
Falkon: a Fast and Light-weight tasK executiON framework

Ioan Raicu*, Yong Zhao*, Catalin Dumitrescu*, Ian Foster#*+, Mike Wilde#+

*
Department of Computer Science, University of Chicago, IL, USA

+
Computation Institute, University of Chicago & Argonne National Laboratory, USA

#
Math & Computer Science Division, Argonne National Laboratory, Argonne IL, USA

{iraicu,yongzh,catalind}@cs.uchicago.edu, {foster,wilde}@mcs.anl.gov

ABSTRACT

To enable the rapid execution of many tasks on compute clusters,

we have developed Falkon, a Fast and Light-weight tasK

executiON framework. Falkon integrates (1) multi-level

scheduling to separate resource acquisition (via, e.g., requests to

batch schedulers) from task dispatch, and (2) a streamlined

dispatcher. Falkon’s integration of multi-level scheduling and

streamlined dispatchers delivers performance not provided by any

other system. We describe Falkon architecture and

implementation, and present performance results for both

microbenchmarks and applications. Microbenchmarks show that

Falkon throughput (487 tasks/sec) and scalability (to 54,000

executors and 2,000,000 tasks processed in just 112 minutes) are

one to two orders of magnitude better than other systems used in

production Grids. Large-scale astronomy and medical

applications executed under Falkon by the Swift parallel

programming system achieve up to 90% reduction in end-to-end

run time, relative to versions that execute tasks via separate

scheduler submissions.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and Design – Batch

processing systems, Distributed systems, Hierarchical design,

Interactive systems, Real-time systems and embedded systems.

General Terms

Management, Performance, Design.

Keywords

Parallel programming, dynamic resource provisioning,

scheduling, Grid computing

1. INTRODUCTION
Many interesting computations can be expressed conveniently as

data-driven task graphs, in which individual tasks wait for input to

be available, perform computation, and produce output. Systems

such as DAGMan [1], Karajan [2], Swift [3], and VDS [4] support

this model. These systems have all been used to encode and

execute thousands of individual tasks.

In such task graphs, as well as in the popular master-worker

model [5], many tasks may be logically executable at once. Such

tasks may be dispatched to a parallel compute cluster or (via the

use of grid protocols [6]) to many such clusters. The batch

schedulers used to manage such clusters receive individual tasks,

dispatch them to idle processors, and notify clients when

execution is complete.

This strategy of dispatching tasks directly to batch schedulers has

three disadvantages. First, because a typical batch scheduler

provides rich functionality (e.g., multiple queues, flexible task

dispatch policies, accounting, per-task resource limits), the time

required to dispatch a task can be large—30 secs or more—and

the aggregate throughput relatively low (perhaps two tasks/sec).

Second, while batch schedulers may support different queues and

policies, the policies implemented in a particular instantiation

may not be optimized for many tasks. For example, a scheduler

may allow only a modest number of concurrent submissions for a

single user. Third, the average wait time of grid jobs is higher in

practice than the predictions from simulation-based research. [36]

These factors can cause problems when dealing with application

workloads that contain a large number of tasks.

One solution to this problem is to transform applications to reduce

the number of tasks. However, such transformations can be

complex and/or may place a burden on the user. Another

approach is to employ multi-level scheduling [7, 8]. A first-level

request to a batch scheduler allocates resources to which a

second-level scheduler dispatches tasks. The second-level

scheduler can implement specialized support for task graph

applications. Frey [9] and Singh [10] create an embedded Condor

pool by “gliding in” Condor workers to a compute cluster, while

MyCluster [11] can embed both Condor pools and Sun Grid

Engine (SGE) clusters. Singh et al. [12, 13] report 50% reductions

in execution time relative to a single-level approach.

We seek to achieve further improvements by:

1. Reducing task dispatch time by using a streamlined

dispatcher that eliminates support for features such as

multiple queues, priorities, accounting, etc.

2. Using an adaptive provisioner to acquire and/or release

resources as application demand varies.

To explore these ideas, we have developed Falkon, a Fast and

Light-weight tasK executiON framework. Falkon incorporates a

lightweight task dispatcher, to receive, enqueue, and dispatch

tasks; a simple task executor, to receive and execute tasks; and a

provisioner, to allocate and deallocate executors.

Microbenchmarks show that Falkon can process millions of task

and scale to 54,000 executors. A synthetic application

demonstrates the benefits of adaptive provisioning. Finally,

results for two applications demonstrate that substantial speedups

can be achieved for real scientific applications.

(c) 2007 Association for Computing Machinery. ACM acknowledges

that this contribution was authored or co-authored by a contractor or

affiliate of the [U.S.] Government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to

allow others to do so, for Government purposes only.

SC07 November 10-16, 2007, Reno, Nevada, USA

(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

2. RELATED WORK
Full-featured local resource managers (LRMs) such as Condor [1,

15], Portable Batch System (PBS) [16], Load Sharing Facility

(LSF) [17], and SGE [18] support client specification of resource

requirements, data staging, process migration, check-pointing,

accounting, and daemon fault recovery. Falkon, in contrast, is not

a full-featured LRM: it focuses on efficient task dispatch and thus

can omit some of these features in order to streamline task

submission. This narrow focus is possible because Falkon can rely

on LRMs for certain functions (e.g., accounting) and clients for

others (e.g., recovery, data staging).

The BOINC “volunteer computing” system [19, 20] has a similar

architecture to that of Falkon. BOINC’s database-driven task

dispatcher is estimated to be capable of dispatching 8.8M tasks

per day to 400K workers. This estimate is based on extrapolating

from smaller synthetic benchmarks of CPU and I/O overhead, on

the task distributor only, for the execution of 100K tasks. By

comparison, Falkon has been measured to execute 2M (trivial)

tasks in two hours, and has scaled to 54K managed executors with

similarly high throughput. This test as well as other throughput

tests achieving 487 tasks/sec suggest that Falkon can provide

higher throughput than BOINC.

Multi-level scheduling has been applied at the OS level [27, 30]

to provide faster scheduling for groups of tasks for a specific user

or purpose by employing an overlay that does lightweight

scheduling within a heavier-weight container of resources: e.g.,

threads within a process or pre-allocated thread group.

Frey et al. pioneered the application of this principle to clusters

via their work on Condor “glide-ins” [9]. Requests to a batch

scheduler (submitted, for example, via Globus GRAM4 [27])

create Condor “startd” processes, which then register with a

Condor resource manager that runs independently of the batch

scheduler. Others have also used this technique. For example,

Mehta et al. [13] embed a Condor pool in a batch-scheduled

cluster, while MyCluster [11] creates “personal clusters” running

Condor or SGE. Such “virtual clusters” can be dedicated to a

single workload. Thus, Singh et al. find, in a simulation study

[12], a reduction of about 50% in completion time, due to

reduction in queue wait time. However, because they rely on

heavyweight schedulers to dispatch work to the virtual cluster, the

per-task dispatch time remains high.

In a different space, Bresnahan et al. [25] describe a multi-level

scheduling architecture specialized for the dynamic allocation of

compute cluster bandwidth. A modified Globus GridFTP server

varies the number of GridFTP data movers as server load

changes.

Appleby et al. [23] were one of several groups to explore dynamic

resource provisioning within a data center. Ramakrishnan et al.

[24] also address adaptive resource provisioning with a focus

primarily on resource sharing and container level resource

management. Our work differs in its focus on resource

provisioning on non-dedicated resources managed by LRMs.

