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In this study, a new computingmodel is developed using the strength of feedforward neural networks with the Levenberg–Marquardt
method- (NN-BLMM-) based backpropagation technique. It is used to find a solution for the nonlinear system obtained from the
governing equations of Falkner–Skan with heat transfer (FSE-HT). Moreover, the partial differential equations (PDEs) for the
unsteady squeezing flow of heat andmass transfer of the viscous fluid are converted into ordinary differential equations (ODEs) with
the help of similarity transformation. A dataset for the proposed NN-BLMM-based model is generated in different scenarios by a
variation of various embedding parameters, Deborah number (β) and Prandtl number (Pr). -e training (TR), testing (TS), and
validation (VD) of the NN-BLMMmodel are evaluated in the generated scenarios to compare the obtained results with the reference
results. For the fluidic system convergence analysis, a number of metrics such as themean square error (MSE), error histogram (EH),
and regression (RG) plots are utilized for measuring the effectiveness and performance of the NN-BLMM infrastructure model. -e
experiments showed that comparisons between the results of the proposed model and the reference results match in terms of
convergence up to E-05 to E-10.-is proves the validity of theNN-BLMMmodel. Furthermore, the results demonstrated that there is
an increase in the velocity profile and a decrease in the thickness of the thermal boundary layer by increasing the Deborah number.
Also, the thickness of the thermal boundary layer is decreased by increasing the Prandtl number.

1. Introduction

-e boundary layer flow of an incompressible liquid through
a stretching sheet is commonly used in many industrial and
engineering processes. -e field has been attracting re-
searchers in the past few years. -e boundary layer flow has
major applications in industries such as aerodynamic ex-
traction of polymer paper from debris, thermal wrapping,
cooling plate with no cooling tuber, boundary layer next to
the liquid film in the condensation phase, and glass fiber

development [1–3]. By immersing them in quiescent liquids,
many metal processes need to cool continuous fibers. -e
mechanical features of the final product depend only on the
drawing costs and the process temperature. Sakiadis [4, 5]
experimented with new work in this area, and many re-
searchers in the field have investigated the flow of the
boundary layer into the ongoing stretching sheet at an in-
creasing speed. A closed-form solution for the viscous flow
of an incompressible fluid was obtained by Crane [6]. Gupta
and Gupta [7] studied the same effects as given in [6] by
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β/2

Figure 1: -e geometry of the problem.

Figure 2: -e structure of a single neural network model.
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Figure 3: Graphical representation of NN-BLMM input, hidden, and output layers.

Table 1: Defining the physical parameters of interest for the scenarios and cases of FSE-HT.

Scenarios Cases
Physical quantity

β Pr

1
1 2 0.5
2 4 0.5
3 6 0.5

2
1 4 0.5
2 4 1.0
3 4 1.5
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β/2

(a)

f ′″(ξ) + f(ξ)f″(ξ) + β(1–(f ′(ξ))2) = 0,

f  (0) = 0, f ′(0) = 0, f ′(∞) = 1,

θ (0) = 1, θ(∞) = 0.

θ″(ξ) + Pr f (ξ)θ′(ξ) = 0,
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Figure 4: -e workflow of the proposed NN-BLMM for processing the FSE-HT. (a) -e geometry of the problem. (b) Formulation of the
problem. (c) Intelligent computing: neuron model integrated to develop the proposed network. (d) Results. (e) Comparative analysis.
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Figure 5:-eMSE results of the proposed NN-BLMM to solve the FSE-HT. (a)-eMSE results in case 1 for scenario 1. (b)-eMSE results
in case 2 for scenario 1. (c)-eMSE results in case 3 for scenario 1. (d)-eMSE results in case 1 for scenario 2. (e)-eMSE results in case 2
for scenario 2. (f ) -e MSE results in case 3 for scenario 2.
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considering the fluid electrically conducting and porous
medium with suction/injection by Anderson [8]. Ariel [9]
investigated the combined effect of viscoelasticity and
magnetic field on the Crane’s problem. Since a stretching
sheet can occur in a variety of ways, the flow through the

