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ABSTRACT Falls have caught great harm to the elderly living alone at home. This paper presents a

novel visual-based fall detection approach by Dual-Channel Feature Integration. The proposed approach

divides the fall event into two parts: falling-state and fallen-state, which describes the fall events from

dynamic and static perspectives. Firstly, the object detection model (Yolo) and the human posture detection

model (OpenPose) are used for preprocessing to obtain key points and the position information of a human

body. Then, a dual-channel sliding window model is designed to extract the dynamic features of the human

body (centroid speed, upper limb velocity) and static features (human external ellipse). After that, MLP

(Multilayer Perceptron) and Random Forest are applied to classify the dynamic and static feature data

separately. Finally, the classification results are combined for fall detection. Experimental results show that

the proposed approach achieves an accuracy of 97.33% and 96.91% when tested with UR Fall Detection

Dataset and Le2i Fall Detection Dataset.

INDEX TERMS Computer vision, fall detection, dual channel, machine learning.

I. INTRODUCTION

With the development of society and the improvement of

medical standards, the aging of the population has become

a global trend. The World Health Organization released a

report in 2015, stating that the number of people over the age

of 60 is expected to double by 2050 [1]. As age increases,

the probability of accidental fall events will increase accord-

ingly [2]. It has been pointed out that the incidence of falls

in the elderly over 65 is 28% to 35%, and the possibility of

falling over the age of 70 is increased to 32% to 42% [3].

These falls mainly caused 90% of hip and wrist fractures and

60% of head injuries[4]. In addition to these injuries, another

consequence of the fall is long-term lying (i.e., staying on the

ground for a long time), with the consequences of dehydra-

tion, hypothermia, and even death. Therefore, how to quickly

and effectively detect falls has excellent social benefits. It can

not only enable the elderly to get attention and treatment

promptly but also reduce the potential harm caused by falls

considerably.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hossein Rahmani .

Many studies have been undertaken in the field of fall

detection. The existing technologies can be classified into

mainly three types: ambient device-based method [5], [6],

wearable sensor-based method [7]–[12] and computer

vision-based method [13]–[24].

An Ambient device-based method detects the fall

event through the sound, vibration, and other signals col-

lected by sensors installed in the room (walls, floors,

etc.). Alwan et al. [5] proposed the working principle and

designed a fall detector based on floor vibration. Similarly,

Zigel et al. [6] proposed a detection approach based on floor

vibration and sound sense. These approaches employed sig-

nal processing and pattern recognition algorithms to dis-

tinguish between fall events and other events. A Wear-

able sensor-based method mainly uses various sensors

to detect human movement speed and sudden changes in

gait to evaluate the balanced state of the human body.

Lee and Tseng [7] proposed an Enhanced Threshold-Based

Fall Detection System Using Smartphones With Built-In

Accelerometers. Montanini et al. [8] proposed a detection

approach based on footwear. They installed a force sensor and

a three-axis acceleration sensor in shoes to analyze the fall

event. Hassan et al. [9] proposed a MEFD (mobile-enabled
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fall detection) framework. In this framework, real-time data

retrieved from an accelerometer sensor on a smartphone are

processed and analyzed by an online system running on

the smartphone itself. Xi et al. [10] proposed a detection

approach based on Surface Electromyography and Plantar

Pressure. Gumaei et al. [11] proposed an effective multi-

sensors-based framework for human activity recognition

using a hybrid deep learning model that combines simple

and gated recurrent neural network units. Kerdjidj et al. [12]

used wearable sensors and compressed sensing to detect fall

events. A Computer vision-based method generally detects

fall events by analyzing the video or image. According to

the number and type of camera being used, it can be further

divided into ways of single camera, multiple cameras [13],

Omni-camera [14], and depth camera [15]. Merrouche and

Baha [16] analyzed the shape of the human body by using a

depth camera. So the head can be tracked and body centroid

can be detected. Lotfi et al. [23] used elliptical models and

projection histograms for feature extraction. Then, a MLP

network is used to classify the features.

