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Abstract

Recently, new defense techniques have been

developed to tolerate Byzantine failures for

distributed machine learning. The Byzantine

model captures workers that behave arbitrarily,

including malicious and compromised work-

ers. In this paper, we break two prevailing

Byzantine-tolerant techniques. Specifically

we show that two robust aggregation methods

for synchronous SGD–namely, coordinate-wise

median and Krum–can be broken using new

attack strategies based on inner product manip-

ulation. We prove our results theoretically, as

well as show empirical validation.

1 INTRODUCTION

The security of distributed machine learning has drawn

increasing attention in recent years. Among the threat

models, Byzantine failures (Lamport et al., 1982) are per-

haps the most well-studied. In the Byzantine threat model,

workers can behave arbitrarily and maliciously. In addi-

tion, Byzantine workers are omniscient and can conspire.

Most of the existing Byzantine-tolerant machine-learning

algorithms (Blanchard et al., 2017; Chen et al., 2017; Yin

et al., 2018; Feng et al., 2014; Su & Vaidya, 2016a;b;

Alistarh et al., 2018) focus on the protection of distributed

Stochastic Gradient Descent (SGD).

In this paper, we consider Byzantine-tolerant SGD in a

server-worker architecture (also known as the parame-

ter server architecture (Li et al., 2014a;b)), depicted in

Figure 3. The system is composed of server nodes and

worker nodes. In each epoch, the workers pull the latest

model from the servers, estimate the gradients using the

locally sampled training data, and then push the gradi-

ent estimators to the servers. The servers aggregate the

gradient estimators, and update the model.
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Figure 1: Illustration of failed Byzantine-tolerant SGD.

We execute distributed synchronous SGD on CIFAR-10

image classification, with 25 workers. Beginning from

the 100th epoch, we attack the system by replacing some

workers with Byzantine workers. During the attack, 12

workers are Byzantine for coordinate-wise median, and 11

workers are Byzantine for Krum. The Byzantine workers

push (−ǫg) to the server, where g is the true gradient.

We consider Byzantine failures at a subset of the worker

nodes. Byzantine workers send arbitrary values instead

of the gradient estimators to the server. Such Byzantine

gradients are potentially adversarial, and this can result

in convergence to sub-optimum models, or even lead to

divergence. To make things worse, the Byzantine workers

can spy on the information at any server or at any honest

worker (omniscience). Byzantine gradients can thus be

tailored to have similar variance and magnitude as the

correct gradients, which makes them hard to distinguish.

Additionally, in different iterations, different subsets of

workers can behave in a Byzantine manner, evading de-

tection. Existing literature assumes that less than half of

the workers are Byzantine in any iteration.



Compared to traditional Byzantine tolerance in distributed

systems (Lynch, 1996; Avizienis et al., 2004; Tanenbaum

& Van Steen, 2007; Fischer et al., 1982), Byzantine toler-

ance in distributed machine learning has unique properties

and challenges. Traditional Byzantine tolerance attempts

to reach consensus on correct values. However, machine

learning algorithms do not need to reach consensus. Fur-

ther, even non-Byzantine-tolerant machine learning algo-

rithms can naturally tolerate some noise in the input and

during execution (Xing et al., 2016). Thus for distributed

SGD, existing techniques for Byzantine-tolerant execu-

tion guarantee an upper-bound on the distance between

the aggregated approximate gradient (under Byzantine

workers) and the true gradient (Blanchard et al., 2017;

Yin et al., 2018).

A deeper introspection reveals, however, that what really

matters for gradient descent algorithms is the direction of

the descent. As shown in Figure 2, to ensure the gradient

descent algorithm makes progress, we need to guarantee

that the direction of the aggregated vector agrees with the

true gradient, i.e., the inner product between the aggre-

gated vector and the true gradient must be non-negative.

This can be violated by an attack that makes the inner

product negative. We call this class of new attacks “inner

product manipulation attacks”.

