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Abstract—We present the design and implementation of a low-
cost, accurate and non-invasive wireless fall detection system
utilising commercial off-the-shelf (COTS) 802.11n WLAN network
interface cards (NICs). The system utilises the channel state
information (CSI) of the wireless channel between a transmitter
and a receiver. Notably, in addition to the CSI amplitude, the
proposed system exploits the phase difference over 2 receiving
antennas to detect patterns uniquely attributed to a human falling.
Our extensive experimental results show that the CSI phase
difference is a more granular measure at 5GHz rather than
the amplitude. The proposed method for fall detection consists
of two stages. In the first stage, we quickly segment two types
of actions, fall-like activities and falling activities to reduce the
computational power required. In the second stage, we build a
classification algorithm with newly defined features to detect three
types of falls, namely walking-falls, standing-falls and sitting-falls.
The concept of a sitting-fall is introduced whereby a person falls
as they are standing up or sitting down. This is much more subtle
than a walking-fall or standing-fall. To this end we introduce new
features for signal classification such as the velocity of change
of the standard deviation of the CSI phase difference. We also
improve on existing features such as TimeLag proposed in [1].
We carry out extensive experiments to evaluate the performance
of the proposed fall detection system. Particularly, the results
demonstrate a balanced accuracy of 96% for the proposed system,
compared to 91% for the top state-of-the-art solution [1].

Index Terms—Fall detection, channel state information (CSI),
activity classification, Wi-Fi, phase difference

I. INTRODUCTION

Falls are one of the leading causes of fatal and non-fatal

injuries especially for elderly people in today’s society. Quick

response is vital to reducing the long-term effects on the victim

physically, emotionally and mentally [2], [3]. Falls, especially

among the elderly, place a severe strain on health and financial

systems around the world costing the US healthcare system

$50bn in 2015 [4].

Over 50 % of falls for the 65+ age group (1/3 experience a

fall at least once a year) occur in their home so a solution that

is cheap, accurate, privacy-focused and easily installed, is

needed [3], [4]. Falls can have great effects on elderly people

and the fear induced in a fall victim post-treatment can deem

them unable to live independently in the future [5].

There are a number of solutions on the commercial market

today which can be divided into a broad number of categories

such as wearables, visual devices and ambient environment

sensors. Products on the market in these categories include

the Apple Watch, cameras, accelerometer belts, floor vibration

sensors and infrared devices. Privacy is a key issue nowadays

and as such, is a primary aim for our proposed system. Many of

the current solutions on the market suffer from privacy issues

especially in such a sensitive environment as somebody’s home.

Many of these off-the-shelf solutions require direct Line of Sight

(LOS) to the person in the room to detect a fall. No obstacles can

be in the way of the detection apparatus, otherwise a fall may

not be detected by the system. This is especially problematic

in a busy household environment with many obstacles. All of

the existing solutions mentioned above are very expensive to

buy and implement such as the Apple Watch, specialist cameras

and Man-Down alarms. Another issue arises as elderly people

are not inclined to wear them as they hinder them from daily

activities. A solution that does not hinder a person’s daily way

of life is needed, as a requirement to wear a device leads

to issues in terms of battery charge, precise locations on the

body and the refusal of some people to wear the devices. More

complex solutions such as Computer Vision cameras require

high processing power for the calculations and classification

operations needed for the sheer amount of data recovered in

any of these fall detection experiments.

To tackle the above issues, we present a Wi-Fi based fall

detection solution using COTS NICs in this paper. In particular,

the proposed system provides a cheap, highly accurate and

non-intrusive fall detection method for the home and other

environments using the Linux CSI tool [6]. Our proposed

solution capitalises and improves upon the previous works on

this research direction such as [1], [7].

II. PRELIMINARIES

In this section we provide some preliminaries regarding the

concept of fall detection using Wi-Fi systems and carry out

initial investigations using existing methods in [1], [7]–[10]. The

system model of interest consists of a transmitter and a receiver,

where the number of antennas at the transmitter and receiver is

NTX and NRX , respectively. As an OFDM Wi-Fi system is

involved, data transmission occurs in a number of subcarriers.