3. FALKON ARCHITECTURE
Our description of the Falkon architecture encompasses execution

model, communication protocol, performance enhancements, and

information regarding ease of use of the Falkon API.

3.1 Execution Model
Each task is dispatched to a computational resource, selected

according to the dispatch policy. If a response is not received after

a time determined by the replay policy, or a failed response is

received, the task is re-dispatched according to the dispatch policy

(up to some specified number of retries). The resource acquisition

policy determines when and for how long to acquire new

resources, and how many resources to acquire. The resource

release policy determines when to release resources.

Dispatch policy. We consider here a next-available policy, which

dispatches each task to the next available resource. We assume

here that all data needed by a task is available in a shared file

system. In the future, we will examine dispatch policies that take

into account data locality.

Resource acquisition policy. This policy determines the number

of resources, n, to acquire; the length of time for which resources

should be requested; and the request(s) to generate to LRM(s) to

acquire those resources. We have implemented five strategies that

variously generate a single request for n resources, n requests for

a single resource, or a series of arithmetically or exponentially

larger requests, or that use system functions to determine

available resources. Due to space restrictions, in the experiments

reported in this paper, we consider only the first policy (“all-at-

once”), which allocates all needed resources in a single request.

Resource release policy. We distinguish between centralized and

distributed resource release policies. In a centralized policy,

decisions are made based on state information available at a

central location. For example: “if there are no queued tasks,

release all resources” or “if the number of queued tasks is less

than q, release a resource.” In a distributed policy, decisions are

made at individual resources based on state information available

at the resource. For example: “if the resource has been idle for

time t, the resource should release itself.” Note that resource

acquisition and release policies are typically not independent: in

most batch schedulers, a set of resources allocated in a single

request must all be de-allocated before the requested resources

become free and ready to be used by the next allocation. Ideally,

one must release all resources obtained in a single request at once,

which requires a certain level of synchronization among the

resources allocated within a single allocation. In the experiments

reported in this paper, we used a distributed policy, releasing

individual resources after a specified idle time was reached. In the

future, we plan to improve our distributed policy by coordinating

between all the resources allocated in a single request to de-

allocate all at the same time.

3.2 Architecture
Falkon consists of a dispatcher, a provisioner, and zero or more

executors (Figure 1). Figure 2 has the series of message

exchanges that occur between the various Falkon components. As

we describe the architecture and the components' interaction, we

will denote the message numbers from Figure 2 in square braces;

some messages have two numbers, denoting both a send and

receive, while others have only a single number, denoting a

simple send.

The dispatcher accepts tasks from clients and implements the

dispatch policy. The provisioner implements the resource

acquisition policy. Executors run tasks received from the

dispatcher. Components communicate via Web Services (WS)

messages (solid lines in Figure 2), except that notifications are

performed via a custom TCP-based protocol (dotted lines). The

notification mechanism is implemented over TCP because when

we first implemented the core Falkon components using GT3.9.5,

the Globus Toolkit did not support brokered WS notifications.

The recent GT4.0.5 release supports brokered notifications.

Figure 1: Falkon architecture overview

Figure 2: Falkon components and message exchange

The dispatcher implements the factory/instance pattern,

providing a create instance operation to allow a clean separation

among different clients. To access the dispatcher, a client first

requests creation of a new instance, for which is returned a unique

endpoint reference (EPR). The client then uses that EPR to submit

tasks {1,2}, monitor progress (or wait for notifications {8}),

retrieve results {9,10}, and (finally) destroy the instance.

A client “submit” request takes an array of tasks, each with

working directory, command to execute, arguments, and

environment variables. It returns an array of outputs, each with

the task that was run, its return code, and optional output strings

(STDOUT and STDERR contents). A shared notification engine

among all the different queues is used to notify executors that

work is available for pick up. This engine maintains a queue, on

which a pool of threads operate to send out notifications. The

GT4 container also has a pool of threads that handle WS

messages. Profiling shows that most dispatcher time is spent

communicating (WS calls, notifications). Increasing the number

of threads should allow the service to scale effectively on newer

multicore and multiprocessor systems.

The dispatcher runs within a Globus Toolkit 4 (GT4) [28] WS

container, which provides authentication, message integrity, and

message encryption mechanisms, via transport-level,

conversation-level, or message-level security [29].

The provisioner is responsible for creating and destroying

executors. It is initialized by the dispatcher with information

about the state to be monitored and how to access it; the rule(s)

under which the provisioner should create/destroy executors; the

location of the executor code; bounds on the number of executors

to be created; bounds on the time for which executors should be

created; and the allowed idle time before executors are destroyed.

The provisioner periodically monitors dispatcher state {POLL}

and, based on policy, determines whether to create additional

executors, and if so, how many, and for how long. Creation

requests are issued via GRAM4 [27] to abstract LRM details.

A new executor registers with the dispatcher. Work is then

supplied as follows: the dispatcher notifies the executor when

work is available {3}; the executor requests work {4}; the

dispatcher returns the task(s) {5}; the executor executes the

supplied task(s) and returns results, including return code and

optional standard output/error strings {6}; and the dispatcher

acknowledges delivery {7}.

3.3 Push vs. Pull Model
We considered both a push and a pull model when designing the

Dispatcher-Executor communication protocol. We explain here

why we chose a hybrid push/pull model, where the push is a

notification {3} and the pull is the get work {4}.

In a pull model, Executors request work from the Dispatcher. A

“get work” request can be either blocking or non-blocking. A

blocking request can provide better responsiveness than a non-

blocking request (as it avoids polling), but requires that the

Dispatcher maintain state for each Executor waiting for work. In

the case of non-blocking requests, Executors must poll the

Dispatcher periodically, which can reduce responsiveness and

scalability. For example, we find that when using Web Services

operations to communicate requests, a cluster with 500 Executors

polling every second keeps Dispatcher CPU utilization at 100%.

Thus, the polling interval must be increased for larger

deployments, which reduces responsiveness accordingly.

Additionally, the Dispatcher does not control the order and rate of

Executor requests, which can hinder efficient scheduling due to

the inability for the scheduler to decide the order dispatched tasks.

Despite all these negative things about a pull model, there are two

advantages: 1) it is friendly with firewalls, and 2) it simplifies the

Dispatcher logic.

A push model assumes that the Dispatcher can initiate a

communication with its Executors, which implies one of the

following three implementation alternatives for the Executor:

1) It is implemented as a Web Service (as opposed to a simpler

client that can only initiate WS communication). Thus, a WS

container must be deployed on every compute node (in the

absence of a shared file system); this alternative has the

largest footprint but is easy to implement.

2) It supports notifications. Here, we only need the client code

plus a few libraries required for WS communications. This

alternative has a medium-sized footprint with a medium

implementation complexity (WS and notification).

3) It uses a custom communication protocol and can be both a

server and a client. This approach only needs the libraries to

support that protocol (e.g., TCP). It has the smallest footprint

but requires the implementation of the custom protocol.

All three approaches have problems with firewalls, but we have

not found this to be a big issue in deployments to date, as the

Dispatcher and Executors are typically located within a single site

in which firewalls are not an issue. We discuss in Section 6 how

this problem could be addressed via a three-tier architecture that

supports both cross-firewall communications and communications

with Executors operating in a private IP space.

