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ABSTRACT 

To enable the rapid execution of many tasks on compute clusters, 

we have developed Falkon, a Fast and Light-weight tasK 

executiON framework. Falkon integrates (1) multi-level 

scheduling to separate resource acquisition (via, e.g., requests to 

batch schedulers) from task dispatch, and (2) a streamlined 

dispatcher. Falkon’s integration of multi-level scheduling and 

streamlined dispatchers delivers performance not provided by any 

other system. We describe Falkon architecture and 

implementation, and present performance results for both 

microbenchmarks and applications. Microbenchmarks show that 

Falkon throughput (487 tasks/sec) and scalability (to 54,000 

executors and 2,000,000 tasks processed in just 112 minutes) are 

one to two orders of magnitude better than other systems used in 

production Grids. Large-scale astronomy and medical 

applications executed under Falkon by the Swift parallel 

programming system achieve up to 90% reduction in end-to-end 

run time, relative to versions that execute tasks via separate 

scheduler submissions. 

Categories and Subject Descriptors 

D.4.7 [Operating Systems]: Organization and Design – Batch 

processing systems, Distributed systems, Hierarchical design, 

Interactive systems, Real-time systems and embedded systems.  

General Terms 

Management, Performance, Design. 

Keywords 

Parallel programming, dynamic resource provisioning, 

scheduling, Grid computing 

1. INTRODUCTION 
Many interesting computations can be expressed conveniently as 

data-driven task graphs, in which individual tasks wait for input to 

be available, perform computation, and produce output. Systems 

such as DAGMan [1], Karajan [2], Swift [3], and VDS [4] support 

this model. These systems have all been used to encode and 

execute thousands of individual tasks.   

In such task graphs, as well as in the popular master-worker 

model [5], many tasks may be logically executable at once. Such 

tasks may be dispatched to a parallel compute cluster or (via the 

use of grid protocols [6]) to many such clusters. The batch 

schedulers used to manage such clusters receive individual tasks, 

dispatch them to idle processors, and notify clients when 

execution is complete. 

This strategy of dispatching tasks directly to batch schedulers has 

three disadvantages. First, because a typical batch scheduler 

provides rich functionality (e.g., multiple queues, flexible task 

dispatch policies, accounting, per-task resource limits), the time 

required to dispatch a task can be large—30 secs or more—and 

the aggregate throughput relatively low (perhaps two tasks/sec). 

Second, while batch schedulers may support different queues and 

policies, the policies implemented in a particular instantiation 

may not be optimized for many tasks. For example, a scheduler 

may allow only a modest number of concurrent submissions for a 

single user. Third, the average wait time of grid jobs is higher in 

practice than the predictions from simulation-based research. [36] 

These factors can cause problems when dealing with application 

workloads that contain a large number of tasks. 

One solution to this problem is to transform applications to reduce 

the number of tasks. However, such transformations can be 

complex and/or may place a burden on the user. Another 

approach is to employ multi-level scheduling [7, 8]. A first-level 

request to a batch scheduler allocates resources to which a 

second-level scheduler dispatches tasks. The second-level 

scheduler can implement specialized support for task graph 

applications. Frey [9] and Singh [10] create an embedded Condor 

pool by “gliding in” Condor workers to a compute cluster, while 

MyCluster [11] can embed both Condor pools and Sun Grid 

Engine (SGE) clusters. Singh et al. [12, 13] report 50% reductions 

in execution time relative to a single-level approach. 

We seek to achieve further improvements by:  

1. Reducing task dispatch time by using a streamlined 

dispatcher that eliminates support for features such as 

multiple queues, priorities, accounting, etc. 

2. Using an adaptive provisioner to acquire and/or release 

resources as application demand varies.  

To explore these ideas, we have developed Falkon, a Fast and 

Light-weight tasK executiON framework. Falkon incorporates a 

lightweight task dispatcher, to receive, enqueue, and dispatch 

tasks; a simple task executor, to receive and execute tasks; and a 

provisioner, to allocate and deallocate executors. 

Microbenchmarks show that Falkon can process millions of task 

and scale to 54,000 executors. A synthetic application 

demonstrates the benefits of adaptive provisioning. Finally, 

results for two applications demonstrate that substantial speedups 

can be achieved for real scientific applications. 
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2. RELATED WORK 
Full-featured local resource managers (LRMs) such as Condor [1, 

15], Portable Batch System (PBS) [16], Load Sharing Facility 

(LSF) [17], and SGE [18] support client specification of resource 

requirements, data staging, process migration, check-pointing, 

accounting, and daemon fault recovery. Falkon, in contrast, is not 

a full-featured LRM: it focuses on efficient task dispatch and thus 

can omit some of these features in order to streamline task 

submission. This narrow focus is possible because Falkon can rely 

on LRMs for certain functions (e.g., accounting) and clients for 

others (e.g., recovery, data staging). 

The BOINC “volunteer computing” system [19, 20] has a similar 

architecture to that of Falkon. BOINC’s database-driven task 

dispatcher is estimated to be capable of dispatching 8.8M tasks 

per day to 400K workers. This estimate is based on extrapolating 

from smaller synthetic benchmarks of CPU and I/O overhead, on 

the task distributor only, for the execution of 100K tasks. By 

comparison, Falkon has been measured to execute 2M (trivial) 

tasks in two hours, and has scaled to 54K managed executors with 

similarly high throughput. This test as well as other throughput 

tests achieving 487 tasks/sec suggest that Falkon can provide 

higher throughput than BOINC.  

Multi-level scheduling has been applied at the OS level [27, 30] 

to provide faster scheduling for groups of tasks for a specific user 

or purpose by employing an overlay that does lightweight 

scheduling within a heavier-weight container of resources: e.g., 

threads within a process or pre-allocated thread group. 

Frey et al. pioneered the application of this principle to clusters 

via their work on Condor “glide-ins” [9]. Requests to a batch 

scheduler (submitted, for example, via Globus GRAM4 [27]) 

create Condor “startd” processes, which then register with a 

Condor resource manager that runs independently of the batch 

scheduler. Others have also used this technique. For example, 

Mehta et al. [13] embed a Condor pool in a batch-scheduled 

cluster, while MyCluster [11] creates “personal clusters” running 

Condor or SGE. Such “virtual clusters” can be dedicated to a 

single workload. Thus, Singh et al. find, in a simulation study 

[12], a reduction of about 50% in completion time, due to 

reduction in queue wait time. However, because they rely on 

heavyweight schedulers to dispatch work to the virtual cluster, the 

per-task dispatch time remains high. 