It can be found that the ambient device-based method

may sense the pressure of other objects around the target

and generate false alarms so that the detection accuracy will

be affected [24]. In terms of cost, ambient devices are also

expensive. For the wearable sensor-based method, although

it has high accuracy, these devices need to be carried around,

which adds uncertainty to the fall detection.When people for-

get to take the equipment, the method will be invalid. In con-

trast, the video-based method reduces this risk and does not

interfere with the lives of the elderly.With the development of

computing power of edge devices, some current application

scenarios involving video information analysis will prepro-

cess video data locally. After removing the data related to

privacy, the data will be uploaded to the server, which can

solve the problem of privacy leakage caused by video data.

In terms of cost, although video-based fall detection requires

additional equipment (cameras, embedded devices, etc.), this

is tolerable compared to its advantages.With the development

of technology, the price of equipment will also be gradually

decreased. Therefore, the video-based fall detection method

has attracted more and more attention due to its advantages

of non-invasiveness and high accuracy.

Most existing video-based fall detection methods treat the

input video as a series of frames, and fall event is defined

as a sequence of behavior. Then features like the outline of

the person, the relative position of the specific part, speed,

etc. are extracted. These features are combined to train the

classifier. However, the disadvantage of these methods is

the low specificity. In this paper, we propose a new model

for fall detection in video. We found that different features

express different aspects of fall. For example, velocity and

acceleration are more suitable for detecting the process of

falling, while the body’s contours and limbs’ positions are

more suitable for expressing the state after fallen. In this

research, falling and fallen states are defined as two channels

to model the fall event. The objection detection model Yolo

and posture detection model OpenPose are adopted for video

preprocessing. Then, features related to two channels are

extracted within a sliding window and two states are recog-

nized. Finally, the fall event is detected with the combined

result. The main novelties of our method are as follows:
• Falling-state and fallen-state are defined to describe the

fall events from dynamic and static perspectives

• Dual-channel sliding windowmodel (DSW) is proposed

to extract dynamic and static features.

• Extensive experiments are evaluated for testing and ana-

lyzing the model performance.
The rest of the paper is organized as follows: a brief review

of related works is presented in Section II. Section III gives

an overview of the proposed method. Detailed implementa-

tion is described in Section IV, including Preprocessing, Fall

event modeling, State classification, and Fall event detec-

tion. Experimental evaluations are discussed in Section V.

Section VI concludes the paper and suggests opportunities

for future work.

II. RELATED WORK

Existing fall detection methods based on computer vision can

be divided into two categories: traditional features based and

depth features based.

A. TRADITIONAL FEATURES BASED

Debard et al. [17] extracted four features from the bounding

box around the human silhouette to describe a fall. These

features were aspect ratio, fall angle, centre speed, and head

speed. Then, SVM (Support Vector Machine) was used as

the classifier. However, the major drawback is the inadequate

description of human motion by merely using a bounding

box. To overcome this problem, Gunale and Mukherji [18]

utilized an ellipse to fit the physical characteristics of a person

and used KNN (K-NearestNeighbor) for classification. The

accuracy of this approach was 95%. The main problem of

this approach is that the ellipse can only describe the external

features of the human body while some local features are

neglected. Yu et al. [19] combined the elliptical model with

the projection histogram along the elliptical axis to complete

the extraction of the target specific pose. They achieved a

high fall detection rate of 97.08%. Similarly, Yun et al. [20]

detected fall events based on measuring a temporal varia-

tion of pose change and body motion. Features of centroid

velocity, head-to-centroid distance, the histogram of oriented

gradients, and optical flow were computed. It got an accuracy

of 90.6%. Lotfi et al. [23] used the background subtraction

to extract the moving human target and then extracted the

external contour, ellipse, centroid, and other characteristics

of the human body. Finally, these features were fed into a

MLP for fall detection. The test results show a high sensitivity

of 99.52% and a high specificity of 97.38% on the UR Fall

Detection Dataset[30].

B. DEPTH FEATURES BASED

With the development of deep learning in recent years, many

human posture detection models based on Convolutional
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FIGURE 1. The flow diagram of proposed fall detection method.

neural networks (CNN) have been proposed. These models

can extract the key part positions of the human body, and it

provides a new approach for fall detection. Lie et al. [21]

adopted DeeperCut (a 152-layer Residual neural network)

to extract the skeleton coordinate from the 2D image. The

skeleton information composed of 14 key points, which can

depict the outline of the central part of the human body. Then

a recurrent neural network (RNN) with long and short term

memory (LSTM) state units were used to process the keypoint

sequence. This method was suitable for the classification of

video sequences and finally achieved an accuracy of 88.9%.

