are cases where, in spite

of the difficulties stressed in this section, we can get to the exact projected solutions (4.5)

in quantum gravity. In the following sections we describe some important examples.

5 The classical limit of quantum gravity

Before proceeding, we briefly recall the basic aspects of the classicization of quantum

gravity. At the conceptual level, it is convenient to work with the non-higher-derivative

interim classical action (1.2). The field equations of the metric read

Rµν − 1

2
gµνR =

κ2

ζ

[
e3κφfTµνm (g̃eκφ,Φ) + fTµνφ (g̃, φ) + Tµνχ (g, χ)

]
, (5.1)

where TµνA (g) = −(2/
√
−g)(δSA(g)/δgµν) are the energy-momentum tensors (A = m, φ,

χ) and f =
√

det g̃ρσ/ det gαβ . The field equations of the fakeons φ and χµν are [14]

− 1√
−g̃

∂µ

(√
−g̃g̃µν∂νφ

)
−
m2
φ

κ

(
eκφ − 1

)
eκφ =

κe3κφ

3ζ
Tµνm (g̃eκφ,Φ)g̃µν ,

1√
−g

δSχ(g, χ)

δχµν
= e3κφfTµνm (g̃eκφ,Φ) + fTµνφ (g̃, φ). (5.2)

Let 〈φ〉 and 〈χµν〉 denote the solutions of the equations (5.2), obtained with the half

sum of the retarded and advanced Green functions. The projected field equations are (5.1),

once φ and χµν are replaced by 〈φ〉 and 〈χµν〉. They can also be derived as Lagrange

equations of the finalized classical action

SGFF
QG (g,Φ) = SH(g) + Sχ(g, 〈χ〉) + Sφ(ḡ, 〈φ〉) + Sm(ḡeκ〈φ〉,Φ), (5.3)

where ḡµν = gµν + 2〈χµν〉.
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As said, we have to understand the projection perturbatively and deal with the issues

explained in the previous sections. In the next sections we study the resummation of the

perturbative projection in the case of the FLRW solution. At the practical level, it is more

convenient to work with the interim action (1.1), but in section 7 we give details on how

to obtain the same results by working with (1.2).

6 The classicization of the FLRW solution

It is often convenient to search for solutions of the field equations starting from an ansatz,

as in the case of the FLRW metric. However, in general, it is not legitimate to insert the

ansatz directly into the action and work out the Lagrange equations of the so-obtained

reduced action. Indeed, the ansatz reduces the space of configurations. A minimum,

or more generally extremum, of the action on the reduced space of configurations is not

guaranteed to be a minimum or extremum on the full space.

However, under certain conditions it is possible to obtain the correct equations of

motion by applying the variational principle to the reduced action. We derive the key

properties to achieve this goal and then apply the method of the reduced action to the

FLRW ansatz.

6.1 Method of the reduced action

Consider an action S(φ) depending on the fields φi, i = 1, . . . N . The Lagrange equa-

tions are
δS

δφi
= 0. (6.1)

Consider an ansatz

φi = f i(ϕ) (6.2)

that expresses the fields φi in terms of a reduced set of fields ϕα, α = 1, . . .M , with M < N .

The reduced action is then

Sr(ϕ) = S(f(ϕ))

and its field equations read

0 =
δSr(ϕ)

δϕα
=

δS

δφi

∣∣∣∣
φ=f(ϕ)

δf i(ϕ)

δϕα
. (6.3)

Now, assume that

(i) the M equations (6.3) are independent, and

(ii) M equations (6.1) are independent and the other N−M equations (6.1) are algebraic

relations among the M independent ones.

Then, the equations (6.1) are equivalent to the equations (6.3) derived from the reduced

action Sr.

Typically, point (ii) can be established by means of symmetry arguments and other

properties of the ansatz. Point (i) is easy to check directly.
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If the relations mentioned in point (ii) happen to be differential instead of alge-

braic, further assumptions must be advocated to obtain the right set of equations after

the reduction.

6.2 The FLRW metric

Now we apply the method of the reduced action to the FLRW metric, which we

parametrize as

ds2 = gµνdxµdxν = b2(t)dt2 − a2(t)dσ2, (6.4)

where, in spherical polar coordinates,

dσ2 =
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2.