stretching sheet does not always need to be of two sizes. If the
extension is radial, it can be three. A flat surface of three
stretches and the same width was examined by Wang [10].
Brady and Acrivos [11] monitored the flow inside the
channel or tube and the Wang flow outside the performing
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Figure 6: -e dynamic results of transition states for the NN-BLMM to solve the FSE-HT. (a) -e transition state results in case 1 for scenario 1.
(b)-e transition state results in case 2 for scenario 1. (c)-e transition state results in case 3 for scenario 1. (d)-e transition state results in case 1 for
scenario 2. (e) -e transition state results in case 2 for scenario 2. (f) -e transition state results in case 3 for scenario 2.
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Figure 7: -e results of the NN-BLMM compared with the reference solution in case 1 of scenario 1 for FSE-HT.
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Figure 8: -e results of the NN-BLMM compared with the reference solution in case 2 of scenario 1 for FSE-HT.
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Figure 9: -e results of the NN-BLMM compared with the reference solution in case 3 of scenario 1 for FSE-HT.
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Figure 10: -e results of the NN-BLMM compared with the reference solution in case 1 of scenario 2 for FSE-HT.
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Figure 12: -e results of the NN-BLMM compared with the reference solution in case 3 of scenario 2 for FSE-HT.
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tube [12]. Wang [13] and Usha and Sridharan [14] tested the
unstable SS. Ariel [15] used HPM and expanded HPM to
obtain a solution for analysis in axisymmetric flow across the
flat layer. A noniterative solution for MHD flow was pro-
vided by Ariel et al. [16]. -e problem of a third-order
nonlinear two-point boundary value with no exact solutions

is commonly known as the Falkner–Skan equation (FSE).
Due to the importance of the boundary layer theory, the FSE
is considered widely in the last forty years. Due to the
nonlinear nature of the FSE having no exact solutions
available in the literature, the scientists have tried the an-
alytical and numerical approaches. Hartree [17] obtained a
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Figure 13: Studying the error histograms for the NN-BLMM results in cases 1–3 of scenarios 1 and 2 for FSE-HT. (a) Error histogram for
scenario 1 in case 1. (b) Error histogram for scenario 1 in case 2. (c) Error histogram for scenario 1 in case 3. (d) Error histogram for scenario
2 in case 1. (e) Error histogram for scenario 2 in case 2. (f ) Error histogram for scenario 2 in case 3.
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solution of the FSE numerically. Smith and Cebeci and
Keller [18, 19] solved the FSE by the shooting method.
Meksyn [20] solved the FSE by analytic approximation.
Asaithambi [21–23] found the FSE solution by finite dif-
ferences, and Salama studied the FSE by solving it with a
higher-order method [24]. Zhang and Chen used the iter-
ative method for handling the FSE [25]. Rosales-Vera and
Valencia used the Fourier transform for the solution of the
FSE [26]. Liao [27] applied the homotopy analysis method
(HAM) to solve the FSE recently. Recently, Ullah et al.
modified the optimal homotopy asymptotic method
(OHAM) for the FSE [28]. -e important special case of the
FSE is known as the Blasius equation. Rosales and Valencia
[29] solved this problem using the Fourier series method.
Boyd [30] established the solution of the FSE using the
numerical method. In the literature survey, the FSE is solved
by analytical and numerical methods. Both these methods
have some disadvantages as analytical techniques mostly
required the initial guess and small parameter assumption

and may affect the result. Also, the numerical methods
required linearization and discretization techniques which
can affect the accuracy. -erefore, a new stochastic method
is proposed to solve the FSE-HT, and the results are
compared with the literature validating the method.

-e stochastic methods are relatively less used for the
solution of the fluid system. -e use of stochastic methods
can be seen in thermodynamics, astrophysics, offline cir-
cuits, atomic physics, MHD, plasma physics, fluid dynamics,
electromagnetics, nanotechnology, bioinformatics, electric-
ity, energy, finance, and random matrix theory [31–36]. -e
stochastic method would be used for important and reputed
fluidic models [37–44].