Huang et al. [22] used the OpenPose model to get 18 key

points of the human body skeleton. Then a VGG-16 network

was used for feature extraction and representation. There was

no specific accuracy of this method on public datasets.

The proposed approach in this paper combines the feature

extraction schemes of the above twomethods, which attempts

to overcome the existing shortcomings.

III. SYSTEM OVERVIEW

This paper proposes amethod for fall event detection in video.

The process of the framework is illustrated in Figure 1. Our

fall detection method includes four main steps: Prepro-

cessing, Fall event modeling, State classification, and

Fall event detection. First, OpenPose and Yolo are used

for preprocessing. The human body is subtracted from the

background and then tracked in successive frames. Mean-

while, the position of the human body is also extracted.

Second, the rate of centroid drop, the speed of the upper

limbs, the location of key points, and the ellipse parameters

of the human body are computed. These features are further

divided into types of dynamic and static, which are used for

describing the human body during the fall event. Two types

of features are recognized in a dual-channel sliding window

of successive frames of video. Third, two classifiers are used

to classify the two types of features independently. At last,

the final fall event detection result is judged by merging the

above two classifiers.

Fall event in the video is complex, and it can be confused

with normal activities for their high similarity in some cases.

Experimental results show that features of different frame

sequences do not have equal importance. For solving this

problem, a novel model is introduced in our method. Fea-

tures are divided into types of dynamic and static, which are

used for describing the falling-state and fallen-state of the

human body. The human body keypoint position extracted

with OpenPose is used to construct static features. At the

same time, the rate of central drop and the speed of the

upper limbs are calculated to construct dynamic features.

Two types of features are extracted independently within a

dual-channel sliding window set in the video. Then MLP

and RandomForest are used to classify falling-state and
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fallen-state. Finally, the final result is judged by the combi-

nation of two classifiers.

IV. SYSTEM IMPLEMENTATION

Step 1. Preprocessing: For representing the fall event effec-

tively, some raw features should be computed. The position,

outline, and key points of the human body are calculated from

input video in the preprocessing step. DeepSort_Yolo and

OpenPose models are adopted in this work. DeepSort_Yolo is

a method that combines multi-target tracking (DeepSort[27])

with target detection (Yolo[28]). It can detect and track the

human body target in consecutive frames of video. OpenPose

is a keypoint detection model built by CMU’s Perceptual

Computing Lab[25], whose purpose is to detect 2D and

3D keypoint coordinates of the human body. In our pre-

processing model, OpenPose and DeepSort_Yolo are used

to achieve detection, tracking, key points extraction of the

human body target in continuous frames. For each frame

of an input video, the rectangular area of human target is

forecasted by DeepSort_Yolo, and the coordinates of human

body key points are calculated by OpenPose (as shown in

Figure 2, including ten parts of the human body: nose,

eye, ear, neck, shoulder, elbow, wrist, hip, knee, ankle). The

raw features of each frame are finally expressed as vector

Pd =[(x0, y0), . . . , (x17, y17), (xul,yul), (xlr , ylr )].

FIGURE 2. Position of human body key points.

The coordinate (xi, yi) corresponds to the ith human body

keypoint, (xul,yul) and (xlr , ylr ) represent the coordinates of

the upper left corner and the lower right corner of human body

target area respectively.

Step 2. Fall Event Modeling: In our model, the fall

event in the video is defined as two states: falling-

state and fallen-state. The falling-state describes the

falling process of the human body, and the fallen-state

describes the appearance of the human body after he lied

down.

Then, feature selection is an essential technique[26], there

are two sets of features selected to represent falling-state and

fallen-state respectively.

FIGURE 3. The position change of the centre of mass in the process of
falling.