The lapse function b(t) is inserted to meet the requirements explained above and keep track

of the time reparametrizations. Indeed, we know that the FLRW ansatz reduces the field

equations to two independent ones, so we need two independent functions a(t) and b(t) to

have a meaningful reduced action Sr. We can set b(t) ≡ 1 after applying the variational

principle to Sr.

Under the usual assumptions of homogeneity and isotropy, the matter stress tensor is

(Tm)νµ = ρ(t)δν0δ
0
µ − p(t)δνi δiµ, (6.5)

where ρ is the energy density and p is the pressure, i = 1, 2, 3 being a space index. Then

the reduced version of the action (1.1) of quantum gravity coupled to matter reads

SQG → −
1

16πG

r2 sin θ√
1− kr2

∫
dta3bR

(
1− R

6m2
φ

)
+ Sm, (6.6)

where m2
φ = ζ/ξ and the Ricci curvature for the ansatz (6.4) is

R = −6

(
ä

ab2
+

ȧ2

a2b2
− ȧḃ

ab3
+

k

a2

)
. (6.7)

The arrow in formula (6.6) and in the formulas below means that we ignore the integrals

on r and the angles θ and ϕ, which give an overall (infinite) factor that can be dropped for

the purpose of applying the variational principle.

Note that the α-dependent terms of (1.1) cancel out, because they are proportional to

the square of the Weyl tensor Cµνρσ, up to a total derivative, and Cµνρσ vanishes identically

for the metric (6.4).

We do not have a well-defined expression for Sm, with the stress tensor (6.5). However,

the infinitesimal variation δSm is enough for our purposes. It reads

δSm = −1

2

∫
d4x
√
−g(Tm)νµg

µρδgνρ →
r2 sin θ√
1− kr2

∫
dta2 (3pbδa− ρaδb) .
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If we vary the reduced action with respect to a and b and then set b(t) ≡ 1, we obtain

the unprojected equations

Σ

(
ä

a
+
ȧ2

a2
+

k

a2

)
=

4πG

3
(ρ− 3p), Υ

(
ä

a
− ȧ2

a2
− k

a2

)
= −4πG(ρ+ p), (6.8)

where Σ and Υ are the operators

Σ = 1 +
1

m2
φ

(
3
ȧ

a
+

d

dt

)
d

dt
, Υ = Σ +

2

m2
φ

[
k

a2
+ 3

d

dt

(
ȧ

a

)]
. (6.9)

The continuity equation

ρ̇+ 3(ρ+ p)
ȧ

a
= 0 (6.10)

is the same as usual. It follows from the conservation of the stress-energy tensor and can

be checked by solving (6.8) for ρ and p.

It is easy to verify that the equations (6.8) match those obtained by inserting the

ansatz (6.4) with b(t) ≡ 1 into the field equations of (1.1) (which can be found for example

in ref. [14]), as guaranteed by the method of the reduced action.

6.3 Projection

Since the left-hand sides of the equations (6.8) factorize the operators Σ and Υ, the re-

summed fakeon projection is straightforward. If we multiply (6.8) by Σ−1 and Υ−1, defined

by means of the classical fakeon prescription, we obtain the projected equations

ä

a
+
ȧ2

a2
+

k

a2
=

4πG

3
〈ρ− 3p〉Σ, (6.11)

ä

a
− ȧ2

a2
− k

a2
= −4πG〈ρ+ p〉Υ, (6.12)

where the fakeon averages are defined in (2.4).

For some purposes, it is convenient to define a modified energy density ρ̃ and a modified

pressure p̃ as

ρ̃ =
1

4
〈ρ− 3p〉Σ +

3

4
〈ρ+ p〉Υ, (6.13)

p̃ =
1

4
〈ρ+ p〉Υ −

1

4
〈ρ− 3p〉Σ, (6.14)

and rearrange (6.11) and (6.12) in forms that match the usual Friedmann equations:

ȧ2

a2
+

k

a2
=

8πG

3
ρ̃, (6.15)

2
ä

a
+
ȧ2

a2
+

k

a2
= −8πGp̃. (6.16)

Adding the derivative of (6.15) to a suitable linear combination of the two equations,

it is easy to get the second continuity equation

dρ̃

dt
+ 3

ȧ

a
(ρ̃+ p̃) = 0, (6.17)

satisfied by the modified energy density and pressure.
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Depending on the problem at hand, the fakeon projection encoded in the equa-

tions (6.11) and (6.12) may or may not be the final, exact one. It is exact in some important

cases, which include the vacuum energy density, radiation and their combination. It is not

exact in other cases, which include dust (cold matter). There, however, approximate solu-

tions are enough for most purposes.