We decided to use alternative two, with medium footprint and

medium implementation complexity. A notification simply

identifies the resource key where the work can be picked up from

at the Dispatcher, and then the Executor uses a WS call to request

the corresponding work.

This hybrid pull/push model provides the following benefits:

higher system responsiveness and efficiency relative to a pure

push model; higher scalability relative to a pure pull model;

medium size disk and memory footprint; more controllable

throttling than a pure pull model; and the ability to implement

more sophisticated (e.g., data-aware) schedulers.

3.4 Performance Enhancements
Communication costs can be reduced by task bundling between

client and dispatcher and/or dispatcher and executors. In the latter

case, problems can arise if task sizes vary and one executor gets

assigned many large tasks, although that problem can be

addressed by having clients assign each task an estimated

runtime. We use client-dispatcher bundling in experiments

described below, but (lacking runtime estimates) not dispatcher-

executor bundling. Another technique that can reduce message

exchanges is to piggy-back new task dispatches when

acknowledging result delivery (messages {6,7} from Figure 2).

Using both task bundling and piggy-backing, we can reduce the

average number of message exchanges per task to be arbitrarily

close to zero, by increasing the bundle size. In practice, we find

that performance degrades for bundle sizes of greater than 300

tasks (see Section 4.2)—and, as noted above, bundling cannot

always be used between dispatcher and executors.

With client-dispatcher bundling and piggy-backing alone, we can

reduce the number of messages to two per task (one message from

executor to dispatcher to deliver a result, and one associated

response from dispatcher to executor to acknowledge receipt and

provide a new task); these two messages make up a single WS

call. Line shading in Figure 2 shows where bundling optimization

can be used: black lines denote that the corresponding message

occurs on a per-task basis, while grey lines denote that through

bundling optimizations, the corresponding messages occur for a

set of tasks.

3.5 Ease of Use
We modified the Swift parallel programming system by

implementing a new provider to use Falkon for task dispatch. The

Falkon provider has 840 lines of Java code, a value comparable to

GRAM2 provider (850 lines), GRAM4 provider (517 lines), and

the Condor provider (575 lines).

4. PERFORMANCE EVALUATION
Table 1 lists the platforms used in experiments. Latency between

these systems was one to two milliseconds. We assume a one-to-

one mapping between executors and processors in all

experiments. Of the 162 nodes on TG_ANL_IA32 and

TG_ANL_IA64, 128 were free for our experiments.

Table 1: Platform descriptions

Name
of

Nodes
Processors Memory Network

TG_ANL_IA32 98
Dual Xeon

2.4GHz
4GB 1Gb/s

TG_ANL_IA64 64
Dual Itanium

1.5GHz
4GB 1Gb/s

TP_UC_x64 122
Dual Opteron

2.2GHz
4GB 1Gb/s

UC_x64 1
Dual Xeon

3GHz w/ HT
2GB 100 Mb/s

UC_IA32 1
Intel P4

2.4GHz
1GB 100 Mb/s

4.1 Throughput without Data Access
To determine maximum throughput, we measured performance

running “sleep 0.” We ran executors on TG_ANL_IA32 and

TG_ANL_IA64, the dispatcher on UC_x64, and the client

generating the workload on TP_UC_x64. As each node had two

processors, we ran two executors per node, for a total of 256

executors. We measured Falkon throughput for short (“sleep 0”)

tasks both without any security and with GSISecureConversation

that performs both authentication and encryption. We enabled two

optimizations discussed below, namely client-dispatcher bundling

and piggy-backing; however, every task is transmitted

individually from dispatcher to an executor.

For purposes of comparison, we also tested GT4 performance

with all security disabled. We created a simple service that

incremented a counter for each WS call made to a counter service,

and measured the number of WS calls per second that could be

achieved from a varying number of machines. We claim this to be

the upper bound on Falkon throughput performance that can be

achieved on the tested hardware (UC_x64), assuming that there is

no task bundling between dispatcher and executors, and that each

task is handled via a separate dispatch.

Figure 3 shows GT4 without security achieves 500 WS calls/sec;

Falkon reaches 487 tasks/sec (without security) and 204 tasks/sec

(with security). A single Falkon executor without and with

security can handle 28 and 12 tasks/sec, respectively.

We also measured Condor and PBS performance on the same

testbed, with nodes managed by PBS v2.1.8. To measure PBS

throughput, we submitted 100 short tasks (sleep 0) and measured

the time to completion on the 64 available nodes. The experiment

took on average 224 seconds for 10 runs netting 0.45 tasks/sec.

As we did not have access to a dedicated Condor pool, we used

MyCluster [11] to create a 64-node Condor v6.7.2 pool via PBS

submissions. Once the 64 nodes were allocated from PBS and

were available within MyCluster, we performed the same

experiment, 100 short tasks over Condor. The total time was on

average 203 seconds for 10 runs netting 0.49 tasks/sec. As far as

we could tell, neither PBS nor Condor were using any security

mechanisms between the various components within these

systems. MyCluster does use authentication and authorization to

setup the virtual cluster (a one time cost), but thereafter no

security was used. It is also worth mentioning that we

intentionally used a small number of tasks to test PBS and Condor

as the achieved throughput drops as tasks accumulate in the wait

queue, and our goal was to measure the best case scenario for

their ability to dispatch and execute small tasks.

0

100

200

300

400

500

0 32 64 96 128 160 192 224 256
Number of Executors

T
h

ro
u

g
h

p
u

t
(t

a
s
k

s
/s

e
c

)

WS Calls (no security)

Falkon (no security)

Falkon (GSISecureConversation)

Figure 3: Throughput as function of executor count

There are newer versions of both Condor and PBS, and both

systems can likely be configured for higher throughput. We do

not know whether or not these experiments reflect performance

with security enabled or not, and all the details regarding the

hardware used; see Table 2 for details on the various hardware

used and a summary of the reported throughputs. In summary,

Falkon’s throughput performance compares favorably to all,

regardless of the security settings used be these other systems.

Table 2: Measured and cited throughput for Falkon, Condor,

and PBS

System Comments
Throughput

(tasks/sec)

Falkon

(no security)

Dual Xeon 3GHz w/ HT

2GB
487

Falkon

(GSISecureConversation)

Dual Xeon 3GHz w/ HT

2GB
204

Condor (v6.7.2) Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) [15] Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) [34] 0.42

Condor (v6.9.3) [34] 11

Condor-J2 [15] Quad Xeon 3 GHz, 4GB 22

BOINC [19, 20] Dual Xeon 2.4GHz, 2GB 93

4.2 Throughput with Data Access
Most tasks started via a system such as Falkon, Condor, or PBS

will need to read and write data. A comprehensive evaluation of

these systems’ I/O performance is difficult because of the wide

range of I/O architectures encountered in practical settings.

As a first step towards such an evaluation, we measured Falkon

throughput with synthetic tasks that performed data staging as

well as computation. We fixed the number of executors at 128 (64

nodes) and performed four sets of experiments in which, for

varying data sizes from one byte to one GB, we varied (a) data

location (on GPFS shared file system or the local disk of each

compute node), and (b) whether tasks only read or both read and

wrote the data. All experiments were performed without security.

Figure 4 shows our results. All scales are logarithmic. The solid

lines denote throughput in tasks/sec and the dotted lines denote

throughput in Mb/sec. Falkon maintained high task throughput

(within a few percent of the peak 487 tasks/sec) for up to 1 MB

data sizes (for GPFS read and LOCAL read+write) and up to 10

MB data size (for LOCAL read). For GPFS read+write, the best

throughput Falkon could achieve was 150 tasks/sec, even with 1

byte data sizes. We attribute this result to the GPFS shared file

system’s inability to support many write operations from 128

concurrent processors. (The GPFS shared file system in our

testbed has eight I/O nodes.)