Figure 2: Descent Direction. The blue arrows are the

directions which agree with the steepest descent direction

(negative gradient). The red arrows are the directions

which agree with the steepest ascent direction (gradient).

We observe that the bounded distance between the ag-

gregated value and the true gradient guaranteed by exist-

ing techniques is not enough to defend distributed syn-

chronous SGD against inner product manipulation attacks.

For example, for the coordinate-wise median, if we put

all the Byzantine values on the opposite side of the true

gradient, the inner product between the aggregated vector

and the true gradient can be manipulated to be negative.

In this paper, we study how inner product manipulation

makes Byzantine-tolerant SGD vulnerable. We conduct

case studies on coordinate-wise median (Yin et al., 2018)

and Krum (Blanchard et al., 2017). Figure 1 gives a

glimpse of how bad the effect of the attack can be. In a

nutshell, creating gradients in the opposite direction with

large magnitude crashes coordinate-wise median, while

creating gradients in the opposite direction with small

magnitude crashes Krum. We provide theoretical analysis

as well as empirical results to validate these findings.

Based on these results, we argue that there is a need to

revise the definition of Byzantine tolerance in distributed

SGD. We provide a new definition, and study its satisfac-

tion for two popular robust distributed SGD algorithms,

theoretically and empirically. In summary, our contribu-

tions are:

• We break two popular Byzantine tolerant SGD algo-

rithms – coordinate-wise median (Yin et al., 2018) and

Krum (Blanchard et al., 2017) – using a new class of

attacks called inner production manipulation attacks.

We theoretically prove that under certain conditions,

we can backdoor these two algorithms, even when the

assumptions and theorems presented in these papers

are valid.

• We show how to design Byzantine gradients to com-

promise the robust aggregation rules. We conduct ex-

periments to validate further.

• Following our theoretical and empirical analysis, we

propose a revised definition of Byzantine tolerance for

distributed SGD.

2 RELATED WORK

Robust estimators such as the median are well stud-

ied, and can naturally be applied to Byzantine tolerance.

Coordinate-wise median is one approach that generalizes

the median to high-dimensional vectors. In Yin et al.

(2018), statistical error rates for the coordinate-wise me-

dian in distributed SGD are studied. Xie et al. (2019a)

uses trimmed mean for federated optimization.

Blanchard et al. (2017) propose Krum, which is not based

on robust statistics. For each candidate gradient, Krum

computes the local sum of squared Euclidean distances to

the others, and outputs the one with minimal sum.

In this paper, we focus on coordinate-wise median and

Krum. There are other Byzantine-tolerant SGD algo-

rithms. For example, Bulyan (Guerraoui et al., 2018)

which is based on Krum, and potentially shares the same

flaws. DRACO (Chen et al., 2018) uses coding the-

ory to ensure robustness, and is different from the other

Byzantine-tolerant SGD algorithms.

Xie et al. (2019b) propose Zeno, which filters out poten-

tially malicious gradients by checking the descent of the

loss function. Such a mechanism potentially tolerates the

attack techniques introduced in this paper.

Recently, an increasing number of papers have proposed

attack mechanisms to break the defenses of machine learn-



ing in settings different from ours. For example, Athalye

et al. (2018) propose attack techniques using adversarial

training data. Bhagoji et al. (2018); Bagdasaryan et al.

(2018) break the defense of federated learning (McMa-

han et al., 2016). In this paper, we focus on attacking

distributed synchronous SGD using adversarial gradients

sent by Byzantine workers.

3 PRELIMINARIES

In this paper, we focus on distributed synchronous

Stochastic Gradient Descent (SGD) with a Parameter

Server (PS). In this section, we formally introduce dis-

tributed synchronous SGD and the threat model of Byzan-

tine failures.

Figure 3: Worker-Server Architecture

3.1 STOCHASTIC GRADIENT DESCENT

We consider the following optimization problem:

min
x∈Rd

F (x),

where F (x) = Ez∼D[f(x; z)] is a differentiable function,

z is sampled from some unknown distribution D, d is

the number of dimensions. We assume that there exists

at least one minimizer of F (x), which is denoted by x∗,

where ∇F (x∗) = 0.