The number of data subcarriers depends on the total system

bandwidth of the considered Wi-Fi system. For example, this

number is 52 for the 5GHz 802.11n standard with a 20MHz

bandwidth. Let xk ∈ C
NTX×1 be the transmitted signal over978-1-7281-4490-0/20/$31.00 © 2020 IEEE



subcarrier k, where the notation C
m×n denotes the complex

space of size m × n. Then the received signal at subcarrier k

is given by

yk = Hkxk + nk (1)

where Hk ∈ C
NTX×NRX is the wireless channel between

transceivers over subcarrier k, nk is the noise vector.
In practice, the channel state information (CSI) for Wi-Fi

systems is denoted by H and normally defined as the 3-D matrix

stacking Hk for all k in a new dimension. The third dimension

(i.e. the depth) of the CSI matrix H is ideally equal to the

number of subcarriers. However, depending on a specific NIC

device, Hk is only measured for some subcarriers. For example

the Intel Wi-Fi Link 5300 802.11n NIC utilised in this paper

only reports the estimate of Hk for 30 groups out of 52 data

subcarriers for a 5GHz channel.
The channel between the m-th transmit antenna and the n-th

receive antenna over subcarrier k is denoted by hk,mn. Note

that the complex baseband equivalent channel model is used,

and thus hk,mn is a complex number which can be expressed

as [11]

hk,mn = |hk,mn|e
jφk,mn (2)

where j =
√
−1. We refer to |hk,mn| and �k,mn as the CSI

amplitude and the CSI phase, respectively. Any change in the

channel introduced by either path loss or multi-path fading

will result in channel distortion (amplitude distortion and phase

shift). For a stable channel (no people), each subcarrier will not

be distorted by small-scale fading caused by human activities.

However, a human introduced to the environment will cause

variations to the channel and this will be reflected in the CSI

matrix. In our work we build the proposed system on a specific

Intel NIC and use the Linux CSI tool [6] to obtain the CSI

matrix of size NTX ×NRX × 30 per packet.

A. CSI Amplitude

To the best of our knowledge, RT-Fall [1] and WiFall [7] are

currently the state-of-the-art systems in the field of fall detection

using Wi-Fi systems. These systems found that the different CSI

streams are affected independently by human activities while

different subcarriers in those streams are affected in similar

ways. A stream is defined as the link between 2 respective

antennas. The CSI amplitude returned by the Linux CSI tool

tends to be quite noisy and uninformative. Hence, the CSI

samples are averaged over 30 subcarrier values to obtain a single

representative value for each stream. This allows for simpler

computation when operating multiple streams at once. For a

given packet, the effective CSI of the stream between transmit

antenna m and receive antenna n is calculated by averaging the

CSI amplitude of 30 measured subcarrier groups as [8]

CSImn =
1

N

NX

k=1

fk

f0
|CSIk,mn|, (3)

where f0 = 5GHz is the centre frequency, fk is the frequency

of subcarrier k around the centre frequency, and N = 30 is

the number of measured subcarriers. In the above equation,

CSIk,mn is an estimate of hk,mn in (2)

B. CSI Phase Difference

For a given subcarrier f , the CSI phase �̂f obtained by the

CSI tool [6] contains an unknown phase offset �, time lag ∆t

and measurement noise Zf as detailed by [12]:

�̂f = �f + 2⇡ff∆t+ � + Zf . (4)

The phase difference between 2 receive antenna is thus:

∆�̂f = ∆�f + 2⇡ff ✏+∆� +∆Zf , (5)

where ∆�f is the true phase difference, ✏ = ∆t1 −∆t2, where

∆t1 and ∆t2 are time lags at each corresponding antenna, and

∆� is the unknown constant phase difference offset. This ex-

pression yields extremely noisy data and thus, a linear transform

is proposed to remove outliers and offsets as done in PhaseU

[10], which is given by

�̃f = �̂f +
�N − �1

kN − k1
kf −

1

N

NX

n=1

�n, (6)

where kn represents the coefficient of the n-th subcarrier [13,

p.53], �̂f is the measured phase and �n is the phase of subcarrier

n. As seen in RT-Fall [1] and PhaseU [10], the phase difference

at high frequencies such as 5GHz is actually the sum of the

variance of the phase on each RX antenna as they are both

independent. Thus, the phase difference is written as

�2

∆φ̃f
= �2

∆φ̃f,1
+ �2

∆φ̃f,2
. (7)

where �2

∆φ̃f,i
, i = 1, 2 is the variance of the phase at RX

antenna i. We use (7) to compute the CSI phase difference in

our implemented system.

