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Growth: How Fast? How Regular?
Suppose we want to study a sequence of integers (𝑎𝑛)𝑛∈ℕ
and characterize how it grows. A motivating example
is the Fibonacci sequence 1, 1, 2, 3, 5,… , which satisfies
the famous recursion 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2. We can apply
an eighteenth-century idea (attributed to de Moivre and
put to excellent effect by Euler) and form the associated
generating function 𝔸(𝑥) = ∑∞𝑛=0 𝑎𝑛𝑥𝑛 ∈ ℚ[[𝑥]], with the
values of the sequence as coefficients in a formal power
series. From the recursion, we find that 𝔸(𝑥) − 𝑥𝔸(𝑥) −𝑥2𝔸(𝑥) = 1, obtaining the nice form𝔸(𝑥) = 11−𝑥−𝑥2 ∈ ℚ(𝑥)
as a rational function (a ratio of polynomials). Some of
this generalizes readily. Let’s say that a Fibonacci-style
recursion is one with integer coefficients and finite depth:𝑎𝑛 = 𝛼1𝑎𝑛−1 +⋯+𝛼𝑘𝑎𝑛−𝑘. We once again get 𝔸(𝑥) as a
rational function, with denominator 1 − 𝛼1𝑥 −⋯−𝛼𝑘𝑥𝑘.
We’ll say that sequences whose generating functions are
rational functions have rational growth. Let’s consider
what this tells us about the sequence.

Polynomials Have Rational Growth

We can next observe that 11−𝑥 = ∑𝑛 1⋅𝑥𝑛 and that 𝑥𝑘(1−𝑥)𝑘+1 =∑𝑛 (𝑛𝑘)𝑥𝑛, so the sequence 𝑎𝑛 =(𝑛𝑘) has rational growth for
each 𝑘. Furthermore, since (𝑛𝑘) is a degree-𝑘 polynomial in𝑛 and these form a basis for ℚ[𝑛], we have all sequences𝑎𝑛 = 𝑓(𝑛) for 𝑓 ∈ ℚ[𝑛] in the rational growth class.

Actually a very small generalization is in order: a
function 𝑔(𝑛) is (eventually) quasi-polynomialwith period𝑁 if there is a threshold 𝑇 > 0 and a list of polynomials𝑔1,… ,𝑔𝑁 such that 𝑔(𝑛) = 𝑔𝑘(𝑛) for 𝑘 ≡ 𝑛 mod 𝑁 and𝑛 ≥ 𝑇. We may think of this behavior as cycling through
finitely many polynomials or as being polynomial with
oscillating coefficients, if we prefer. It’s easy to see
that eventually quasi-polynomial functions have rational
growth—just sum the 𝑥𝑘 ⋅𝔸𝑘(𝑥𝑁), and add a polynomial
to adjust the low values of 𝑛. There is a nice converse
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as well: if an integer sequence in the polynomial range
(that is, 𝑎𝑛 ≤ 𝐴𝑛𝑑 for some𝐴,𝑑) satisfies a Fibonacci-style
recursion, then it records the values of an eventually
quasi-polynomial function. (To see this, convince yourself
that the poles of 𝔸(𝑥)must be roots of unity, so that each
makes a periodic contribution to the expression.)

And So Do Exponentials
On the other hand, 11−2𝑥 = ∑𝑛 2𝑛𝑥𝑛 has 𝑎𝑛 = 2𝑛, and
indeed whenever a rational function 𝔸(𝑥) has a pole
inside the unit circle in ℂ, its associated sequence grows
exponentially.

But Lots of Things Don’t!
Any function growing at a rate faster than polynomials
but slower than exponentials (like, say, 𝑒√𝑛) has no chance
at rational growth; a rational function either has a pole
inside the unit circle (forcing exponential growth) or not
(forcing growth in the polynomial range—this is fun to
check if you’re so inclined).