This problem is solved in a distributed manner with m

workers. In each iteration, each worker will sample n

independent and identically distributed (i.i.d.) data points

from the distribution D, and compute the gradient of the

local empirical loss Fi(x) = 1
n

∑n

j=1 f(x; z
i,j), ∀i ∈

[m], where zi,j is the jth sampled data on the ith worker.

The servers will collect and aggregate the gradients sent

by the workers, and update the model as follows:

xt+1 = xt − γtAggr({ṽti : i ∈ [m]}),

where Aggr(·) is an aggregation rule (e.g., averaging),

and ṽti is the gradient sent by the ith worker, γt is

the learning rate in the tth iteration. For an honest

worker, ṽti = ∇Fi(x
t) is an unbiased estimator such

that E[∇Fi(x
t)] = ∇F (xt). When all the workers are

honest, the most common choice of the aggregation rule

Aggr(·) is averaging:

Aggr({ṽti : i ∈ [m]}) = 1

m

∑

i∈[m]

ṽti .

The detailed algorithm of distributed synchronous SGD

with aggregation rule Aggr(·) is shown in Algorithm 1.

Algorithm 1 Distributed Synchronous SGD with Robust

Aggregation

Server
x0 ← rand() {Initialization}
for t = 0, . . . , T do

Broadcast xt to all the workers

Wait until all the gradients {ṽti : i ∈ [m]} arrive

Compute ¯̃vt = Aggr({ṽti : i ∈ [m]})
Update the parameter xt+1 ← xt − γt ¯̃vt

end for

Worker i = 1, . . . ,m
for t = 0, . . . , T do

Receive xt from the server

Draw the samples, compute, and send the gradient

vti = ∇F t
i (x

t) to the server

end for

3.2 THREAT MODEL

In the Byzantine failure model, the gradients sent by ma-

licious workers can take an arbitrary value:

ṽti =

{

∗, if ith worker is Byzantine,

∇Fi(x
t), otherwise,

(1)

where “∗” represents arbitrary values.

Formally, we define the threat model of Byzantine failure

as follows.

Definition 1. (Threat Model (Blanchard et al., 2017;

Chen et al., 2017; Yin et al., 2018)). In the tth iteration,

let {vti : i ∈ [m]} be i.i.d. random vectors in R
d, where

vti = ∇Fi(x
t). The set of correct vectors {vti : i ∈ [m]}

is partially replaced by arbitrary vectors, which results in

{ṽti : i ∈ [m]}, as defined in Equation (1). In other words,

a correct gradient is∇Fi(x
t), while a Byzantine gradient,

marked as “∗”, is assigned arbitrary value. We assume

that q out of m vectors are Byzantine, where 2q < m.

Furthermore, the indices of faulty workers can change

across different iterations. If the failures are caused by

attackers, the threat model includes the case where the

attackers can collude.



The notations used in this paper is summarized in Table 1.

Table 1: Notations

Notation Description

m Number of workers

n Minibatch size on each worker

T Number of iterations

[m] Set of integers {1, . . . ,m}
q Number of Byzantine workers

γ Learning rate

x Model parameters

ṽti Gradient sent by the ith worker

in the tth iteration, potentially Byzantine

vti Correct gradient produced by the ith worker

in the tth iteration

‖ · ‖ All the norms in this paper are l2-norms

〈a, b〉 Inner product between a and b

4 DEFENSE TECHNIQUES

In this section, we introduce two popular robust aggre-

gation rules against Byzantine failures in distributed syn-

chronous SGD: coordinate-wise median and Krum. For

the remainder of this paper, we ignore the iteration super-

script t in ṽti and vti for convenience.