C. Human Activities & CSI Amplitude/Phase Difference

To test the viability of using CSI amplitude and phase

difference for fall detection, experiments were carried out to

judge the relationship between human activities and the CSI

amplitude. Activities that were both immobile (lying, sitting,

standing) and mobile (walking, standing up, sitting down) were

performed. For the immobile activities in a typical living room

setting, it was found that the amplitude and phase difference stay

relatively stable in a home environment with LOS conditions

when a person is sitting (cf. Fig. 1(a)). The introduction of

a mobile subject to the environment causes variations to both

CSI amplitude and phase difference as shown in Fig. 1(b).

In particular, the CSI amplitude fluctuates between 23 dB and

27 dB. The multi-path environment introduced by the moving

subject makes it hard to identify patterns.

Other mobile activities were considered such as sitting down

(fall-like) in Fig. 2(a) and a walking fall in Fig. 2(b). The

variance in the CSI amplitude for these actions fluctuates greatly

and occasionally does not present clear starting and finishing

times. In Fig. 2(b), the subject begins walking at 5 s, and it

is clear that something is happening. At 10 s, the subject falls.

This is represented by a large disturbance in the phase difference

followed by a sudden and sharp profile decline. This same re-

sponse can be seen at 10 s for the CSI amplitude. However, this
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(a) Sitting
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(b) Walking

Fig. 1. CSI phase difference (blue) and amplitude (red) of (a) sitting and (b) walking.
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(a) Sitting down
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(b) Walking fall

Fig. 2. CSI phase difference (blue) and amplitude (red) of (a) sitting down (fall-like activity) and (b) a walking fall (fall activity).

response is very similar to the response at approx. 5 s, 6 s and 8 s.

It is unclear where the activity starts and finishes in comparison

to a fall or fall-like activity using the phase difference. The CSI

amplitude alone is simply not precise enough for use in activity

detection. Our initial investigations also agree with previous

studies that, when (6) and (7) are implemented, the system

produces a CSI phase difference which is much more granular

and identifiable than the amplitude for mobile and immobile

activities. Thus, the CSI phase difference at 5GHz from (7) is

utilised for activity finishing point detection/segmentation.

D. Frequency of Human Activities in different scenarios

As other fall detection systems have found, the frequency

of a human activity can be used to segment different types

of activities. The frequency of a human activity is dependent

on factors such as the size of the human, the speed at which

they are moving and what body parts are moving (limbs vs.

their whole body). Unlike WiFall [7], it is proposed to segment

activities using their associated frequency. We, similar to RT-

Fall [1], propose to remove lower frequency movements such

as walking, standing, sitting and retain the higher frequency

movements for further analysis. As a result, the computation

required for classification can be reduced since it only needs

to differentiate between fall and fall-like activities. To this end,

we note that fall-like activities such as sitting down, standing

up, squatting and jumping have a much higher frequency than

immobile activities but do not have the same associated power

decline as is common to falling.

A time-frequency analysis of the CSI data was performed

to identify fall-like activities from falling activities as shown in

Fig. 3 using a Spectrogram (Short Time Fourier Transform). We

concur with [1] that fall/fall-like activities occur in the [5, 10]Hz

range depending on the size of the person in the environment.

The obtained spectrogram in Fig. 3 justifies the use of a filtering

technique for higher frequency actions. At 5 s, the subject

was walking and the spectrogram shows little to no response.

From 15-18 s, the subject sat down. This is demonstrated by a

brightening/strong power profile in the spectrogram. At 31 s, the

subject stood up from their seat resulting in a power increase

shown. From 45-50 s, the subject repeatedly sat down and stood

up. Again, this results in a strong power profile. From 55-60 s,

the subject jumped continuously but we notice a weaker power

profile than sitting down indicating that fall like movements like

sitting down are noticeable in the CSI data. At 75 s, the subject

fell over after walking for 5 s. This is shown by a bright colour

on the spectrogram indicating a very strong power profile with

some components reaching 10Hz due to limb movement.

Hence, it is clear that fall and fall-like movements have strong

power profiles with higher frequency components than other

movements. A band-pass filter is employed to filter these higher

frequencies for analysis.
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Fig. 3. Spectrogram of a series of Activities of Daily Living (ADL)

III. PROPOSED FALL DETECTION SYSTEM AND SIGNAL

CLASSIFICATION

The system is divided into a number of subsystems as

described below.

