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Modeling the flow of dry granular materials entering water is crucial to optimize blending
processes in the industry or for natural hazard assessment when describing the tsunami
waves induced by landslides. In this study, we experimentally investigate the case of a
jet of grains entering from the air into a water bath. After an initial transient state,
a stationary impregnation front appears between the dry and the wet grains. The wet
grains are then dispersed in the liquid. To describe this dry to wet transition, we focus
on the first step of the process when the liquid invades the dense granular medium.
In this regime, the granular jet is modeled as a translating porous material, and we
systematically characterize the impregnation process using a combination of experiments,
analytical modeling, and numerical tools. We then compare this approach to the situation
of a confined granular jet entering into a water bath. Our approach is a first step toward
describing the interplay between dry grains and a liquid and the resulting dispersion of
particles.
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1. Introduction

Blending grains with a liquid is an essential step in many industrial processes, for
instance in the food industry (Forny et al. 2011) and in civil engineering for the prepa-
ration of building materials (Cazacliu & Roquet 2009; Collet et al. 2010). The mixing
step often involves initially pouring granular materials into a liquid bath so that the
particles are dispersed in the interstitial fluid. At a larger scale, the entry of grains
into water occurs during the collapse of a cliff edge at the seaside. In this situation,
tsunami waves can be generated by the entry of the granular mass into the ocean,
which leads to a significant hazard for the population. This phenomenon has been the
subject of experimental works to quantify the amplitude of the waves resulting from
these events (Fritz et al. 2003; Heller et al. 2008; Viroulet et al. 2013, 2014). Macroscopic
theoretical models describing the energy transfer between the grains and the liquid have
been proposed to predict the amplitude of the wave generated (Zitti et al. 2016; Mulligan
& Take 2017). Nevertheless, understanding of the interplay between the grains and the
liquid is essential to correctly describe the transition from dry to wet grains during the
immersion of a dense granular material. This interaction is also important to predict
the liquid and sediment transports in complex granular systems, for instance during the
drainage of water from the basements after heavy rains (Horton 1945; Kirchner et al.
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Figure 1. Time series of a free semi-2D granular jet penetrating into a water bath. Particles
are spherical glass beads of diameters dg = 1050 ± 250µm. The jet of width 5 cm is confined
between two PMMA plates (at the front and the rear). Each picture are separated by 0.25 s.
Scale bar is 2 mm.

2000; Guérin et al. 2014), which also impact the stability of soils subjected to extreme
conditions (Herminghaus 2005).
The interplay between a granular material and a liquid has been extensively studied

in static configurations where the granular material behaves as a porous medium in
which the liquid flows. At low Reynolds number, the flow dynamics is captured by the
Darcy’s law, relating the fluid velocity to the pressure gradient applied to the liquid (Bear
1988). For larger Reynolds numbers, inertial effects induce a nonlinear dependence of the
pressure gradient with the velocity. Different inertial corrections have been reported in
the literature (Bear 1988). Among them, the Forchheimer’s law has successfully been used
to capture various situations of flow in porous media (Bear 1988). These approaches are
used to describe, for instance, capillary flows in porous media in different geometries
(Lucas 1918; Washburn 1921; Hyväluoma et al. 2006; Xiao et al. 2012; Benner & Petsev
2013), and various layered porous systems (Reyssat et al. 2009; Mensire et al. 2016).
Gravity flows in porous media, such as during the drainage in aquifers, have also been
successfully described using these models (Lyle et al. 2005; Vella & Huppert 2006; Guérin
et al. 2014). Nevertheless, the dynamics situation of a porous media plunging from the
air into a water bath remains elusive.
In this work, we investigate the entry of a dry granular jet in a liquid bath. The granular

jet configuration is well-known in the case of an impact on a solid surface (Cheng et al.