According to the literature survey, no research has ap-
plied artificial intelligent techniques through the NN-BLMM
to solve the FSE-HT. -e purpose of this study is to use the
NN-BLMM for the solution of FSE-HT.

-e critical aspect of the proposed computing paradigm
is given as follows:
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Figure 14: Regression illustration of NN-BLMM results in case 1 of scenario 1 for FSE-HT.
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(i) A new application based on artificial intelligence-
based computing using neural network-based
backpropagation with Levenberg–Marquardt is
implemented for studying and solving the FSE-HT

(ii) -e dataset of the NN-BLMM model is generated
and produced for variations of Deborah and Prandtl
parameters through the OHAM

(iii) -e governing equations are transformed from a set of
PDEs into ODEs by using a similarity transformation

(iv) -e processing of the NN-BLMM means TR, TS,
and VD of the FSE-HTmodel for different scenarios
to obtain the approximate solution and comparison
with reference results

(v) -e convergence analysis based on the MSE, EH,
and RG plots is employed to ensure the perfor-
mance of NN-BLMM for the detailed analysis of the
boundary layer flow model

-e mathematical modeling of the FSE-HT is explained in
Section 2. -e analysis of FSE-HT is also given in Section 3.
Section 4 presents the numerical results and graphical repre-
sentations of the NN-BLMMmodel for the FSE-HTwith more
discussions and comparisons. Finally, Section 5 gives concluding
remarks of the proposed study for the FSE-HT.

2. Problem Formulation

We consider two-dimensional laminar viscous flows over a
semi-infinite flat plate under the boundary layer approximation
as given in Figure 1. -e governing equations are [28]
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Figure 15: Regression illustration of NN-BLMM results in case 2 of scenario 1 for FSE-HT.
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u
zT

zx
+ v

zT

zy
� a

z
2T

zy2
, (3)

where u and v are velocity components in x- and y-di-
rections, Us(x) is the free stream velocity, “a” is the thermal
diffusivity, and υ is the kinematic viscosity.

In the two-dimensional case, the incompressible boundary
layer flowover awedge of angle βπ is shown in Figure 1.-e free
stream velocity of the form Ue(x) � cx

r can be computed
using the similarity transformation as follows:

u(x, y) � Usf′(ξ),

ξ � y

�������
(r + 1)C

2

√
x(m−1)/2,

θ(ξ) �
T − T∞
Tw − T∞

.

(4)

Using equation (4) in equations (1)–(3), the Fal-
kner–Skan equation [28] can be calculated as

f′′′(ξ) + f(ξ)f″(ξ) + β 1 − f′(ξ)( )2( ) � 0,

θ″(ξ) + Prf(ξ)θ′(ξ) � 0,
(5)

with boundary conditions

f(0) � 0,

f′(0) � 0,

f′(∞) � 1,

θ(0) � 1,

θ(∞) � 0,

(6)

where Pr is the Prandtl number.
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Figure 16: Regression illustration of NN-BLMM results in case 3 of scenario 1 for FSE-HT.
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3. Solution Procedure

-e solution procedure is performed by implementing the
proposed NN-BLMM model using nftool in the MATLAB
area. -e structure of the NN-BLMM is given in Figure 2,
and its data process is presented in Figure 3. Essentially, the
NN-BLMM is used for three conditions with different pa-
rameters as set out in Table 1. -e design of the NN-BLMM
is based on ten numbers of neurons, as shown in Figure 4. A
reference database of 201 input grids has been selected
within the interval [0, 5]. 80% of the data is used randomly in
training, while 10% is used in the testing and validation
process. Training data are used for the construction of a
limited solution built on the MSE results. Verification data
are used for demonstrating the behavior of the NN, whereas
the test data are used for showing the performance of
random inputs. Details about the scenarios and cases are
given in Table 1.

-e NN-BLMM-based computing paradigm with one
hidden layer structure of neural networks is exposed in
Figure 2.

-e input data are operated in the single-layer neural
network model with the help of the NN-BLMM to obtain the
output result, as represented in Figure 3.

