
[published in: IEEE Computer Graphics and Applications 17(3) , May-June 1997, pp. 31-39.]

Faking Dynamics of Ropes and Springs

Ronen Barzel

Pixar Animation Studios

Richmond, CA

We describe a simple method for modeling flexible linear bodies such as ropes and springs, using no dynamic

simulation, procedural animation, nor constraint methods—animators create motion by adjusting the shape of

models over time using traditional keyframe methods. The approach taken is to provide a default natural rest

shape, and to provide controls that perform gross modification and wave-shaped deformation of the rest shape.

The resulting models provide animators with intuitive control and the means to interactively create motion that

is both visually plausible and tailored to the frame-to-frame needs of particular animations. This technique has

been used successfully in animation production over the past few years, in particular for various ropes and the

“Slinky Dog” in the movie Toy Story.

1 Introduction

This paper presents a method to model flexible linear
bodies—ropes, cords, springs, and the like—for ani-
mation production. The resulting models can easily
be animated in a manner that convincingly “fakes”
dynamic behavior.

It is perhaps surprising that for character ani-
mation, we often prefer convincingly “fake” dynam-
ics to purely “real” dynamics. Although the motion
needs to be plausible, high-quality animation uses
caricature methods such as anticipation and exagger-
ation in a non-physically-motivated manner to con-
vey story, mood, and character, and to direct audi-
ence’s attention.1 The amount and type of caricature
varies—from object to object, scene to scene, pose to
pose, and frame to frame—to meet the needs of the
moment.

In a production environment, it is essential that
animators can easily adjust and edit pose and timing
with per-frame accuracy, to respond to the needs and
feedback of the director or client. Keyframe anima-
tion systems are well-suited to these tasks.

For these reasons, we want to define flexible-body
models to be animated using a keyframe system. Our
goals are to manage the many degrees of freedom that
a flexible body has, to create models that easily lend
themselves to convincing motion, and at the same
time to provide the necessary direct control and ease
of use.

We meet these goals by defining the shape of a
flexible body via a few layered deformations; these
deformations are chosen so as to create the type of
shapes that a dynamically-moving body would adopt.

By varying the parameters of the deformations over
time, the animator can create convincing motion.

We cannot overemphasize that the keyframe ap-
proach requires talented human animators. Our mod-
els do not automatically generate animation, they
simply provide shape controls for an animator to work
with; an unskilled animator (such as this author) can
certainly make unconvincing animation. The power
of our approach is in its simplicity and its applicabil-
ity to a specific task.

What about “real” dynamics?

The computer graphics research community (includ-
ing this author) has done much work in computing re-
alistic motion via physically-based modeling and dy-
namic simulation. Control over the motion is often
provided via constraint methods.2, 3

As discussed above, for our character animation
application, we require plausible-but-caricatured mo-
tion rather than purely physical. and we need quick
and direct control. As such, dynamic simulation has
not proven appropriate for us: the control methods
don’t directly lend themselves to the non-physical mo-
tion and quick per-pose/per-frame editing that we
need, and interaction speed is an issue.

In circumstances where the bodies have less inter-
action with animated characters, dynamic simulation
can be a valuable tool. For example, in Toy Story, al-
though almost all the flexible linear-body animation
used the kinematic methods of this paper, there was
one shot—of a rope thrown from a balcony—that was
computed dynamically.

1

Related work

Pentland and Williams4 use vibration-mode eigen-
value computation to animate flexible 3D bodies,
pointing out the reduction in degrees of freedom that
modal analysis provides. Although their focus is on
physical characteristics of the bodies, the modal ap-
proach is similar in spirit to our work.

Chadwick et al.5 use a layered approach to
flexible-body animation, with dynamic vibration
computed on top of kinematic skeletal deformation.
Terzopoulos and Witkin6 use dynamic simulation for
both a rigid model and its flexible deformations. Our
approach is perhaps conceptually similar to these, ex-
cept that in our work both the basic shape and vibra-
tion layer are produced by kinematic deformation.

This author and Hughes and Wood7 have investi-
gated simulating motion that is “visually plausible”
but not necessarily physically accurate. That ap-
proach is speculative, and has not seen use in pro-
duction.