Vacuum energy density. Now we show that in the case of the vacuum energy the

solutions of the projected equations coincide with the solutions of the Friedmann equations

that follow from Einstein gravity.

The equation of state is p = −ρ, so the continuity equation (6.10) gives ρ = ρ0 =

constant. It is convenient to start by solving (6.12), since its right-hand side vanishes. The

solution reads

a(t) = eσt +
k

4σ2
e−σt, (6.18)

where σ is another constant. The third integration constant has been absorbed into a time

translation.

To study (6.11), note that (6.18) and ρ = ρ0 imply Σρ = ρ. Thus, we also have

〈ρ〉Σ = ρ and, from (6.13)–(6.14), ρ̃ = ρ, p̃ = p = −ρ. Then, equation (6.11) gives a

relation between the two constants ρ0 and σ, which reads

ρ0 =
3σ2

8πG
. (6.19)

Radiation. Similar conclusions hold in the case of radiation, where p = ρ/3. The conti-

nuity equation (6.10) gives

ρ(t) =
ρ′0
a4
, (6.20)

where ρ′0 is constant. Solving (6.11), whose right-hand side vanishes, we get

a(t) =
√
t(σ′ − kt), (6.21)

up to a time translation, σ′ being another constant.

Using (6.20) and (6.21) we easily find Υρ = ρ, so 〈ρ〉Υ = ρ, ρ̃ = ρ, p̃ = p = ρ/3. Then,

equation (6.12) gives

ρ′0 =
3σ′2

32πG
.

Combination of radiation and vacuum energy density. Consider the equation

of state

p =
ρ

3
+ p0 =

1

3
(ρ− 4ρ0), (6.22)

where ρ0 and p0 = −4ρ0/3 are constants. The interesting feature of (6.22) is that it allows

us to treat the combination of radiation and the vacuum energy density, which can be useful

to study inflation. As before, we can solve the projected equations exactly, since (6.13)

and (6.14) give p̃ = (ρ̃−4ρ0)/3. For convenience, we write ρ0 = 3σ2/(8πG). The continuity

equation (6.17) gives

ρ̃(t) =
3

8πG

(
σ2 +

σ′2

4a4

)
, (6.23)
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where σ′ is constant. Inserting this solution into (6.15), we get

a(t) =

√
sinh(σt)

σ

(
σ′ cosh(σt)− k

σ
sinh(σt)

)
, (6.24)

up to a time translation. We can check that (6.24) satisfies (6.16) identically. When σ → 0

we retrieve (6.21). For σ′ → 0 and k < 0, we obtain a time-translated version of (6.18).

We can find the energy density ρ from the second unprojected equation of formula (6.8).

The result is very similar to (6.23),

ρ(t) =
3

8πG

(
σ2 +

σ′′2

4a4

)
, σ′′2 = σ′2

(
1 +

4σ2

m2
φ

)
,

the only change being the coefficient of the contribution due to the radiation. This is also

the only correction to the result obtained from the Einstein equations.

General case. In general, if we assume the equation of state p = wρ, the modified

pressure and density satisfy an a-dependent differential equation of state, which reads

p̃ = wρ̃− (1 + w)(1− 3w)

3(1 + w)Σ + (1− 3w)Υ
∆ρ̃, (6.25)

where ∆ = Υ−Σ and the reciprocal operator that appears here has to be defined by means

of the fakeon prescription (2.4).

The continuity equation (6.10) gives the usual relation

ρ(t) =
3σ′2

32πG

1

a3(1+w)
,

where σ′ is constant. It is convenient to introduce a function u(t) by writing

a(t) =
[
3σ′(1 + w)u(t)/4

]2/(3(1+w))
.