4. Analysis of Results

-e workflow of the proposed NN-BLMM model for pro-
cessing the FSE-HT is shown in Figure 4. Besides, the results
of the NN-BLMM for cases 1–3 of all scenarios in working
with PF and state are displayed in Figures 5 and 6, separately.
-e results of FT are shown in Figures 7–12. -e EH results
are given in Figure 13, whereas RA results are presented in
Figures 14–19 on three FSE-HT cases. Figure 5 shows the
MSE for scenarios 1 and 2 at the best PF when the TR, VD,
and TTdata are run. Figure 6 shows the error gradient in the
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Figure 17: Regression illustration of NN-BLMM results in case 1 of scenario 2 for FSE-HT.
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direction of magnitude calculated during the TR of the NN-
BLMM for all scenarios at each epoch, and its results are
compare with numerical method results for valdiating the
proposed method. -e absolute errors are further explained
with the help of Figures 7–13. -e accuracy of the NN-
BLMM is verified by checking the results for the regression
showing the accuracy of the NN-BLMM as given in
Figures 14–19. In addition, the convergence control pa-
rameters in terms of executed epochs, MSE, PF, time of
execution, and BP measures are presented in Table 2. In
Figures 5(a)–5(f), MSE assembly of TR, VD, and TS pro-
cedures is presented for cases 1 and 3 of all scenarios (FSE-
HT). One can see that the best PF has been achieved at 224,
1000, 366, 72, 143, and 248 epochs with an MSE of about
2.4702×10−8, 1.3234×10−10, 1.2138×10−8, 2.7061× 10−5,
5.0276×10−7, and 1.0658×10−9, respectively. Appropriate
values for GD and step Mu size of BP are (9.9228 ×10-08,
1.0553 ×10–07, 9.9259 ×10–08, 9.6455×10-8, 8.4492×10-

7, and 2.7359×10-8) and (10-08, 10-8, 10-08, 10-08, 10-09)
as shown in Figures 6(a)–6(f). -e results determine the
correct and convergent PF of the NN-BLMM for each case.
-e maximum error achieved in the TS, PF, and VL by the
proposed NN-BLMM is less than 0.1× 10-03, 0.9×10-05,
0.1× 10-01, 0.5×10-03, 3×10-03, and 0.3×10-03 as given in
Figures 7–12. Error variability is also assessed with EH for
every input point, and the results are given in Figures 13(a)–
13(f). -e maximum error achieved is less than −3.5E− 6,
2.37E− 7, 3.64E− 4, −1.1E− 4, −1.2E− 4, and 2.56E− 6 in all
cases (FSE-HT). -e investigation over RG is performed
using the correlation studies. Moreover, the RG results are
given in Figures 14–19, and the correlation R values in-
variably revolve around unity of the NN-BLMM perfor-
mance results for FSE-HT. Adopted cases are given in
Table 2. -e NN-BLMM performance is approximately
10−8 to 10−10 and 10−7 to 10−10 in cases 1 and 3 of all
scenarios with 1–3 cases of FSE-HT. -ese results show
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Figure 18: Regression illustration of NN-BLMM results in case 2 of scenario 2 of FSE-HT.
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the stability of PF for the NN-BLMM in each case of FSE-
HT equations. -e velocity distribution along with the
comparison with numerical results is plotted in Figures 20(a)
and 21(a). -e results of the NN-BLMM have been

compared with RK-4 numerical solutions in each case,
therefore, to achieve precision gauges, AE is determined
from the reference solutions, and the results are shown in
Figures 20(b) and 21(b) for case studies 1–3, respectively.
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Figure 19: Regression illustration of NN-BLMM results in case 3 of scenario 2 for FSE-HT.

Table 2: -e NN-BLMM results of scenarios 1–3 for FSE-HT.