0.001

0.01

0.1

1

10

100

1000

10000

100000

1B
1K

B

10
K
B

10
0K

B
1M

B

10
M

B

10
0M

B
1G

B

Data Size

T
h

ro
u

g
h

p
u

t

S
o

li
d

 L
in

e
s

 (
T

a
s

k
s

/s
e

c
)

D
o

tt
e
d

 L
in

e
s
 (

M
b

/s
)

GPFS Read+Write (tasks/sec) GPFS Read+Write (Mb/sec)
GPFS Read (tasks/sec) GPFS Read (Mb/sec)
LOCAL Read+Write (tasks/sec) LOCAL Read+Write (Mb/sec)
LOCAL Read (tasks/sec) LOCAL Read (Mb/sec)

Figure 4: Throughput as a function of data size on 64 nodes

As data sizes increase, throughput (Mb/sec: dotted lines) plateaus

at either 1 MB or 10 MB data sizes, depending on the experiment.

GPFS read+write peaks at 326 Mb/sec, GPFS read at 3,067

Mb/sec, LOCAL read+write at 32,667 Mb/sec, and LOCAL read

at 52,015 Mb/sec. With 1 GB data, throughput was 0.04 tasks/sec,

0.4 tasks/sec, 4.28 tasks/sec, and 6.81 tasks/sec, respectively.

We have not performed comparable experiments with the PBS

and Condor systems considered earlier. However, as tasks started

via these systems will access data via the same mechanisms as

those evaluated here, we can expect that as the amount of data

accesses increases, I/O costs will come to dominate and

performance differences among the systems will become smaller.

More importantly, these results emphasize the importance of

using local disk to cache data products written by one task and

read by another on local disk—a feature supported by Falkon,

although not evaluated here.

4.3 Bundling
It has been shown that real grid workloads comprise a large

percentage of tasks submitted as batches of tasks. [37] In order to

optimize the task submission performance, we propose to bundle

many tasks together in each submission. We measured

performance for a workload of “sleep 0” tasks as a function of

task bundle size. Figure 5 shows that performance increases from

about 20 tasks/sec, without bundling, to a peak of almost 1500

tasks/sec, with bundling.

Performance decreases after around 300 tasks per bundle. We

attribute this drop to the array data structure implementation in

the Axis software that GT4 uses to handle XML serialization and

de-serialization. (Axis implements the array data-structure used to

store the representation of the bundled tasks as a grow-able array,

copying to a new bigger array each time its size increases.) We

will investigate this inefficiency to attempt to remedy this

limitation.

0.1

1

10

100

1 10 100 1000 10000

Number of tasks bundled per WS call

T
im

e
 p

e
r

T
a
s
k

 (
m

s
)

10

100

1000

10000

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s
/s

e
c
)

Time / Task

Throughput (Tasks/sec)

Figure 5: Bundling throughput and cost per task

4.4 Efficiency and Speedup
Figures 6 shows efficiency (EP=SP/P) as a function of number of

processors (P) and task length; speedup is defined as SP=T1/TP,

where Tn is the execution time on n processors. These

experiments were conducted on TG_ANL_IA32 and

TG_ANL_IA64 with no security and with optimizations such as

bundling and “piggy-backing” enabled.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 32 64 96 128 160 192 224 256

Number of Executors

E
ff

ic
ie

n
c
y

Sleep 64
Sleep 32
Sleep 16
Sleep 8
Sleep 4
Sleep 2
Sleep 1

Figure 6: Efficiency for various task length and executors

We see that even with short (1 sec) tasks, we achieve high

efficiencies (95% in the worst case with 256 executors). Note that

there is typically less than 1% loss in efficiency as we increase

from 1 executor to 256 executors. As we increase the number of

executors beyond the maximum throughput we can sustain (487

executors with 1 sec long tasks, netting the 487 tasks/sec), the

efficiency of the 1 sec tasks will start to drop as the Dispatcher’s

CPU utilization will be saturated. In the worst case (1 sec tasks),

we achieve a speedup of 242 with 256 executors; with 64 sec

tasks, the speedup is 255.5.

We performed two similar experiments on Condor and PBS to

gain insight into how Falkon efficiency compared with that of

other systems. We fixed the number of resources to 32 nodes and

measured the time to complete 64 tasks of various lengths

(ranging from 1 sec to 16384).

We see Falkon’s efficiency to be 95% with 1 sec tasks and 99%

with 8 sec tasks. In contrast, both PBS (v2.1.8) and Condor

(v6.7.2) have an efficiency of less than 1% for 1 sec tasks and

require about 1,200 sec tasks to get 90% efficiency and 3,600 sec

tasks to get 95% efficiency. They only achieve 99% efficiency

with 16,000 sec tasks.

As both the tested PBS and Condor versions that are in production

on the TG_ANL_IA32 and TG_ANL_IA64 clusters are not the

latest versions, we also derived the efficiency curve for Condor

version 6.9.3, the latest development Condor version, which is

claimed to have a throughput of 11 tasks/sec [34] (up from our

measured 0.45~0.49 tasks/sec and the 2 tasks/sec reported by

others [15]). Efficiency is much improved, reaching 90%, 95%,

and 99% for task lengths of 50, 100, and 1000 secs. respectively.

The results in Figure 7 for Condor v6.9.3 are derived, not

measured. We derived based on the achieved throughput cited in

[34] of 11 tasks/sec for sleep 0 tasks. Essentially, we computed

the per task overhead of 0.0909 seconds, which we could then add

to the ideal time of each respective task length to get an estimated

task execution time. With this execution time, we could compute

speedup, which we then used to compute efficiency. Our

derivation of efficiency is simplistic, but it allowed us to plot the

likely efficiency of the latest development Condor code against

the older production Condor code, the PBS production code, and

Falkon. It should be noted that Figure 7 illustrates the efficiency

of these systems for a relatively small set of resources (only 64

processors), and that the efficiency gap will likely only increase

as the number of resources increases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000
Task Length (sec)

E
ff

ic
ie

n
c

y
 (

6
4

 p
ro

c
e

s
s

o
rs

)

Ideal
Falkon

Condor (v6.7.2)
Condor (v6.9.3)
PBS (v2.1.8)

Figure 7: Efficiency of resource usage for varying task lengths

on 64 processors comparing Falkon, Condor and PBS

4.5 Scalability
To test scalability and robustness, we performed experiments that

pushed Falkon to its limits, both in terms of memory consumption

and in terms of CPU utilization.

Our first experiment studies Falkon’s behavior as the task queue

increases in length. We constructed a client that submits two

million “sleep 0” tasks to a dispatcher configured with a Java

heap size set to 1.5GB. We created 64 executors on 32 machines

from TG_ANL_IA32 and ran the dispatcher on UC_x64 and the

client on TP_UC_x64.

Figure 8 results show the entire run over time. The solid black

line is the instantaneous queue length, the light blue dots are raw

samples (once per sec) of achieved throughput in terms of task

completions, and the solid blue line is the moving average (over

60 sample intervals, and thus 60 secs) of raw throughput. Average

throughput was 298 tasks/sec. Note the slight increase of about

10~15 tasks/sec when the queue stopped growing, as the client

finished submitting all two million tasks.