2007; Müller et al. 2014). Conversely, the interaction with a soft or a liquid surface
remains a subject of interrogation. When the granular material penetrates the liquid
bath, it tends to fragment by interacting with the fluid (González Gutiérrez et al. 2014;
Cervantes-Álvarez et al. 2020). Once immersed, the flow of grains in an interstitial liquid
is governed by the viscous displacement of the particle in the fluid (Courrech du Pont
et al. 2003; Doppler et al. 2007; Topin et al. 2012; Bougouin et al. 2017).
Modeling a dry granular jet entering into water is a complex problem since the structure

of the jet evolves as the grains enter the fluid. Contrary to a jet of an immiscible liquid into
water, the granular jet impregnates when the particles that compose it are hydrophilic,
leading to a complex multiphase situation. Figure 1 shows a time series of a jet of dry
grains entering into a quiescent water bath. In the configuration considered here, when
the jet crosses the liquid surface, it remains compact and deforms the free-surface. The jet
begins to impregnate and has a dry part located inside the jet (dark gray) surrounded
by an impregnated part (light gray). After a short transient, a stationary V-shaped
impregnation front appears. The grains only disperse after being entirely wetted by
the water. This observation suggests modeling at first order the initial behavior of a
dense granular jet as a porous medium translating into a liquid bath. This situation is
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Syst. dg (µm) k (10−10 m2) k1 (10−10 m2) k2 (10−10 m2) β2 (105 m−1) θc (◦) φ

W1 300− 380 0.7 0.8 0.8 3.1 42± 5 0.59
W2 400− 470 1.0 1.0 1.3 1.4 33± 5 0.61
W3 800− 1300 10 11.6 12.1 0.1 45± 5 0.62

N1 140− 320 1.1 1.1 - - 76± 5 -
N2 280− 420 5.5 5.5 - - 72± 5 -

Table 1. Physical properties of the grains composing the model porous media.

reminiscent of the coating processes used to coat textiles or surfaces with a liquid coating
by dragging them into a bath (Quéré 1999; Clarke 2002; Seiwert et al. 2011). However,
our configuration differs by the complexity of the surface exposed to the liquid, namely
a porous material that can be impregnated by the liquid. Furthermore, in the case of
a porous material, the isotropy of the medium does not constrain an orientation of the
fluid front, contrary to the hairy surfaces studied recently by Nasto et al. (2016).
In this work, we experimentally investigate the impregnation of a porous material

translated into a liquid reservoir. The experimental observations are compared to an-
alytical models and numerical results. The experimental setup is described in section
2. The transient impregnation regime is reported in section 3 and modeled by a 1D
impregnation dynamics. In section 4, we focus on the stationary regime characterized by
a stationary impregnation. This stable profile is then partially modeled using Darcy’s
and Forchheimer’s models in section 5. In section 6, a numerical method is developed
to model the shape of the impregnation front fully. Finally, a discussion is proposed in
section 7 to compare the results obtained with a porous medium to those obtained with
a dense granular jet.

2. Experimental methods

2.1. Experimental set-up

The experimental setup, shown in figure 2(a), consists of a linear motor stage translat-
ing a porous material at a constant velocity V0 into a water reservoir of large dimensions.
The porous medium is formed by packing spherical glass beads into a transparent cell of
length 40 cm, of variable width W =5, 10, and 20 cm and of thickness 12 mm so that the
configuration can be considered as bidimensional, as shown in figure 2(b). The side and
bottom walls of the cell are permeable thanks to a metal wire mesh of opening 250 µm
[visible in figure 2(a)]. The small thickness of the cell allows us to visualize the dry and
wet grains in dark and light, respectively, using the contrast of absorption of the light
emitted by a LED panel placed behind the setup [figure 2(c)]. It also allows us to track
the impregnation front separating the dry and wet regions.
The porous medium is translated vertically into the water bath at a constant speed

V0 varying between 1 mm/s and 150 mm/s. The impregnation dynamics is recorded at
30 frames per second (Nikon D-7100 with an F30 lens) and then analyzed by image
processing to extract the shape of the impregnation front and its time-evolution during
the experiment.

2.2. Characterization of porous media

The porous medium is prepared by filling the transparent cell with glass beads.
Different systems of grains were used to tune the pore size and the wettability of the
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Figure 2. (a) Photo of the porous medium made of grains (system W3). The front and rear
sides are made of PMMA, and the lateral sides and the bottom of the cell consist of a metal
wire mesh of opening 250 µm. (b) Schematic of the experimental setup. A vertical linear motor
imposes the speed of translation V0. (c) Picture of the stationary impregnation front during the
translation of the porous medium into the water bath. The system is illuminated by a LED
panel placed behind the cell. The light part is fully saturated in water whereas the dark part is
dry.

porous medium. We performed the experiments with the systems W1, W2, W3, where
W stands for wetting, and the systems N1 and N2, where N stands for non-wetting thanks
to coated glass beads (Sigmund Lindner). The coating changes the surface properties of
the beads by increasing the contact angle with the liquid. The beads are sieved to refine
the size distributions which are summarized in table 1 (see also Appendix A). For each
system, the glass beads are cleaned with soap and thoroughly rinsed with de-ionized
water to remove any dust on the grains.