The models in this paper are built using the C-like
modeling language of Reeves et al.8 Their keyframe
animation system is used as well; it provides tradi-
tional spline-based control of the animatable param-
eters of the models.

2 Overview

A straightforward way to model a rope is to sim-
ply provide a collection of movable control vertices
(CV’s) that define the curve of the body. However,
this method is tedious to work with, and hard to make
move convincingly.† Having independent control over
each CV is overkill, since in practice the CV’s do not
move independently but rather stay coupled to each
other.

To make the animator’s job feasible, we capture
the physical behavior of the body into relatively few,
higher-level controls. In a manner reminiscent of
modal analysis (Fig. 1), we observe that the shape
of a flexible body can be described at any instant by
a gross deformation of a rest shape, perturbed by a
wave-shaped deformation.

Our general method for creating models is thus
quite simple:

• Define a natural rest shape

• Perform gross-shape deformation

• Perform wave-shape deformation

†The electric cord in the animated short Luxo Jr. was mod-

eled using CV’s vertices in this manner; it was “by far the

hardest and most time consuming”9 part to animate.

Figure 1: Top: the first three modes of a vibrating string.
Bottom: two modes combine to give a traveling wave.
(Figures from Feynman et al.10)

Not needing physically-exact behavior, our gross- and
wave-shape deformations are simple operations, cho-
sen for ease of use. A final clamping step can be
introduced to keep models from interpenetrating the
floor (or other easily computed geometry).

3 Basic Models

This section describes four useful models that illus-
trate the modular layered modeling method. Sec. 4
discusses how to use and extend these for more com-
plex models.

For each model, we will describe the rest shape,
gross shape controls, and wave deformation, followed
by a short description of its implementation. Further
details are contained in appendix A; in particular, A.1
describes how we represent curves.

2

Figure 2: Suspended rope. Left to right: rest shapes for
various end positions; swing side to side; sway back and
forth.

Figure 3: Wave deformations with varying magnitude.

Figure 4: Wave deformations with varying frequency.

Figure 5: Wave deformations with varying phase.

Figure 6: Wave deformations with varying azimuth.

func SuspendedRope(end1,end2, length)

parms: swing, sway

waves ≡ n× { mag, freq, phase, azm }

; rest and gross shapes

up = rotate(swing, X)*rotate(sway, Y)*Z

rope = catenary(end1, end2, length, up)

; wave deformation

envelope = sin(0..180)

rope = rope + envelope*wave(rope, waves)

return rope

Figure 7: Pseudocode for the suspended rope of Figs. 2–
6. The parms are parameters available to the animators.

3.1 Suspended Rope

A common model is a rope suspended from its two
ends. The ends may be completely fixed in space, an-
imated manually, or attached to some other objects,
but the ends are not affected by shape adjustments
and wave deformations.

Rest shape. The rest shape is a catenary, as
would be taken naturally by a rope suspended in grav-
ity. The rest shape is determined by length of the rope
and the positions of the ends (Fig. 2, left).

Gross shape. The rope has two gross shape pa-
rameters: swing from side to side and sway back and
forth (Fig. 2, center and right).

Wave deformation. A transverse wave defor-
mation has four parameters: magnitude, frequency,
phase, and azimuth, as illustrated in Figs. 3–6. Notice
that traveling wave motion can easily be generated by
animating the phase, and that the wave is largest in
the center and falls off so that it does not affect the
ends.† Any number of different waves can be super-
posed, although in practice one wave has generally
been sufficient.

Implementation. Fig. 7 has pseudocode for a
function that computes the curve of the rope. The
rest shape is generated by a catenary function (ap-

†Note also that we do not attempt to maintain the length

of the rope: an unduly large wave magnitude can perceptibly

increase the length.

3

pendix A.2); the swing and sway parameters, while
conceptually part of a gross shape deformation, are
most easily merged with the rest shape since we im-
plement them by leaning the catenary’s up direction.
The wave function (appendix A.3) returns a displace-
ment which we scale by a 1

2
-cycle sine envelope.