A. Signal Pre-processing

1) CSI Cleaning: As mentioned in Section II, the incoming

CSI data contains outliers, offsets and noise. These are cleaned

from the CSI amplitude and phase difference separately so

as to guarantee accurate classification free from noise. For

this purpose, we use (3) to obtain a single representative CSI

amplitude per stream, rather than using 30 reported CSI values

from the CSI tool for each packet. Equation (6) is applied to

the CSI phase to remove unwanted phase offsets and noise.

Equation (7) is applied to the cleaned CSI phase to compute

the CSI phase difference.

2) Interpolation: As noted in (4), there is a time-lag ∆t

associated with each received packet. A 1-D linear interpolation

algorithm is performed using the NIC’s internal clock to ensure

a TX rate of 100 (pkts/s) and to allow the system to accurately

detect activities using the activity segmentation methods.

3) CSI Filtering: A band-pass filter with a pass-band of

[5, 10]Hz is implemented as discussed in Section II-D to re-

move low frequency human activities as in RT-Fall [1]. This

reduces the number of activities needing to be segmented for

classification utilising less computational power.

B. Activity Segmentation

There are 2 steps to the proposed system’s activity segmen-

tation: A threshold based activity finishing time detector and

trace back activity segmentation.

1) Identifying the finishing times of activities: At this stage

of the process, there are 2 CSI data-sets. One of the band-pass

filtered CSI phase difference and another of the non-filtered (i.e.

raw) CSI phase difference. The method implemented is similar

to that of [1].

A threshold value is established from stationary LOS data of

one-minute duration for both the filtered and non-filtered CSI.

The threshold value for each data-set is established as µ+6� ≤
�, where � is the threshold value for the individual data-set.

Due to the normalisation of the CSI data usually, a threshold

value of � = 6� is proposed. This threshold is then used to

determine if the CSI phase difference has entered a ”fluctuating”

or ”stable” state. To determine the finishing points of activities,

a sliding window of 3 seconds (300 packets) slides through both

CSI data-sets for a given non-stationary CSI stream, one packet

at a time. At each iteration, the standard deviation of the 2

data-sets inside the sliding window is computed. If the standard

deviation � of either CSI stream in the window has fallen below

the respective stream’s (filtered/non-filtered) threshold value, the

signal can be marked as entering a stable state. If it is above the

threshold, it is marked as being in a fluctuating state. In RT-Fall,

the mean value is used rather than the standard deviation which

we propose.

For each sliding window, each signal’s state is recorded before

a check to see if they occupy the same state. This is used to

compute the TimeLag feature which was proposed in [1]. If

there is a transition in one of the signals from a fluctuating state

to a stable state at t1, the other signal is tracked to see if the

same transition happens within a given time ∆t (t2 = ∆t+ t1).

If so, the TimeLag is set as ∆t and t1 is set as the activity’s

finishing point.

2) Implementing windowing around an activity: A window

of size 3 seconds is then applied around these activity finishing

points to gather statistical features for classification. This allows

the system to capture the entire duration of the fall up until the

finishing point (2 seconds) where the majority of the subject’s

movement takes place and allows 1 second after the fall to

determine if the subject is stationary.

C. Feature Extraction

The feature extraction module extracts features from both the

CSI amplitude and phase difference in the segmented activity

windows. 11 features are gathered: (1) normalised standard devi-

ation, (2) maximum absolute deviation (MAD), (3) offset of the

signal strength, (4) interquartile range, (5) mean signal entropy,

(6) rate of signal change, (7) TimeLag [1], (8) power decline

ratio [1], (9) velocity of signal change, (10) velocity of change

of standard deviation and (11) duration under the threshold

value. Features 1-6 are calculated using the CSI amplitude and

phase difference while features 7-11 are calculated using the CSI

phase difference. Features 9-10 are calculated from the start of

a window to the falling time. We remark that features 1-8 were

proposed in [1], [7], and features 9-11 are newly defined in this

paper.



D. Classification

As the CSI filtering stage filters a lot of the stationary and

non fall-like activities, the classification problem becomes one

of a binary choice: fall or fall-like classification.

To correctly predict a fall, a simple binary classifier is

implemented in MATLAB. For training the model, labelled data

and features must be provided to the classifier in the form

of an objective class (falls) and non-objective class (fall-like

activities).

The data is manually labelled with either a 1 for a fall

or -1 for no fall. Once the model is built, test data can be

classified by it and any incorrect predictions by the model help

to update the model further for extended testing. Two classifiers

are implemented in this system, a Support Vector Machine

(SVM) and a Bagged Tree Classifier (Ensemble). A bagging

ensemble was chosen to reduce variance and an SVM as a

comparison to existing systems could be made using this.