The contact angle between the grain and the water is measured by trapping a single
bead at the surface of a pending drop of liquid (Timounay et al. 2015). For each
experiment, the granular packing is prepared by following a protocol detailed in Appendix
A. Several taps are given to compact the granular packing until reaching a constant
volume fraction of φ ≃ 0.62. The compacity φ and the porosity ǫ of the granular
packing are estimated by measuring the mass and the volume occupied by the grains (see
Appendix A). The permeability of the porous media, k, is measured by an experiment
of filtration through the porous medium following the procedure presented by Chopin
& Kudrolli (2011). This measurement is performed at low Reynolds number, in the
range of velocities compatible with the Darcy’s law. The measured permeability is noted
k1 in table 1. Another set of measurements of the permeability is performed at larger
Reynolds numbers to determine the Forchheimer’s coefficient β2 required in the Darcy-
Forchheimer’s equation used in section 5. Furthermore, a third value of the permeability,
denoted k, is used to fit the theoretical prediction to the experimental data. Only the
values k and β2, are used in this paper. The discrepancies between each measurement
of the permeability are relatively small and remain less than 20% for all experimental
configurations. The small difference can be explained by experimental artifacts brought
by the glass tube used for the flow measurements through the packed beads. The physical
characteristics of all model porous media used in this study are summarized in table 1,
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Figure 3. Time series during the transient phase of a porous medium of width W = 10 cm
composed of the system W2 plunging into water at a speed V0 = 30 mm/s.

and all the experimental methods used to characterize the properties of the beads are
detailed in Appendix A.

2.3. Phenomenology

An example of time-series extracted from an experiment is shown in figure 3. This
experiment is performed with a porous medium made of glass beads from the system W1
in a 5 cm-wide cell translating into a water bath at a constant velocity V0 = 30 mm/s.
When the porous medium plunges into the water, air is entrained within the porosity of
the material, and liquid penetrates laterally and vertically into the pores, which leads to
a V-shaped impregnating front visible in the last image. This front separates the part
of the porous medium invaded by the liquid (the wet grains, light region in figure 3)
to the dry part of the sample containing only air in the porosity (visible in dark). The
dynamical impregnation is characterized by a transient phase for t < τ , where τ is the
time to reach a stationary impregnation profile. The transient phase is followed by a
stationary regime for t > τ . During the transient phase, the impregnation front evolves
through different shapes until reaching a steady V-shape in the stationary regime.

3. Transient regime

We first focus in this section on the transient regime observed for t < τ . The transient
regime is characterized by the continuous evolution of the impregnation front until
reaching the stationary V-shape profile, which will be characterized in section 4.

3.1. Dynamics of impregnation

We study the transient regime by tracking the temporal evolution of the impregnation
front. The shape of the impregnation front is reported at different times in figure 4(a)
for an experiment performed with a porous medium of width W=10 cm composed of
grains from the system W2 and plunged in the water bath at a constant velocity V0

= 30 mm/s. The impregnation front evolves continuously from an initial flat profile to
a V-shape profile by keeping a constant slope on the side. The temporal evolution of
the impregnation is characterized by measuring the vertical length of air entrained in the
bath, noted ℓdry(t) [see figure 4(a)]. The slope of the impregnation front remains constant
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Figure 4. (a) Evolution of the impregnation front during the transient regime. The data are
extracted from the experiment shown in figure 3. The air-water interface is located at z = 0.
(b) Evolution of the maximum length of air ℓdry(t) entrained under the liquid surface. The red
circles corresponds to the position of the bottom of the porous medium that is translated at a
constant velocity V0 under the surface.

during all the process and will be characterized in the next section. The time evolution
of ℓdry(t) is presented in figure 4(b). The length ℓdry(t) increases linearly with a velocity
Vf before saturating to a constant value, ℓdry(t → ∞) = hdry, which corresponds to the
maximum length of air entrained by the porous material when the stationary regime is
reached.
Using hdry and τ = hdry/Vf as characteristic length scale and time scale, respectively,

we can rescale the evolution of ℓdry(t) for all the experiments performed with the different
model porous media. The results are reported in figure 5 and show that all the rescaled
data collapse on an empirical law with a single fitting parameter:

ℓdry
hdry

= f

(

t

τ

)

with f(ξ) =
(

1− e−ξn
)1/n

and n ≃ 4.5. (3.1)

The impregnation by the fluid from the bottom wall of the porous medium governs the
evolution of ℓdry during the transient regime. In parallel, the liquid invades the porous
medium from the lateral walls. The resulting impregnation profile exhibits a constant
slope resulting from the balance between the liquid impregnation and the translation of
the porous medium. The stationary regime is reached when the two impregnation fronts
from each side meet to form the stationary V-shape profile. Before that, the vertical
impregnation length ℓdry(t) is limited by the vertical 1D flows coming from the bottom
of the cell. Therefore, the transient regime and the linear time evolution of ℓdry(t) before
the saturation can be modeled by considering the vertical impregnation in a uniform 1D
porous medium translating into a liquid bath.

3.2. 1D-Imbibition model

We consider a 1D porous medium with impermeable sidewalls and a porous bottom wall
translated at a constant speed V0 into a liquid bath (see figure 6). The porous material
is characterized by its permeability k, its compacity φ, the average pore diameter dg and
the contact angle θc of the three-phase contact line on the glass beads. The capillary
pressure drop at the impregnation front, pc, is given by (Reyssat et al. 2009; Xiao et al.
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Figure 5. Rescaled length of air entrained under the free surface ℓdry/hdry as a function of the
dimensionless time t/τ . The figure summarizes the results of 30 sets of parameters varying the
size of the grains, the width of the cell W and the plunging speeds V0. Experiments with beads
of systems W1, W2 and W3 are plotted in blue, red and green, respectively. The red dashed
line is the empirical fit given by equation (3.1).

2012):

pc =
4 γ cos θc

dg
, (3.2)

where γ ≃ 70 mN.m−1 is the air-water surface tension. We also define the Reynolds
number associated to the fluid displacement in the porous material as

Rep =
ρ u dg
η

, (3.3)

where ρ is the density of the fluid, η the viscosity and u its characteristic velocity in
the porous medium. In the transient regime studied here, an order of magnitude of the
velocity u is about 10 mm/s, resulting in a Reynolds number Rep in the range 1-10,
depending on the grain sizes. In this range of Reynolds numbers, the flow dynamics into
the porous medium is modeled by the Darcy’s equation, which relates the average liquid
velocity uDarcy to the pressure gradient ∇p (Mensire et al. 2016):

uDarcy = (1− φ)up = −k

η
(∇p− ρg) (3.4)

where up is the mean velocity of the liquid into the porous medium, and g is the
gravitational acceleration. In this configuration, the liquid flow is driven both by the
drop of capillary pressure at the interface and the hydrostatic pressure.
We note ℓ0 the position of the bottom of the porous medium such that ℓ0 is the total

length of the material immersed under the liquid surface. This length can be decomposed
as the sum of the wet part ℓwet and the dry part ℓdry, as shown in figure 6. The porous
material is translated at a constant speed V0, so that ℓ0 = V0 t = ℓdry + ℓwet.

The Darcy’s equation (3.4) in one dimension, along the z axis, is then

dℓwet

dt
=

k

(1− φ)η

(

pc + ρgℓ0
ℓwet

− ρg

)

, (3.5)

where the fluid velocity at the pore scale is associated to the velocity of the impregnation
front up = dℓdry/dt. We introduce V ⋆ as the characteristic impregnation velocity
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V0

Figure 6. Schematic of the impregnation of a 1D porous medium plunging in water at a constant
velocity V0 along the z axis. The total length of the porous medium immersed in water is denoted
ℓ0, ℓdry and ℓwet corresponds to the dry and wet length under the surface, respectively.

associated to the gravity-driven flow:

V ⋆ =
kρg

(1− φ)η
. (3.6)

We also introduce the dimensionless length Lwet = ℓwet/h∞ and dimensionless time
T = tV ⋆/h∞, where h∞ is the Jurin’s height defined by the balance of the capillary
forces and the liquid weight such that h∞ = pc/ρg. The Eq. (3.5) then becomes

dLwet

dT
=

1 + (V0/V
⋆)T

Lwet
− 1. (3.7)

This equation can be solved analytically, as detailed in Appendix B. The theoretical
impregnation dynamics are computed for different values of V0/V