Scenario 1 cases
Mean square error (MSE)

Performance Gradient Mu Epoch Time
Training Validation Testing

1 7.77491E− 10 6.78795E− 05 1.51380E− 05 7.70E− 10 7.61E− 06 1.00E− 08 504 <1
2 6.74192E− 09 2.10370E− 05 1.52281E− 07 6.74E− 09 1.26E− 05 1.00E− 07 1000 <1
3 5.21240E− 08 3.20661E− 06 1.71187E− 05 4.85E− 08 1.84E− 04 1.00E− 07 172 <1

Scenario 2 cases
Mean square error

Performance Gradient Mu Epoch Time
Training Validation Testing

1 1.23663E− 07 3.74133E− 07 6.01470E− 05 9.96E− 08 2.55E− 05 1.00E− 07 28 <1
2 3.28408E− 10 3.51972E− 08 1.46030E− 09 3.28E− 10 9.95E− 08 1.00E− 09 934 <1
3 2.62694E− 10 4.25158E− 08 3.36674E− 07 2.63E− 10 5.88E− 07 1.00E− 09 1000 <1
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One can note that AE is almost 10–02 to 10–04 and 10–03 to
10–06 in all scenarios, respectively. All of these numerical
and graphical diagrams ensure the precise, flexible, and
robust functionality of the NN-BLMM for FSE-HT. -e
nondimensional velocity profiles and temperature profiles
are given in Figures 20(a) and 21(a), respectively. -e
variation of physical parameters β and Pr is given in
Figures 20(a) and 21(a), whereas the absolute error for each
variation of β and Pr is given in Figures 20(b) and 21(b). -e

solution obtained by the NN-BLMM is verified by the
numerical method. It has been observed that an increase in
the Deborah number makes an increase in the velocity
profile and a decrease in the thermal boundary layer
thickness. Similarly, by increasing the Prandtl number, the
thermal boundary layer thickness is decreased. -e results
obtained by the NN-BLMM are compared with the results
available in the literature which proves the accuracy and
validation of the method as given in Table 3.
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Figure 20: -e results of the proposed NN-BLMM compared with reference results regarding scenario 1 of FSE-HT. (a) Variation of β.
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5. Conclusions

In this paper, we conclude that the NN-BLMM contains
less computational work and does not require lineari-
zation. NN-BLMM is simply applicable. -e NN-BLMM
has better PF as compared to other numerical methods,
and it minimizes the absolute error. Moreover, the NN-
BLMM is independent of the assumption of a small
parameter, and it does not require the initial guess. -e
NN-BLMM converges faster when compared to other
methods. -e correctness of the NN-BLMM is authen-
ticated by MSE, EH, RG, AE, FT, PF, TS, and TR. -e
NN-BLMM uses 80%, 10%, and 10% of the reference data
as TR, TS, and VL. By increasing the Deborah number,
the velocity profile increases, whereas the thickness of the
thermal boundary layer is decreased by increasing the
Deborah number. -e thickness of the thermal boundary
layer is decreased by increasing the Prandtl number.

Abbreviations

β: Deborah number
ANNs: Artificial neural networks
υ: Kinematic viscosity
NN: Neural network
BL: Boundary layer
k: -ermal conductivity
Pr: Prandtl number
BVP: Boundary value problem
Eh: Epoch
MSE: Mean square error
ρ: Fluid density
μ: Dynamic viscosity
PF: Performance
TT: Testing
TR: Training
VD: Validation
EB: Error bin
EH: Error histogram
GD: Gradient
RG: Regression
AE: Absolute error
Ep: Epoch
MSE: Mean square error.

Data Availability

All the relevant data are included within the article.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this research article.

Acknowledgments

-is research was supported by the Researchers Supporting
Project number (RSP-2021/244), King Saud University,
Riyadh, Saudi Arabia.

References

[1] T. Alten, S. Oh, and H. Gegrl, Metal Forming Fundamentals
and Applications, American Society of Metals, Geauga
County, OH, USA, 1979.

[2] E. G. Fisher, Extrusion of Plastics, Wiley, New York, NY, USA,
1976.

[3] Z. Tadmor and I. Klein, Engineering Principles of Plasticating
Extrusion, Polymer Science and Engineering Series, Van
Nostrand Reinhold, New York, NY, USA, 1970.

[4] B. C. Sakiadis, “Boundary-layer behavior on continuous solid
surfaces: I. Boundary-layer equations for two-dimensional
and axisymmetric flow,” AIChE Journal, vol. 7, no. 1,
pp. 26–28, 1961.