In a different space, Bresnahan et al. [25] describe a multi-level 

scheduling architecture specialized for the dynamic allocation of 

compute cluster bandwidth. A modified Globus GridFTP server 

varies the number of GridFTP data movers as server load 

changes. 

Appleby et al. [23] were one of several groups to explore dynamic 

resource provisioning within a data center. Ramakrishnan et al. 

[24] also address adaptive resource provisioning with a focus 

primarily on resource sharing and container level resource 

management. Our work differs in its focus on resource 

provisioning on non-dedicated resources managed by LRMs. 

3. FALKON ARCHITECTURE 
Our description of the Falkon architecture encompasses execution 

model, communication protocol, performance enhancements, and 

information regarding ease of use of the Falkon API.  

3.1 Execution Model 
Each task is dispatched to a computational resource, selected 

according to the dispatch policy. If a response is not received after 

a time determined by the replay policy, or a failed response is 

received, the task is re-dispatched according to the dispatch policy 

(up to some specified number of retries). The resource acquisition 

policy determines when and for how long to acquire new 

resources, and how many resources to acquire. The resource 

release policy determines when to release resources. 

Dispatch policy. We consider here a next-available policy, which 

dispatches each task to the next available resource. We assume 

here that all data needed by a task is available in a shared file 

system. In the future, we will examine dispatch policies that take 

into account data locality.  

Resource acquisition policy. This policy determines the number 

of resources, n, to acquire; the length of time for which resources 

should be requested; and the request(s) to generate to LRM(s) to 

acquire those resources. We have implemented five strategies that 

variously generate a single request for n resources, n requests for 

a single resource, or a series of arithmetically or exponentially 

larger requests, or that use system functions to determine 

available resources. Due to space restrictions, in the experiments 

reported in this paper, we consider only the first policy (“all-at-

once”), which allocates all needed resources in a single request. 

Resource release policy. We distinguish between centralized and 

distributed resource release policies. In a centralized policy, 

decisions are made based on state information available at a 

central location. For example: “if there are no queued tasks, 

release all resources” or “if the number of queued tasks is less 

than q, release a resource.” In a distributed policy, decisions are 

made at individual resources based on state information available 

at the resource. For example: “if the resource has been idle for 

time t, the resource should release itself.” Note that resource 

acquisition and release policies are typically not independent: in 

most batch schedulers, a set of resources allocated in a single 

request must all be de-allocated before the requested resources 

become free and ready to be used by the next allocation. Ideally, 

one must release all resources obtained in a single request at once, 

which requires a certain level of synchronization among the 

resources allocated within a single allocation. In the experiments 

reported in this paper, we used a distributed policy, releasing 

individual resources after a specified idle time was reached. In the 

future, we plan to improve our distributed policy by coordinating 

between all the resources allocated in a single request to de-

allocate all at the same time. 

3.2 Architecture 
Falkon consists of a dispatcher, a provisioner, and zero or more 

executors (Figure 1). Figure 2 has the series of message 

exchanges that occur between the various Falkon components. As 

we describe the architecture and the components' interaction, we 

will denote the message numbers from Figure 2 in square braces; 

some messages have two numbers, denoting both a send and 

receive, while others have only a single number, denoting a 

simple send.  

The dispatcher accepts tasks from clients and implements the 

dispatch policy. The provisioner implements the resource 

acquisition policy. Executors run tasks received from the 

dispatcher. Components communicate via Web Services (WS) 



messages (solid lines in Figure 2), except that notifications are 

performed via a custom TCP-based protocol (dotted lines). The 

notification mechanism is implemented over TCP because when 

we first implemented the core Falkon components using GT3.9.5, 

the Globus Toolkit did not support brokered WS notifications. 

The recent GT4.0.5 release supports brokered notifications. 

 
Figure 1: Falkon architecture overview 

 
Figure 2: Falkon components and message exchange  

The dispatcher implements the factory/instance pattern, 

providing a create instance operation to allow a clean separation 

among different clients. To access the dispatcher, a client first 

requests creation of a new instance, for which is returned a unique 

endpoint reference (EPR). The client then uses that EPR to submit 

tasks {1,2}, monitor progress (or wait for notifications {8}), 

retrieve results {9,10}, and (finally) destroy the instance.  

A client “submit” request takes an array of tasks, each with 

working directory, command to execute, arguments, and 

environment variables. It returns an array of outputs, each with 

the task that was run, its return code, and optional output strings 

(STDOUT and STDERR contents). A shared notification engine 

among all the different queues is used to notify executors that 

work is available for pick up. This engine maintains a queue, on 

which a pool of threads operate to send out notifications. The 

GT4 container also has a pool of threads that handle WS 

messages. Profiling shows that most dispatcher time is spent 

communicating (WS calls, notifications). Increasing the number 

of threads should allow the service to scale effectively on newer 

multicore and multiprocessor systems.  

The dispatcher runs within a Globus Toolkit 4 (GT4) [28] WS 

container, which provides authentication, message integrity, and 

message encryption mechanisms, via transport-level, 

conversation-level, or message-level security [29]. 

The provisioner is responsible for creating and destroying 

executors. It is initialized by the dispatcher with information 

about the state to be monitored and how to access it; the rule(s) 

under which the provisioner should create/destroy executors; the 

location of the executor code; bounds on the number of executors 

to be created; bounds on the time for which executors should be 

created; and the allowed idle time before executors are destroyed.  

The provisioner periodically monitors dispatcher state {POLL} 

and, based on policy, determines whether to create additional 

executors, and if so, how many, and for how long. Creation 

requests are issued via GRAM4 [27] to abstract LRM details.  

A new executor registers with the dispatcher. Work is then 

supplied as follows: the dispatcher notifies the executor when 

work is available {3}; the executor requests work {4}; the 

dispatcher returns the task(s) {5}; the executor executes the 

supplied task(s) and returns results, including return code and 

optional standard output/error strings {6}; and the dispatcher 

acknowledges delivery {7}. 

