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1. Introduction

Due to increases in life expectancy, the number of people aged 65 and older is expected

to nearly triple in the next 35 years, reaching about 1.5 billion globally in 2050. A large

concern for the elderly is that of falling. For people who live in their own homes or

apartments, about 30 percent of those 65 and older fall each year. In residential care

facilities, the number is higher: about half of older people fall at least once a year. Moreover,

falls are the leading cause of injury-related deaths among people 65 and older [1, 2]. While

the most desirable goal is to prevent falling, the next best scenario is to alert caregivers

immediately if someone has fallen so that help may arrive quickly.

Fall detection is largely divided into two categories: wearable sensors and environment

monitoring. Proposed technology for wearable devices uses accelerometers and gyroscopes

to detect a person’s posture and rate of vertical motion [3], [4]. Other wearable devices

require a person to push a button to call for help after falling. To be completely effective,

however, these devices must be worn at all times, including when getting up at night to

go to the bathroom, which is an unrealistic expectation. Of people over 90 who own an

emergency call-button system and fall, one cohort study reports that 80% do not press the

button, typically because they did not wear the call button and thus it is out of reach after

the fall [5].

Ideally, there would be no need for the inconvenience of having to wear (and remember

to wear) a device. Instead, the environment itself would be able to detect if someone

has fallen and send an alert. Work in this area includes microphone arrays, Doppler

radar systems, and camera-based systems that process the image data to detect falls [6],

[7], [8]. More recently, RF-based device-free localization (RF-DFL) has been successfully

employed to accurately localize a person in a domestic environment over several days [9].

This technology uses measurements of the radio signal strength to determine a person’s 2-D



4

coordinate in the area in which the static wireless network is deployed without requiring

the person to wear any device [10, 11].

One type of RF-DFL algorithm is called radio tomographic imaging (RTI), which exploits

the shadowing losses experienced by links in an RF sensor network to create an image map

of the locations of people and objects that have moved [12]. In experiments using RTI,

an array of sensor nodes positioned in a single plane approximately one meter above the

floor suffices to determine a person’s horizontal location in an environment. Such networks

have been shown to locate a person with an error as low as 0.10 m [13]. The primary

advantage of such a system is that the person being located does not need to carry or wear

a device, which makes this technology suitable for assisted living applications. In contrast

to a Doppler radar system, this technology can localize a person who is stationary and can

detect motion perpendicular to the direction of radio wave propagation.

This paper develops and demonstrates an RF-based device-free system which uses three-

dimensional radio tomography and state estimation methods to detect falling. An array

of RF sensor nodes configured in two parallel horizontal planes is deployed in a living

environment and the received signal strength (RSS) data is processed to construct a 3D

image of the shadowing losses caused by the subject being in various positions and poses.

A hidden Markov model is used to model which pose a person is in at each time, and a

forward algorithm estimates the current state. The time interval between the “standing”

state and the “lying down” state is used to determine if the transition between the two

states occurs quickly enough to indicate that a potentially dangerous fall has happened. A

test data set collected via experiment in an uncluttered room achieved 100% reliability in

fall detection with no false alarms, demonstrating that RTI is a promising technology to

employ in detecting falls.
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2. Methods

We assume a network of N RF sensor nodes is deployed in a home or indoor area to be

monitored for falls. We denote the coordinate of sensor n as zn ∈ R
3, where the sensors are

assumed to be on one of two parallel planes at different heights. We assume that any pair of

nodes can communicate, and each link is denoted by l = (txl, rxl), where txl ∈ {1, . . . , N}

is the transmitting node and rxl ∈ {1, . . . , N} is the receiving node. We collect data about

the RSS of each link on each of C channels, where rl,c is the RSS value in dB for link l on

channel c.

In general, a person crossing the line between nodes na and nb will change the RSS

of the link l due to the shadowing of the line-of-sight path. In multipath environments,

because the received signal is a phasor sum of multipath components, the shadowing of

any one path may either decrease or increase the phasor sum that determines the RSS.

