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Abstract

In many cases, an organization wishes to release
some data, but is restricted in the amount of data
to be released due to legal, privacy and other con-
cerns. For instance, the US Census Bureau releases
only 1% of its table of records every year, along
with statistics about the entire table. However, the
machine learning (ML) models trained on the re-
leased sub-table are usually sub-optimal. In this
paper, our goal is to find a way to augment the sub-
table by generating a synthetic table from the re-
leased sub-table, under the constraints that the gen-
erated synthetic table (i) has similar statistics as the
entire table, and (ii) preserves the functional de-
pendencies of the released sub-table. We propose
a novel generative adversarial network framework
called ITS-GAN, where both the generator and the
discriminator are specifically designed to satisfy
these two constraints. By evaluating the augmen-
tation performance of ITS-GAN on two represen-
tative datasets, the US Census Bureau data and US
Bureau of Transportation Statistics (BTS) data, we
show that ITS-GAN yields high quality classifica-
tion results, and significantly outperforms various
state-of-the-art data augmentation approaches.

1 Introduction

Over the past few decades, machine learning related research
has seen remarkable developments, driven in part by the
tremendous amount of data that has become available. In
many cases, an organization such as a government or com-
pany wants to release some data to the public, but is restricted
in the amount of data released due to legal, privacy and other
concerns. For instance, the U.S. Census Bureau releases 1%
of its records - but these do not completely represent the US
population. At the same time, averages about the entire pop-
ulation’s income and some other attributes are also released.
Many U.S. government survey datasets are released in such a
manner and this has been the practice in various fields, such
as business, operations research and social science.

∗Co-corresponding authors.

Data augmentation has recently drawn considerable atten-
tion in the machine learning (ML) community, where the ob-
jective is to improve ML models by enhancing the quality of
data. In this paper, we study an incomplete table synthesis
(ITS) problem for tabular data augmentation, where we wish
to augment the released incomplete sub-table of records X ′

by synthesizing a new table Y of records, so that a machine
learning model trained on the augmented table X ′ ∪Y works
better for the full table X (which X ′ originated from) than a
model that is trained solely on X ′.

GANs have been widely adopted in image genera-
tion [Isola et al., 2017; Zhu et al., 2017], language analyt-
ics, [Pascual et al., 2017] — there also has been some very
recent interest w.r.t. tables [Park et al., 2018]). However, us-
ing GANs to solve the ITS problem requires addressing two
new challenges. First, while we wish to learn a generative
model from the sub-table X ′, we also need to maintain the
broad statistics of the table X . Second, relational tables usu-
ally have an associated set of functional dependencies (FDs)
— see Definition 3.1. As FDs capture dependencies between
attributes, it is critical to ensure that X ′∪ Y also satisfy these
dependencies, otherwise the integrity of X ′ ∪ Y is question-
able. To the best of our knowledge, our paper is the first to
solve the problem of tabular data synthesis with these two
constraints.

To tackle the two challenges, we propose a novel frame-
work called ITS-GAN, which makes three innovations in cus-
tomizing traditional GANs to efficiently learn a synthetic ta-
ble generator. First, we add two extra loss terms into the orig-
inal generator loss function to encode these two constraints
in the GAN training process. A major difficulty of encod-
ing the FD constraints into the loss function is that the FDs
associated with a table are usually expressed at the schema
(column) level. For example, in Table 1, an example schema-
level FD is “Position” determines “Salary”. One schema-
level FD generates numerous record-level FDs (see Defini-
tion 3.2). An example of a record-level FD in Table 1 is, the
Position “CEO” determines the Salary “$2M”. While we can
enumerate the two record-level FDs in Table 1, it is impos-
sible to explicitly list all the record-level FDs in real-world
large datasets with numerous records. Therefore, our second
innovation is to train an autoencoder (one for each schema-
level FD) to model the record-level FDs. The autoencoders
are pre-trained to reproduce the FDs and then fed into the
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generator loss function. Moreover, to improve the training of
the GAN discriminator, we make our third innovation via a
new customized calibration of the discriminator’s input using
the FD errors calculated by the pre-trained autoencoders.