The resulting curve is used as the axis of the fi-
nal 3D surface. Most simply we define a generalized
cylinder (appendix A.4); Fig. 17 shows a more com-
plex example in which a twisted pair of wires is run
along the axis, with a light bulb every few inches.

3.2 Loose Rope

Another common model is a rope that is held at one
end, with the other end moving freely.

Rest shape. The rest shape of the loose rope is
simply a straight line (Fig. 8, left).

Gross shape. The gross shape of the rope is
sculpted as if it were a pipe-cleaner (Fig. 8, left mid-
dle). One or more bends can be introduced, each hav-
ing parameters: position (how far along the rope the
bend starts), length (how much of the rope is bent),
angle (number of degrees rope is bent), and azimuth

(orientation of bend). In practice we have generally
used fewer than 5 bends in any given model.

Wave deformation. The wave deformation is
the same as the suspended rope (Fig. 8, right mid-
dle). The animator is given a control env over the
envelope: the held end always stays fixed, but the
loose end can be free to displace (env = 0) or can be
fixed (env = 1). Intermediate values of env can be
useful, for example, if a heavy object is kinematically
attached to the loose end so that it should perturb
only slightly.

Clamping. We clamp the curve to keep it above
the floor plane, so that the animator needn’t worry
about the rope penetrating the floor (Fig. 8, right).

Implementation. The loose rope function,
Fig. 9, has the same structure as the suspended rope
of Fig. 7. We generate the rest shape as a straight line,
and bend it to yield the gross shape (appendix A.5).
The envelope varies between a 1

4
- and 1

2
-cyle sine

wave, based on the env parameter. The clamping
simply prevents the z-component of the curve from
being negative.

3.3 Coiled cord

A coiled elastic cord such as a telephone or micro-
phone cord (Fig. 10) is an extension of the suspended
rope of Sec. 3.1. The animator controls a “back-
bone” curve, and the coils are automatically wrapped

Figure 8: A loose rope. Left to right: Rest shape; with
two bends; with a wave; lowered to rest on the floor.

func LooseRope(end, length)

parms: env

bends≡ n× { pos, len, angle, azm }
waves≡ m× { mag, freq, phase, azm }

; rest shape

rope = end + line((0,0,0)..(0,0,-length))

; gross shape

rope = bend(rope, bends)

; wave deformation

envelope = sin(0..90+env*90)

rope = rope + envelope*wave(rope, waves)

; clamp to floor plane

zcomp(rope) = max(0, zcomp(rope))

return rope

Figure 9: Pseudocode for the loose rope of Fig. 8.

Figure 10: A coiled cord. Left to right: Straight rest
shape; with sag; with several waves.

func CoiledCord(end1, end2, radius, ncoils)

parms: sag

; construct backbone

length = sqrt((end2-end1)2+4*sag2)

rope = SuspendedRope(end1,end2,length) ; from Fig. 7

; define a u, v cylinder surface

cyl = cylinder(rope, radius)

; construct helix

uv = sawtooth(ncoils)

helix = curve on surface(cyl, uv)

return helix

Figure 11: Pseudocode for the coiled cord of Fig. 10.
The helix is constructed as illustrated in Fig. 12.

4

around the backbone, coming apart and together as
the backbone stretches and shrinks.

Rest shape. Unlike the suspended rope, the rest
shape of the backbone is a straight line between the
two ends, as if tension in the coils pulls it taut.

Gross shape. The suspended rope had a fixed
length. Here, the total length of the coiled cord may
be fixed, but the backbone curve can change length as
the coils move apart or together. A convenient way
to control the length is to provide a sag parameter
that lengthens the backbone so that the cord sags
into a catenary; the swing and sway controls of the
suspended rope are available here.

Wave deformation. Same as the suspended
rope.

Implementation. This model illustrates the
modularity of the method: the SuspendedRope func-
tion of Sec. 3.1 generates the backbone of the coiled
cord. We compute the backbone length by triangular
approximation based on the sag parameter (Fig. 11).

To create the axis of the helical curve, we con-
struct a u, v parametric surface in the shape of a gen-
eralized cylinder (appendix A.4) then evaluate a u, v

sawtooth function on that surface (A.6), as illustrated
in Fig. 12.