⋆ and reported in
figure 7(a). For V0/V

⋆ = 0, the dynamics reduces to the well-known Lucas-Washburn’s
equation for the vertical impregnation of a liquid in a static porous medium under
gravity (Washburn 1921; Lucas 1918). The fluid displacement in the porous medium
is controlled by the capillary imbibition and follows a diffusion dynamics in t1/2 before
saturating under the effect of gravity at the Jurin’s height h∞ (Delker et al. 1996; Lago
& Araujo 2001). For moderate values of V0/V

⋆, a capillary regime is observed at short
time, followed by a pressure-driven regime exhibiting a constant impregnation velocity
Vwet as shown in figure 7(a). These front velocities are reported in figure 7(b) as a function
on the dimensionless plunging speed V0/V

⋆. We can derive an analytical expression of
the impregnation front velocity Vwet by simplifying the Eq. (3.7) at long time, i.e. for
(V0/V

⋆)T ≫ 1. In this regime, the capillary term can be neglected with respect to the
hydrostatic term and the equaqtion becomes:

dLwet

dT
=

(

V0

V ⋆

)

T

Lwet
− 1. (3.8)

This equation has a solution of the form Lwet = νT where ν is a constant (Mullins &
Braddock 2012). This kind of solution is consistent with the experimental observations,
where the front velocity is constant at long time in the transient regime before saturating
when the stationary state is reached. Injecting the ansatz Lwet = νT in equation (3.8),
we obtain

ν± = −1

2
± 1

2

√

1 + 4

(

V0

V ⋆

)

, (3.9)
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Figure 7. (a) Evolution of Lwet as a function of T given by the numerical resolution of
equation (3.7) for different values of V0/V

⋆. The slope gives the value of Vwet/V
⋆. (b) Evolution

of the constant impregnation velocity Vwet/V
⋆ as function of the dimensionless plunging speed

V0/V
⋆. The dashed line correspond to the solution (3.10).
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where only the positive root has a physical meaning, leading to

Lwet =
T

2

[
√

1 + 4

(

V0

V ⋆

)

− 1

]

. (3.10)

We also derived this expression in Appendix B by considering the long-time behavior of
the implicit analytical solution. The solution (3.10) is plotted in dashed line in figure 7(b)
and captures the long-time behavior of the implicit solutions of equation (3.7) confirming
that the long time dynamics is dominated by the pressure-driven flow and the capillary
effects can be neglected.
The velocity Vwet corresponds to the impregnation front velocity with respect to the

bottom of the porous medium and is thus related to the front velocity Vf , with respect
to the free surface through

Vf = V0 − Vwet. (3.11)

The dimensionless front velocity Vf/V
⋆ is reported as a function of the rescaled

plunging velocity V0/V
⋆ in figure 8, where we also show the experimental data obtained
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Figure 9. (a) Picture of a stationary front of impregnation obtained with the system W2, a
cell of width W = 10 cm, and a plunging speed V0 = 60 mm/s. (b) Impregnation profile z(x)
extracted from the experiment shown in (a). The red dashed line corresponds to the parabola
fitting the center of the profile. (c) Close-up view of the bottom of the impregnation profile. The
radius of curvature Rc is evaluated by fitting the profile with a parabola.

for different systems of grains and widths of the cell. Additional data obtained from
one-dimensional impregnation experiments are also plotted in figure 8 to compare them
to the two-dimensional results in the transient regime. Both one and two-dimensional
experimental results collapse on a master curve and are well captured by the analytical
model developed above. These results confirm that the transient regime is governed by
the impregnation from the bottom of the porous medium.
The next process to characterize is the duration of the transient regime, which is related

to how the liquid impregnates the porous medium laterally.

4. Experimental characterization of the stationary front

We now characterize experimentally the stationary regime reached after the transient
impregnation phase. In this regime, the impregnation front is stable and stationary in
the frame of reference of the laboratory, whereas the porous medium is translating in
the water bath. In this regime, the shape of the impregnation front results from the
balance between the air entrainment by the translated porous material and the liquid
impregnation coming from the side of the cell.