A. FALLING-STATE REPRESENTATION

1) CENTROID DROP RATE

As shown in Figure 3, human body centroid is formatted as

the diagonal intersection of the minimum enclosing rectangle

of a human body. The upper left corner coordinate of the

rectangle is defined as (xul, yul), and the lower right corner

coordinate is defined as (xlr , ylr ). The coordinates of the

centroid point (Cent (x) ,Cent (y)) are calculated as follows:

Cent (x) =
xul + xlr

2
(1)

Cent (y) =
yul + ylr

2
(2)

LetCent (yi) represent the vertical coordinate of the human

centroid point in frame i, and 1h represents the height of the

rectangle region outside the human body. The centroid drop

rate (Vc) describes the average moving speed of Cent (yi)

between consecutive frames. Then in 1f frames, the formula

of Vc is as follows:

Vc =

[

Cent
(

yi+1f

)

− Cent (yi)
]

1f ∗1h
(3)

According to our fundamental knowledge of the falling-

state, there is a downward process when people are falling.

Since people are not controlled by themselves during the

fall, the average centroid drop rate will be faster than the

controlled squat, sitting down, bending, and other normal

movements. As shown in Figure 4, the average centroid drop

rate of five common behaviours (walking, sitting, squatting,

falling, lying) are calculated. According to Figure 4, when

people are falling, the curve is different from sitting, lying,

and walking. However, it also can be found that the curve of

the squat is partially similar to the falling-state. Therefore,

relying solely on this feature cannot accurately classify the

fall event and other behaviours. In the next section, the upper

limb velocity will be proposed to solve this problem.

2) UPPER LIMB VELOCITY

For representing the fall event more accurately, new features

need to be defined. We find that the body generally moves

laterally at a faster speed during the falling process. In the

process of falling, the human body is moving like acceler-

ated circular motion with the feet as the centre. Meanwhile,

the movement speed of the upper limb in the x-axis direction

is faster than that in other directions, and the movement range

is also more massive, which leads to drastic variation in
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FIGURE 4. Centroid drop rate of five behaviors. The x axis represents
video frame and the y axis represents the drop speed of centroid.

feature space. Accordingly, the upper limb velocity can be

adopted as a new feature. To ensure stability, six key points,

L_Eye, R_Eye, Nose, Nack, L_Shoulder, and R_Shoulder,

are extracted as references. The average value of the move-

ment velocity of six points in the x-axis direction between

two sampling frames is used to compute upper limb velocity.

Let the horizontal coordinates of the six points of Nack,

L_ Shoulder, R_Shoulder, L_Eye, R_Eye, and Nose on the

j-th frame image be x(0,j)∼x(5,j), respectively, and the upper

limb velocity (Vl) is calculated as follows:

Vl =

5
∑

i=0

(

|x(i,j+1f )−x(i,j)|
1f ∗1w

)

6
(4)

where 1w is the width of the rectangular region outside the

human body, and 1f is the number of frames between two

sampling frames.

Figure 5 (a), (b), and (c) respectively show the upper limb

velocity between three different fall postures and four com-

mon behaviours. According to the figure, when a fall occurs,

the upper limb of a person generally has a relatively apparent

lateral movement, which does not exist when squatting down.

So this feature can distinguish the fall action and the squat

action to a certain extent.

B. FALLEN-STATE REPRESENTATION

1) HUMAN BODY KEYPOINT

OpenPose is a realtime multi-person 2D pose estimation

model, which aims to extract the key points and posture

of multiple people from the image. In this method, a dual-

branch neural network is used for forecasting the confidence

maps of body part locations and the part affinities fields

concurrently[25], then, a greedy inference is used to match

the key points of the human body.

Based on the definition of OpenPose, Figure 6 shows

that 18 2D coordinates are taken advantage of representing

the position of 18 key points of the human body, which

include ten parts of the human body: nose, eye, ear, neck,

FIGURE 5. The velocity of upper limb in five behaviours. The x-axis
represents the video frame, and the y-axis represents the speed of upper
limb.

shoulder, elbow, wrist, hip, knee, ankle. The key points will

be expressed as follows: Kp =[(xi, yi)], where i = 0,1, . . .,17.

2) HUMAN BODY EXTERNAL ELLIPSE

In part A, the external rectangle is used to complete the

delimitation of the human body, which has achieved excellent

results in the area of centroid extraction. However, there are

still some differences between the real shape characteristics

of the rectangle and the human body, which can not accurately

describe the body shape characteristics.