3.3 Push vs. Pull Model  
We considered both a push and a pull model when designing the 

Dispatcher-Executor communication protocol. We explain here 

why we chose a hybrid push/pull model, where the push is a 

notification {3} and the pull is the get work {4}. 

In a pull model, Executors request work from the Dispatcher. A 

“get work” request can be either blocking or non-blocking. A 

blocking request can provide better responsiveness than a non-

blocking request (as it avoids polling), but requires that the 

Dispatcher maintain state for each Executor waiting for work. In 

the case of non-blocking requests, Executors must poll the 

Dispatcher periodically, which can reduce responsiveness and 

scalability. For example, we find that when using Web Services 

operations to communicate requests, a cluster with 500 Executors 

polling every second keeps Dispatcher CPU utilization at 100%. 

Thus, the polling interval must be increased for larger 

deployments, which reduces responsiveness accordingly. 

Additionally, the Dispatcher does not control the order and rate of 

Executor requests, which can hinder efficient scheduling due to 

the inability for the scheduler to decide the order dispatched tasks. 

Despite all these negative things about a pull model, there are two 

advantages: 1) it is friendly with firewalls, and 2) it simplifies the 

Dispatcher logic. 

A push model assumes that the Dispatcher can initiate a 

communication with its Executors, which implies one of the 

following three implementation alternatives for the Executor:  

1) It is implemented as a Web Service (as opposed to a simpler 

client that can only initiate WS communication). Thus, a WS 



container must be deployed on every compute node (in the 

absence of a shared file system); this alternative has the 

largest footprint but is easy to implement. 

2) It supports notifications. Here, we only need the client code 

plus a few libraries required for WS communications. This 

alternative has a medium-sized footprint with a medium 

implementation complexity (WS and notification). 

3) It uses a custom communication protocol and can be both a 

server and a client. This approach only needs the libraries to 

support that protocol (e.g., TCP). It has the smallest footprint 

but requires the implementation of the custom protocol.  

All three approaches have problems with firewalls, but we have 

not found this to be a big issue in deployments to date, as the 

Dispatcher and Executors are typically located within a single site 

in which firewalls are not an issue. We discuss in Section 6 how 

this problem could be addressed via a three-tier architecture that 

supports both cross-firewall communications and communications 

with Executors operating in a private IP space. 

We decided to use alternative two, with medium footprint and 

medium implementation complexity. A notification simply 

identifies the resource key where the work can be picked up from 

at the Dispatcher, and then the Executor uses a WS call to request 

the corresponding work. 

This hybrid pull/push model provides the following benefits: 

higher system responsiveness and efficiency relative to a pure 

push model; higher scalability relative to a pure pull model; 

medium size disk and memory footprint; more controllable 

throttling than a pure pull model; and the ability to implement 

more sophisticated (e.g., data-aware) schedulers. 

3.4 Performance Enhancements 
Communication costs can be reduced by task bundling between 

client and dispatcher and/or dispatcher and executors. In the latter 

case, problems can arise if task sizes vary and one executor gets 

assigned many large tasks, although that problem can be 

addressed by having clients assign each task an estimated 

runtime. We use client-dispatcher bundling in experiments 

described below, but (lacking runtime estimates) not dispatcher-

executor bundling. Another technique that can reduce message 

exchanges is to piggy-back new task dispatches when 

acknowledging result delivery (messages {6,7} from Figure 2). 

Using both task bundling and piggy-backing, we can reduce the 

average number of message exchanges per task to be arbitrarily 

close to zero, by increasing the bundle size. In practice, we find 

that performance degrades for bundle sizes of greater than 300 

tasks (see Section 4.2)—and, as noted above, bundling cannot 

always be used between dispatcher and executors. 

With client-dispatcher bundling and piggy-backing alone, we can 

reduce the number of messages to two per task (one message from 

executor to dispatcher to deliver a result, and one associated 

response from dispatcher to executor to acknowledge receipt and 

provide a new task); these two messages make up a single WS 

call. Line shading in Figure 2 shows where bundling optimization 

can be used: black lines denote that the corresponding message 

occurs on a per-task basis, while grey lines denote that through 

bundling optimizations, the corresponding messages occur for a 

set of tasks.  

3.5 Ease of Use 
We modified the Swift parallel programming system by 

implementing a new provider to use Falkon for task dispatch. The 

Falkon provider has 840 lines of Java code, a value comparable to 

GRAM2 provider (850 lines), GRAM4 provider (517 lines), and 

the Condor provider (575 lines).  

4. PERFORMANCE EVALUATION 
Table 1 lists the platforms used in experiments. Latency between 

these systems was one to two milliseconds. We assume a one-to-

one mapping between executors and processors in all 

experiments. Of the 162 nodes on TG_ANL_IA32 and 

TG_ANL_IA64, 128 were free for our experiments. 

Table 1: Platform descriptions 

Name
# of 

Nodes
Processors Memory Network

TG_ANL_IA32 98
Dual Xeon 

2.4GHz
4GB 1Gb/s

TG_ANL_IA64 64
Dual Itanium 

1.5GHz
4GB 1Gb/s

TP_UC_x64 122
Dual Opteron 

2.2GHz
4GB 1Gb/s

UC_x64 1
Dual Xeon 

3GHz w/ HT
2GB 100 Mb/s

UC_IA32 1
Intel P4 

2.4GHz
1GB 100 Mb/s

 

4.1 Throughput without Data Access 
To determine maximum throughput, we measured performance 

running “sleep 0.” We ran executors on TG_ANL_IA32 and 

TG_ANL_IA64, the dispatcher on UC_x64, and the client 

generating the workload on TP_UC_x64. As each node had two 

processors, we ran two executors per node, for a total of 256 

executors. We measured Falkon throughput for short (“sleep 0”) 

tasks both without any security and with GSISecureConversation 

that performs both authentication and encryption. We enabled two 

optimizations discussed below, namely client-dispatcher bundling 

and piggy-backing; however, every task is transmitted 

individually from dispatcher to an executor. 

For purposes of comparison, we also tested GT4 performance 

with all security disabled. We created a simple service that 

incremented a counter for each WS call made to a counter service, 

and measured the number of WS calls per second that could be 

achieved from a varying number of machines. We claim this to be 

the upper bound on Falkon throughput performance that can be 

achieved on the tested hardware (UC_x64), assuming that there is 

no task bundling between dispatcher and executors, and that each 

task is handled via a separate dispatch. 