4.1. Morphology of the impregnation front

The morphology of the stationary front, which separates the wet and dry grains, is
characterized by a V-shape profile, as shown in figure 9(a). The impregnation profile
exhibits a shouldering of height h0 at the vicinity of the surface of the bath and a local
curvature at the tip of the profile. The maximum length of air entrained under the liquid
surface in the bath is denoted hdry, as represented in figure 9(a). To characterize the
impregnation front, we note θ the opening angle of the profile such that 1/ tan θ is the
slope. We also note Rc the radius of curvature of the front near the tip of the profile [see
figure 9(c)]. The measurements of the opening angle θ and the radius of curvature Rc

are described in figure 9(b)-(c).
The evolution of tan θ, measured on each stationary V-shape profile, is reported in

figure 10(a) as a function of the dimensionless plunging speed V0/V
⋆ for different systems
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Figure 10. Evolution of (a) the slope tan θ and (b) the dimensionless radius of curvature Rc/W
of the stationary profile of impregnation as a function of the dimensionless plunging speed V0/V

⋆

for several systems of wetting porous materials with different widths W . The dotted lines in both
figures are the best fitting power-law.

of beads and cell widths W . The experimental data collapse well on a master curve
confirming that the V-shape of the impregnation profile results from the competition
between the fluid penetration into the porous medium and the translation in the water
bath. The experimental data are well-fitted by a power law of the dimensionless velocity:

tan θ ∝
(

V0

V ⋆

)α

where α = −0.65. (4.1)

Similarly, the radius of curvature Rc at the tip of the profile as a function of V0/V
⋆

is reported in figure 10(b). A good collapse of the data is also observed by rescaling the
radius of curvature by the width of the porous medium W . This result indicates that
the curvature is invariant by a change of scale and only depends on the aspect ratio of
the impregnation front. Moreover, the experimental results suggest that the radius of
curvature at the tip evolves as the inverse of the dimensionless plunging velocity:

Rc

W
∝
(

V0

V ⋆

)γ

where γ = −1.14. (4.2)

Therefore, the largest the speed of immersion, the smallest the curved area is.

4.2. Effect of wettability

We investigate the influence of the wettability of the grains composing the synthetic
porous medium on the shape of the impregnation profile. The coated grains used for these
experiments (systems N1 and N2 in table 1) have a contact angle of θc ≃ 75◦. The grains
can thus be considered as non-wetting grains for which the capillary pressure is neglected.
Moreover, a contact angle larger than about 55◦ prevents the spontaneous imbibition
in a granular packing (Raux et al. 2013). This phenomenon results from geometrical
inaccessibility of the material porosity for the liquid menisci. The non-wetting porous
medium is plunged in the water bath in the same conditions as the previous experiments.
After a similar transient regime, a stationary profile is also observed. Contrary to the
situation with wetting grains (systems W1, W2 and W3), the profile is now shifted by a
much larger length h0 and does not present any shouldering at the vicinity of the side
walls as shown in the inset in figure 11(b).
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The evolution of tan θ as a function of V0/V
⋆ for the non-wetting porous media is

reported in figure 11(a). A transition is observed, characterized by a change of the
exponent describing the evolution of tan θ with V0/V

⋆:

tan θ ∝
(

V0

V ⋆

)α

, with

{

α = −0.64 for V0/V
⋆ . 5.

α = −0.5 for V0/V
⋆ & 5.

(4.3)

For large plunging speeds (V0/V
⋆ & 5), the exponent α matches well with the prediction

of Nasto et al. (2016) who neglected the capillary effects and assumed a horizontal
impregnation in the porous material. For small plunging speeds (V0/V

⋆ . 5), we find an
exponent α ≃ −0.64 similar to one reported for wetting systems in figure 10(a), which
suggest that this exponent does not depend on the capillary effect. Instead, for these
small plunging speeds, the impregnation front is likely shaped by the direction of the
flow inside the porous medium.
The impregnation front is also characterized by an entrance depth above which the

liquid does not penetrate the porous medium. This macroscopic length, h0 corresponds
to the entrance depth of the impregnation front and is also measured for different grains
sizes and several plunging speeds V0. The length h0 increases with V0 and typically varies
from 10 to 200 mm in the range of velocities studied in this work with the systems N1
and N2 (V0 = 1− 150mm.s−1).