Therefore, an external ellipse, which is closer to the human

body shape, is used to represent the human body’s posture

characteristics. The external ellipse of humans while standing

is displayed in Figure 7(a), and the external ellipses during
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FIGURE 6. Human structure extracted by OpenPose.

FIGURE 7. Human body external ellipse.

FIGURE 8. Parameters of ellipse.

falling are illustrated in Figure 7(b), (c), and (d). The image

centre moment method [23] is used for fitting the ellipse. The

fitting process and formula are as follows:

As Figure 8 shows, the ellipse can be represented by four

parameters. (1) Ellipse centre position coordinate O(xc, yc),

(2) The angle between the long axis of the ellipse and the

vertical direction θ , (3) The length of the elliptical semi-major

axis el , (4) The length es of the semi-minor axis of the ellipse.

First, the definition of image moment is as follows:

pab =

∫ ∞

−∞

∫ ∞

−∞

xaybdxdy (5)

where pab is the a + b moment of the image.

The centre moment of the ellipse as follows:

µab =

∫ ∞

−∞

∫ ∞

−∞

(x − xc)
a (y− yc)

b d(x − xc)d(y− yc)

(6)

Next, the centre point of the ellipse is defined as the cen-

troid of the human body, and the pixel coordinates within the

range of the human body target area are (xi, yi), the µ11, µ02,

and µ20 represent the second-order central moment of the

image:

µ11 =
∑

(xi − xc)(yi − yc) (7)

µ02 =
∑

(yi − yc)(yi − yc) (8)

µ20 =
∑

(xi − xc)(xi − xc) (9)

The angle (θ ) between the major axis and the horizontal

axis gives the ellipse orientation and can be computed with

the second-order central moments. The formula is as follows:

θ =
1

2
arctan

(

2µ11

µ20 − µ02

)

(10)

The eigenvalues Imax and Imin are given by:

Imax =
µ20 + µ02 +

√

(µ20 − µ02)
2 + 4µ2

11

2
(11)

Imin =
µ20 + µ02 −

√

(µ20 − µ02)
2 + 4µ2

11

2
(12)

Then the semi-magor axis el and the semi-minor axis es of

the ellipse can be expressed as:

el =

(

4

π

)
1
4
[

I3max

Imin

]

1
8

(13)

es =

(

4

π

)
1
4

[

I3min
Imax

]
1
8

(14)

C. FEATURE EXTRACTION BY SLIDING WINDOW

For realizing the feature extraction based on the sequence,

the new features need to be extracted from the video continu-

ously, and the old features also need to be removed from the

sequence in real-time. The sliding window model can meet

this demand. In the sliding window model, the system uses a

fixed size storage space to store data with a certain time series

(the storage space is called window). Over time, the window

moves directionally, new data is added to the head of the

window, and the data at the tail is pushed out. This process

will continue until the window traverses all data. A sliding

window model is composed of two parameters Wl and Vw.

Where Wl is the length of the window, Vw is the moving

speed of the window on the data. In our model, the features

of the falling-state and fallen-state need to be extracted and

determined independently. To meet this demand, we define a

dual-channel parallel sliding window, which consists of two

branches called falling-state detection window and fallen-

state detection window.

The falling-state detection window is used to extract the

falling-state (Pf ), which represented by the Centroid drop rate

(Vc) and the Upper limb velocity (Vl) defined in part A. The

window is defined as Pdw(Wl,Vw = 1), which means the

initial window contains the feature information of frames 1

to Wl . After sliding, the window will contain the feature

information of frames 2 to (Wl + 1), and so on until the end

of the video segment. In this process, Vc and Vl between two

adjacent frames in the windowwill be calculated in real-time.

The results of falling-state extraction can be expressed as a

vector Pf = [(V c1,Vl1), (Vc2,Vl2) , . . . , (Vcn,V ln)], where
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n = Wl , Vci and Vli corresponds to the Vc and Vl of the i-th

window.