Figure 3 shows GT4 without security achieves 500 WS calls/sec; 

Falkon reaches 487 tasks/sec (without security) and 204 tasks/sec 

(with security). A single Falkon executor without and with 

security can handle 28 and 12 tasks/sec, respectively.  

We also measured Condor and PBS performance on the same 

testbed, with nodes managed by PBS v2.1.8. To measure PBS 

throughput, we submitted 100 short tasks (sleep 0) and measured 

the time to completion on the 64 available nodes. The experiment 

took on average 224 seconds for 10 runs netting 0.45 tasks/sec. 



As we did not have access to a dedicated Condor pool, we used 

MyCluster [11] to create a 64-node Condor v6.7.2 pool via PBS 

submissions. Once the 64 nodes were allocated from PBS and 

were available within MyCluster, we performed the same 

experiment, 100 short tasks over Condor. The total time was on 

average 203 seconds for 10 runs netting 0.49 tasks/sec. As far as 

we could tell, neither PBS nor Condor were using any security 

mechanisms between the various components within these 

systems. MyCluster does use authentication and authorization to 

setup the virtual cluster (a one time cost), but thereafter no 

security was used. It is also worth mentioning that we 

intentionally used a small number of tasks to test PBS and Condor 

as the achieved throughput drops as tasks accumulate in the wait 

queue, and our goal was to measure the best case scenario for 

their ability to dispatch and execute small tasks.  
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Figure 3: Throughput as function of executor count  

There are newer versions of both Condor and PBS, and both 

systems can likely be configured for higher throughput. We do 

not know whether or not these experiments reflect performance 

with security enabled or not, and all the details regarding the 

hardware used; see Table 2 for details on the various hardware 

used and a summary of the reported throughputs. In summary, 

Falkon’s throughput performance compares favorably to all, 

regardless of the security settings used be these other systems. 

Table 2: Measured and cited throughput for Falkon, Condor, 

and PBS 

System Comments
Throughput 

(tasks/sec)

Falkon 

(no security)

Dual Xeon 3GHz w/ HT

2GB
487

Falkon 

(GSISecureConversation)

Dual Xeon 3GHz w/ HT

2GB
204

Condor (v6.7.2) Dual Xeon 2.4GHz, 4GB 0.49

PBS (v2.1.8) Dual Xeon 2.4GHz, 4GB 0.45

Condor (v6.7.2) [15] Quad Xeon 3 GHz, 4GB 2

Condor (v6.8.2) [34] 0.42

Condor (v6.9.3) [34] 11

Condor-J2 [15] Quad Xeon 3 GHz, 4GB 22

BOINC [19, 20] Dual Xeon 2.4GHz, 2GB 93  

4.2 Throughput with Data Access 
Most tasks started via a system such as Falkon, Condor, or PBS 

will need to read and write data. A comprehensive evaluation of 

these systems’ I/O performance is difficult because of the wide 

range of I/O architectures encountered in practical settings. 

As a first step towards such an evaluation, we measured Falkon 

throughput with synthetic tasks that performed data staging as 

well as computation. We fixed the number of executors at 128 (64 

nodes) and performed four sets of experiments in which, for 

varying data sizes from one byte to one GB, we varied (a) data 

location (on GPFS shared file system or the local disk of each 

compute node), and (b) whether tasks only read or both read and 

wrote the data. All experiments were performed without security. 

Figure 4 shows our results. All scales are logarithmic. The solid 

lines denote throughput in tasks/sec and the dotted lines denote 

throughput in Mb/sec. Falkon maintained high task throughput 

(within a few percent of the peak 487 tasks/sec) for up to 1 MB 

data sizes (for GPFS read and LOCAL read+write) and up to 10 

MB data size (for LOCAL read). For GPFS read+write, the best 

throughput Falkon could achieve was 150 tasks/sec, even with 1 

byte data sizes. We attribute this result to the GPFS shared file 

system’s inability to support many write operations from 128 

concurrent processors. (The GPFS shared file system in our 

testbed has eight I/O nodes.) 
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Figure 4: Throughput as a function of data size on 64 nodes 

As data sizes increase, throughput (Mb/sec: dotted lines) plateaus 

at either 1 MB or 10 MB data sizes, depending on the experiment. 

GPFS read+write peaks at 326 Mb/sec, GPFS read at 3,067 

Mb/sec, LOCAL read+write at 32,667 Mb/sec, and LOCAL read 

at 52,015 Mb/sec. With 1 GB data, throughput was 0.04 tasks/sec, 

0.4 tasks/sec, 4.28 tasks/sec, and 6.81 tasks/sec, respectively. 

We have not performed comparable experiments with the PBS 

and Condor systems considered earlier. However, as tasks started 

via these systems will access data via the same mechanisms as 

those evaluated here, we can expect that as the amount of data 

accesses increases, I/O costs will come to dominate and 

performance differences among the systems will become smaller.  

More importantly, these results emphasize the importance of 

using local disk to cache data products written by one task and 

read by another on local disk—a feature supported by Falkon, 

although not evaluated here. 

4.3 Bundling 
It has been shown that real grid workloads comprise a large 

percentage of tasks submitted as batches of tasks. [37] In order to 

optimize the task submission performance, we propose to bundle 

many tasks together in each submission.  We measured 

performance for a workload of “sleep 0” tasks as a function of 



task bundle size. Figure 5 shows that performance increases from 

about 20 tasks/sec, without bundling, to a peak of almost 1500 

tasks/sec, with bundling.  