We provide a theoretical analysis of ITS-GAN under cer-
tain conditions as well as extensive empirical evaluations on
two widely used datasets - Census and BTS. The empirical
results show that ITS-GAN significantly improves the per-
formance of classification tasks compared with state-of-the-
art data augmentation approaches. An ablation study also
demonstrates the efficacy of ITS-GAN by taking into account
the table statistics and FD constraints in the ITS problem.

2 Related Work

In this section, we describe related work. We discuss classical
augmentation methods, followed by recent advanced GAN-
based methods.

2.1 Classical Augmentation Methods

Various data augmentation methods are used to handle im-
balanced data — SMOTE [Chawla et al., 2002] is among the
most popular approaches. SMOTE generates weighted com-
binations of randomly selected existing records. Borderline
SMOTE (BSMOTE) [Han et al., 2005] uses a similar method
around a class boundary. ADASYN [He et al., 2008] was de-
signed on top of SMOTE, where weights are adjusted in order
to account for various factors.

The condensation method [Aggarwal and Yu, 2004] is a
classical non-machine learning method to synthesize tables,
which assumes that a column follows a specific statistical dis-
tribution and synthesizes values for the column by exploiting
its assumed statistical characteristics. In many cases, how-
ever, its synthesis range is narrow and does not reproduce the
entire value range of the column.

All these approaches are not suitable for our problem be-
cause they do not support the preservation of FDs.

2.2 GAN-based Augmentation Methods

GANs consist of two neural networks: a generator and a dis-
criminator [Goodfellow et al., 2014], which are alternately
updated as a two-player zero-sum minimax game:

min
G

max
D

V (G,D) = E
x∼pdata(x)[logD(x)]

+ Ez∼pz [log(1−D(G(z)))],
(1)

where V (G,D) is the value function of the discriminator,
pdata is the probability distribution of the real dataset, z is
the input noise of the generator which follows the prior dis-
tribution pz , G(z) is a generator function mapping z to the
generated data x, and D(x) is a discriminator function which
specifies the probability that a discriminator input x is from
the real dataset.

GANs have been exploited to synthesize electronic health
records in [Choi et al., 2017; Baowaly et al., 2018]. However,
they are mostly interested in synthesizing discrete values in
patient records and cannot be directly applied to synthesize
tables with other types of values. More recently, TableGAN
was proposed to generate fake tables using GANs given an

Position Team Name Salary

CEO Null John Doe $2M

Manager AI Team Jane Doe $1M

Manager DB Team John Smith $1M

Table 1: An example of payroll table.

original table [Park et al., 2018]. However, TableGAN syn-
thesizes a full table X directly and does not consider FDs.
DCGAN [Radford et al., 2015] is a benchmark image gener-
ation framework which can be customized to synthesize ta-
bles [Park et al., 2018], but it also fails to consider the table
statistics and the FD constraints.

3 Problem Description

Let X denote a full table of records. We use Xi to denote
the i’th record and Xj to denote the j’th column of X . A
sub-table X ′ ⊆ X is a subset of rows of X . Table 1 shows an
example of a full table X , where the first row X1 = [CEO,
Null, John Doe, $2M], the first column X1 = [CEO, Man-
ager, Manager], and the first two rows form a sub-table X ′.

Each full table is accompanied by a vector X̄ specifying
the average value of each numerical column. For example,
the average value of X4 is 1.33M. For relational tables, there
usually exist a set of schema-level functional dependencies
that preserve the validity and consistency of the tabular data.

Definition 3.1. Suppose A,B are two disjoint subsets of the
schema (columns) of X ′. A schema-level functional depen-
dency (FD) F associated with X ′ has the form

F : A → B.

This says that for any record (row), the column values in A
uniquely determine the column values in B.

The set of all schema-level FDs is denoted as F =
{F1, F2, . . . , Fn}. E.g., in Table 1, ‘Position’ uniquely de-
termines ‘Salary’, while ‘Position’ and ‘Team’ uniquely de-
termines ‘Name’. Therefore, the full set of FDs in Table 1 is
F = {F1, F2}, where: F1 : X1 → X4, and F2 : X1, X2 →
X3. As opposed to the schema-level FDs, we also define:

Definition 3.2. Let a ∈ A, b ∈ B denote two entries in A
and B, a record-level FD f has the form

f : a → b.

It says that the specific value of ‘a’ uniquely determines the
specific value of ‘b’.