3.4 Spring

A long, loose spring such as a Slinky† is similar to the
coiled cord of Sec. 3.3, but the coils of the spring need
to cluster and animate.

The coil clustering is controlled by the animator
independently from the shape of the backbone, using
the familiar layered approach:

Rest shape. The coils are uniformly distributed.
With the coils in their rest shape, this model is the
same as the coiled cord of Sec. 3.3.

Gross shape. The animator uses one or more
“pincers” to grab coils and bunch them. Each pin-
cer has three parameters: position (where along the
backbone to place the pincer), length (how far along
the backbone it extends), and npinch (how many coils
fall within the pincer).

Wave deformation. A compression wave is a
periodic bunching of the coils, with parameters: mag-

nitude (how tightly the coils bunch), frequency (how
many bunches), and phase (position of the wave).

Implementation. The backbone is generated us-
ing the suspended cord function; here, we also clamp
the backbone to one radius above the floor so that the
coils will not penetrate it (Fig. 14).

To represent the coils, we generalize the sawtooth
mechanism of Sec. 3.3. We extend the u, v space of the

†Slinky is a trademark of James Industries.

Figure 12: Top: u, v-parametrized cylinder, and its un-
rolled u, v space. Bottom: helix wrapped around cylinder
corresponds with sawtooth in u, v space.

Figure 13: A loose spring. Left, top to bottom: Uniform
coils; compression wave; pinched coils. Right: A little bit
of everything.

func Spring(end1, end2, radius, ncoils)

parms: sag

pincers ≡ n× { pos, len, npinch }
waves ≡ m× { mag, freq, phase }

; backbone curve

length = sqrt((end2-end1)2+4*sag2)

rope = SuspendedRope(end1,end2,length) ; from Fig. 7

; clamp above floor

zcomp(rope) = max(radius, zcomp(rope))

; define u, v cylinder surface

cyl = cylinder(rope, radius)

; rest shape for coils curve

uv = line((0,0)..(1,ncoils))

; gross shape

uv = pincer(uv, pincers)

; compression wave deformation

envelope = plateau(.5/ncoils)

uv = uv + envelope*compressionwave(uv,waves)

; create helix

helix = curve on surface(cyl, uv mod 1.0)

return helix

Figure 14: Pseudocode for the spring of Fig. 13. The
helix is constructed as illustrated in Fig. 15.

5

Figure 15: Left: u, v space is extended so that sawtooth
of Fig. 12 is simply a straight line. Right: varying curve
slope results in varying coil density.

func Lasso(hand, length)

parms: spanlength

hoop = Hoop()

span = SuspendedRope(hoop[1], hand, spanlength)

tail = LooseRope(hand,length-spanlength)

return concat(hoop,span,tail)

Figure 16: Pseudocode for a lasso. Compound of a
special-purpose “hoop” model with two rope models.

cylinder surface from [0, 1]× [0, 1] to be [0, 1]× [0, N],
where there are N coils in the helix. As illustrated
in Fig. 15, the sawtooth of Sec. 3.3 is now a straight
curve from (0, 0) to (0, N). By deforming this curve,
we can cluster the coils: where the curve is steeper,
the coils are closer together. Note that the curve must
be monotonically increasing to keep the coils from
doubling back on each other.

We use our standard layered approach to manip-
ulate the u, v curve (Fig. 14): define the rest shape,
a straight line; generate a gross shape via pincers

(appendix A.7); construct an envelope via plateau

(A.8); and deform using compressionwave (A.9). Fi-
nally we map the curve back onto the 0-1 surface using
mod, and evaluate the helix.

4 General Models

In production, each model often has its own special-
purpose attachments, widgets, or controls. However,
the basic models of Sec. 3 and their components are
used as building blocks for the more intricate models.

Compound models. Often, a production model
can be composed modularly from a collection of ba-
sic pieces. For example, to model a lasso (Fig. 16,
Fig. 21): we built a special-purpose hoop, which was
twirled and positioned directly; suspended a rope
(Sec. 3.1) between the knot of the hoop and the hand
of the character; and placed a loose rope (Sec. 3.2)
continuing out from the hand.