IV. EXPERIMENTS & RESULTS

A. Experimental Setup

The system’s experimental setups consisted of one transmitter

device, a TP-LINK Archer C6 AP, and one or more receiver

devices (laptops) with the appropriate Intel Wi-Fi Link 5300

NIC installed. The laptops had Ubuntu 14.04 LTS installed with

customised and modified iwlwifi drivers courtesy of the Linux

CSI tool [6]. The transmitter and receiver devices were set up

in typical residential environments such as a home living room.

The packet transmission rate was set at 100 (pkts/s) for the

802.11n network at a centre frequency of 5.2GHz and a 20MHz

bandwidth. The transmitter and receiver devices were set up a

distance of 3.5-5 m from each other at a height of 0.5-1 m from

the ground to ensure maximum environment coverage.

Classification training and testing data-sets were gathered by

a single subject. Training data consisted of 100 falls gathered

over four 20 min experiments. Just over 200 Activities of Daily

Living (ADLs) were performed, paying special attention to

fall and fall-like activities. These activities were performed

continuously to ensure robustness of the model. Four test data-

sets of CSI data were gathered in the same indoor home

environment with tests of 10-20 min duration with the same

subject aiming to ensure a balanced test set between fall and

fall-like activities.

B. Performance of Activity Segmentation

To evaluate the proposed activity segmentation system, ex-

tended periods of ADLs were performed with a balance of fall

and fall-like activities. Five tests of 3-5 min were performed

with 10-12 falls performed in each. It was ensured that the

activities performed to test the implemented system ranged from

faster movements of younger people to slower, more deliberate

movements of elderly people. Using a video to verify the tests,

the activity segmentation method segments 100 % of performed

falls (walking, standing or sitting) as demonstrated by Figs. 4

& 5, proving our method for activity segmentation. Fall-like

activities such as standing up, sitting down and dropping objects

were detected as expected. It was found that doors opening

caused segmentation also. To conclude, the activity segmenta-

tion system is consistently accurate while reducing computation

in comparison to WiFall [7] with a 100 % segmentation rate.
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Fig. 4. Threshold-based finishing time detection is demonstrated above.
The blue and red horizontal lines represent the unfiltered and filtered CSI
phase difference thresholds, respectively. When either trace goes beneath their
threshold, a fall or fall-like activity has occurred.

Fig. 5. This demonstrates the activity segmentation around a segmented fall.
A window of 3 seconds is obtained (2 s before the fall and 1 s after). Features
are then gathered from these windows for classification.

C. Fall Detection Classification

Using the trained classifiers from the features gathered in the

Feature Extraction module of the system, the 4 test sets of CSI

data and ADLs could be classified. The SVM and Bagged Tree

classifier models were used to produce a prediction set which

was verified using a video of the test data-set gathering session.

Over the 4 test sets of ADLs performed (50 falls) as men-

tioned in Section IV-A, Balanced Accuracy, Sensitivity (True

Positive Rate), Specificity (True Negative Rate) and F1-Score

were used as the measures of classifier performance. Balanced
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TABLE I
COMPARISON OF OVERALL CLASSIFICATION RESULTS BETWEEN SYSTEMS

USING THE BAGGED TREE CLASSIFIER

Measures This System RT-Fall [1] WiFall [7]

Balanced Accuracy 96 % 91 % 81 %
Sensitivity 98 % 91 % 79 %
Specificity 94 % 92 % 83 %
F1-Score 0.95 0.88 0.74

accuracy was used to compare to existing systems as it is not

known if the test sets will be balanced. It was important to keep

sensitivity and specificity high to detect all falls and minimise

false alarms, respectively.

The system achieves a total of 96 % balanced accuracy, 98 %

sensitivity, 94 % specificity and a F1-Score of 0.95 as shown

in Table I. The variation in classification performance is shown

in Fig. 6. The system is clearly very good at generalising for

all activities given high statistics in all 4 areas. The specificity

is high in all cases meaning there are few false alarms deem-

ing our system quite appropriate for its purpose. The system

was also tested in 2 other residential environments (LOS &

NLOS through walls), namely kitchens and bedrooms, with 3

individuals present and a pet. The same number of falls were

performed as Section IV-A and a balanced accuracy of 90 % and

a F1-Score of 0.89 was achieved. The system outperforms both

state-of-the-art solutions, RT-Fall [1] and WiFall [7] (tested by

RT-Fall), as shown in Table I. Throughout 4 tests, the system

obtains slightly higher sensitivity and specificity than RT-Fall.