Then the unprojected equations (6.8) give, in the simple case k = 0,

m2
φ(1− u̇2) = 2u̇

...
u− ü2 − 4w

1 + w

u̇2ü

u
− 1− 3w

1 + w

u̇4

u2
. (6.26)

The fakeon projection of this equation is rather hard, since it contains no parameter

that we can use to approach the problem perturbatively, other than τ ≡ 1/mφ. If we

expand in powers of τ we obtain the usual low-energy expansion,

u(t) = t

[
1− 1− 3w

2(1 + w)

1

m2
φt

2
+

13 + 34w − 219w2

24(1 + w)2

1

m4
φt

4
+O

(
1

m6
φt

6

)]
. (6.27)

As in section 3, the series is asymptotic and the numerical coefficients grow very fast.

For example, in the case of dust (w = 0) the coefficient of 1/(mφt)
14 is of order 108.

Depending on the values of mφt, various terms of the asymptotic expansion may offer a

stable, satisfactory approximation of the exact solution.
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The reason why the projections that appear in (6.11) and (6.12), which are resummed

versions of those obtained by expanding around flat space, are not the exact projections

for the problem we are dealing with, is that the solutions for a(t), ρ(t) and p(t) must be

worked out self-consistently. The equations would be exact if a(t) had to be found for given

ρ(t) and p(t) (see comments below).

We expect that the masses of the fakeons χµν and (possibly) φ have values that are

much smaller than the Planck mass. On general grounds, they could be around 1012GeV [4].

If that is the case, the value of the parameter τ ∼ 1/mχ ∼ 1/mφ, which multiplies the

higher time derivative d/dt, is around 10−36s. We know that the first moments of the

life of the universe were dominated by radiation, with a crossover to matter dominance

at t ∼ 5 · 104 years. The matter dominated epoch lasted about 1010 years, followed by

the dark energy era. Thus, an exact treatment of the matter dominated epoch is not

strictly necessary in cosmology and the first few orders of (6.27) can be enough for most

purposes. As shown previously, the radiation dominated era can be treated exactly, even

in superposition with the vacuum energy density.

Other cases where the projection can be worked out exactly. We conclude by

pointing out other situations where the projection can be handled exactly. The first case

is when we need to find the FLRW metric for given sources, i.e. ρ and p do not have to

be determined self-consistently, but are given functions, known from the start. Then, the

projection encoded in equations (6.11) and (6.12) is exact. The solutions do not coincide

with those predicted by Einstein gravity and averages similar to those found in section 2

appear. The case is to some extent similar to the case of the harmonic oscillator with an

external force, whose fakeon projection is encoded in formula (2.11).

We stress that, on the contrary, when ρ, p have to be solved self-consistently together

with the metric, the projection contained in the equations (6.11) and (6.12) must still be

understood perturbatively. The iterative methods of section 3 can be used to work out the

asymptotic expansions of the solutions, which may be satisfactory for some purposes. An

example is the FLRW metric for nonrelativistic matter.

The second case where we can handle the fakeon projection exactly is when for some

reason we are given an equation of state expressing p̃ as a function of ρ̃ only. Then, the

problem of solving the equations (6.15) and (6.16), with the help of (6.17), matches the

problem of solving the Friedmann equations of Einstein gravity.

One may wonder whether it is possible to make the fakeon averages effectively dis-

appear by redefining the density and pressure everywhere, so that ρ̃ and p̃ describe the

quantities we really observe or measure, instead of ρ and p. In general, it is not legiti-

mate to do so, but in some cases, depending on the data available to us, we may have no

other option. More precisely, the relations (6.13) and (6.14) between ρ̃, p̃ and ρ, p depend

on the particular problem we deal with, to the extent that they contain the metric and

the ansatz we are using. Other problems may lead to different formulas for the modified

quantities ρ̃ and p̃. Moreover, different interactions, such as the electromagnetic ones, are

sensitive to the unmodified ρ and p. Thus, it possible to probe the relations between ρ̃, p̃

and ρ, p by comparing different physical situations. However, when these comparisons are

– 17 –



J
H
E
P
0
4
(
2
0
1
9
)
0
6
1

out of reach, maybe because not enough data are available, it may be impossible to tell

that equations (6.15) and (6.16) are actually descendants of the parent equations (6.11)

and (6.12).