In static situations, the entrance depth corresponds to the hydrostatic forcing required
to impregnate the porous material and the metal wire mesh. The wire mesh maintains
together the grains, which have a contact angle larger than the critical angle of impreg-
nation θ⋆ ≃ 55◦ (Raux et al. 2013). Using geometrical argument, several authors have
linked this depth to the accessibility of the pores by the liquid menisci (Bán et al. 1987;
Lago & Araujo 2001; Shirtcliffe et al. 2006; Raux et al. 2013). We note h⋆

0 the entrance
depth in the static case, i.e. for V0 = 0. At constant contact angle θc, h

⋆
0 depends only

on the size of the pores (different for each system) and the nature of the wire mesh. In
all the experiments presented here, the opening of the wire mesh remains unchanged.
The evolution of h0 − h⋆

0 with the plunging speed V0 is presented in figure 11(b) for
the systems N1 and N2. The entrance depth h0 − h∗

0 increases as V0
0.5 in a range of

lengths too large to be consistent with a viscous entrainment of air along the surface of
the porous material (Lorenceau et al. 2003). A possible explanation is to consider the
influence of the wire mesh and the first layer of grains just behind as an additional porous
material presenting a lower permeability. Due to the weak difference of size between
the grid opening (dgrid = 250 µm) and the grains diameters (dg = 140 − 320 µm and
dg = 280− 420µm), the effective pore size in this layer is very small. This layer of small
permeability delays the penetration of the liquid in the porous medium and leads to an
increase of the length h0. The influence of the opening size of the mesh and the physical
mechanism responsible for this evolution will be discussed in section 7.2.

5. Theoretical modeling of the impregnation profile

In this section, we propose to model theoretically the shape of the impregnation front
in the stationary regime. As a first approximation, following the approach of Nasto
et al. (2016), the fluid flow in the translated porous medium is assimilated to be purely
horizontal. As we shall see later, this assumption is not valid for the entire front profile
but describes a fraction of the shape of the impregnation front correctly.

As previously mentioned, the impregnation front results from the competition between
the capillary imbibition, the pressure-driven flows generated by the hydrostatic pressure,
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Figure 11. Evolution of the slope tan θ of the stationary profile of impregnation as a function of
the dimensionless plunging speed V0/V

⋆ for two systems of non-wetting porous media (systems
N1 and N2 of contact angle θ ≃ 75◦) and a cell of width W =5 cm. (b) Evolution of the lateral
entrance depth h0 − h⋆

0 as a function of the plunging speed V0 for the systems N1 and N2. The
dotted lines show the best fitting power-laws.

and the translation of the porous material in the water. Because of capillary effects,
the fluid velocity can be locally significant. Therefore, the assumption of laminar flows
required to use Darcy’s equation is not valid everywhere in the porous medium. For this
reason, in this section, we determine the impregnation front profile by using Forchheimer’s
equation, which constitutes an extension of the Darcy’s equation for larger Reynolds
numbers.

5.1. Forchheimer’s equation

For large Reynolds numbers (typically Rep > 10), the flow velocity in the porous
material is not simply proportional to the pressure gradient. An additional correction is
required to account for the inertial effects that appear in the inertial regime and add a
dissipation at the pore scale. These effects are modeled by the Forchheimer’s equation,
written as:

∇p = −η

k
uDarcy

(

1 +
kρβ

η
|uDarcy|

)

, (5.1)

where β is the Forchheimer’s coefficient (in m−1) and is typically of the order of 1/
√
k.

For small Reynolds numbers, kρβ |uDarcy|/η ≪ 1 and the Forchheimer’s equation (5.1)
reduces to the Darcy’s equation (3.4).

The Forcheimer’s coefficient β is measured for the different model porous medium
using the methods presented in section 2 for the permeability measurement but now by
imposing a larger pressure gradient ∇p. The details of the measurements are given in
Appendix A, and the values for wetting beads (systems W1, W2, and W3) are reported
in table 1.

5.2. Profile of the impregnation front

We model the shape of the impregnation front as the result of the lateral impregnation
from the side walls of the porous material. The Forchheimer’s equation (5.1) reads

(1− φ)up

[

1 + (1− φ)
kρβ

η
|up|

]

= −k

η
(∇p− ρg) , (5.2)
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where up is the mean velocity of the liquid in the porous medium such that uDarcy =
(1− φ)up. We first assume that the streamlines are horizontal in the frame of reference
of the porous material. We further assume that the velocity field is uniform along the
horizontal direction so that up(x, z) = ux(z)ex, where the z-axis is oriented downward
and the x-axis is perpendicular to it. The relevance of this assumption depends on the
plunging speed velocity V0 and the properties of the porous material. We shall discuss
the limits of this assumption in the following sections.
Along the x-direction, the pressure gradient in the porous medium depends on the

hydrostatic pressure, the capillary pressure and the position of the impregnation front
xf (z). An additional length ℓg is added to xf to model the hydraulic resistance brought
by the metal mesh wire, which holds the grains within the cell. The pressure gradient is
thus given by