We refer to the example in the Introduction to illustrate the
difference between a schema-level and a record-level FDs. As
introduced earlier, there are many real-world scenarios where
an organization wants to release some data to the public, but
is restricted in the amount of data. The common practice of
these organizations is to release a small portion of the dataset,
along with some statistics of the entire dataset. To improve
the ML model trained on the released dataset, we solve the
following ITS problem.

Definition 3.3. Incomplete Table Synthesis (ITS): Given a
sub-table X ′ ⊆ X , a column-wise average X̄ of the numer-
ical attributes of the full table X and a set of FDs F of the
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(a) Overall architecture
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(b) Discriminator architecture. The circles with ‘-’ are the
inputs from the autoencoders.

Figure 1: The architectures of ITS-GAN.

sub-table X ′, our objective is to generate a synthetic table Y
such that

• Y has the same number of columns as X and X ′.

• Y satisfies the set of FDs in F .

• Y maintains the column-wise average X̄ of X .

4 ITS-GAN

Adapting classical GANs to address the ITS problem poses
two challenges: (i) We need to learn a generative model from
the sub-table X ′ and maintain the column-wise statistics as-
sociated with the full table X . These two objectives contra-
dict each other when X̄ ′ 6= X̄ . (ii) During the table synthesis
process, we need to maintain the record-level FDs.

To handle the challenges, we propose the ITS-GAN (In-
complete Table Synthesis with Generative Adversarial Net-
work) framework shown in Figure 1. ITS-GAN has three
novelties. First, it trains one autoencoder-based model for
each schema-level FD in F . Second, it incorporates the table
statistics and FD constraints in training the generator so that
the generator establishes a trade-off between the two contra-
dicting objectives mentioned above. Third, it calibrates the
discriminator using the pre-trained autoencoders, so that the
learned discriminator is able to capture the FD constraints.

4.1 Modelling FDs with Autoencoders

Autoencoders were initially proposed to capture the latent
vector of an input in between an encoder and a decoder [Hin-
ton and Salakhutdinov, 2006; Baldi, 2011]. In ITS-GAN,
we train an autoencoder to reproduce the right-hand side

of a record-level functional dependency, given its left-hand
side. There is one autoencoder for each schema-level func-
tional dependency and it is pre-trained with all record-level
instances in the sub-table X ′.

Recall that a schema-level functional dependency is rep-
resented as F : A → B, where A and B are column-wise
subsets of the original table. As a result, the inputs of an
autoencoder are the entries of A, and the outputs are the cor-
responding entries in B. As shown in Figure 1 (a), for each
autoencoder, its encoder component uses a convolution layer
with a filter size of 5 and a stride of 2, while the decoder com-
ponent uses a transpose convolution layer with a filter size of
5 and the same stride value.

4.2 Generator

To handle the functional dependency and table statistics con-
straints, we propose the following adapted loss function for
the generator:

L′

G = LG + α‖Ȳ − X̄‖1 + β
∑

i

∑

j

‖B′

ij −Bij‖1, (2)

where LG is the original loss function in Eq. (1). ‖Ȳ − X̄‖1
is an error term which penalizes the difference between the
column-wise average of the generated table Y and the origi-
nal table X . Throughout this paper, we use L1-norm as the
distance measure between vectors.

∑
i

∑
j ‖B

′

ij − Bij‖1 is

another error term which characterizes the set of FD con-
straints, where B′

ij is the right hand side of the ith schema-

level FD in the jth record instance produced by the generator,
and Bij is the corresponding autoencoder’s anticipated right

hand side of the ith schema-level FD (given the left hand side
in the generated jth record). α and β are hyper-parameters
which indicate the weights of different error terms.

Approximating statistics Error. Note that in mini-batch
training (e.g., a batch size of 64), an average of one mini-
batch does not accurately represent the statistics that the gen-
erator learns, thus providing a biased estimation of the table
statistics error ‖Ȳ − X̄‖1. To get a better approximation, we
update the average value using a moving average rule [Win-

ters, 1960], where the moving average ˆ̄Yt+1 of the (t + 1)th

epoch is a weighted combination of the moving average of
the tth epoch and the average of the (t+ 1)th epoch:

ˆ̄Yt+1 = (1− w) ˆ̄Yt + wȲt+1. (3)

Here w is a hyper-parameter indicating the update rate — we
set w = 0.01 in our experiments. In our generator, we use 3
layers of transpose convolutions, where the filter size is 5 and
the stride value is 1.