Variations of models. Because of the internal
modularity of the layered-deformation approach, we
can easily construct variations on the basic models as
needed. For example, the spring in Fig. 20 is based
on the spring of Sec. 3.4, but with a more intricate
variant for the gross shape: two spline control points
can be adjusted to deform the curve; the sag is au-
tomatically scaled so that there is no sag as the two
ends come together; and each end of the curve is con-
strained to be normal to the character’s torso.

Other models. Other deformations than those
described in Sec. 3 can be useful. For example, twist-
ing and torsion waves can be implemented analo-
gously to coil compression, by manipulating a rota-
tion curve (see appendix A.4); and a pulse or soliton
deformation can be used in addition to cyclic waves.
Whatever new modeling deformations are introduced,
the same general outline applies:

1. Define the underlying curve model.

2. Create the natural rest shape.

3. Perform gross shape adjustment.

4. Define a deformation envelope.

5. Perform wave deformations.

6. Clamp.

7. Create final object to render.

5 Results

The “fake” dynamics layered approach has proven to
be very successful in production. The resulting mo-
tion is convincingly realistic in the context of char-
acter animation. The animators’ reactions—often a
matter of personal taste and style—have varied from
from mild acceptance† to wild enthusiasm. Those who
have used other methods to animate flexible bodies

†For some, the talk of “phase” and “frequency” was a bit

hard to follow; perhaps these parameters should be repackaged

in some less technical form.

6

Figure 17: The string of lights uses the “suspended
rope” model of Sec. 3.1.

(such as control vertices or dynamics) have expressed
a strong preference for our method.

Figs. 17–21 show pairs of frames from Toy Story

featuring various models built using the techniques
of Secs. 3 and 4. To animate the models, animators
adjusted the shape parameters at key frames and used
traditional keyframe splining to interpolate between
them. Splining these shape parameters tends to yield
convincing motion, so that often very few key values
need be specified. For example, in the 30-frame scene
of Fig. 17, only 8 key values were needed for the lights’
sag parameter, 3 for wave magnitude, and 4 for wave
phase; the other parameters were constant. In the
120-frame scene of Fig. 20, 4 key values were used for
the Slinky’s backbone wave magnitude, 3 for its phase,
4 for compression wave magnitude, and 2 each for
its frequency, and phase; the other parameters were
constant.

The ability to interactively adjust pose and tim-
ing by working within a keyframe system has been es-
sential for integrating the models with character an-
imation. Consider, for example, the frame-accurate
choreography needed for the scene of Fig. 18.

The layered approach to modeling—rest shape,
gross shape, wave deformations—lends itself to the
layered approach to animation that Lasseter1 suggests
is the best practice for computer graphics animation.

Figure 18: The strap uses a variant of the “loose rope”
model of Sec. 3.2.

Figure 19: The microphone cord uses the “coiled cord”
model of Sec. 3.3.

7

Figure 20: The Slinky uses a variant of the “spring”
model of Sec. 3.4.

Figure 21: The lasso is a compound model as described
in Sec. 4.

The ability to modularly construct special-
purpose variants of a model has also been invaluable.
For example, the string of lights in Fig. 17 is one of 16
variants (lights being caught, thrown, coiled, carried,
dragged, etc.); after building the first few, the remain-
der were easily put together from available modules.
The jump rope in Fig. 21 is similarly one of 10 vari-
ants.

6 Conclusion

We have presented a method to build kinematically
animatable models of flexible linear bodies. The
method is quite simple, both in concept and imple-
mentation, and has proven to be effective in practice.

Rather than building a single “does-everything”
model, the method supports building simpler models
for specific needs. Its strength lies in the modular
approach that makes it easy to build new models from
existing models and their components.

The method is based on the natural wave behavior
of bodies that are constrained at one or both ends and
are free in between. If these assumptions do not hold,
the method is likely to be less applicable.

7 Future work

What about 2D bodies? Can the same method be
used to model cloth and clothing? In principle, the
idea of layering wave deformations above a gross
shape remains valid. However, 2D waves are more
complex than 1D, and the gross shape controls may
themselves be non-trivial. We are hopeful, but have
not yet investigated this question.