By measuring on multiple channels, we can increase our chances of finding one channel in

an anti-fade condition [14], which tends to decrease in signal strength only when a person

blocks the line-of-sight path [13].

We follow the procedure in [13] to estimate “link attenuation” on link l, that is, yl.

This procedure can be briefly described as follows. We first compute the transmit-power

normalized version of RSS (by correcting for differences in transmit power as a function

of channel c). Then we compute the change in transmit-power normalized RSS compared

to a reference time (when no one was in the area), which is denoted ∆rl,c. Finally, we set

yl to be the average change in link attenuation in the m < C channels with the highest

average transmit-power normalized RSS [13].

We model the vector of link attenuation, y = [y1, . . . , yL]
T , as

y = Wx+ n (1)
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where x = [x1, . . . , xJ ]
T and xj is the attenuation in the jth voxel (of which there are J

arranged in a grid), W is a weight matrix for which Wlj describes the impact of voxel j’s

attenuation on link l, and n = [n1, . . . , nL]
T is the noise vector [12]. We denote the center

coordinate of voxel j as vj , which in general, is in R
3. Note that Wlj is a function of the

coordinates of the transmitter and receiver of link l, that is, ztxl
and zrxl

, and the voxel

coordinate vj . We use the ellipse model in [13].

In RTI, we measure y and estimate x, using a regularization method to ensure a solution

[15]. We refer to the image estimate as x̂, and we use the regularized least-squares approach

described in [13]. We define g(x) =
∑

i x
2
i to describe the “image intensity” of image x.

2.1. Dual-Level RTI. To detect falling, our system requires data about a person’s pose,

accomplished by deploying the sensor network in two levels, as in Fig. 1(a). The human

torso causes more attenuation than the ankles, so when a person is standing, we expect

more attenuation on links between nodes in the upper layer and less in the lower layer. In

contrast, a person lying on the floor causes more shadowing on the lower layer and very

little on the upper layer.

A simple means to determine if someone is standing is to process the data as two separate

layers of 2-D RTI images corresponding to the two levels of nodes. We define two sets of

sensors, where Lu and Ll indicate links between sensors in the upper and lower sets,

respectively. In dual-level RTI we separate measurements: we consider {rl,c} for all links

l ∈ L2
u to be “upper layer link measurements”, and the set {rl,c[k]} for all links l ∈ L2

l to be

“lower layer link measurements”. We use the upper layer link measurements to generate

the upper layer image that we denote x̂u, and the lower layer link measurements to generate

the lower layer image x̂l. In dual-level RTI, the images are formed using 2-D pixel and

node coordinates, as is done in published work in RTI [15, 16, 13]. In other words, two

sets of data are processed separately to generate two separate images corresponding to the
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attenuation measured on two levels, and measurements on links between one upper layer

node and one lower layer node, or vice versa, are ignored.

From each image, we calculate the image intensities gu = g(x̂u) and gl = g(x̂l). A fall

is indicated when gl shows a rapid increase ∆g over time ∆k, while gu shows a decrease.

Experimental results for this configuration are shown in Section 3.

2.2. 3-D RTI. The potential limitation with the dual-level RTI approach is it ignores data

from the diagonal cross links in the network, which might provide additional information

about a person’s vertical position. The alternative method we propose is to create a full

3-D RTI image by taking into account all the links in the network, where nodes and voxels

have three-dimensional coordinates zn and vj , respectively. In 3-D RTI, we continue to

use the weight model of [13], with the modification that the weight on link l is zero for

any pixel j outside of the (3-D) ellipsoid with ztxl
and zrxl

as foci, rather than simply the

(2-D) ellipse.

From the RTI estimate x̂, which contains the attenuation in each voxel in the 3-D grid,

we view the output as H separate horizontal layers, denoting the hth horizontal layer of

the 3D RTI estimate as x̂(h).