Performance decreases after around 300 tasks per bundle. We 

attribute this drop to the array data structure implementation in 

the Axis software that GT4 uses to handle XML serialization and 

de-serialization. (Axis implements the array data-structure used to 

store the representation of the bundled tasks as a grow-able array, 

copying to a new bigger array each time its size increases.) We 

will investigate this inefficiency to attempt to remedy this 

limitation. 
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Figure 5: Bundling throughput and cost per task 

4.4 Efficiency and Speedup 
Figures 6 shows efficiency (EP=SP/P) as a function of number of 

processors (P) and task length; speedup is defined as SP=T1/TP, 

where Tn is the execution time on n processors. These 

experiments were conducted on TG_ANL_IA32 and 

TG_ANL_IA64 with no security and with optimizations such as 

bundling and “piggy-backing” enabled.  
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Figure 6: Efficiency for various task length and executors 

We see that even with short (1 sec) tasks, we achieve high 

efficiencies (95% in the worst case with 256 executors). Note that 

there is typically less than 1% loss in efficiency as we increase 

from 1 executor to 256 executors.  As we increase the number of 

executors beyond the maximum throughput we can sustain (487 

executors with 1 sec long tasks, netting the 487 tasks/sec), the 

efficiency of the 1 sec tasks will start to drop as the Dispatcher’s 

CPU utilization will be saturated. In the worst case (1 sec tasks), 

we achieve a speedup of 242 with 256 executors; with 64 sec 

tasks, the speedup is 255.5. 

We performed two similar experiments on Condor and PBS to 

gain insight into how Falkon efficiency compared with that of 

other systems. We fixed the number of resources to 32 nodes and 

measured the time to complete 64 tasks of various lengths 

(ranging from 1 sec to 16384).  

We see Falkon’s efficiency to be 95% with 1 sec tasks and 99% 

with 8 sec tasks. In contrast, both PBS (v2.1.8) and Condor 

(v6.7.2) have an efficiency of less than 1% for 1 sec tasks and 

require about 1,200 sec tasks to get 90% efficiency and 3,600 sec 

tasks to get 95% efficiency. They only achieve 99% efficiency 

with 16,000 sec tasks.  

As both the tested PBS and Condor versions that are in production 

on the TG_ANL_IA32 and TG_ANL_IA64 clusters are not the 

latest versions, we also derived the efficiency curve for Condor 

version 6.9.3, the latest development Condor version, which is 

claimed to have a throughput of 11 tasks/sec [34] (up from our 

measured 0.45~0.49 tasks/sec and the 2 tasks/sec reported by 

others [15]). Efficiency is much improved, reaching 90%, 95%, 

and 99% for task lengths of 50, 100, and 1000 secs. respectively.  

The results in Figure 7 for Condor v6.9.3 are derived, not 

measured. We derived based on the achieved throughput cited in 

[34] of 11 tasks/sec for sleep 0 tasks. Essentially, we computed 

the per task overhead of 0.0909 seconds, which we could then add 

to the ideal time of each respective task length to get an estimated 

task execution time. With this execution time, we could compute 

speedup, which we then used to compute efficiency. Our 

derivation of efficiency is simplistic, but it allowed us to plot the 

likely efficiency of the latest development Condor code against 

the older production Condor code, the PBS production code, and 

Falkon. It should be noted that Figure 7 illustrates the efficiency 

of these systems for a relatively small set of resources (only 64 

processors), and that the efficiency gap will likely only increase 

as the number of resources increases. 
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Figure 7: Efficiency of resource usage for varying task lengths 

on 64 processors comparing Falkon, Condor and PBS 

4.5 Scalability 
To test scalability and robustness, we performed experiments that 

pushed Falkon to its limits, both in terms of memory consumption 

and in terms of CPU utilization.  

Our first experiment studies Falkon’s behavior as the task queue 

increases in length. We constructed a client that submits two 



million “sleep 0” tasks to a dispatcher configured with a Java 

heap size set to 1.5GB. We created 64 executors on 32 machines 

from TG_ANL_IA32 and ran the dispatcher on UC_x64 and the 

client on TP_UC_x64.  

Figure 8 results show the entire run over time. The solid black 

line is the instantaneous queue length, the light blue dots are raw 

samples (once per sec) of achieved throughput in terms of task 

completions, and the solid blue line is the moving average (over 

60 sample intervals, and thus 60 secs) of raw throughput. Average 

throughput was 298 tasks/sec. Note the slight increase of about 

10~15 tasks/sec when the queue stopped growing, as the client 

finished submitting all two million tasks.  
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Figure 8: Long running test with 2M tasks 

The graph shows the raw throughput samples (taken at 1 second 

intervals) to be between 400 and 500 tasks per second for the 

majority of the experiment, yet the moving average was around 

300 tasks/sec. A close analysis shows frequent raw throughput 

samples at 0 tasks/sec, which we attribute to JVM garbage 

collection. We may be able to reduce this variation by configuring 

the JVM to garbage collect more frequently. 

In a second experiment, we tested how many executors the 

dispatcher could handle. We did not have an available system 

large enough to test the limits of the Falkon implementation, and 

therefore we ran multiple executors on each physical machine 

emulating a larger number of virtual executors. Others have used 

this experimental method with success [15].  

We performed our experiment on TP_UC_x64, on which we 

configured one dispatcher machine, one client machine, and 60 

machines to run executors. We ran 900 executors (split over four 

JVMs) on each machine, for a total of 900x60=54,000 executors. 

Once we started up the system and all 54K executors registered 

and were ready to receive work, we started the experiment 

consisting of 54K tasks of “sleep 480 secs.” For this experiment, 

we disabled all security, and only enabled bundling between the 

client and the dispatcher. Note that piggy-backing would have 

made no difference as each executor only processed one task 

each.  

Figure 9 shows that the dispatch rate (green line) equals the 

submit rate. The black line shows the number of busy executors, 

which increases from 0 to 54K in 408 secs. As soon as the first 

task finishes after 480 secs (the task length), results start to be 

delivered to the client at about the same rate as they were 

submitted and dispatched. Overall throughput (including ramp up 

and ramp down time) was about 60 tasks/sec. 

We also measured task overhead, by which we mean the time it 

takes an executor to create a thread to handle the task, pick up a 

task via one WS call, perform an Java exec on the specified 

command (“sleep 480”), and send the result (the exit return code) 

back via one WS call, minus 480 secs (the task run time). Figure 

10 shows per task overhead in millisecs for each task executed in 

the experiment of Figure 9, ordered by task start time.  

We see that most overheads were below 200 ms, with just a few 

higher than that and a maximum of 1300 ms. (As we have 900 

executors per physical machine, overhead is higher than normal 

as each thread gets only a fraction of the computer’s resources.) 
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Figure 9: Falkon scalability with 54K executors 

 
Figure 10: Task overhead with 54K executors 

4.6 Dynamic Resource Provisioning 
To study provisioner performance, we constructed a synthetic 18-

stage workload, in which the numbers of tasks and task lengths 

vary between stages. Figure 11 shows the number of tasks per 

stage and the number of machines needed per stage if each task is 

mapped to a separate machine (up to a maximum of 32 machines). 