For detecting the fallen-state (Sf ) feature which defined

in part B, the fallen-state detection window is defined as

Sdw(Wl,Vw = 1), whose input is the human key points

of each frame, and output is the 18 standardized key points

and 4 ellipse parameters (formula 5-14) of the last frame in

the window. The final output of this step will be expressed

as Sf = [ (x0, y0) , (x1, y1) , . . . , (x17, y17) ,O, θ,el/es],

where coordinate (xi, yi) corresponds to the ith human body

keypoint.

Step 3. State Classification: In Step 2, the falling-state and

fallen-state are finally expressed as two vectors Pf and Sf ,

which will be fed into two classifiers to detect whether a

falling-state or fallen-state happens. The vector Pf is com-

posed of the relevant velocity features in each frame in the

sliding window Pdw, which describes the velocity features

in the range of Wl . The vector Sf represents the human state

features in the last frame of the sliding window Sdw, which

describes the current state of the human body after the end of a

window. In order to detect the falling-state and fallen-state,Pf
and Sf are fed as input to a 5-layerMLPNeural Network and a

RandomForest, respectively. The classification results can be

expressed as Pc ∈ {0, 1} and Sc ∈ {0, 1}, where 0 indicates

that the condition has not occurred, and 1 suggests that the

condition has occurred.

Step 4. Fall Event Detection: In the final fall detection,

the classification results Pc and Sc are combined to detect

whether the fall event happened. A fall detection window

Fdw(Wl,Vw = 1) is used to realize the temporary storage

of Sc and Pc sequences. In a range ofWl , when a falling-state

is detected, the state of the human body in the last frame of the

current window will be judged at the same time. Therefore,

the fall detection result Fc ∈ {0, 1} will be expressed as:

Fc =











1 if ScWl = 1 and
Wl−1
∑

i=1

Pci ≥ 1

0 Others

(15)

ScWl indicates the value of theWl-th Sc in the current Fdw,

and Pci indicates the value of the i-th Pc in the current Fdw.

V. EXPERIMENTAL PROTOCOL AND RESULTS

A. DATA DESCRIPTION

In order to prove the validity of ourmethod, experiments were

conducted on three public databases: Fall Detection Dataset,

Le2i Fall Detection Dataset, and UR Fall Detection Dataset.

The Fall Detection Dataset[31] consists of 21499

320∗240 RGB and depth images that show the activate of

humans at different angles and different lighting conditions.

According to the state of the human, these images are marked

in six categories: Standing, Sitting, Lying, Bending, Crawl-

ing, and Empty.

The Le2i Fall Detection Dataset [29] consists of

191 human activity videos in four scenes: Office, Home,

Coffee Room, and Lecture Room. The format of the video

is 320∗240, 25frame/s.

The UR Fall Detection Dataset [30] consists of 70 depth

video and corresponding RGB video (the image format is

1920∗1080), which contains 30 fall videos and 40 daily

activity videos from different angles and different lighting

conditions.

During the training, we process the original dataset to fit

our model. 23160 frames are selected from the dataset and

preprocessed. According to the length of the window, the

generated data vector are grouped. The dataset was relabeled,

with the group containing the fall event marked as fall and

the other groups marked as non-fall. The generated dataset is

taken as our training dataset.

B. PERFORMANCE METRICS

When detecting a video sequence, four possible cases are

corresponding to four valid parameters:

True positive (TP): a video segment contains a fall, and is

correctly detected as a fall.

False positive (FP): a video segment does not contain falls,

but is incorrectly detects as a fall.

True negative(TN): a video segment does not contain falls,

and is correctly detects as non-fall.

False negative(FN): a video segment contains a fall, but is

incorrectly detected as not a fall.

Based on these four parameters, five indicators, including

sensitivity, specificity, accuracy, precision and F-score, are

defined to measure the reliability of fall detection method,

which are calculated as follows:

Sensitivity =
TP

TP + FN
(16)

Specificity =
TN

TN + FP
(17)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(18)

Precision =
TP

TP+FP
(19)

F- Score =
2TP

2TP+FP + FN
(20)

In the following classifier selection and model evaluation,

these five indicators will be used as performance indica-

tors. Among them, Sensitivity describes the sensitivity of

the model to detect falls. Specificity describes the ability

of the model to prevent misjudgment. The higher this index

is, the lower the probability that the model misjudges other

behaviors as falls. These two parameters can show the char-

acteristics of the classificationmodel more intuitively, so they

are used as a relatively more important reference standard in

the selection process of the classifier.