4.3 Discriminator

The architecture of our discriminator is shown in Figure 1
(b). The process has two stages highlighted in yellow and
blue respectively. The input (i.e., either fake records from the
generator or the real data) is first filtered with three convolu-
tion layers in the first stage and later concatenated with the
FD error terms from the autoencoders in the second stage. In
each convolution layer, we use a convolution with the same
filter size and stride value as that of the encoder.
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Note that given a real record (row), FD error vectors will
contain values close to zero if autoencoders are properly pre-
trained. As a consequence, it will be relatively easy to detect
a fake record if the norm of the error vector of the fake record
is large, rather than small. This gives the generator a strong
incentive to ensure that the FD error rate is small. Recall
that we impose this requirement in the definition of the loss
function of the generator (cf. Eq. (2)). Because of this, the
ITS-GAN architecture is optimized toward minimizing vio-
lations of FDs through the FD error terms. To capture this
property and improve the training of both the discriminator
and the generator, we concatenate the output of the convolu-
tional layers with the functional dependency errors (obtained
from the pre-trained autoencoder). More specifically, for the
jth fake record produced by the generator, we concatenate it
with a set of error terms ‖B′

ij − Bij‖ for all Fi ∈ F . Af-
ter concatenation, two fully connected layers follow, and a
Sigmoid activation is used to generate the prediction for the
record (i.e., real or fake). We train the discriminator with the
same original loss function as in Eq. (1) — another option
is the loss in [Gulrajani et al., 2017] but we found that the
original loss sometimes produces better results in our task.

5 Theoretical Results

As described earlier, we introduce two new error terms on
the generator loss function to handle the table statistics and
functional dependency constraints. However, if the deviation
from X ′ for the two error terms is huge for a given record,
it will be easy for the discriminator to classify that record as
fake. Thus, the generator should find a balance in which the
match between ground-truth statistics and X ′ ∪ Y statistics
is good, but at the same time, the discriminator cannot distin-
guish between real and fake records. The following theorem
describes the equilibrium solution to the minimax game be-
tween the generator and the discriminator when there is no
penalty for errors in the statistics of X ′ ∪ Y compared to X .

Theorem 5.1. The equilibrium distribution D∗ of the dis-
criminator and p∗G of the generator in ITS-GAN is, D∗ =

pX′

pX′+p∗

G

, and p∗G = pX′ , if there is no table statistics error

term (i.e., the second term on the right hand side of Eq. (2))
in the generator loss function of ITS-GAN.

Proof. We denote a single record in a table as a vector x.
For a fixed generator G, the discriminator’s objective is to
minimize the following loss function:

LD =

∫

x

−pX′(x) log(D(x))− pG(x) log(1−D(x))dx.

Performing a point-wise (i.e., for each x ∼ pX′ ) optimiza-
tion of the objective, we can obtain the best response of the
discriminator as

D
∗(x) =

pX′(x)

pX′(x) + pG(x)
.

Substitute it into the loss function of the generator, we have

LG(D
∗) =Ex∼pX′

[

log
pX′(x)

pX′(x) + pG(x)

]

+

Ex∼pG

[

log
pG(x)

pX′(x) + pG(x)

]

+ β
∑

i

∑

j

‖B′

ij −Bij‖1

Note that Ex∼pX′
[− log 2] + Ex∼pg

[− log 2] = − log 4.
Adding the above two equations, and following the definition
of KL-divergence, we have

LG(D
∗) =− log 4 +KL

(

pX′

∣

∣

pX′ + pG

2

)

+

KL
(

pG
∣

∣

pX′ + pG

2

)

+ β
∑

i

∑

j

‖B′

ij −Bij‖1

=− log 4 + 2JS(pX′ ||pG) + β
∑

i

∑

j

‖B′

ij −Bij‖1,

where the second equality uses the definition of JS-
divergence. Since the JS-divergence between two distribu-
tions is always non-negative and zero if they are equal, as a
result, we see that the minimum of the second term on the
right hand side is obtained when p∗G = pX′ .