0

100

200

300

400

500

600

0

1,
20

0

2,
40

0

3,
60

0

4,
80

0

6,
00

0

7,
20

0

Time (sec)

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s
/s

e
c

)

0

300,000

600,000

900,000

1,200,000

1,500,000

1,800,000

Q
u

e
u

e
 S

iz
e
 (

ta
s

k
s

)

Throughput - 1 min samples

Throughput - 1 sec samples

Queue Size

Figure 8: Long running test with 2M tasks

The graph shows the raw throughput samples (taken at 1 second

intervals) to be between 400 and 500 tasks per second for the

majority of the experiment, yet the moving average was around

300 tasks/sec. A close analysis shows frequent raw throughput

samples at 0 tasks/sec, which we attribute to JVM garbage

collection. We may be able to reduce this variation by configuring

the JVM to garbage collect more frequently.

In a second experiment, we tested how many executors the

dispatcher could handle. We did not have an available system

large enough to test the limits of the Falkon implementation, and

therefore we ran multiple executors on each physical machine

emulating a larger number of virtual executors. Others have used

this experimental method with success [15].

We performed our experiment on TP_UC_x64, on which we

configured one dispatcher machine, one client machine, and 60

machines to run executors. We ran 900 executors (split over four

JVMs) on each machine, for a total of 900x60=54,000 executors.

Once we started up the system and all 54K executors registered

and were ready to receive work, we started the experiment

consisting of 54K tasks of “sleep 480 secs.” For this experiment,

we disabled all security, and only enabled bundling between the

client and the dispatcher. Note that piggy-backing would have

made no difference as each executor only processed one task

each.

Figure 9 shows that the dispatch rate (green line) equals the

submit rate. The black line shows the number of busy executors,

which increases from 0 to 54K in 408 secs. As soon as the first

task finishes after 480 secs (the task length), results start to be

delivered to the client at about the same rate as they were

submitted and dispatched. Overall throughput (including ramp up

and ramp down time) was about 60 tasks/sec.

We also measured task overhead, by which we mean the time it

takes an executor to create a thread to handle the task, pick up a

task via one WS call, perform an Java exec on the specified

command (“sleep 480”), and send the result (the exit return code)

back via one WS call, minus 480 secs (the task run time). Figure

10 shows per task overhead in millisecs for each task executed in

the experiment of Figure 9, ordered by task start time.

We see that most overheads were below 200 ms, with just a few

higher than that and a maximum of 1300 ms. (As we have 900

executors per physical machine, overhead is higher than normal

as each thread gets only a fraction of the computer’s resources.)

0

100

200

300

400

500

0 200 400 600 800

Time (sec)

T
h

ro
u

g
h

p
u

t
(p

e
r

s
e
c
)

0

10,000

20,000

30,000

40,000

50,000

B
u

s
y

 E
x
e

c
u

to
rs

Busy

Executors

Submit /

Dispatch

Rate

Deliver

Rate

Figure 9: Falkon scalability with 54K executors

Figure 10: Task overhead with 54K executors

4.6 Dynamic Resource Provisioning
To study provisioner performance, we constructed a synthetic 18-

stage workload, in which the numbers of tasks and task lengths

vary between stages. Figure 11 shows the number of tasks per

stage and the number of machines needed per stage if each task is

mapped to a separate machine (up to a maximum of 32 machines).

Note the exponential ramp up in the number of tasks for the first

few stages, a sudden drop at stage 8, and a sudden surge of many

tasks in stages 9 and 10, another drop in stage 11, a modest

increase in stage 12, followed by a linear decrease in stages 13

and 14, and finally an exponential decrease until the last stage has

only a single task. All tasks run for 60 secs except those in stages

8, 9, and 10, which run for 120, 6, and 12 secs, respectively. In

total, the 18 stages have 1,000 tasks, summing to 17,820 CPU

secs, and can complete in an ideal time of 1,260 secs on 32

machines. We choose this workload to showcase and evaluate the

flexibility of Falkon’s dynamic resource provisioning, as it can

adapt to varying resource requirements and task durations.

We configured the provisioner to acquire at most 32 machines

from TG_ANL_IA32 and TG_ANL_IA64, both of which were

relatively lightly loaded. (100 machines were available of the total

162 machines.) We measured the execution time in six

configurations:

• GRAM4+PBS (without Falkon): Each task was submitted as a

separate GRAM4 task to PBS, without imposing any hard

limits on the number of machines to use; there were about 100

machines available for this experiment.

• Falkon-15, Falkon-60, Falkon-120, Falkon-180: Falkon

configured to use a minimum of zero and a maximum of 32

machines; the allocation policy we used was all-at-once, and

the resource release policy idle time was set to 15, 60, 120, and

180 secs (to give four separate experiments).

• Falkon-∞: Falkon, with the provisioner configured to retain a

full 32 machines for one hour.

1 2 4 8 1632
64

1

640

160

3 201816 8 4 2 1
0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Stage Number

N
u

m
b

e
r

o
f

M
a

c
h

in
e

s

0

100

200

300

400

500

600

700

N
u

m
b

e
r

o
f

T
a

s
k

s

of Machines

of Tasks -18 Stages

-1000 tasks

-17820 CPU secs

-1260 sec on 32 nodes

Figure 11: The 18-stage synthetic workload.

Table 3 gives, for each experiment, the average per-task queue

time and execution time, and also the ratio

exec_time/(exec_time+queue_time).

Table 3: Average per-task queue and execution times for

synthetic workload
GRAM4

+PBS

Falkon

-15

Falkon

-60

Falkon

-120

Falkon

-180

Falkon

-∞
Ideal

(32 nodes)

Queue

Time (sec)
611.1 87.3 83.9 74.7 44.4 43.5 42.2

Execution

Time (sec)
56.5 17.9 17.9 17.9 17.9 17.9 17.8

Execution

Time %
8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%

The queue_time includes time waiting for the provisioner to

acquire nodes, time spent starting executors, and time tasks spend

in the dispatcher queue. We see that the ratio improves from 17%

to 28.7% as the idle time setting increases from 15 to 180 secs;

for Falkon-∞, it reaches 29.2%, a value close to the ideal of

29.7%. (The ideal is less than 100% because several stages have

more than 32 tasks, which means tasks must be queued when

running, as we do here, on 32 machines.) GRAM4+PBS yields

the worst performance, with only 8.5% on average, less than a

third of ideal.

The average per-task queue times range from a near optimal 43.5

secs (42.2 secs is ideal) to as high as 87.3 secs, more than double

the ideal. In contrast, GRAM4+PBS experiences a queue time of

611.1 secs: 15 times larger than the ideal. Also, note the execution

time for Falkon with resource provisioning (both static and

dynamic) is the same across all the experiments, and is within 100

ms of ideal (which essentially accounts for the dispatch cost and

delivering the result); in contrast, GRAM4+PBS has an average

execution time of 56.5 secs, significantly larger than the ideal

time. This large difference in execution time is attributed to the

large per task overhead GRAM4 and PBS have, which further

strengthens our argument that they are not suitable for short tasks.