However, RT-Fall had access to a much larger training and test

data-set which will hopefully be achieved as part of future work

in this area.

V. CONCLUSION

In this paper, a wireless fall detection system using Channel

State Information (CSI) of a Wi-Fi channel has been proposed.

The system is cheap, accurate, non-intrusive and does not

require the user to wear any devices. The CSI phase difference

over 2 antennas is utilised for fall detection and a new type of

fall, sitting falls, is proposed which was not explored by the

current state-of-the-art systems, RT-Fall [1] & WiFall [7]. With

the growth of smart home technologies, homes will eventually

contain many Wi-Fi enabled sensors/devices, allowing for re-

search of the application of this system across the home from

one base AP.

VI. ACKNOWLEDGEMENTS

We would like to thank Mr. James Kinsella of Maynooth

University for allowing access to the Radiospace - National 5G

Test Centre to verify initial CSI pre-processing methods.

REFERENCES

[1] H. Wang, D. Zhang, Y. Wang, J. Ma, Y. Wang, and S. Li, “RT-Fall: A
Real-Time and Contactless Fall Detection System with Commodity WiFi
Devices,” IEEE Transactions on Mobile Computing, vol. 16, pp. 511–526,
Feb 2017.

[2] D. Wild, U. S. Nayak, and B. Isaacs, “How dangerous are falls in old
people at home?,” British medical journal (Clinical research ed.), Jan
1981.

[3] J. M. Stokes, “Falls in older people: Risk factors and strategies for
prevention (2nd edn) - by stephen lord, catherine sherrington, hylton menz,
and jacqueline close,” Australasian Journal on Ageing, vol. 28, no. 1,
pp. 47–47, 2009.

[4] C. S. Florence, G. Bergen, A. Atherly, E. Burns, J. Stevens, and C. Drake,
“Medical costs of fatal and nonfatal falls in older adults,” Journal of the

American Geriatrics Society, vol. 66, no. 4, pp. 693–698, 2018.
[5] S. M. Friedman, B. Munoz, S. K. West, G. S. Rubin, and L. P. Fried,

“Falls and fear of falling: which comes first? A longitudinal prediction
model suggests strategies for primary and secondary prevention,” Journal

of the American Geriatrics Society, Aug 2002.
[6] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool Release: Gathering

802.11n Traces with Channel State Information,” ACM SIGCOMM CCR,
vol. 41, p. 53, Jan. 2011.

[7] Y. Wang, K. Wu, and L. M. Ni, “WiFall: Device-Free Fall Detection by
Wireless Networks,” IEEE Transactions on Mobile Computing, vol. 16,
pp. 581–594, Feb 2017.

[8] K. Wu, J. Xiao, Y. Yi, M. Gao, and L. Ni, “FILA: Fine-grained indoor
localization,” Proceedings - IEEE INFOCOM, pp. 2210–2218, 03 2012.

[9] Y. Zhuo, H. Zhu, H. Xue, and S. Chang, “Perceiving accurate CSI
phases with commodity WiFi devices,” in IEEE INFOCOM 2017 - IEEE

Conference on Computer Communications, pp. 1–9, May 2017.
[10] C. Wu, Z. Yang, Z. Zhou, K. Qian, Y. Liu, and M. Liu, “PhaseU: Real-time

LOS identification with WiFi,” in 2015 IEEE Conference on Computer

Communications (INFOCOM), pp. 2038–2046, April 2015.
[11] A. Chadha, N. Satam, and B. Ballal, “Orthogonal Frequency Division

Multiplexing and its Applications,” International Journal of Science and

Research, vol. 2, p. 325, 01 2013.
[12] S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka, “You are facing the

Mona Lisa: spot localization using PHY layer information,” in MobiSys

’12, 2012.
[13] IEEE802, “IEEE Standard for Information technology– Local and

metropolitan area networks– Specific requirements– Part 11: Wireless
LAN Medium Access Control (MAC)and Physical Layer (PHY) Spec-
ifications Amendment 5: Enhancements for Higher Throughput,” IEEE

Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by

IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008,

and IEEE Std 802.11w-2009), pp. 1–565, Oct 2009.