Likewise, you can easily form a sequence that’s very
close—even bounded distance—to one with rational
growth but which fails badly in its own right. For instance,
consider the digits-of-pi power seriesℙ(𝑥) = 3+ 1𝑥+ 4𝑥2 + 1𝑥3 + 5𝑥4 +⋯.
The observation thatℙ(1/10) = 𝜋 rules out the possibility
that this series is rational, and in fact we can go a bit
further. If 𝔸(𝑥) = 𝑝(𝑥)𝑞(𝑥) is rational, we have 𝑞𝔸 − 𝑝 = 0,
which suggests that we can generalize rational growth
to algebraic growth if 𝔸 satisfies any polynomial with
polynomial coefficients; otherwise we’ll say the growth is
transcendental. This ℙ(𝑥) is transcendental in that sense,
even though its coefficients are within globally bounded
distance from those of the rational function 11−𝑥 (and
indeed of the rational function 0).
Counting in Dilates
Next, we can parlay these ideas to a study of some
classical counting problems: for a region Ω ⊂ ℝ𝑑, we’ll
define 𝐺Ω ∶ ℤ≥0 → ℤ≥0 by 𝐺Ω(𝑛) ∶= #(ℤ𝑑 ∩ 𝑛Ω), the
number of lattice points in the 𝑛-times dilate of Ω.
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Round Counting
In the case Ω = 𝔻, the unit disk in ℝ2, this is the famous
Gauss circle problem. Gauss himself made the simple
observation that 𝐺𝔻(𝑛) = 𝜋𝑛2 + 𝑂(𝑛), with the first-
order term being given by the area of the disk (because
there is roughly one lattice point per unit square), while
the second-order term reflects the fact that the boundary
touches 𝑂(𝑛) squares. From a modern point of view,
we would say that the first-order term of 𝐺Ω(𝑛) must
be 𝑉𝑛𝑑 whenever Ω is Riemann-integrable with volume𝑉, because its boundary has a lower-order contribution.
About a hundred years later Sierpinski improved on this
somewhat with the estimate 𝐺𝔻(𝑛) = 𝜋𝑛2 +𝑂(𝑛 23 ), and
today it is believed that the optimal power law looks like𝐺𝔻(𝑛) = 𝜋𝑛2 +𝑂(𝑛 12+𝜖)
for any 𝜖 > 0. (This is best possible, by a theorem
of Hardy and Landau.) This “feels” like it should have
transcendental growth, and indeed it does: a theorem of
Stoll [3] tells us that if 𝑎𝑛 ∼ 𝛼𝑛𝑑, then 𝛼 irrational or
transcendental implies the same for 𝔸.

Pointy Counting
By contrast, suppose we start with Ω = 𝑃, a lattice
polytope (integer vertices). In the plane (𝑑 = 2), we have
the remarkable Pick’s theorem which relates the area (𝐴),
interior lattice points (𝑖), and boundary lattice points (𝑏) by𝐴 = 𝑖+ 𝑏2 −1, which we can rearrange to 𝑖+𝑏 = 𝐴+ 𝑏2 +1,
then scale to obtain 𝐺𝑃(𝑛) = 𝐴𝑛2 + 𝑏2𝑛 + 1 for 𝑛 ∈ ℕ.
This is a beautiful fact: the lattice point count in a
dilated polygon grows exactly like values of a polynomial;
polygonal counting has rational growth. Now it is well
known that Pick’s theorem doesn’t generalize to higher
dimensions (i.e., there is no formula for the volume
of a lattice polyhedron based only on a count of the
lattice points in its 𝑘–cells), but nonetheless, in the 1970s
former high school teacher Eugène Ehrhart found that the
polynomiality persists:𝐺𝑃(𝑛) = 𝑎𝑑𝑛𝑑+𝑎𝑑−1𝑛𝑑−1+⋯+𝑎0,
where the leading coefficient 𝑎𝑑 is of course the volume,
the next coefficient 𝑎𝑑−1 is an appropriately normalized
surface area, and the constant term 𝑎0 is the Euler
characteristic of the polytope. These Ehrhart polynomials
are part of a thoroughly beautiful story, which you can
readabout inBeck–Robins [1], andsomeof thenumerology
of the other coefficients remains a mystery.

It’s worth noting that if we’d begun with 𝑄 with
rational coordinates for its vertices rather than integers,
then we’d have found 𝐺𝑄 to be quasi-polynomial! So
counting functions for rational polyhedra have rational
growth.