Table 4 shows, for each strategy, the time to complete the 18

stages, resource utilization, execution efficiency, and number of

resource allocations. We define resource utilization and execution

efficiency as follows:

•
wastedresourcesusedresources

usedresources
nutilizatioresource

__

_
_

+
=

•
timeactual

timeideal
efficiencyexec

_

_
_ =

We define resources as “wasted,” for the Falkon strategies, when

they have been allocated and registered with the dispatcher, but

are idle. For the GRAM4+PBS case, the “wasted” time is the

difference between the measured and reported task execution

time, where the reported task execution time is from the time

GRAM4 sends a notification of the task becoming “Active”—

meaning that PBS has taken the task off the wait queue and

placed into the active queue assigned to some physical machine—

to the time the state changes to “Done,” at which point the task

has finished execution.

The resources used are the same (17,820 CPU secs) for all cases,

as we have fixed run times for all 1000 tasks. We expected

GRAM4+PBS to not have any wasted resources, as each machine

is released after one task is run; in reality, the measured execution

times were longer than the actual task execution times, and hence

the resources wasted was high in this case: 41,040 secs over the

entire experiment. The average execution time of 56.5 secs shows

that GRAM4+PBS is slower than Falkon in dispatching the task

to the remote machine, preparing the remote machine to execute

the task, and cleaning up and releasing the machine. Note that the

reception of the “Done” state change in GRAM4 does not imply

that the utilized machine is ready to receive another task—PBS

takes even longer to make the machine available again for more

work, which makes GRAM4+PBS resource wastage yet worse.

Falkon with dynamic resource provisioning fairs better from the

perspective of resource wastage. Falkon-15 has the fewest wasted

resources (2032 secs) and Falkon-∞ the worst (22,940 CPU secs).

The resource utilization shows the fraction of time the machines

were executing tasks vs. idle. Due to its high resource wastage,

GRAM4+PBS achieves a utilization of only 30%, while Falkon-

15 reaches 89%. Falkon-∞ is 44%. Notice that as the resource

utilization increases, so does the time to complete—as we assume

that the provisioner has no foresight regarding future needs,

delays are incurred allocating machines previously de-allocated

due to a shorter idle time setting. Note the number of resource

allocations (GRAM4 calls requesting resources) for each

experiment, ranging from 1000 allocations for GRAM4+PBS to

less than 11 for Falkon with provisioning. For Falkon-∞, the

number of resource allocations is zero, since machines were

provisioned prior to the experiment starting, and that time is not

included in the time to complete the workload.

If we had used a different allocation policy (e.g., one-at-a-time),

the Falkon results would have been less close to ideal, as the

number of resource allocations would have grown significantly.

The relatively slow handling of such requests by GRAM4+PBS

(~0.5/sec on TG_ANL_IA32 and TG_ANL_IA64) would have

delayed executor startup and thus increased the time tasks spend

in the queue waiting to be dispatched.

The higher the desired resource utilization (due to more

aggressive dynamic resource provisioning to avoid resource

wastage), the longer the elapsed execution time (due to queuing

delays and overheads of the resource provisioning in the

underlying LRM). This ability to trade off resource utilization and

execution efficiency is an advantage of Falkon.

Table 4: Summary of overall resource utilization and

execution efficiency for the synthetic workload
GRAM4

+PBS

Falkon

-15

Falkon

-60

Falkon

-120

Falkon

-180

Falkon

-∞
Ideal

(32 nodes)

Time to

complete

(sec)

4904 1754 1680 1507 1484 1276 1260

Resouce

Utilization
30% 89% 75% 65% 59% 44% 100%

Execution

Efficiency
26% 72% 75% 84% 85% 99% 100%

Resource

Allocations
1000 11 9 7 6 0 0

To illustrate how provisioning works in practice, we show in

Figures 10 and 11 execution details for Falkon-15 and Falkon-

180, respectively. These figures show the instantaneous number

of allocated, registered, and active executors over time.

0

5

10

15

20

25

30

35

0 250 500 748 996 1245 1494 1743
Time (sec)

#
 o

f
E

x
e
c
u

to
rs

Allocated

Registered

Active

Figure 12: Synthetic workload for Falkon-15

Allocated (blue) are executors for which creation and registration

are in progress. Creation and registration time can vary between 5

and 65 secs, depending on when a creation request is submitted

relative to the PBS scheduler polling loop, which we believe

occurs at 60 second intervals. JVM startup time and registration

generally consume less than five secs. Registered executors (red)

are ready to process tasks, but are not active. Finally, active

executors (green) are actively processing tasks. In summary, blue

is startup cost, red is wasted resources, and green is utilized

resources. We see that Falkon-15 has fewer idle resources (as they

are released sooner) but spends more time acquiring resources and

overall has a longer total execution time than Falkon-60.

0

5

10

15

20

25

30

35

0 250 500 747 996 1245
Time (sec)

#
 o

f
E

x
e

c
u

to
rs

Allocated
Registered
Active

Figure 13: Synthetic workload for Falkon-180

5. APPLICATION EXPERIMENTS
We have integrated Falkon into the Karajan [2, 3] workflow

engine, which in term is used by the Swift parallel programming

system [3]. Thus, Karajan and Swift applications can use Falkon

without modification. We observe reductions in end-to-end run

time by as much as 90% when compared to traditional approaches

in which applications used batch schedulers directly.

Swift has been applied to applications in the physical sciences,

biological sciences, social sciences, humanities, computer

science, and science education. Table 5 characterizes some

applications in terms of the typical number of tasks and stages.

Table 5: Swift applications [3]; all could benefit from Falkon
Application #Tasks/workflow #Stages

ATLAS: High Energy

Physics Event Simulation
500K 1

fMRI DBIC:

AIRSN Image Processing
100s 12

FOAM: Ocean/Atmosphere Model 2000 3

GADU: Genomics 40K 4

HNL: fMRI Aphasia Study 500 4

NVO/NASA: Photorealistic

Montage/Morphology
1000s 16

QuarkNet/I2U2:

Physics Science Education
10s 3 ~ 6

RadCAD: Radiology

Classifier Training
1000s 5

SIDGrid: EEG Wavelet

Processing, Gaze Analysis
100s 20

SDSS: Coadd,

Cluster Search
40K, 500K 2, 8

SDSS: Stacking, AstroPortal 10Ks ~ 100Ks 2 ~ 4

MolDyn: Molecular Dynamics 1Ks ~ 20Ks 8

We illustrate the distinctive dynamic features in Swift using an

fMRI [21] analysis workflow from cognitive neuroscience, and a

photorealistic montage application from the national virtual

observatory project [22, 32].

5.1 Functional Magnetic Resonance Imaging
This medical application is a four-step pipeline [21]. An fMRI

Run is a series of brain scans called volumes, with a Volume

containing a 3D image of a volumetric slice of a brain image,

which is represented by an Image and a Header. We ran this

application for four different problem sizes, from 120 volumes

(480 tasks for the four stages) to 480 volumes (1960 tasks). Each

task can run in a few seconds on an nodes in TG_ANL_IA64.

We compared three implementation approaches: task submission

via GRAM4+PBS, a variant of that approach in which tasks are

clustered into eight groups, and Falkon with a fixed set of eight

executors. In each case, we ran the client on TG_ANL_IA32 and

application tasks on TG_ANL_IA64.

In Figure 14 we show execution times for the different approaches

and for different problem sizes. Although GRAM4+PBS could

potentially have used up to 62 nodes, it performs badly due to the

small tasks. Clustering reduced execution time by more than four

times on eight processors. Falkon further reduced the execution

time, particularly for smaller problems.