C. WINDOW LENGTH COMPARISON

In the sliding window model, the setting of window length

(Wl) may affect the classification results. We designed a set

of experiments to verify the classification effect of window
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TABLE 1. The falling-state accuracy of different window lengths.

length from 5 to 30 frames. In the experiment, the training

data set is divided into 10 pieces, each of which is 2316 pic-

tures with the format of 320 ∗ 240. The data are grouped

according to the window size and tested on theMLP classifier

with the method of ten-fold cross-validation. The experimen-

tal results are shown in Table 1.

According to the experimental results, when the window

length is 20, the best classification accuracy is achieved.

D. FALLING-STATE CLASSIFIER COMPARISON

Artificial neural networks adopt more than one neuron to

handle the received information, and are effectivemethods for

solving many optimization and classification problems [32].

Table 2 illustrates the comparison between the MLP Neu-

ral Network with some frequently used classifiers on the

falling-state classification. In the MLP, the total layer is set

to 5; the input layer includes 40 nodes because the dimension

of input is 40, the nodes of the hidden layer are set to 240,

60, and 8. During training, ReLU is used as the activation

function, Cross-Entropy is selected as the loss function, and

Stochastic Gradient Descent is used as the optimizer. During

the experiment, the window length was set to 20 frames that

achieved the best results in the previous step. The training

set contains 1042 ∗ 20 samples, and the test set contains

116 ∗ 20 samples, a ten-fold cross-validation method is used

for estimating.

The results in Table 2 confirm that in the falling-state clas-

sification, the MLP classifier achieves the best performance

among all classifiers with 98.28% accuracy, 98.26% sensitiv-

ity, and 98.07% specificity. Compared with KNN, which gets

the same sensitivity, MLP has a great advantage in specificity,

which means that the probability of MLP misjudging normal

human activities as falls is very low.

E. FALLEN-STATE CLASSIFIER COMPARISON

Table 3 shows the comparison between the RandomForest

with other machine learning methods on the fallen-state clas-

sification. In the RandomForest, the number of features is set

to the max to select all the features, and the estimator number

is set to 120. During the experiment, the window length is set

to 20 frames, and the ten-fold cross-validation method is used

to estimate. The training set contains 1042 ∗ 20 samples, and

the test set contains 116 ∗ 20samples.

As shown in Table 3, RandomForest achieved the best

score (96.98% accuracy, 95.98% sensitivity, 97.88 specificity,

96.73% precision, and 96.8% F-Score) in fallen-state classi-

fication.

F. FALL EVENT DETECTION RESULTS

To evaluate the reliability of the proposed dual-channel fea-

ture integration model, we tested the model on the Le2i

Fall Detection Dataset and UR Fall Detection Dataset which

are commonly used in the fall detection field. The detailed

parameters of the two datasets are shown in Section V, Part A.

During the test, the window length (Wl) is set as 20, the MLP

is used as the falling-state classifier, and the RandomForest is

used as the fallen-state classifier.

Table 4 shows the experimental results of the proposed

method and three other computer vision-based methods on

TABLE 2. The accuracy of different classifiers in falling-state detection.

TABLE 3. The accuracy of different classifiers in fallen-state detection.
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TABLE 4. Fall Event Detection Results between our method and the current commonly used methods on the Le2i Fall Detection Dataset.

TABLE 5. Final test results between our method and the current commonly used methods on the UR Fall Detection Dataset.

the Le2i Fall Detection Dataset. The data show that the

proposed method has advantages in some parameters. The

only drawback is that the Sensitivity value of the method

is slightly inferior to the Consecutive-frame voting method,

which means that the detection ability of our method still

needs to be improved. From another perspective, our method

has a more significant advantage in Specificity, which means

that our method is less likely to misjudge other daily behav-

iors as falls.

Table 5 shows the experimental results of the proposed

method and four other computer vision-based methods on the

UR Fall Detection Dataset. The data show that compared with

other methods, our method has certain advantages in overall

Accuracy andmakes a better balance between the twometrics

of Sensitivity and Specificity. At the same time, it also gets a

higher Precision.