[5] B. C. Sakiadis, “Boundary-layer behavior on continuous solid
surfaces: II. -e boundary layer on a continuous flat surface,”
AIChE Journal, vol. 7, no. 2, pp. 221–225, 1961.

[6] L. J. Crane, “Flow past a stretching plate,” Zeitschrift für
angewandte Mathematik und Physik ZAMP, vol. 21, no. 4,
pp. 645–647, 1970.

[7] P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a
stretching sheet with suction or blowing,” Canadian Journal
of Chemical Engineering, vol. 55, no. 6, pp. 744–746, 1977.

[8] H. I. Anderson, “MHD flow of a viscoelastic fluid past a
stretching surface,”Acta Mechanica, vol. 95, pp. 227–230, 1992.

[9] P. D. Ariel, “MHD flow of a viscoelastic fluid past a stretching
sheet with suction,” Acta Mechanica, vol. 105, no. 1-4,
pp. 49–56, 1994.

[10] C. Y. Wang, “-e three-dimensional flow due to a stretching
flat surface,” Physics of Fluids, vol. 27, no. 8, pp. 1915–1917,
1984.

[11] J. F. Brady and A. Acrivos, “Steady flow in a channel or tube
with an accelerating surface velocity. An exact solution to the
Navier-Stokes equations with reverse flow,” Journal of Fluid
Mechanics, vol. 112, no. 1, pp. 127–150, 1981.

[12] C. Y. Wang, “Fluid flow due to a stretching cylinder,” Physics
of Fluids, vol. 31, no. 3, pp. 466–468, 1988.

[13] C. Y. Wang, “Liquid film on an unsteady stretching surface,”
Quarterly of Applied Mathematics, vol. 48, no. 4, pp. 601–610,
1990.

Table 3: -e results of the initial slope f″(0) achieved at different values of β.

β Hartree [17] Asaithambi [22] Asaithambi [23] Salama [24]
Zhang and
Chen [25]

Rosales-Vera and
Valencia [26]

OHAM
[28]

Stochastic
method

2 1.687 1.687222 1.687218 1.687218 1.687218 1.687218 1.687218 1.687218
1 1.233 1.23589 1.232588 1.232588 1.232587 1.232587 1.232587 1.232587
0.5 0.927 0.927682 0.927680 0.927680 0.927680 0.927680 0.927680 0.927680
−0.1 0.319 0.319270 0.319270 0.319270 0.319270 0.319270 0.319270 0.319270

16 Mathematical Problems in Engineering



[14] R. Usha and R. Sridharan, “-e axisymmetric motion of a
liquid film on an unsteady stretching surface,” Journal of
Fluids Engineering, vol. 117, no. 1, pp. 81–85, 1995.

[15] P. D. Ariel, “Computation of MHD flow due to moving
boundary,” Technical report MCS-2004-01, Department of
Mathematical Sciences: Trinity Western University, Langley,
Canada, 2004.

[16] P. D. Ariel, T. Hayat, and S. Asghar, “Homotopy perturbation
method and axisymmetric flow over a stretching sheet,” In-
ternational Journal of Nonlinear Sciences and Numerical
Stimulation, vol. 7, no. 4, pp. 399–406, 2006.

[17] D. R. Hartree, “On an equation occurring in Falkner-Skan’s
approximate treatment of the equations boundary layer,”
Proceedings of the Cambridge Philosophical Society, vol. 33,
no. 2, pp. 233–239, 1921.

[18] A. M. O. Smith, “Improved solution of the Falkner-Skan
equation boundary layer equation,” Journal of the Aeronau-
tical Sciences, vol. 10, 1954.

[19] T. Cebeci and H. B. Keller, “Shooting and parallel shooting
methods for solving the Falkner-Skan boundary-layer equa-
tion,” Journal of Computational Physics, vol. 7, no. 2,
pp. 289–300, 1971.

[20] D. Meksyn, NewMethods in Laminar Boundary Layer Deory,
Pergamon Press, New York, NY, USA, 1961.