Note the exponential ramp up in the number of tasks for the first 

few stages, a sudden drop at stage 8, and a sudden surge of many 

tasks in stages 9 and 10, another drop in stage 11, a modest 

increase in stage 12, followed by a linear decrease in stages 13 

and 14, and finally an exponential decrease until the last stage has 

only a single task. All tasks run for 60 secs except those in stages 

8, 9, and 10, which run for 120, 6, and 12 secs, respectively. In 

total, the 18 stages have 1,000 tasks, summing to 17,820 CPU 



secs, and can complete in an ideal time of 1,260 secs on 32 

machines. We choose this workload to showcase and evaluate the 

flexibility of Falkon’s dynamic resource provisioning, as it can 

adapt to varying resource requirements and task durations.  

We configured the provisioner to acquire at most 32 machines 

from TG_ANL_IA32 and TG_ANL_IA64, both of which were 

relatively lightly loaded. (100 machines were available of the total 

162 machines.) We measured the execution time in six 

configurations:  

• GRAM4+PBS (without Falkon): Each task was submitted as a 

separate GRAM4 task to PBS, without imposing any hard 

limits on the number of machines to use; there were about 100 

machines available for this experiment.  

• Falkon-15, Falkon-60, Falkon-120, Falkon-180: Falkon 

configured to use a minimum of zero and a maximum of 32 

machines; the allocation policy we used was all-at-once, and 

the resource release policy idle time was set to 15, 60, 120, and 

180 secs (to give four separate experiments).  

• Falkon-∞: Falkon, with the provisioner configured to retain a 

full 32 machines for one hour.  
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Figure 11: The 18-stage synthetic workload. 

Table 3 gives, for each experiment, the average per-task queue 

time and execution time, and also the ratio 

exec_time/(exec_time+queue_time).  

Table 3: Average per-task queue and execution times for 

synthetic workload 
GRAM4

+PBS

Falkon

-15

Falkon

-60

Falkon

-120

Falkon

-180

Falkon

-∞
Ideal 

(32 nodes)

Queue 

Time (sec)
611.1 87.3 83.9 74.7 44.4 43.5 42.2

Execution 

Time (sec)
56.5 17.9 17.9 17.9 17.9 17.9 17.8

Execution 

Time %
8.5% 17.0% 17.6% 19.3% 28.7% 29.2% 29.7%

 
The queue_time includes time waiting for the provisioner to 

acquire nodes, time spent starting executors, and time tasks spend 

in the dispatcher queue. We see that the ratio improves from 17% 

to 28.7% as the idle time setting increases from 15 to 180 secs; 

for Falkon-∞, it reaches 29.2%, a value close to the ideal of 

29.7%. (The ideal is less than 100% because several stages have 

more than 32 tasks, which means tasks must be queued when 

running, as we do here, on 32 machines.) GRAM4+PBS yields 

the worst performance, with only 8.5% on average, less than a 

third of ideal. 

The average per-task queue times range from a near optimal 43.5 

secs (42.2 secs is ideal) to as high as 87.3 secs, more than double 

the ideal. In contrast, GRAM4+PBS experiences a queue time of 

611.1 secs: 15 times larger than the ideal. Also, note the execution 

time for Falkon with resource provisioning (both static and 

dynamic) is the same across all the experiments, and is within 100 

ms of ideal (which essentially accounts for the dispatch cost and 

delivering the result); in contrast, GRAM4+PBS has an average 

execution time of 56.5 secs, significantly larger than the ideal 

time. This large difference in execution time is attributed to the 

large per task overhead GRAM4 and PBS have, which further 

strengthens our argument that they are not suitable for short tasks.  

Table 4 shows, for each strategy, the time to complete the 18 

stages, resource utilization, execution efficiency, and number of 

resource allocations. We define resource utilization and execution 

efficiency as follows:  

• 
wastedresourcesusedresources

usedresources
nutilizatioresource

__

_
_

+
=  

• 
timeactual

timeideal
efficiencyexec

_

_
_ =  

We define resources as “wasted,” for the Falkon strategies, when 

they have been allocated and registered with the dispatcher, but 

are idle. For the GRAM4+PBS case, the “wasted” time is the 

difference between the measured and reported task execution 

time, where the reported task execution time is from the time 

GRAM4 sends a notification of the task becoming “Active”—

meaning that PBS has taken the task off the wait queue and 

placed into the active queue assigned to some physical machine—

to the time the state changes to “Done,” at which point the task 

has finished execution. 

The resources used are the same (17,820 CPU secs) for all cases, 

as we have fixed run times for all 1000 tasks. We expected 

GRAM4+PBS to not have any wasted resources, as each machine 

is released after one task is run; in reality, the measured execution 

times were longer than the actual task execution times, and hence 

the resources wasted was high in this case: 41,040 secs over the 

entire experiment. The average execution time of 56.5 secs shows 

that GRAM4+PBS is slower than Falkon in dispatching the task 

to the remote machine, preparing the remote machine to execute 

the task, and cleaning up and releasing the machine. Note that the 

reception of the “Done” state change in GRAM4 does not imply 

that the utilized machine is ready to receive another task—PBS 

takes even longer to make the machine available again for more 

work, which makes GRAM4+PBS resource wastage yet worse.  

Falkon with dynamic resource provisioning fairs better from the 

perspective of resource wastage. Falkon-15 has the fewest wasted 

resources (2032 secs) and Falkon-∞ the worst (22,940 CPU secs). 

The resource utilization shows the fraction of time the machines 

were executing tasks vs. idle. Due to its high resource wastage, 

GRAM4+PBS achieves a utilization of only 30%, while Falkon-

15 reaches 89%. Falkon-∞ is 44%. Notice that as the resource 

utilization increases, so does the time to complete—as we assume 

that the provisioner has no foresight regarding future needs, 

delays are incurred allocating machines previously de-allocated 

due to a shorter idle time setting. Note the number of resource 

allocations (GRAM4 calls requesting resources) for each 

experiment, ranging from 1000 allocations for GRAM4+PBS to 

less than 11 for Falkon with provisioning. For Falkon-∞, the 



number of resource allocations is zero, since machines were 

provisioned prior to the experiment starting, and that time is not 

included in the time to complete the workload.  