In conclusion, on the basis of ensuring Sensitivity, our

method improves Specificity to a certain extent and generally

maintains high Accuracy and Precision. This means that in

the process of fall detection, our method can sensitively iden-

tify the occurrence of fall behavior and reduce the possibility

of misidentifying other daily behaviors as falls.

G. MODEL EFFICIENCY

Fall detection requires a certain real-time, so the execution

speed is also a necessary standard to measure the effective-

ness of a model. For this reason, we tested the execution

speed of the model on our device. Table 6 shows the average

processing time of a frame in different stages.

As shown in Table 6, the preprocessing stage takes the

longest time, and the feature extraction and classification

stage takes 0.48ms and 2.78ms each frame. Finally, we get

the result of 35.80ms/frame, which means that our model can

process 27.93 frame images in each second on average. This

execution speed can basically meet the real-time processing

of videos which taken by 25-30 fps conventional cameras.

In the preprocessing, two deep convolution neural network

models, OpenPose and Yolo, are used to process the image.

TABLE 6. The time spent for processing a frame in different stages.

Their large scale model also brings a large amount of com-

putation, which takes a relatively long time. In the process

of feature extraction, two channels are used to complete the

calculation of the two types of features defined in Section IV,

which only involves a few basic operations, so the efficiency

is high. In the classification part, we use MLP and Ran-

domForest to classify the extracted feature vectors Pf and

Sf . Among them, the MLP neural network designed by us

has only three hidden layers, 240, 60, and 8 nodes respec-

tively, which means that the scale of the trained model is

not large. The random forest model contains 20840 samples,

each sample is a 40 dimensional vector (Sf ), which is not a

large amount of computation. Therefore, the time spent in the

classification part is relatively short.

Then, we compared our model with the execution

efficiency of several typical computer vision-based fall

detection methods. As shown in Table 7, the execu-

tion efficiency of our method is seemingly better than

two different depth feature-based methods (Lie et al. and

Huang et al.), a background subtraction-based method

(Wang et al.), and a Multi-camera shape matching method

(Rougier et al.).

H. TESTING ENVIRONMENT

In terms of hardware, the experiment runs on a server with

Intel Core i5 CPU, Nvidia GTX1080 GPU, and 32g RAM.

In terms of software, the operating system is Ubuntu 18.04,

and the development language is Python 3.6.
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TABLE 7. Comparison of our method with several common methods in
execution speed.

VI. CONCLUSIONS AND FUTURE WORK

The work presented in this paper is mainly focused on inves-

tigating an accurate and efficient fall detection for older

adults based on computer vision techniques. The approach

presented here employs the preprocessing model combined

with Yolo and OpenPose to obtain key points and the position

information of the human body and then extract two types

of features which are falling-state and fallen-state from the

preprocessed data. In the detection of the falling-state, the

speed change of the human body part is the main feature.

Then a MLP is used to classify the feature sequence. In the

detection of the fallen-state, the features are the human body

keypoint that depict human limbs’ position and human exter-

nal ellipse that describe the external contour features of the

human body. These features are then fed into a RandomForest

for classification. Finally, the two classification results were

combined to obtain the fall detection results.

Experimental results show that the proposed approach is

universal. The approach achieves 96.91% accuracy on the

Le2i Fall Detection Dataset and achieves 97.33% accuracy

on the UR Fall Detection Dataset. In addition, our method

achieves a good balance between sensitivity and specificity.

This result illustrates that the combination of falling-state and

fallen-state features is significant. The falling-state features

make contribution to identify sudden changes in the shape

of the human body. The fallen-state features can identify the

state of the human body lying on the ground, and reduce

the misjudgment of similar actions, such as bending, down.

The fusion of multiple features makes the judgment of falls

more reasonable and accurate.

In the future, we will focus on fall detection in more

complex environments, such as outdoor fall detection, crowd

stampede event detection. At the same time, our model will

be extended to identify other dangerous behaviours that may

occur in the life of the elderly. Furthermore, we hope to

develop a practical application of the fall detection system

in combination with the Internet of things.
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