Counting in Groups
Onward to group theory, where we will study some
counting problems in finitely generated groups given by
presentations 𝐺 = ⟨𝑆|𝑅⟩, with 𝑆 a generating set and 𝑅 a
list of relations. Recalling that [𝑎, 𝑏] = 𝑎𝑏𝑎−1𝑏−1 denotes
the commutator of two group elements, we can present
three basic 2-generated groups by⟨𝑎, 𝑏 ∣ [𝑎, 𝑏] = 1⟩ ⟨𝑎, 𝑏 ∣ ∅⟩ ⟨𝑎, 𝑏 ∣ [𝑎, 𝑏] central⟩.

The first is the free abelian group ℤ2, the second is
the free group 𝐹2 of rank two, and the third is the
(discrete) Heisenberg group 𝐻(ℤ) = [ 1 ℤ ℤ0 1 ℤ0 0 1 ] as generated

by the elementary matrices 𝑎 = [ 1 1 00 1 00 0 1] and 𝑏 = [ 1 0 00 1 10 0 1].
In terms of algebraic structure, 𝐻(ℤ) belongs to a class
of groups called nilpotent (of step 𝑠): in nilpotent groups,
some commutators of generators might be nontrivial, but

Presentations
seem deceptively
simple, but they
are famously

hard to work with

commutators with com-
mutators or commuta-
tors with commutators
with commutators, and
so on, eventually all die
after a fixed number of
steps 𝑠. (The Heisenberg
group is 2-step be-
cause [𝑎, 𝑏] commutes
with everything, so all
commutators with com-
mutators are trivial.)

One might wonder whether counting problems can detect
algebraic structure like this or other algorithmic and
geometric structure in groups.

Hard Questions about Groups
Presentations seem deceptively simple, but they are fa-
mously hard to work with. Given a presentation, the
word problem seeks an algorithm to decide whether a
string of generators represents the identity. One way to
understand the structure of a group is to build a Cayley
graph whose vertices are group elements, connected by
an edge if they differ by a generating letter. Recognizing
the identity word from a string of generators is the same
as finding loops in the Cayley graph. These problems are
in general undecidable, as we’ve known since work of
Boone and Novikov in the 1950s.

Cayley graphs are a key tool in geometric group
theory; the large-scale geometry of the graphs carries
fundamental information about the algebraic properties
of the groups. For instance, if the graph has negative
curvature in the large (i.e., is 𝛿–hyperbolic), then we gain
a great deal of information about the group, such as a
fast solution to the word problem.

Growth
Consider the fundamental counting question How many
group elements can be spelled with ≤ 𝑛 letters? In terms of
the Cayley graph from the generating set 𝑆, this asks for
the count of group elements in the ball of radius 𝑛. Let’s
name this 𝛽𝑛 ∶= #𝐵𝑛, and we’ll name the corresponding
sphere count 𝜎𝑛 ∶= 𝛽𝑛 −𝛽𝑛−1, noting that 𝔹(𝑥) = ∑𝛽𝑛𝑥𝑛
and 𝕊(𝑥) = ∑𝜎𝑛𝑥𝑛 are related by 𝔹(𝑥) = 𝕊(𝑥)1−𝑥 . In simple
examples, we get simple recursions, and therefore rational
growth, and in free abelian groups we can also find a
suggestively parallel geometric counting problem. In the
table below, we’ll write std for standard generators of a
group, and we’ll consider the dependence on generators
in ℤ2 by additionally considering hex = ±{[ 10 ] , [ 01 ] , [ 11 ]}
(the points of an integer hexagon in the plane) and
chess = {[±2±1 ] , [±1±2 ]} (the moves a chess knight makes).

872 Notices of the AMS Volume 63, Number 8



(G, S) βn (n≫1) σn (n≫1) recursion σn = S(x) Ω GΩ(n)

(Z, std) 2n+ 1 2 σn−1
1+x
1−x

2n+ 1

(Z2, std) 2n2
+ 2n+ 1 4n 2σn−1 − σn−2

(1+x)2

(1−x)2
2n2

+ 2n+ 1

(Z2,hex) 3n2
+ 3n+ 1 6n 2σn−1 − σn−2

1+4x+x2

(1−x)2
3n2

+ 3n+ 1

(Z2, chess) 14n2
− 6n+ 5 28n− 20 2σn−1 − σn−2

(1+x)(1+5x+12x2
−8x4

+4x5)
(1−x)2

14n2
+ 6n+ 1

(Z3, std)
(2n+1)(2n2

+2n+3)
3

4n2
+ 2 3σn−1 − 3σn−2 + σn−3

(1+x)3

(1−x)3
(2n+1)(2n2

+2n+3)
3

(F2, std) 2·3n − 1 4·3n−1 3σn−1
1+x

1−3x

Some groups 𝐺 and generating sets 𝑆, with 𝛽𝑛 (or 𝜎𝑛) elements in a ball (or sphere) of radius 𝑛. 𝕊(𝑥) = ∑𝜎𝑛𝑥𝑛
and 𝐺𝜔(𝑛) is the number of elements in 𝑛𝜔.