The orientation of a human body within an RF sensor network can now be determined

with greater precision by considering the total attenuation on each of theH layers, achieved

by summing up the attenuation values for all the voxels on each layer. This provides a

1xH vector g of normalized values, where g0(k) represents the bottom layer and gH−1(k)

represents the top layer at each time k.

2.3. Hidden Markov Model. We assume that a person present in the environment may

be in one of three vertical positions in a discrete set of poses S. These positions, which

can be thought of as a person’s vertical state, are: 1,“lying down,” which corresponds to

the subject lying on the floor; 2,“mid-position,” which includes lying on a bed, sitting in a
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chair, bending over, or crouching down; and 3, “standing,” which corresponds to a person

either standing still or walking around the environment. Thus, S = {1, 2, 3}.

To detect falls, we are primarily concerned with a person’s motion between the standing

and lying down states. We include the mid-position state because people spend a large

fraction of their time sitting. Not having such a state would force the estimation algorithm

to choose between standing or lying down, which would often result in error. In addition,

the mid-position state provides a transitional state between standing and lying down, and

thus provides a means to distinguish falls from purposeful, slow transitions to lying down.

The model is a “hidden Markov model” (HMM) because the true position state cannot

be observed directly, and instead attenuation per level data is used as a noisy observation

that differs by state. To be specific, we must specify the distribution of the measurement g

conditioned on the true state s, that is, f(g|s). In this paper, we model the measurement

vector g as having a multivariate generalized Gaussian distribution (GGD) [17]. This model

says that, given that the person is in state s ∈ S,

f(g|s) ∝ exp

{

−
1

2

[

(g − µs)
TC−1

g (g − µs)
]β
}

(2)

where β is a shape parameter, µs is the mean of g given a person is in state s, and Cg

is the covariance matrix for vector g. A shape parameter of β = 1 results in a Gaussian

distribution, while 0 < β < 1 results in heavier tails than the Gaussian distribution. The

GGD with β < 1, as opposed to the Gaussian distribution, allows more flexibility to account

for the wide variability observed in g with different people, and with different heights.

Further, the HMM assumes that transitions represent a Markov chain, that is, future

states are independent of the past state given the present state. We assign a transition

probability matrix P that is assumed known a priori, where Pij is the one-step probability

of transition from state i to state j. We then use the forward algorithm to determine

the probability pi[k] a person being in state i at time k, for each of the three states and
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each time k [18]. We choose the maximum a posteriori estimate, that is, the state with

maximum probability, ŝ[k] = argmaxi pi[k].

2.4. Detection. In general, we would like to know how quickly a person transitions from

one state to another. In this paper, we define a fall as the transition between standing up

and lying on the floor, where the transition is shorter than a certain threshold time, δ. We

incorporate an extra degree of reliability by first ensuring the person was in a “standing”

state before a “lying down” state was detected. At any time k, the system determines that

the person is standing with a high degree of certainty if p3(k) is greater than 1− ǫ, where ǫ

is a small positive value. This helps avoid errors due to noise, and helps distinguish states

in transition, such as during a slower downward motion correlating with a controlled action

of lying down, when p3(k) is the maximum of the three states by a small margin just before

a transition to s2 and then s1, which could occur within time δ.

We define k3 as the most recent time k when p3[k] > 1− ǫ, indicating standing, and k1

as the first time k > k3 when ŝ[k] = 1, indicating lying down. The system detects a fall

when k1 − k3 ≤ δ.

3. Experiments

A two-level network of 24 RF sensor nodes was set up in a living room in a 3.0 m x 3.0

m arrangement shown in Fig. 1(b). The sensor nodes on the lower level were placed 17 cm

from the floor and those on the upper level were placed directly above at a height of 140

cm, as shown in Fig. 3, where the height is taken as the position of the node’s antenna.