We now look at the third term, which is an indicator of
the functional dependency error. For this error term, the op-
timum is obtained when B′

ij = Bij , for each record j and
each functional dependency Fi ∈ F . This implies that, the
data distribution of a subset of columns in the generated ta-
ble Y should be the same as that of the sub-table X ′. As a
result, the condition p∗G = pX′ does not violate the necessary
condition of obtaining optimum of the functional dependency
error. Therefore, under equilibrium, we have p∗G = pX′ , and
D∗ = pX′

pX′+p∗

G

.

Note that p∗G = pX′ is not a sufficient condition for the
optimality of minimizing the functional dependency loss, and
its optimum is obtained (with a more strict condition) by en-
forcing the modelled functional dependency function (via the
autoencoders). Moreover, the equilibrium obtained in prac-
tice is also dependent on how well the FDs are fitted by the
autoencoders. The following two corollaries can be immedi-
ately obtained from Theorem 5.1:

Corollary 5.1.1. The equilibrium D∗ and p∗G described in
Theorem 5.1 can still obtained when X̄ ′ = X̄ (i.e., the
column-wise average values of the full table and the sub-table
are the same) and any if one of the following conditions hold:

• Full batch gradient descent is performed in training gen-
erator neural networks.

• The moving average vector update weight w → 0 or the
weight α → 0 in the generator loss function with enough
training epochs.

Corollary 5.1.2. When X̄ ′ 6= X̄ , for discriminator, we still
have D∗ = pX′

pX′+p∗

G

, while for generator, p∗G(x) is biased

towards X̄ compared with pX′ .

Corollary 5.1.2 implies that our synthesized new table Y
of records is able to find a fine balance point which trades off
among the three conditions specified in Definition 3.3.

6 Empirical Results

We describe detailed experiment settings and results on two
representative datasets with various evaluation metrics.
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6.1 Datasets and Experiment Settings

Datasets. The ITS problem occurs frequently in real world
scenarios. We select the following two representative datasets
to evaluate the performance of ITS-GAN. (i) Census [Ko-
havi, 1996] is a dataset that contains 30K samples of popu-
lation data released by the US Censors Bureau. (ii) BTS1 is
the Air Carrier Statistics (ACS) dataset from the US Bureau
of Transportation Statistics that describes 80K domestic air
ticket sales in the US in a month. In particular, these two
datasets are considered as standards in many fields such as
Social Science, Civil Engineering, Transportation, etc.

Preprocessing. ITS-GAN synthesizes three types of
columns. (i) Continuous Nnumeric: It is straightforward to
learn and generate real numbers. (ii) Discrete numeric: After
generating a numeric value v, we round it to the nearest
column value in X ′, e.g., 1.5 will be rounded to 3 if the
corresponding column in X ′ only contains {−10, 3, 4, 5}.
(iii) Categorical: We use a label encoding method2 to assign
an integer value to each category or class, after which
generating categorical values is equivalent to the discrete
numeric case. For both Census and BTS datasets, the
ground-truth full-table statistics (in addition to the released
samples) are also released. However, we do not know their
original full tables as these are not publicly available. Hence,
we cannot compare our synthetic tables with the unknown
full tables. Therefore, we create our own evaluation data
from their released data as follows. We treat the Census and
BTS data we have as the full table (i.e. X) and then create
sub-tables (X ′) consisting of p% of X . We test p ∈ {1, 5}
as we are interested in very challenging situations where p
is very small. Each of the two datasets has one functional
dependency: gender, relationship determine marital-status
in Census and source/destination airports, flown distance
determine overall distance in BTS.

Experiment Settings. Our experiments are run on Ubuntu
18.04 with CUDA 10, Tensorflow r12. The batch size is 64,
with learning rate of 0.0002 and Adam optimizer (with beta
parameter of 0.5). The generator and discriminator are trained
alternately as in [Goodfellow et al., 2014]. For the weights in
Eq. (2), we use α = β = 3 for Census and 5 for BTS.