4.1 COORDINATE-WISE MEDIAN

Definition 2. (Coordinate-wise Median (Yin et al., 2018))

We define the coordinate-wise median aggregation rule

Median(·) as

med = Median({ṽi : i ∈ [m]}),

where for any j ∈ [d], the jth dimension of med

is medj = median ({(ṽ1)j , . . . , (ṽm)j}), (ṽi)j is the

jth dimension of the vector ṽi, median(·) is the one-

dimensional median.

4.2 KRUM

Definition 3. (Krum (Blanchard et al., 2017))

Krum({ṽi : i ∈ [m]}) = ṽk, k = argmin
i∈[m]

KR(ṽi),

KR(ṽi) =
∑

i→j

‖ṽi − ṽj‖2,

where i → j are the indices of the m − q − 2 nearest

neighbours of ṽi in {ṽj : j ∈ [m], i 6= j} as measured by

squared Euclidean distance.

For convenience, we refer to the coordinate-wise median

and Krum as Median and Krum.

5 ATTACK TECHNIQUES

In this section, we revise the definition of Byzantine toler-

ance in distributed synchronous SGD. Then, we theoreti-

cally analyze the Byzantine tolerance of coordinate-wise

median and Krum, and show that under certain condi-

tions, these two robust aggregation rules are no longer

Byzantine-tolerant.

5.1 INNER PRODUCT MANIPULATION

In the previous work on Byzantine-tolerant SGD algo-

rithms, most of the robust aggregation rules only guar-

antee that the robust estimator is not arbitrarily far away

from the mean of the correct gradients. In other words,

the distance between the robust estimator and the correct

mean is upper-bounded. However, for gradient descent

algorithms, to guarantee the descent of the loss, the inner

product between the true gradient and the robust estimator

must be non-negative:

〈∇F (x), Aggr({ṽi : i ∈ [m]})〉 ≥ 0,

so that at least the loss will not increase in expectation.

In particular, bounded distance is not enough to guaran-

tee robustness, if the attackers manipulate the Byzantine

gradients and make the inner product negative.

The intuition underlying the inner product manipulation

attack is that, when gradient descent algorithm converges,

the gradient ∇F (xt) approaches 0. Thus, even if the

distance between the robust estimator and the correct

mean is bounded, it is still possible to manipulate their

inner product to be negative, especially when the upper

bound of such distance is large.

We formally define a revised version of Byzantine

tolerance for distributed synchronous SGD (DSSGD-

Byzantine tolerance):

Definition 4. (DSSGD-Byzantine Tolerance) Without

loss of generality, suppose that in a specific itera-

tion, the server receives (m − q) correct gradients

V = {v1, . . . , vm−q} and q Byzantine gradients U =
{u1, . . . , uq}. We assume that the correct gradients have

the same expectation E[vi] = g, ∀i ∈ [m−q]. An aggrega-

tion rule Aggr(·) is said to be DSSGD-Byzantine-tolerant

if

〈g, E [Aggr(V ∪ U)]〉 ≥ 0.

With the revised definition, now we theoretically analyze

the DSSGD-Byzantine tolerance of coordinate-wise me-

dian and Krum.

Remark 1. Note that we do not argue that the theo-

retical guarantees in the previous work are wrong. In-

stead, our claim is that the theoretical guarantees on the



bounded distances are not enough to secure distributed

synchronous SGD. In particular, DSSGD-Byzantine toler-

ance is different from the Byzantine tolerance proposed

in previous work.

5.2 COORDINATE-WISE MEDIAN

The following theorem shows that under certain condi-

tions, Median is not DSSGD-Byzantine-tolerant.

Theorem 1. We consider the worst case where m −
2q = 1. The server receives (m − q) correct gradients

V = {v1, . . . , vm−q} and q Byzantine gradients U =
{u1, . . . , uq}. We assume that the stochastic gradients

have identical expectation E[vi] = g, ∀i ∈ [m− q], and

non-zero coordinate-wise variance E[((vi)j − gj)
2
] ≥

σ2, ∀i ∈ [m − q], j ∈ [d], where (vi)j is the jth coor-

dinate of vi, and gj is the jth coordinate of g. When

maxj∈[d] |gj | < σ√
m−q−1

, there exist Byzantine gradi-

ents U = {u1, . . . , uq} such that

〈g, E [Median(V ∪ U)]〉 < 0.