A similar conclusion extends to the problem of detecting the violations of microcausal-

ity. Unless we are able to cross check different physical situations, it may be impossible to

uncover the violation, because it may be easily hidden inside redefinitions of the quantities

we measure.

7 Non-higher derivative approach to the FLRW solution

For completeness, we report how the solutions are worked out from the action (1.2). We

start from the ansatz

gµνdxµdxν = b̄2(t)dt2 − ā2(t)dσ2,

χµνdxµdxν = d(t)dt2 − e(t)dσ2, φ = φ(t). (7.1)

With this choice, we have the right amount of independent functions to derive the field

equations by means of the reduced action approach. Alternatively, we can insert the ansatz

directly into (5.1) and (5.2).

Anticipating the result, it is convenient to define

b̄2 = B2 − 2d, ā2 = A2 − 2e, A = ae−κφ/2, B = be−κφ/2.

The metric that effectively couples to matter reads

g̃µνeκφdxµdxν = b2(t)dt2 − a2(t)dσ2,

where g̃µν = gµν + 2χµν .

Now we study the ā, b̄, φ, d and e field equations, starting from the φ one, which reads

Σ(1− e−κφ) = −8πG

3m2
φ

(ρ− 3p). (7.2)

It can be projected straightforwardly, leading to

1− e−κφ = −8πG

3m2
φ

〈ρ− 3p〉Σ. (7.3)

If we set

e−κφ = 1− R
3m2

φ

, (7.4)

where R is still given by (6.7), equation (7.3) becomes equivalent to equation (6.11).

Since the FLRW metric has a vanishing Weyl tensor, the functions d(t) and e(t)

should make the α dependence disappear from the field equations. This goal is achieved

by choosing

d(t) =
1

m2
χ

(
Ȧ2

A2
− 2

Ä

A
+ 2

ȦḂ

AB
+ k

B2

A2

)
, e(t) = − 1

m2
χ

(
Ȧ2

B2
+ k

)
,
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where m2
χ = ζ/α. Once we set b(t) ≡ 1, we can drop the χµν field equations, obtained from

the variations with respect to d and e, since it is easy to prove that they are equivalent to

the equations obtained from ā and b̄. At the end, the equations (5.1) coincide with (6.8)

and can be projected as before, leading to (6.11) and (6.12).

In the case of radiation, (7.4) gives φ = 0, while in the case of the vacuum energy

density we obtain

φ = −1

κ
ln

(
1 +

4σ2

m2
φ

)
, (7.5)

where σ is the constant appearing in (6.18). Formula (7.5) also holds in the case of radiation

combined with the vacuum energy density. Conversely, if we start from the ansatz φ =

constant, equation (7.2) implies ρ − 3p = constant, which is the equation of state of the

combination of radiation and the vacuum energy density.

We see that by extending the standard FLRW ansatz (6.4) to (7.1), the presence of the

χµν does not affect the solution. It is conceivable that many results obtained in inflationary

cosmology [42] can be extended to the full theory of quantum gravity studied here, which

has the advantage of being renormalizable.

8 Conclusions

When fakeons are present, the starting, local classical action is just an interim one. The

true classical action emerges only at the very end, after the quantization, by means of a

process of classicization of the quantum theory. The reason is that the fakeon prescription

is not classical, but emerges from the loop corrections.

Quantum field theory is formulated perturbatively, so the classicization is also pertur-

bative. The consequences of this fact are quite striking: instead of having complete, exact

classical equations, we deal with the typical problems of quantum field theory, even if we

work at the classical level. These include the appearance of asymptotic series (when we

write the equations, not just when we search for their solutions) and possibly important

roles played by the nonperturbative corrections. As far as we know, this backlash of the

quantization on the classical limit is unprecedented.

We have investigated the problems related to the resummation of the perturbative

expansion associated with the fakeon projection and applied the results to the FLRW

metric in quantum gravity. In some cases (like the vacuum energy, radiation and the

combination of the two), the fakeon projection can be resummed to all orders. In more

general cases, which include dust, asymptotic series are generated and nonperturbative

effects may come into play. The implications on the very early stages of the big bang

remain to be explored.
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