Also of interest is whether our type of kinematic
control can be integrated with dynamic simulation
methods, so that the choice between interactive con-
trol and computed motion is not all-or-nothing.

Acknowledgements

The author is indebted to the Toy Story animators for
creating the animations that make this work worth-
while. Kurt Fleischer and Uriel Barzel provided valu-
able suggestions for this paper.

8

A Implementation Notes

This appendix discusses our representation for a curve,
and describes the various library routines used in the pseu-
docode of Secs. 3 and 4.

A.1 Representing a curve

For our purposes, the easiest way to represent a curve is
by brute force: by a constant number of sample points
distributed uniformly along it. To deform the curve, we
simply deform the sample points. In practice we have used
a few 10’s to perhaps 100 samples in any given model.

When we need to interpolate a smooth curve from
the sample points, we create a B-spline by using a spline-
fitting algorithm11 to compute the knot points from the
sample data.

If, as part of building a complex model, we need to
change the number of sample points in a curve, we con-
struct its B-spline and sample that spline uniformly at the
new rate. If the samples have clustered and we need to
resample uniformly, we construct its B-spline, supersam-
ple it into short segemnts, compute the lengths of each
segment, invert the result, and re-sample the spline.

Each curve has a 0–1 u parameter defined along it.
Often it is convenient to have an arc-length parameter
s as well: we compute the total length L of the curve
by constructing its B-spline, supersampling into segments,
and summing the segment lengths; then s is simply a 0–L

multiple of u.

A.2 catenary

We construct a catenary following the method described
by Weill,12 with some practical modification. First, for
simplicity, we transform to canonical coordinates in which
the up direction is +y, the lower end is at the origin and
the other end is at (1, dy) in the x-y plane. Next, given

the desired length L >=
√

1 + dy2, we numerically solve
for α in

√

L2 − dy2 =
sinh α

α
.

The solution is straightforward since sinh α
α

is monotonic
in α: we approximate by bracketing the left-hand-side,
sampling, and interpolating. Note that Weill solves for
A = 1

α
; we use α because it is close to 0, while A is

inconveniently large. Given α, we compute:

M = sinh(2α)
N = cosh(2α) − 1

If N > M :

u = atanh(M
N

)
Q = M

sinh(u)

b = sinh−1(2Lα

Q
) − u

If M ≥ N :

u = atanh(N

M
)

Q = N

sinh(u)

b = cosh−1(2Lα
Q

) − u

And in all cases:

c =
cosh(b)

2α
The catenary is nominally given by

C(s) =
cosh(2αs + b)

2α
− c, s ∈ [0, 1]

Next, to compensate for our cheap approximation of α,

we compute the error e, and subtract it off linearly back
along the curve:

e =
cosh(2α + b)

2α
− c − dy

C(s) =
cosh(2αs + b)

2α
− c − se, s ∈ [0, 1]

To generate the final curve, we first sample C(s) in s, then
resample uniformly by arc length as described in A.1.

A.3 wave

To apply a transverse wave to a curve in space, we create
a local coordinate frame at each sample point, by evalu-
ating the tangent to the curve and taking the cross prod-
uct with some suitable fixed vector such as the world-
space z axis, or else by computing the Frenet frame or
a rotation-minimizing frame as per Bloomenthal.13 The
displacement is at a constant angle in the local xy plane,
specified by the azimuth parameter.

xx

yy

z

z

If several waves are to be superposed, the displacements
are computed independently based on the same gross
shape. The displacements at each sample point are added
together to produce the final displacement.

A.4 cylinder

We create a generalized cylinder from an axis curve by
extruding a profile shape (commonly a circle) along the
curve. A curve can be provided to specify the rotation of
the profile shape as it is extruded, thus supporting twist-
ing and torsion waves.

The result of the extrusion is a u, v parametric surface,
where u ∈ [0, 1] moves axially along the curve and v ∈

[0, 1] moves around the profile.

A.5 bend

We perform bends using the circular bend deformation de-
scribed by Barr.14 Within the bending region the shape is
deformed circularly, and beyond the bend the deformation
is a rigid translation and rotation:
If several bends are to be performed, they are sorted by
distance from the fixed origin, and applied sequentially.