6.2 CDF Comparison

To evaluate whether a generated table Y is close to the origi-
nal full table X , we first compare the cumulative distribution
functions (CDFs) of X and Y . We compare with the state-
of-the-art table synthesis approach, TableGAN [Park et al.,
2018]. Figure 2 displays the CDFs of some selected schema
(columns). In many cases, CDFs of ITS-GAN in red are
close to CDFs of full table X in blue, suggesting that ITS-

GANperforms very well. In Figure 2 (d), however, ITS-GAN

is close to sub-table X ′ in orange around the X-axis value
range of 3000-5000, which means our generation does not al-
ways successfully capture the statistics of the full table. In
70% (resp. 60%) of the columns, ITS-GAN is closer to full

1https://www.transtats.bts.gov/Tables.asp?DB ID=111
2https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.LabelEncoder.html

(a) Flown-miles in BTS (b) Capital-gain in Census

(c) Hours-per-week in Cen-
sus

(d) Airport-group in BTS

Figure 2: Cumulative distributions of some selected columns.

table than to sub-table in Census (resp. BTS) in terms of the
Earth mover distance [Pele and Werman, 2009]. In contrast,
the CDFs of TableGAN in green are mostly close to CDFs of
sub-table X ′ in orange, which demonstrates that ITS-GAN is
superior to TableGAN in terms of synthesizing a full table.

6.3 Table Augmentation Performance Comparison

To test the utility of augmentation using the synthetic table
generated by ITS-GAN, we run classification tasks on the two
datasets. More specifically, we predict the “hours-per-week”
in the Census data and “ticket price” in the BTS data. The
labels are set as 1 (resp. 0) if the value is larger or equal to
(resp. smaller than) the median. To find the classifier with the
best performance, we do a grid search over AdaBoost, Ran-
domForest, GradientBoosting with various hyper-parameters
and using F-1 as the model selection criterion.

Baseline Methods. The set of baseline methods include:

• CM [Aggarwal and Yu, 2004], ROS [Lemaı̂tre et al.,
2017], ADASYN [He et al., 2008], SMOTE [Chawla et
al., 2002] and its variants BSMOTE [Han et al., 2005],
SVMSMOTE [Demidova and Klyueva, 2017], SMO-
TENC [Chawla et al., 2002], etc.

• DCGAN [Radford et al., 2015], which is a benchmark
GAN framework for generating images. DCGAN is cus-
tomized to generate tabular data.

• TableGAN [Park et al., 2018], which is the state-of-the-
art GAN-based table synthesis approach synthesizes a
full table and does not consider FDs.

The hyper-parameters are set as stated in the associated pa-
pers (when specified), or otherwise tuned via a grid search.

Table 2 summarizes the classification results. Note that
some baselines do not properly perform the augmentation
task – in particular, SMOTENC and ADASYN produce run-
time errors in some sub-tables. This happens when the sub-
table size is small and/or biased and their subroutines can-
not process it. SMOTE and BSMOTE are able to augment
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|X ′| Method F-1 Recall Precision
C