This places the top level of nodes at a height near the upper part of the torso for most

people in the U.S. [19].

The sensor nodes are USB dongle nodes, which use a Texas Instruments CC2531 System-

on-Chip with an IEEE 802.15.4 compliant radio operating in the 2.4 GHz band [20]. Fig. 2

shows one of the nodes attached to a battery pack, which is how they are typically powered
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during short-term experiments. The nodes transmit their measured data to a base-station

node which forwards the data to a laptop for processing and storage. We use a TDMA

protocol and channel-switching scheme as described in [21]. Each transmission takes ap-

proximately 3.1 ms, so in an experiment employing 24 nodes the total cycle length is 74

ms, allowing for 3.4 measurements per second over four channels.
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Figure 1. Nodes are deployed in two levels at locations of • in (b). In (a),
dual-level RTI only uses links a and b, while 3-D RTI also includes links c
and d.

Figure 2. TI CC2531 “USB dongle” nodes used in experimental tests.
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140 cm

17 cm

Figure 3. Two of the node stands used during the experiments.

We conducted a series of experiments 40–55 s in duration in which a subject entered the

network and performed various pre-arranged motions, which included walking, sitting on

the floor, bending down, sitting in a chair, lying down, and two types of falling motion to

mimic tripping and crumpling to the floor. Two subjects participated in the experiment and

each set of nine different motions was performed three times, for a total of 54 experiments.

A thick foam pad on the floor helped to cushion the subject’s fall, allowing for a realistic

falling motion that occurred within about one second. The timing of all the movements

was determined beforehand so that the data could later be compared to the actual timing

of the motions.

4. Results

We process the data from the 54 experiments described in Section 3. When we process

the data using dual-level RTI as described in Section 2.1, an upper and lower image are

generated. We define the image intensity g, which we use to approximate a person’s vertical
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position. When a person is standing, the average image intensity for each layer will remain

constant, but as the person lies down or falls, the value for the lower layer will increase,

while that for the upper layer will decrease. Fig. 4 shows the difference in the rate of

change of image intensity for experiments involving lying down and falling.
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Figure 4. Image intensity for two experiments using a two-level network.
In (a), the subject lies down at approximately 25 s, while in (b) the subject
falls at approximately 30 s.

However, this system cannot adequately distinguish between “lying down” and being in

several of the “mid positions,” which is necessary for detecting falling. The three pairs of

RTI images in Fig. 5 illustrate the difficulty here. In Fig. 5(a) the person is standing up

and the top layer shows a larger image intensity than the bottom layer, since a person’s

torso causes more attenuation in the RF links than the ankles. In Fig. 5(c) the person is

lying down, indicated by the greater amount of attenuation in the bottom layer. However,

there is significant overlap between these images and the data from the “mid position”

case (crouching down in this instance), which is shown in Fig. 5(b). For this reason,

the dual-level RTI approach proved inadequate, yielding an unacceptable number of false

positives.

Processing the data using 3-D RTI and viewing the output as five layers, as described

in Section 2.2, yields the additional information needed for fall detection, as can be seen
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from the RTI images in Fig. 6. Each of the three sets, shown in Fig. 6 (a), (b), and (c),

shows the same position for the corresponding dual-level images, captured at the same time

during the experiment. Here, we can clearly distinguish the differences between standing,

mid-position, and lying down, suggesting that 3-D RTI provides the information necessary

for our system.
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Figure 5. Dual-level RTI estimates for (a) standing, (b) mid-position, and
(c) lying down poses. Red is highest attenuation, and blue is lowest. Coor-
dinates are in meters.

The data can also be visualized so as to create a three dimensional figure as in Fig. 7, in

which each layer is represented as a cylinder, with the radius of each cylinder proportional

to the image intensity value for that layer. To keep the cylinders aligned along a common

vertical axis, a weighted average of the horizontal position is obtained and used as the center

axis for all the cylinders. The top layer is replaced with a spherical shape to produce a

more human-like image.