If we had used a different allocation policy (e.g., one-at-a-time), 

the Falkon results would have been less close to ideal, as the 

number of resource allocations would have grown significantly. 

The relatively slow handling of such requests by GRAM4+PBS 

(~0.5/sec on TG_ANL_IA32 and TG_ANL_IA64) would have 

delayed executor startup and thus increased the time tasks spend 

in the queue waiting to be dispatched.  

The higher the desired resource utilization (due to more 

aggressive dynamic resource provisioning to avoid resource 

wastage), the longer the elapsed execution time (due to queuing 

delays and overheads of the resource provisioning in the 

underlying LRM). This ability to trade off resource utilization and 

execution efficiency is an advantage of Falkon. 

Table 4: Summary of overall resource utilization and 

execution efficiency for the synthetic workload 
GRAM4

+PBS

Falkon

-15

Falkon

-60

Falkon

-120

Falkon

-180

Falkon

-∞
Ideal 

(32 nodes)

Time to 

complete 

(sec)

4904 1754 1680 1507 1484 1276 1260

Resouce 

Utilization
30% 89% 75% 65% 59% 44% 100%

Execution 

Efficiency
26% 72% 75% 84% 85% 99% 100%

Resource 

Allocations
1000 11 9 7 6 0 0

 
To illustrate how provisioning works in practice, we show in 

Figures 10 and 11 execution details for Falkon-15 and Falkon-

180, respectively. These figures show the instantaneous number 

of allocated, registered, and active executors over time.  
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Figure 12: Synthetic workload for Falkon-15 

Allocated (blue) are executors for which creation and registration 

are in progress. Creation and registration time can vary between 5 

and 65 secs, depending on when a creation request is submitted 

relative to the PBS scheduler polling loop, which we believe 

occurs at 60 second intervals. JVM startup time and registration 

generally consume less than five secs. Registered executors (red) 

are ready to process tasks, but are not active. Finally, active 

executors (green) are actively processing tasks. In summary, blue 

is startup cost, red is wasted resources, and green is utilized 

resources. We see that Falkon-15 has fewer idle resources (as they 

are released sooner) but spends more time acquiring resources and 

overall has a longer total execution time than Falkon-60. 
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Figure 13: Synthetic workload for Falkon-180 

5. APPLICATION EXPERIMENTS 
We have integrated Falkon into the Karajan [2, 3] workflow 

engine, which in term is used by the Swift parallel programming 

system [3]. Thus, Karajan and Swift applications can use Falkon 

without modification. We observe reductions in end-to-end run 

time by as much as 90% when compared to traditional approaches 

in which applications used batch schedulers directly. 

Swift has been applied to applications in the physical sciences, 

biological sciences, social sciences, humanities, computer 

science, and science education. Table 5 characterizes some 

applications in terms of the typical number of tasks and stages. 

Table 5: Swift applications [3]; all could benefit from Falkon  
Application #Tasks/workflow #Stages

ATLAS: High Energy 

Physics Event Simulation
500K 1

fMRI DBIC: 

AIRSN Image Processing
100s 12

FOAM: Ocean/Atmosphere Model 2000 3

GADU: Genomics 40K 4

HNL: fMRI Aphasia Study 500 4

NVO/NASA: Photorealistic 

Montage/Morphology
1000s 16

QuarkNet/I2U2: 

Physics Science Education
10s 3 ~ 6

RadCAD: Radiology 

Classifier Training
1000s 5

SIDGrid: EEG Wavelet 

Processing, Gaze Analysis
100s 20

SDSS: Coadd, 

Cluster Search
40K, 500K 2, 8

SDSS: Stacking, AstroPortal 10Ks ~ 100Ks 2 ~ 4

MolDyn: Molecular Dynamics 1Ks ~ 20Ks 8  

We illustrate the distinctive dynamic features in Swift using an 

fMRI [21] analysis workflow from cognitive neuroscience, and a 

photorealistic montage application from the national virtual 

observatory project [22, 32]. 

5.1 Functional Magnetic Resonance Imaging 
This medical application is a four-step pipeline [21]. An fMRI 

Run is a series of brain scans called volumes, with a Volume 

containing a 3D image of a volumetric slice of a brain image, 

which is represented by an Image and a Header. We ran this 

application for four different problem sizes, from 120 volumes 

(480 tasks for the four stages) to 480 volumes (1960 tasks). Each 

task can run in a few seconds on an nodes in TG_ANL_IA64. 



We compared three implementation approaches: task submission 

via GRAM4+PBS, a variant of that approach in which tasks are 

clustered into eight groups, and Falkon with a fixed set of eight 

executors. In each case, we ran the client on TG_ANL_IA32 and 

application tasks on TG_ANL_IA64.  

In Figure 14 we show execution times for the different approaches 

and for different problem sizes. Although GRAM4+PBS could 

potentially have used up to 62 nodes, it performs badly due to the 

small tasks. Clustering reduced execution time by more than four 

times on eight processors. Falkon further reduced the execution 

time, particularly for smaller problems. 
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Figure 14: Execution Time for the fMRI Workflow 

5.2 Montage Image Mosaic Composition 
Our second application, Montage, generates large astronomical 

image mosaics by composing multiple small images [22, 32]. A 

four-stage pipeline reprojects each image into a common 

coordinate space, performs background rectification (calculates a 

list of overlapping images, computes image difference between 

each pair of overlapping images, and fits difference images into a 

plane), performs background correction, and co-adds the 

processed images into a final mosaic. (To enhance concurrency, 

we decompose the co-add into two steps.) 

We considered a modest-scale computation that produces a 3°x3° 

mosaic around galaxy M16. There are about 487 input images and 

2,200 overlapping image sections between them. The resulting 

task graph has many small tasks.  

Figure 15 shows execution times for three versions of Montage: 

Swift with clustering, submitting via GRAM4+PBS; Swift 

submitting via Falkon; and an MPI version constructed by the 

Montage team. The second co-add step was only parallelized in 

the MPI version; thus, Falkon performs poorly in this step. Both 

the GRAM4 and Falkon versions staged in data, while the MPI 

run assumed data was pre-staged. Despite these differences, 

Falkon achieved performance similar to that of the MPI version. 