[21] A. Asaithambi, “Numerical solution of the Falkner-Skan
equation using piecewise linear functions,” Applied Mathe-
matics and Computation, vol. 159, no. 1, pp. 267–273, 2004.

[22] A. Asaithambi, “A finite-difference method for the Falkner-
Skan equation,” Applied Mathematics and Computation,
vol. 92, no. 2-3, pp. 135–141, 1998.

[23] N. S. Asaithambi, “A numerical method for the solution of the
Falkner-Skan Equation,” Applied Mathematics and Compu-
tation, vol. 81, no. 2-3, pp. 259–264, 1997.

[24] A. A. Salama, “Higher-order method for solving free
boundary-value problems,” Numerical Heat Transfer, Part B:
Fundamentals, vol. 45, no. 4, pp. 385–394, 2004.

[25] J. Zhang and B. Chen, “An iterative method for solving the
Falkner-Skan equation,” Applied Mathematics and Compu-
tation, vol. 210, no. 1, pp. 215–222, 2009.

[26] M. Rosales-Vera and A. Valencia, “Solutions of Falkner-Skan
equation with heat transfer by Fourier series,” International
Communications in Heat and Mass Transfer, vol. 37, no. 7,
pp. 761–765, 2010.

[27] S.-J. Liao, “A uniformly valid analytic solution of two-di-
mensional viscous flow over a semi-infinite flat plate,” Journal
of Fluid Mechanics, vol. 385, pp. 101–128, 1999.

[28] H. Ullah, S. Islam, M. Idrees, and M. Arif, “Solution of
boundary layer flow with heat transfer by OHAM,” Abstract
and Applied Analysis, vol. 2013, Article ID 324869, 10 pages,
2013.

[29] M. Rosales and A. Valencia, “A note on solution of Blasius
equation by Fourier series,” Advances and Applications in
Fluid Mechanics, vol. 6, no. 1, pp. 33–38, 2009.

[30] J. P. Boyd, “-e Blasius function in the complex plane,”
Experimental Mathematics, vol. 8, no. 4, pp. 381–394, 1999.

[31] Z. Sabir, M. A. Z. Raja, M. Umar, and M. Shoaib, “Design of
neuro-swarming-based heuristics to solve the third-order
nonlinear multi-singular Emden–Fowler equation,” De Eu-
ropean Physical Journal Plus, vol. 135, no. 6, pp. 1–17, 2020.

[32] Z. Sabir, H. A. Wahab, M. Umar, M. G. Sakar, and
M. A. Z. Raja, “Novel design of Morlet wavelet neural network
for solving second order Lane-Emden equation,” Mathe-
matics and Computers in Simulation, vol. 172, pp. 1–14, 2020.

[33] A. Mehmood, A. Zameer, M. S. Aslam, and M. A. Raja,
“Design of nature-inspired heuristic paradigm for systems in
nonlinear electrical circuits,” Neural Computing and Appli-
cations, vol. 32, no. 11, pp. 1–17, 2020.

[34] S. I. Ahmad, F. Faisal, M. Shoaib, and M. A. Z. Raja, “A new
heuristic computational solver for nonlinear singular -o-
mas–Fermi system using evolutionary optimized cubic
splines,” De European Physical Journal Plus, vol. 135, no. 1,
p. 55, 2020.

[35] S. Lodhi, M. A. Manzar, and M. A. Z. Raja, “Fractional neural
network models for nonlinear Riccati systems,” Neural
Computing and Applications, vol. 31, no. 1, pp. 359–378, 2019.

[36] M. A. Z. Raja, M. A. Manzar, S. M. Shah, and Y. Chen,
“Integrated intelligence of fractional neural networks and
sequential quadratic programming for Bagley–Torvik systems
arising in fluid mechanics,” Journal of Computational and
Nonlinear Dynamics, vol. 15, no. 5, 2020.

[37] Kh Hosseinzadeh, M. R. Mardani, S. Salehi, M. Paikar,
M. Waqas, and D. D. Ganji, “Entropy generation of three-
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