The transition probability matrix, Pij , which contains the probabilities of going from

state i to state j, is created based on our educated guess about how often people change

state. Typically, transitions happen with low probability because we only infrequently
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Figure 6. Five-layers of RTI estimates when using 3D RTI for (a) standing,
(b) mid-position, and (c) lying down poses. Red is highest attenuation, and
blue is lowest. Coordinates are in meters.

change between sitting, standing, and lying down in the course of an average day. Thus

Pij for i 6= j are typically low. Table 1 shows the transition probability matrix used in the

HMM for these experiments.
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Figure 7. A three-dimensional representation of a person in the network
can be created from the 3D RTI data.

From To Pose:

Pose: Lying Down Mid-Position Standing

Lying Down 0.99900 0.00095 0.00005
Mid-Position 0.00050 0.99900 0.00050
Standing 0.00005 0.00095 0.99900

Table 1. Transition probability matrix

To generate the covariance matrix Cg and conditional means µs for s = {1, 2, 3} needed

in f(g|s) as described in (2), we first gather training data representing the three states in

the model. For the results shown in this paper, we used data from one subject’s set of

experiments as a training set to generate the model, then used the data from the second

subject as the test set. We use a value of β = 0.4 in (2).

We then run the forward algorithm and the fall detection algorithm as described in

Section 2.4. In general, the system can indicate a false positive in two ways: 1) The

Markov model incorrectly determines that the person is lying down, perhaps due to noise,

and this state occurs within the specified δ after a state of standing is detected; or 2) The
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system correctly determines that the person is lying down after a state of standing was

detected, but δ was set too long, so that even a controlled action of lying down appears as

a fall.

We expect that when δ is set too low we will not detect any falls, because a person

cannot make the transition between standing and lying down quickly enough. In contrast,

as mentioned above, when δ is set too large the system will indicate false positives, though

it will correctly detect all the actual falls. To find the optimal value of δ, we adjust its

value between two extremes while processing the data for all the tests, providing us with

the rates of error for the different values. Fig. 8 shows the error rate for a range of δ values,

both for the number of falls not detected and the number of false positives. Note that this

chart includes only the experiments in which the subject either sat on the floor, lay down,

or fell—that is, those in which the person went from a “standing” state to a “lying down”

state (here, our model considers sitting on the floor equivalent to lying down). Experiments

in which the person only went into a “mid-position” pose are of less interest, as they offer

no direct comparison between falling to the floor and a controlled action of lying down. In

addition, these “mid-position” experiments indicated no false positives regarding falls.

With this set of data, we find a range for δ between 1.26 s and 2.15 s in which the

system achieves optimal results. We caution that this 100% reliability rate is for a limited

set of experiments in a single-room sensor network. However, this approach demonstrates

the possibility of using 3-D RTI to detect falling, and offers a procedure for optimizing the

system’s parameters.

5. Conclusion

In this paper we present a proof-of-concept RF-based fall detection system that does not

require the user to wear any device. Instead, a two-level array of RF sensor nodes deployed

in an indoor environment is used to determine the vertical position and motion of a person

inside the network, based on the RSS data measured by the nodes. A forward algorithm
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Figure 8. As the value of δ increases, the number of missed detections
decreases, while the number of false positives increases.

uses the attenuation on each layer of a 3-D RTI image to estimate the current pose of

the person. The system uses the time between a state of “standing” and “lying down”

to detect a fall. In experiments conducted in an uncluttered environment, the system is

able to accurately detect falling without error, suggesting the viability for such a system

in elder care situations.

Future work will focus on adapting the system to larger, cluttered environments, with

longer experiments involving a greater variety of motions. Running the experiments with

more people who represent a wider range of body types will help ensure that the system

can recognize falling in any type of adult. The choice of models and parameters could be

further studied to further optimize performance and reliability.
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