Proof. (sketch) Since median is independently taken in

each coordinate, it is sufficient to prove Byzantine vulnera-

bility for one coordinate or scalars. Thus, for convenience,

with a little bit abuse of notation, we suppose that the

correct gradients V = {v1, . . . , vm−q} and q Byzantine

gradients U = {u1, . . . , uq} are all scalars. We only need

to show that under certain attacks, the aggregated value

Median(V ∪ U) has a different sign than
∑

i∈[m−q] vi.

Without loss of generality, we assume that g =
1

m−1

∑

i∈[m−q] E[vi] > 0 (the mirror case can be easily

proved with a similar procedure). The Byzantine gradi-

ents are all assigned negative value: ui < 0, ∀i ∈ [q]. Fur-

thermore, we make the Byzantine gradients small enough

such that ui < min(V), ∀i ∈ [q].

By sorting the correct gradients, we can define the se-

quence {v1:m−q, . . . , vm−q:m−q}, where vi:m−q is the

ith smallest element in {v1, . . . , vm−q}:
v1:m−q ≤ v2:m−q ≤ · · · ≤ vm−q:m−q.

We also define the expectation of the ith smallest element:

µi:m−q = E[vi:m−q].

Then, it is easy to check that Median(V ∪ U) = v1:m−q,

and E [Median(V ∪ U)] = µ1:m−q .

Using Theorem 1(b) from Hawkins (1971) (equiv. 9(a)

from Arnold et al. (1979)), we have

µ1:m−q ≤ g − σ√
m− q − 1

.

Thus, when g < σ√
m−q−1

, E [Median(V ∪ U)] is nega-

tive.

Remark 2. When gradient descent converges, the ex-

pectation of the gradient g approaches 0. Furthermore,

since the gradient produced by the correct workers are

stochastic, the variance is non-zero. Thus, eventually, the

condition maxj∈[d] |gj | < σ√
m−q−1

will be satisfied. To

make things worse, the closer SGD approaches a criti-

cal point, the less likely the coordinate-wise median is

DSSGD-Byzantine-tolerant.

Remark 3. The proof of Theorem 1 provides the intuition

for constructing adversarial gradients for the attackers.

In practice, in each coordinate, the attackers only need to

guarantee that all the Byzantine values are much smaller

than the smallest correct value if the correct expectation

is positive, or much larger than the largest correct value

if the correct expectation is negative. Then, hopefully

(for the attackers), if the variance is large enough, the

smallest/largest value has the opposite sign to the correct

expectation. Hence, the attackers can successfully manip-

ulate the aggregated value into the opposite direction to

the correct expectation.

5.2.1 Toy Example

We provide an 1-dimensional toy example to illustrate

how easily Median can fail. Suppose there are 3 correct

gradients V = {−0.1, 0.1, 0.3} with the mean 0.1, and

2 Byzantine gradient U = {−4,−2} with the negative

mean −3. According to Definition 2, it is easy to check

that Median(U ∩V) = −0.1, which means that Median

produces a value with the opposite sign of the mean of

the correct gradients.

5.3 KRUM

The following theorem proves that under certain condi-

tions, Krum is not DSSGD-Byzantine-tolerant. Note that

Krum requires that m− 2q > 2.