1239

2510

3683

4808

456

866 992 1123

120
327

546 678

0

1200

2400

3600

4800

120 240 360 480

Input Data Size (Volumes)

T
im

e
 (

s
e

c
)

GRAM4

GRAM4+CLUSTER

Falkon

Figure 14: Execution Time for the fMRI Workflow

5.2 Montage Image Mosaic Composition
Our second application, Montage, generates large astronomical

image mosaics by composing multiple small images [22, 32]. A

four-stage pipeline reprojects each image into a common

coordinate space, performs background rectification (calculates a

list of overlapping images, computes image difference between

each pair of overlapping images, and fits difference images into a

plane), performs background correction, and co-adds the

processed images into a final mosaic. (To enhance concurrency,

we decompose the co-add into two steps.)

We considered a modest-scale computation that produces a 3°x3°

mosaic around galaxy M16. There are about 487 input images and

2,200 overlapping image sections between them. The resulting

task graph has many small tasks.

Figure 15 shows execution times for three versions of Montage:

Swift with clustering, submitting via GRAM4+PBS; Swift

submitting via Falkon; and an MPI version constructed by the

Montage team. The second co-add step was only parallelized in

the MPI version; thus, Falkon performs poorly in this step. Both

the GRAM4 and Falkon versions staged in data, while the MPI

run assumed data was pre-staged. Despite these differences,

Falkon achieved performance similar to that of the MPI version.

Deelman et al. have also created a task-graph implementation of

the Montage code, using Pegasus and DAGman [33]. They do not

implement quite the same application: for example, they run two

tasks (mOverlap and mImgtlb) in a portal rather than on compute

nodes, they combine what for us are two distinct tasks (mDiff and

mFit) into a single task, mDiffFit, and they omit the final mAdd

phase. Thus, direct comparison is difficult. However, if the final

mAdd phase is omitted from the comparison, Swift+Falkon is

faster by about 5% (1067 secs vs. 1120 secs) than MPI, while

Pegasus is reported as being somewhat slower than MPI. We

attribute these differences to two factors: first, the MPI version

performs initialization and aggregation actions before each step;

second, Pegasus uses Condor glide-ins, which are heavy-weight

relative to Falkon.

0

600

1200

1800

2400

3000

3600

m
P
ro

je
ct

m
D
iff
/F

it

m
B
ac

kg
ro

un
d

m
A
dd

(s
ub

)

m
A
dd

to
ta

l

Components

T
im

e
 (

s
e

c
)

GRAM4/Clustering

MPI

Falkon

Figure 15: Execution time for Montage application

6. FUTURE WORK
We plan to implement and evaluate enhancements, such as task

pre-fetching, alternative technologies, data management, and

three-tier architecture.

Pre-fetching: As is commonly done in manager-worker systems,

executors can request new tasks before they complete execution

of old tasks, thus overlapping communication and execution.

Technologies: Performance depends critically on the behavior of

our task dispatch mechanisms; the number of messages needed to

interact between the various components of the system; and the

hardware, programming language, and compiler used. We

implemented Falkon in Java and use the Sun JDK 1.4.2 to

compile and run Falkon. We use the GT4 Java WS-Core to handle

Web Services communications.

One potential optimization is to rewrite Falkon in C/C++, (using,

for example, the Globus Toolkit C WS-Core). Another is to

change internal communications between components to a custom

TCP-based protocol. However, current dispatch rates approaching

500 tasks/sec are adequate for applications studied to date; we

believe the primary obstacle to scaling applications (that have

many small tasks) will likely be data access, and not task dispatch

as it has been in the past.

Data management: Many Swift applications read and write large

amounts of data. Applications typically access data from a shared

data repository (e.g., via NFS, GPFS, GridFTP, or HTTP). Thus,

data access can become a bottleneck as applications scale. We

expect that data caching, proactive data replication [35], and data-

aware scheduling can offer significant performance improvements

for applications that exhibit locality in their data access patterns.

We plan to implement data caching mechanisms in Falkon

executors, so that executors can populate local caches with data

that tasks require. We also plan to implement a data-aware

dispatcher, and will evaluate the impact of data aware dispatching

on both application performance and raw dispatch performance.

3-Tier Architecture: Falkon currently requires that the

dispatcher and client be able to exchange messages. The two-way

communication on different connections is an artifact of the

notification messages that are being sent from the dispatcher to

both the clients and the executors. We have implemented a

polling mechanism to bypass any firewall issues on executors or

clients, but we lose performance and scalability due to polling

overheads. Note that the dispatcher is still required to have a port

open in the firewall, to accept WS messages from clients and

executors.

Falkon also currently assumes that executors operate in a public

IP space, so that the dispatcher can communicate with them

directly. If (as is sometimes the case) a cluster is configured with

a private IP space, to which only a manager node has access, the

Falkon dispatcher must run on that manager node. In such cases,

Falkon cannot use multiple clusters. A potential solution to this

problem is to introduce intermediate “forwarder” nodes that pass

messages between dispatcher and executors.

Figure 16 shows such a 3-Tier architecture overview, which has a

strong resemblance to a hierarchical structure. One or more

forwarders receive tasks from a client. Both the client and the

forwarder(s) may reside anywhere in a public IP space. Next,

dispatchers are deployed on cluster manager nodes, which—if a

cluster’s compute nodes are in a private IP space—typically have

both a public IP address and a private IP address. Finally, each

dispatcher manages a disjoint set of executors that may run in

either a private or public IP space. We are investigating this three-

tier architecture with the goal of scaling Falkon to two or more

orders of magnitude more executors, as will be required for future

grids and for modern supercomputers, such as the IBM

BlueGene/P, that may have 256,000 or more processors.

Figure 16: 3-Tier Architecture Overview

7. CONCLUSIONS
The schedulers used to manage parallel computing clusters are not

typically configured to enable easy configuration of application-

specific scheduling policies. In addition, their sophisticated

scheduling algorithms and feature-rich code base can result in

significant overhead when executing many short tasks.

We have designed Falkon, a Fast and Light-weight tasK

executiON framework, to enable the efficient dispatch and

execution of many small tasks. To this end, it uses a multi-level

scheduling strategy to enable separate treatment of resource

allocation (via conventional schedulers) and task dispatch (via a

streamlined, minimal-functionality dispatcher). Clients submit

task requests to a dispatcher, which in turn passes tasks to

executors. A provisioner is responsible for allocating and de-

allocating resources in response to changing demand; thus, users

can trade off application execution time and resource utilization.

Bundling and piggybacking optimizations can reduce further per-

task dispatch cost.

Microbenchmarks show that Falkon can achieve one to two orders

of magnitude higher throughput (487 tasks/sec) when compared to

other batch schedulers. It can sustain high throughput with up to

54,000 managed executors and can process 2,000,000 tasks in just

112 minutes, operating reliably even as the queue length grew to

1,500,000 tasks.

A “Falkon provider” allows applications coded to the Karajan

workflow engine and the Swift parallel programming system to

use Falkon with no modification. When using Swift and Falkon

together, we demonstrated reductions in end-to-end run time by as

much as 90% for applications from the astronomy and medical

fields, when compared to the same applications run over batch

schedulers.

Falkon’s novelty consist in its combination of a fast lightweight

scheduling overlay on top of virtual clusters with the use of grid

protocols for adaptive resource allocation. This approach allows

us to achieve higher task throughput than previous systems, while

also allowing applications to trade off system responsiveness,

resource utilization, and execution efficiency.