en
su

s
15% of X 0.463 0.386 0.581

5%

of

X

X ′ only 0.452 0.664 0.360

X ′∪ SMOTE 0.466 0.749 0.348

X ′∪ BSMOTE 0.467 0.794 0.339

X ′∪ SVMSMOTE 0.436 0.610 0.366

X ′∪ SMOTEEN 0.427 0.560 0.363

X ′∪ ROS 0.451 0.631 0.374

X ′∪ DCGAN 0.415 0.509 0.353

X ′∪ TableGAN 0.435 0.579 0.354

X ′∪ ITS-GAN (no Statistics) 0.458 0.560 0.415

X ′∪ ITS-GAN (no FDs) 0.446 0.521 0.393

X ′∪ ITS-GAN 0.478 0.678 0.382

1%

of

X

X ′ only 0.438 0.649 0.353

X ′∪ SMOTE 0.438 0.677 0.342

X ′∪ BSMOTE 0.439 0.678 0.341

X ′∪ SVMSMOTE 0.415 0.564 0.343

X ′∪ SMOTEEN 0.399 0.551 0.322

X ′∪ ROS 0.439 0.678 0.341

X ′∪ DCGAN 0.405 0.503 0.349

X ′∪ TableGAN 0.418 0.610 0.336

X ′∪ ITS-GAN (no Statistics) 0.438 0.821 0.322

X ′∪ ITS-GAN (no FDs) 0.443 0.825 0.323

X ′∪ ITS-GAN 0.462 0.663 0.364

B
T

S

15% of X 0.652 0.953 0.505

5%

of

X

X ′ only 0.648 0.773 0.560

X ′∪ SMOTE 0.635 0.773 0.560

X ′∪ BSMOTE 0.616 0.700 0.560

X ′∪ SVMSMOTE 0.576 0.585 0.600

X ′∪ SMOTEEN 0.522 0.450 0.626

X ′∪ ROS 0.547 0.537 0.584

X ′∪ DCGAN 0.536 0.496 0.629

X ′∪ TableGAN 0.602 0.698 0.552

X ′∪ ITS-GAN (no Statistics) 0.636 0.836 0.538

X ′∪ ITS-GAN (no FDs) 0.635 0.836 0.537

X ′∪ ITS-GAN 0.666 0.983 0.503

1%

of

X

X ′ only 0.640 0.777 0.554

X ′∪ SMOTE 0.580 0.592 0.582

X ′∪ BSMOTE 0.574 0.583 0.586

X ′∪ SVMSMOTE 0.539 0.521 0.576

X ′∪ SMOTEEN 0.531 0.502 0.570

X ′∪ ROS 0.555 0.528 0.592

X ′∪ DCGAN 0.492 0.449 0.546

X ′∪ TableGAN 0.626 0.829 0.526

X ′∪ ITS-GAN (no Statistics) 0.630 0.804 0.544

X ′∪ ITS-GAN (no FDs) 0.621 0.808 0.530

X ′∪ ITS-GAN 0.648 0.892 0.525

Table 2: Table augmentation performance comparison. We perform
classification of the Hours-per-week label for the Census data and
the Ticket price label in BTS data (class 1: ≥ median, class 0: <
median). Both comparisons against baselines and the ablation study
are presented in the table. Results are averaged over 10 different X ′.

all sub-tables in a reliable manner. DCGAN is always infe-
rior to TableGAN as observed in [Park et al., 2018] and we

remove CM from the table due to its poor generation qual-
ity. ITS-GAN outperforms all the baseline methods in terms
of F1 score and precision in Census and achieves the best
F1 score and recall in BTS. For recall in Census and pre-
cision in BTS, Boundary-SMOTE (BSMOTE), which aug-
ments around classification boundary, shows the best perfor-
mance. However, BSMOTE’s overall F1 measure is inferior
to ITS-GAN. The other baselines show relatively unreliable
performance. Moreover, GAN-based augmentation methods
show more reliable performance when X ′ is 1% of X . The
performance gap between the 1% and 5% cases for the base-
line methods is around 3-5% whereas it is around 1-2% for
ITS-GAN and TableGAN. We also calculate the statistical
significance between ITS-GAN and BSMOTE across all pre-
dictions — the p-value is 0.002.

To further show the significance of table augmentation on
ML tasks, we also compare with the ML model trained on a
larger dataset which contains the sub-table X ′. This dataset
contains 15% of records from the full table X . Surprisingly,
our method shows comparable performance to the models
trained on the much larger dataset, and performs even bet-
ter in some cases, e.g., the F1 score of ITS-GAN is 0.478 in
Census, and is 0.463 for the ML model trained on the 15%
dataset.
Ablation Study. To check the efficacy of the table statis-
tic information and FD constraints, we also do an ablation
study. We consider two variations of ITS-GAN: ITS-GAN

(no FDs) and ITS-GAN (no Statistics) where autoencoders
or the statistics matching loss of the generation are missing
respectively. ITS-GAN without both of these components is
comparable to TableGAN, so we exclude it. The results are
also shown in Table 2. We see that for all cases, ITS-GAN

outperforms the two variants with one component missing.
This demonstrates that ITS-GAN is able to exploit both the
table statistic information and the FD constraints to better
augment a sub-table.

7 Conclusion

We presented a tabular data augmentation framework called
ITS-GAN. Our approach is widely applicable under scenarios
where we are given a sub-table from a full table, along with
some statistics associated with the full table. This problem
setting occurs very frequently in many real-world cases, espe-
cially when an organization like the government is restricted
in the amount of data that it can release, e.g. due to legal
and privacy concerns. ITS-GAN adapts GANs to maintain
both the statistics of the full table and the FDs in the released
sub-table. We evaluated the performance of data augmenta-
tion for ITS-GAN on two very important datasets, Census
and BTS. The results show that our approach is able to sig-
nificantly improve the classification tasks, and outperforms
the state-of-the-art tabular data augmentation approaches by
a significant edge.
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