Theorem 2. We consider the worst case where m −
2q = 3. The server receives (m − q) correct gradi-

ents V = {v1, . . . , vm−q} and q Byzantine gradients

U = {u1, . . . , uq}. We assume that the stochastic

gradients have identical expectation E[vi] = g, ∀i ∈
[m − q]. We define the mean of the correct gradients

v̄ = 1
m−q

∑

i∈[m−q] vi. We assume that the correct gradi-

ents are bounded by ‖vi− v̄‖2 ≤ ‖v̄‖2, ∀i ∈ [m−q]. Fur-

thermore, we assume that vi 6= vj , ∀i 6= j, i, j ∈ [m− q],
and ∃β such that ‖vi− vj‖2 ≥ β2, ∀i 6= j, i, j ∈ [m− q].
We take u1 = u2 = · · · = uq = −ǫv̄, where ǫ is a small

positive constant value such that ǫ2‖v̄‖2 ≤ β2. When

(m− q) is large enough: m− q >
2(ǫ+2)2

ǫ2
+ 2, we have

〈g, E [Krum(V ∪ U)]〉 < 0.



Proof. (sketch) For ∀u ∈ U , u = −ǫv̄, where v̄ =
1

m−1

∑

i∈[m−q] vi.

Since any u ∈ U is identical, the nearest (m − q − 4)
neighbours of u must belong to U . The remaining (m−
q−2)− (m−q−4) = 2 nearest neighbours must belong

to the set of correct gradients V . Thus, we have

KR(u) ≤ 2‖v̄ + v̄ + ǫv̄‖2 = 2(ǫ+ 2)2‖v̄‖2.
For the correct gradients ∀v ∈ V , there are two cases:

• Case 1: There are some u ∈ U which belong to the

(m− q − 2) nearest neighbours of v.

Suppose there are a1 nearest neighbours in V and a2
nearest neighbours in U , where a1 + a2 = m− q − 2.

Since the correct gradients are bounded by ‖vi− v̄‖2 ≤
‖v̄‖2, ∀i ∈ [m− q], it is easy to check that ‖v−u‖2 ≥
ǫ2‖v̄‖2. Thus, we have

KR(v) ≥ a1β
2 + a2‖v − u‖2 ≥ (m− q − 2)ǫ2‖v̄‖2.

• Case 2: There are no u ∈ U which belong to the

(m− q − 2) nearest neighbours of v. Thus, we have

KR(v) ≥ (m− q − 2)β2 ≥ (m− q − 2)ǫ2‖v̄‖2.

In both cases, we have KR(v) ≥ (m − q − 2)ǫ2‖v̄‖2.
Thus, when (m−q) is large enough: m−q >

2(ǫ+2)2

ǫ2
+2,

we have

KR(u) ≤ 2(ǫ+ 2)2‖v̄‖2 < (m− q − 2)ǫ2‖v̄‖2

≤ KR(v).

As a result, Krum(V ∩ U) = u = −ǫv̄. Thus,

E [Krum(V ∩ U)] = −ǫg.

Remark 4. In the theorem above, we assume that all the

correct gradients are inside a Euclidean ball centered at

their mean: ‖vi − v̄‖2 ≤ ‖v̄‖2, ∀i ∈ [m − q]. Such as-

sumption can not always be satisfied, but it is reasonable

that the random samples are sometimes inside such a Eu-

clidean ball, if the variance is not too large. On the other

hand, we assume that the pair-wise distances between the

correct gradients are lower-bounded by β > 0. Almost

surely, such β exists, no matter how small it is. Note that

the Byzantine attackers are supposed to be omniscient.

Thus, the attackers can spy on the honest workers, and

obtain V and β. Then, the attackers can choose an ǫ such

that ǫ2‖v̄‖2 ≤ β2. Finally, we only need the number of

workers to be large enough, so that m− q >
2(ǫ+2)2

ǫ2
+2.

Remark 5. The proof of Theorem 2 provides the intu-

ition ofor constructing adversarial gradients for the at-

tackers. In practice, the attackers only need to assign
ǫ

m−q

∑

i∈[m−q] vi to all the Byzantine gradients, with an

ǫ > 0 small enough.