8. ACKNOWLEDGMENTS
This work was supported in part by the NASA Ames Research

Center GSRP Grant Number NNA06CB89H and by the

Mathematical, Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific Computing

Research, Office of Science, U.S. Dept. of Energy, under Contract

DE-AC02-06CH11357. We thank our collaborator Alex Szalay

who inspired the Falkon architecture and implementation by

proposing as a challenge problem a sky survey stacking service,

whose primary requirement was to perform many small tasks in

Grid environments. We also thank TeraGrid and the Computation

Institute for hosting the experiments reported here.

9. REFERENCES
[1] D. Thain, T. Tannenbaum, and M. Livny, “Distributed

Computing in Practice: The Condor Experience”

Concurrency and Computation: Practice and Experience,

Vol. 17, No. 2-4, pages 323-356, February-April, 2005.

[2] Swift Workflow System: www.ci.uchicago.edu/swift, 2007.

[3] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast,

Reliable, Loosely Coupled Parallel Computation”, IEEE

Workshop on Scientific Workflows 2007.

[4] I. Foster, J. Voeckler, M. Wilde, Y. Zhao. “Chimera: A

Virtual Data System for Representing, Querying, and

Automating Data Derivation”, SSDBM 2002.

[5] J.-P Goux, S. Kulkarni, J.T. Linderoth, and M.E. Yoder, “An

Enabling Framework for Master-Worker Applications on the

Computational Grid,” IEEE International Symposium on

High Performance Distributed Computing, 2000.

[6] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the

Grid: Enabling Scalable Virtual Organizations”,

International Journal of Supercomputer Applications, 15 (3).

200-222. 2001.

[7] G. Banga, P. Druschel, J.C. Mogul. “Resource Containers: A

New Facility for Resource Management in Server Systems.”

Symposium on Operating Systems Design and

Implementation, 1999.

[8] J.A. Stankovic, K. Ramamritham,, D. Niehaus, M.

Humphrey, G. Wallace, “The Spring System: Integrated

Support for Complex Real-Time Systems”, Real-Time

Systems, May 1999, Vol 16, No. 2/3, pp. 97-125.

[9] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke,

“Condor-G: A Computation Management Agent for Multi-

Institutional Grids,” Cluster Computing, 2002.

[10] G. Singh, C. Kesselman, E. Deelman, “Optimizing Grid-

Based Workflow Execution.” Journal of Grid Computing,

Volume 3(3-4), December 2005, pp. 201-219.

[11] E. Walker, J.P. Gardner, V. Litvin, E.L. Turner, “Creating

Personal Adaptive Clusters for Managing Scientific Tasks in

a Distributed Computing Environment”, Workshop on

Challenges of Large Applications in Distributed

Environments, 2006.

[12] G. Singh, C. Kesselman E. Deelman. “Performance Impact

of Resource Provisioning on Workflows”, USC ISI

Technical Report 2006.

[13] G. Mehta, C. Kesselman, E. Deelman. “Dynamic

Deployment of VO-specific Schedulers on Managed

Resources,” USC ISI Technical Report, 2006.

[14] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the

Grid", Grid Computing: Making The Global Infrastructure a

Reality, John Wiley, 2003. ISBN: 0-470-85319-0.

[15] E. Robinson, D.J. DeWitt. “Turning Cluster Management

into Data Management: A System Overview”, Conference on

Innovative Data Systems Research, 2007.

[16] B. Bode, D.M. Halstead, R. Kendall, Z. Lei, W. Hall, D.

Jackson. “The Portable Batch Scheduler and the Maui

Scheduler on Linux Clusters”, Usenix, 4th Annual Linux

Showcase & Conference, 2000.

[17] S. Zhou. “LSF: Load sharing in large-scale heterogeneous

distributed systems,” Workshop on Cluster Computing,

1992.

[18] W. Gentzsch, “Sun Grid Engine: Towards Creating a

Compute Power Grid,” 1st International Symposium on

Cluster Computing and the Grid, 2001.

[19] D.P. Anderson. “BOINC: A System for Public-Resource

Computing and Storage.” 5th IEEE/ACM International

Workshop on Grid Computing, 2004.

[20] D.P. Anderson, E. Korpela, R. Walton. “High-Performance

Task Distribution for Volunteer Computing.” IEEE

Conference on e-Science and Grid Technologies, 2005.

[21] The Functional Magnetic Resonance Imaging Data Center,

http://www.fmridc.org/, 2007.

[22] G.B. Berriman, et al., “Montage: a Grid Enabled Engine for

Delivering Custom Science-Grade Image Mosaics on

Demand.” SPIE Conference on Astronomical Telescopes and

Instrumentation. 2004.

[23] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M.

Kalantar, S. Krishnakumar, D. Pazel, J. Pershing, and B.

Rochwerger, “Oceano - SLA Based Management of a

Computing Utility,” 7th IFIP/IEEE International Symposium

on Integrated Network Management, 2001.

[24] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A.

Yumerefendi, J. Chase. “Toward a Doctrine of Containment:

Grid Hosting with Adaptive Resource Control,” IEEE/ACM

International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC06), 2006.

[25] J. Bresnahan. “An Architecture for Dynamic Allocation of

Compute Cluster Bandwidth”, MS Thesis, Department of

Computer Science, University of Chicago, December 2006.

[26] Catlett, C. et al., “TeraGrid: Analysis of Organization,

System Architecture, and Middleware Enabling New Types

of Applications,” HPC 2006.

[27] M. Feller, I. Foster, and S. Martin. “GT4 GRAM: A

Functionality and Performance Study”, TeraGrid Conference

2007.

[28] I. Foster, “Globus Toolkit Version 4: Software for Service-

Oriented Systems,” Conference on Network and Parallel

Computing, 2005.

[29] The Globus Security Team. “Globus Toolkit Version 4 Grid

Security Infrastructure: A Standards Perspective,” Technical

Report, Argonne National Laboratory, MCS, 2005.

[30] I. Raicu, I. Foster, A. Szalay. “Harnessing Grid Resources to

Enable the Dynamic Analysis of Large Astronomy

Datasets”, IEEE/ACM International Conference for High

Performance Computing, Networking, Storage, and Analysis

(SC06), 2006.

[31] I. Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A

Science Gateway for Large-scale Astronomy Data Analysis”,

TeraGrid Conference 2006.

[32] J.C. Jacob, et al. “The Montage Architecture for Grid-

Enabled Science Processing of Large, Distributed Datasets.”

Earth Science Technology Conference 2004.

[33] E. Deelman, et al. “Pegasus: a Framework for Mapping

Complex Scientific Workflows onto Distributed Systems”,

Scientific Programming Journal, Vol 13(3), 2005, 219-237.

[34] T. Tannenbaum. “Condor RoadMap”, Condor Week 2007.

[35] K. Ranganathan, I. Foster, “Simulation Studies of

Computation and Data Scheduling Algorithms for Data

Grids”, Journal of Grid Computing, V1(1) 2003.

[36] A. Iosup, C. Dumitrescu, D.H.J. Epema, H. Li, L. Wolters,

“How are Real Grids Used? The Analysis of Four Grid

Traces and Its Implications”, IEEE/ACM International

Conference on Grid Computing (Grid), 2006.

[37] A. Iosup, M. Jan, O. Sonmez, and D.H.J. Epema, “The

Characteristics and Performance of Groups of Jobs in Grids”,

EuroPar 2007.