9

a

r

r

L

Lp

A.6 curve on surface

Given a u, v parametric surface, and a 2D curve in u, v

space, curve on surface returns the corresponding curve
in 3-space. Since our curves are represented as sample
points, this is easy: we simply evaluate the surface at the
u, v samples and return the resulting 3D points.

A.7 pincer

The pincer function simply constructs the piecewise-
constant-slope curve of Fig. 15. If several pincers are de-
fined, the appropriate multi-segment curve is constructed.
In practice, we slightly round the corners where segments
meet, to avoid kinks in the resulting helix.

A.8 plateau

The plateau function, given a width a returns an envelope
that is flat at the top and falls off via two Hermite curves
at the ends:

0
1

1

a a

A.9 compressionwave

We are given a monotonically-increasing curve v = c(u)
that describes a helix on a cylinder as per Fig. 12. To per-
form a compression wave on the helix, we need to induce
a sinusoidal deformation on the curve, while maintaining
the monotonicity.

The following does the trick: given a magnitude k, fre-
quency λ, and phase φ, and a sample point (u, v) with
u ∈ [0, 1] and v ∈ [0, N] for an N -coil helix, displace v by

(

k

1 + k

)

(

N

(

u +
sin(2πλu + φ)

2πλ

)

− v

)

References

[1] J. Lasseter. Principles of traditional animation ap-
plied to 3D computer animation. Computer Graph-

ics 21(4) (Proc. SIGGRAPH), July 1987, pp. 35–44.
[2] R. Barzel and A.H. Barr. A modeling system based

on dynamic constraints. Computer Graphics 22(4)
(Proc. SIGGRAPH), August 1988, pp. 179–188.

[3] Z. Liu, S.J. Gortler, and M.F. Cohen. Hierarchical
Spacetime Control. In Computer Graphics Proceed-
ings, Annual Conference Series, ACM SIGGRAPH,
1994, pp. 35–42.

[4] A. Pentland and J. Williams. Good vibrations:
modal dynamics for graphics and animation. Com-

puter Graphics 23(3) (Proc. SIGGRAPH), July
1989, pp. 215–222.

[5] J.E. Chadwick, D.R. Haumann, and R.E. Par-
ent. Layered construction for deformable animated
characters. Computer Graphics, 23(3) (Proc. SIG-
GRAPH), July 1989, pp. 243–252.

[6] D. Terzopoulos and A. Witkin. Physically-based
models with rigid and deformable components.
In Proc. Graphics Interface, Edmonton, Alberta,
Canada, June 1988, pp. 146–154.

[7] R. Barzel, J.F. Hughes, and D. Wood. Plausible Mo-
tion Simulation for Computer Graphics Animation.
Submitted to the Eurographics Workshop on Ani-
mation and Simulation, 1996.

[8] W.T. Reeves, E.F. Ostby, and S.J. Leffler. The
Menv modelling and animation environment. The

Journal of Visualization and Computer Animation

Vol. 1, 1990, pp. 33–40.
[9] J. Lasseter. Personal communication, 1995.

[10] R.P. Feynman, R.B. Leighton, M. Sands. The

Feynman Lectures on Physics, Volume 1. Addison-
Wesley Publishing Company, Reading MA, 1963.

[11] R.H. Bartels, J.C. Beatty, and B.A. Barsky. An in-

troduction to splines for use in computer graphics

and geometric modeling. Morgan Kaufmann Pub-
lishers, Inc., Los Altos CA, 1987.

[12] J. Weil. The synthesis of cloth objects. Computer

Graphics 20(4) (Proc. SIGGRAPH), August 1986,
pp. 49–55.

[13] J. Bloomenthal. Calculation of reference frames
along a space curve. In Graphics Gems, Andrew
S. Glassner, editor, Academic Press, Boston, 1990,
pp. 567–571.

[14] A.H. Barr. Global and local deformations of solid
primitives. Computer Graphics 18(3) (Proc. SIG-
GRAPH), July 1984, pp. 21–30.

10