Remark 6. Krum (Blanchard et al., 2017) requires the

assumption that cσ < ‖g‖ for convergence, where c is a

general constant, σ is the maximal variance of the gra-

dients, and g is the gradient in expectation. Note that

‖g‖ → 0 when SGD converges to a critical point. Thus,

such an assumption is never guaranteed to be satisfied if

the variance is non-zero. Furthermore, the better SGD

converges, the less likely such an assumption can be sat-

isfied.

5.3.1 Toy Example

Note that the assumptions made in Theorem 2 are suf-

ficient but not necessary conditions for the DSSGD-

Byzantine vulnerability of Krum. In practice, it can be

easier to find an ǫ that crashes Krum, especially for 1-

dimensional cases.

We provide an 1-dimensional toy example to show

how easily Krum can fail. Suppose there are 6 cor-

rect gradients V = {0, 0.02, 0.14, 0.26, 0.38, 0.5}
with the mean 0.2167, and 3 Byzantine gradi-

ent U = {−0.1,−0.1,−0.1} with the negative

mean −0.1. According to Definition 3, the cor-

responding function values KR(·) of U ∩ V =
{−0.1,−0.1,−0.1, 0, 0.02, 0.14, 0.26, 0.38, 0.5} are

{0.0244, 0.0244, 0.0244, 0.0304, 0.0436, 0.1060, 0.1440,
0.2160, 0.4320}. Thus, Krum(U ∩ V) = −0.1, which

means that Krum chooses the Byzantine gradient with

the opposite sign of the mean of the correct gradients.

6 CASE STUDY

In this section, we implement special attack strategies for

Median and Krum, and evaluate our attack strategies

on a real-world application. The attack strategies are

designed based on intuition underlying Theorem 1 and

Theorem 2, as discussed in Remark 3 and Remark 5.

6.1 DATASETS AND EVALUATION METRICS

We conduct experiments on the benchmark CIFAR-10

image classification dataset (Krizhevsky & Hinton, 2009),

which is composed of 50k images for training and 10k

images for testing. We use a convolutional neural net-

work (CNN) with 4 convolutional layers followed by 1

fully connected layer, implemented by MXNet (Chen

et al., 2015). The detailed network architecture can be

found in the appendix. For any worker, the minibatch size

for SGD is 50.

In each experiment, we launch 25 worker processes. We

repeat each experiment 10 times and take the average. We

use top-1 accuracy on the testing set and the cross-entropy

loss function on the training set as the evaluation metrics.
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(b) Cross Entropy on Training Set, ǫ = 10
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(c) Top-1 Accuracy on Testing Set, ǫ = 0.1
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(d) Cross Entropy on Training Set, ǫ = 0.1
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(e) Top-1 Accuracy on Testing Set, ǫ = 0
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(f) Cross Entropy on Training Set, ǫ = 0
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(g) Top-1 Accuracy on Testing Set, ǫ = −10
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Figure 4: Convergence on training set, using Median as aggregation rule. ǫ ∈ {10, 0.1, 0,−10}.
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(b) Cross Entropy on Training Set, ǫ = 0.1
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(c) Top-1 Accuracy on Testing Set, ǫ = 0.5

0 20 40 60 80 100 120 140 160 180

Epoch

0

0.5

1

1.5

2

2.5

L
o

s
s

Mean without attack

Krum without attack

Krum, attack starts at 10th iteration, =0.5

Krum, attack starts at 50th iteration, =0.5

Krum, attack starts at 100th iteration, =0.5

Krum, attack starts at 150th iteration, =0.5

(d) Cross Entropy on Training Set, ǫ = 0.5
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(e) Top-1 Accuracy on Testing Set, ǫ = 1
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(f) Cross Entropy on Training Set, ǫ = 1
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(g) Top-1 Accuracy on Testing Set, ǫ = 10
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(h) Cross Entropy on Training Set, ǫ = 10

Figure 5: Convergence on training set, using Krum as aggregation rule. ǫ ∈ {0.1, 0.5, 1, 10}.