Deelman et al. have also created a task-graph implementation of 

the Montage code, using Pegasus and DAGman [33]. They do not 

implement quite the same application: for example, they run two 

tasks (mOverlap and mImgtlb) in a portal rather than on compute 

nodes, they combine what for us are two distinct tasks (mDiff and 

mFit) into a single task, mDiffFit, and they omit the final mAdd 

phase. Thus, direct comparison is difficult. However, if the final 

mAdd phase is omitted from the comparison, Swift+Falkon is 

faster by about 5% (1067 secs vs. 1120 secs) than MPI, while 

Pegasus is reported as being somewhat slower than MPI. We 

attribute these differences to two factors: first, the MPI version 

performs initialization and aggregation actions before each step; 

second, Pegasus uses Condor glide-ins, which are heavy-weight 

relative to Falkon. 
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Figure 15: Execution time for Montage application  

6. FUTURE WORK 
We plan to implement and evaluate enhancements, such as task 

pre-fetching, alternative technologies, data management, and 

three-tier architecture.  

Pre-fetching: As is commonly done in manager-worker systems, 

executors can request new tasks before they complete execution 

of old tasks, thus overlapping communication and execution. 

Technologies: Performance depends critically on the behavior of 

our task dispatch mechanisms; the number of messages needed to 

interact between the various components of the system; and the 

hardware, programming language, and compiler used. We 

implemented Falkon in Java and use the Sun JDK 1.4.2 to 

compile and run Falkon. We use the GT4 Java WS-Core to handle 

Web Services communications.  

One potential optimization is to rewrite Falkon in C/C++, (using, 

for example, the Globus Toolkit C WS-Core). Another is to 

change internal communications between components to a custom 

TCP-based protocol. However, current dispatch rates approaching 

500 tasks/sec are adequate for applications studied to date; we 

believe the primary obstacle to scaling applications (that have 

many small tasks) will likely be data access, and not task dispatch 

as it has been in the past. 

Data management: Many Swift applications read and write large 

amounts of data. Applications typically access data from a shared 

data repository (e.g., via NFS, GPFS, GridFTP, or HTTP). Thus, 

data access can become a bottleneck as applications scale. We 

expect that data caching, proactive data replication [35], and data-

aware scheduling can offer significant performance improvements 

for applications that exhibit locality in their data access patterns. 

We plan to implement data caching mechanisms in Falkon 

executors, so that executors can populate local caches with data 

that tasks require. We also plan to implement a data-aware 

dispatcher, and will evaluate the impact of data aware dispatching 

on both application performance and raw dispatch performance.  

3-Tier Architecture: Falkon currently requires that the 

dispatcher and client be able to exchange messages. The two-way 

communication on different connections is an artifact of the 



notification messages that are being sent from the dispatcher to 

both the clients and the executors. We have implemented a 

polling mechanism to bypass any firewall issues on executors or 

clients, but we lose performance and scalability due to polling 

overheads. Note that the dispatcher is still required to have a port 

open in the firewall, to accept WS messages from clients and 

executors.  

Falkon also currently assumes that executors operate in a public 

IP space, so that the dispatcher can communicate with them 

directly. If (as is sometimes the case) a cluster is configured with 

a private IP space, to which only a manager node has access, the 

Falkon dispatcher must run on that manager node. In such cases, 

Falkon cannot use multiple clusters. A potential solution to this 

problem is to introduce intermediate “forwarder” nodes that pass 

messages between dispatcher and executors.  

Figure 16 shows such a 3-Tier architecture overview, which has a 

strong resemblance to a hierarchical structure. One or more 

forwarders receive tasks from a client. Both the client and the 

forwarder(s) may reside anywhere in a public IP space. Next, 

dispatchers are deployed on cluster manager nodes, which—if a 

cluster’s compute nodes are in a private IP space—typically have 

both a public IP address and a private IP address. Finally, each 

dispatcher manages a disjoint set of executors that may run in 

either a private or public IP space. We are investigating this three-

tier architecture with the goal of scaling Falkon to two or more 

orders of magnitude more executors, as will be required for future 

grids and for modern supercomputers, such as the IBM 

BlueGene/P, that may have 256,000 or more processors.  

 
Figure 16: 3-Tier Architecture Overview        

7. CONCLUSIONS 
The schedulers used to manage parallel computing clusters are not 

typically configured to enable easy configuration of application-

specific scheduling policies. In addition, their sophisticated 

scheduling algorithms and feature-rich code base can result in 

significant overhead when executing many short tasks.  

We have designed Falkon, a Fast and Light-weight tasK 

executiON framework, to enable the efficient dispatch and 

execution of many small tasks. To this end, it uses a multi-level 

scheduling strategy to enable separate treatment of resource 

allocation (via conventional schedulers) and task dispatch (via a 

streamlined, minimal-functionality dispatcher). Clients submit 

task requests to a dispatcher, which in turn passes tasks to 

executors. A provisioner is responsible for allocating and de-

allocating resources in response to changing demand; thus, users 

can trade off application execution time and resource utilization. 

Bundling and piggybacking optimizations can reduce further per-

task dispatch cost. 

Microbenchmarks show that Falkon can achieve one to two orders 

of magnitude higher throughput (487 tasks/sec) when compared to 

other batch schedulers. It can sustain high throughput with up to 

54,000 managed executors and can process 2,000,000 tasks in just 

112 minutes, operating reliably even as the queue length grew to 

1,500,000 tasks.  

A “Falkon provider” allows applications coded to the Karajan 

workflow engine and the Swift parallel programming system to 

use Falkon with no modification. When using Swift and Falkon 

together, we demonstrated reductions in end-to-end run time by as 

much as 90% for applications from the astronomy and medical 

fields, when compared to the same applications run over batch 

schedulers. 

Falkon’s novelty consist in its combination of a fast lightweight 

scheduling overlay on top of virtual clusters with the use of grid 

protocols for adaptive resource allocation. This approach allows 

us to achieve higher task throughput than previous systems, while 

also allowing applications to trade off system responsiveness, 

resource utilization, and execution efficiency. 
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