Coarse Counting
Atfirst glance, the precise coefficients𝛽𝑛 or𝜎𝑛 might seem
like a poor tool to use in the study of groups, because
they depend a great deal on the choice of generators!

Rationality of
growth is

delicate detail
that can only
be viewed

from very far
away

However, using the funda-
mental fact that changing
generating can only mod-
ify the Cayley graph
metric in an essentially
linear way, we can ob-
serve that having growth
in the polynomial range
(indeed, even polynomial
of a certain degree) or
the exponential range is
coarse enough to be a
well-defined group prop-
erty. The possible growth
rates of groups has been
a major open question at
least since Milnor wondered about it in the 1960s, and
there was a breakthrough in the 1980s when Grigorchuk
found groups of intermediate growth (on the order of𝑒𝑛𝛼for some 𝛼 < 1). Work of Bass and Guivarc’h had
demonstrated that nilpotent groups would all have
growth in the polynomial range, and they had com-
puted the degree. (So, for instance, the Heisenberg group𝐻(ℤ) has growth 𝛽𝑛 ≍ 𝑛4, 𝜎𝑛 ≍ 𝑛3 with any generators.)
And one of the fundamental theorems of geometric group
theory remains Gromov’s beautiful result from 1981 [2].
To state it, we’ll use the terminology that a group is
virtually nilpotent if it is nilpotent up to finite index, and
similarly for abelian and other group properties.

Theorem 1 (Gromov). The groups with growth in the poly-
nomial range are precisely the virtually nilpotent groups.

One way of narrating some of the math that goes into
Gromov’s theorem goes like this: on one hand, nilpotent
groups admit “counting in dilates” in an appropriate
ambient space, which implies polynomial growth; on the
other hand, the presence of an appropriate kindof dilation
characterizes nilpotency.

Fine Counting
Rational growth in groupswouldpayoffhandsomely:we’d
have a recursion giving us the growth values, and if we
know how many group elements there are of each length,
we can devise algorithms to solve the word problem and
build the Cayley graph from only finitely much initial data.
However, rationality is extremelydelicate—remember that
it can be destroyed by adding a bounded function—so it
may in principle depend on the choice of generating set.
A stunning theorem of Stoll from 1996 [3] shows that it

may in fact: the higher Heisenberg group [1 ℤ ℤ ℤ0 1 0 ℤ0 0 1 ℤ0 0 0 1], which

is nilpotent of step two, has rational growth with one
generating set but transcendental with another! So while
growth rate is a coarse asymptotic invariant, you might
say that rationality of growth has the paradoxical status
of being a fine asymptotic property: delicate detail that
can only be viewed from very far away.

At this point, rationality across generating sets might
seem to be asking too much. But amazingly, there are
geometric regimes that are so well behaved you don’t
need to be a slave to the generators.

Theorem 2 (Cannon, Thurston, Gromov, Benson, 1980–
1984). No matter the generators, if the group is flat (virtu-
ally abelian) or hyperbolic, then the growth is rational.

Per Stoll, nilpotent geometry is not such a regime.
Nonetheless, for 𝐻(ℤ) itself, a curious blend of sub-
Finsler geometry, convex geometry, and combinatorial
group theory turns out to be enough.

Theorem 3 (Duchin–Shapiro, 2014). Same for the Heisen-
berg group!

That’s the good news. On the other hand, even in
standard generators we get 𝜎𝑛 = 31𝑛3−57𝑛2+105𝑛+𝑐𝑛18 , where𝑐𝑛 = −7,−14, 9,−16,−23, 18,−7, 32, 9, 2,−23, 0, repeat-
ing with period 12, for 𝑛 ≥ 1. In the next simplest choice
of generators, the quasi-polynomial period is already 60.
I will leave you with that hopefully vivid illustration that
you don’t want to wrangle with Heisenberg’s growth by
hand.
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