We use the averaging, Median, and Krum with-

out attacks as the gold standards, which are referred

to as Mean without attack, Median without

attack, and Krum without attack. We start the

attack at different epochs, so that SGD can warm up and

make some progress first. We include some additional

experiments in the appendix.

6.2 MEDIAN

In each iteration, the server receives m = 25 gradients.

A randomly selected subset of q = 12 correct gradients

are replaced by Byzantine gradients. We define the set

of Byzantine gradients as U = {u1, . . . , u12}, and the set

of the remaining correct gradients as V = {v1, . . . , v13}.
Our attack strategy is as follows:

u1 = u2 = · · · = u12 = − ǫ

13

13
∑

i=1

vi.

According to Theorem 1 and Remark 3, Median is vul-

nerable to positive ǫ with large magnitude |ǫ|.
We test the above attack strategy with different ǫ. The

results are shown in Figure 4. Median fails when ǫ >

0. When ǫ = 0, Median gets stuck and stops making

progress. When ǫ < 0, Median successfully defends

against the attack.

6.3 KRUM

In each iteration, the server receives m = 25 gradients.

A randomly selected subset of q = 11 correct gradients

are replaced by Byzantine gradients. We define the set

of Byzantine gradients as U = {u1, . . . , u11}, and the set

of the remaining correct gradients as V = {v1, . . . , v14}.
Our attack strategy is as follows:

u1 = u2 = · · · = u11 = − ǫ

14

14
∑

i=1

vi.

According to Theorem 2 and Remark 5, Krum is vulnera-

ble to positive ǫ with small magnitude |ǫ|.
We test the above attack strategy with different ǫ. The

results are shown in Figure 5. Krum fails when ǫ > 0
is small. When ǫ is large enough, Krum successfully

defends against the attack.

6.4 DISCUSSION

Surprisingly, both Median and Krum are more vulnera-

ble than we expected. Note that our theorems only analyze

the worst cases. There are other cases where Median

and Krum can fail.

For Median, even if we take ǫ = 0, SGD still performs

badly. Theoretically, even if we do not use positive ǫ,

small ǫ can still enlarge the variance of SGD, which can

be potentially harmful to the convergence. We can see that

with large negative ǫ, the defense of Median is success-

ful. Our experiments reveal certain new vulnerabilities

of Median in distributed synchronous SGD. The experi-

ments conducted by Yin et al. (2018) do not fail because

the attacker only changes the labels of the poisoned train-

ing data by flipping a label ∈ {0, . . . , 9} to 9−label. It is

very likely that such an attack produces Byzantine gradi-

ents surrounding the correct gradients coordinate-wisely

on both sides. However, according to Theorem 1 and

Remark 3, an effective attack should place the Byzantine

gradient on one and only one side of the correct gradi-

ents, which is the side opposite to the mean of the correct

gradients, coordinate-wise.

For Krum, small positive ǫ makes SGD vulnerable. Fur-

thermore, even if we take ǫ = 1, Krum still fails. Our

experiments reveal certain new vulnerabilities of Krum

in distributed synchronous SGD. The experiments con-

ducted by Blanchard et al. (2017) do not fail even though

a similar attack strategy called “omniscient” is conducted.

The reason is that, in the paper of Blanchard et al. (2017),

the attacker “proposes the opposite vector, scaled to a

large length”, which is similar to our attack strategy with

a large ǫ.

Guided by our theoretical analysis, we designed efficient

attack strategies for both Median and Krum. Our results

show that the definition of Byzantine tolerance for dis-

tributed synchronous SGD should be revised. Using our

definition of DSSGD-Byzantine tolerance, research can

be conducted to design better defense techniques.

7 CONCLUSION

We propose a revised definition of Byzantine tolerance for

distributed synchronous SGD. With the new definition, we

theoretically and empirically examine the Byzantine tol-

erance of two prevailing robust aggregation rules. Guided

by our theoretical analysis, attack techniques can be de-

signed to fail the aggregation rules. In the future, we hope

new defense techniques can be designed using our revised

definition of Byzantine tolerance.
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