∇p · ex = − pc + ρgz

xf (z) + ℓg
. (5.3)

The length ℓg is taken equal to 2 mm in all the calculations, leading to a good agreement
between the experimental profiles and the theoretical predictions, as we shall see later.
Equation (5.2) written along the x-direction in the frame of reference of the porous
medium yields

ux(z)

[

1 + (1− φ)
kρβ

η
ux(z)

]

=
k

η(1− φ)

[

pc + ρgz

xf (z) + ℓg

]

, (5.4)

We introduce V ⋆ the characteristic microscopic velocity of impregnation under gravity,
Ṽ ⋆ the characteristic Forchheimer’s velocity and h∞ the Jurin’s height:

V ⋆ =
kρg

(1− φ)η
, Ṽ =

1

(1− φ)

√

g

β
, h∞ =

pc
ρg

. (5.5)

The equation (5.4) for the front profile thus becomes:

ux(z)

V0

(

1 +
V ⋆

Ṽ 2
ux(z)

)

=
V ⋆

V0

(

hJ + z

xf (z) + ℓg

)

. (5.6)

Experimentally, ux V
⋆/Ṽ 2 varies from 0.1 to 10, which further justifies using the Forch-

heimer’s correction to accurately predict the front shape. Then, equation (5.6) leads to:

ux(z)

V0

=

−1 +

[

1 + 4

(

V ⋆

Ṽ

)2(
hJ + z

xf (z) + ℓg

)

]1/2

2V ⋆V0/Ṽ
2

. (5.7)

5.3. Validation of the model: Lateral impregnation

We first compare the theoretical prediction given by the equation (5.7) to one dimen-
sional experiments of impregnation in a horizontal porous medium translated vertically
into a liquid bath [Figure 12(a)]. This configuration satisfies the assumptions used in the
1D model described previously. The grains are packed into an L-shaped glass tube of
diameter 1 cm closed by a metal wire mesh. The porous medium is plunged at a constant
speed V0 into a water bath, as shown in figure 12(a). The evolution of the impregnation
front is recorded for several plunging speeds V0 and different systems of wetting glass
beads (systems W1, W2, and W3). A time series of the impregnation fronts for the system
W3 is reported in figure 12(b). The time series shows an initial fast impregnation at low
immersion depth followed by a displacement of the impregnation front in the porous
medium at a constant velocity for larger immersion depth. Furthermore, as observed
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Figure 12. (a) Picture of the experimental setup used to characterized the horizontal 1D
impregnation in a porous medium. The grains are packed into a L-shaped tube closed by a
metal mesh wire of opening 250µm. The experimental system is vertically plunged in the water
bath at a constant speed V0 and the impregnation front is visualized by the contrast of light
transmission between the wet part (light) and the dry part (darker). (b) Time-series of the front
propagation in the granular packing (system W3) translated at a velocity V0 = 60 mm.s−1.
Scale bars are 1 cm.

previously for non-wetting grains, the impregnation only begins for a depth larger than
h0, which weakly increases with V0.
The porous medium is translated at a constant velocity V0 so that its vertical position

is given by z(t) = V0 t. Using uz(x) = dxf/dt, equation (5.7) yields to

1

V0

dxf

dt
=

−1 +

[

1 + 4

(

V ⋆

Ṽ

)2(
hJ + V0 t

xf + ℓg

)

]1/2

2

(

V ⋆V0

Ṽ 2

) . (5.8)

A discretization by a fourth-order Runge-Kutta method is used to solve equation (5.8)
with the initial condition xf (t0) = 0, where t0 = h0/V0. The initial condition ensures
that the front profile is shifted by h0 in the reference frame of the laboratory so
that the impregnation starts at the depth h0, as observed experimentally. This shift
results from the presence of the metal wire mesh that maintains the grains in the tube
and delays the liquid penetration into the porous medium. The theoretical predictions
are compared to the experimental measurements in figure 13(a). A good agreement
is observed with only one adjustable parameter, the length ℓg = 2mm modeling the
hydraulic resistance induced by the metal wire mesh kept fixed in the modeling. The
shouldering observed in the vicinity of the free surface is induced by the capillary pressure
gradient. This effect is dominant at low depth, i.e. h ≪ hJ . The linear part of the profile,
observed at larger depth, i.e. h ≫ hJ , results from the hydrostatic pressure gradient,
which remains constant. Indeed, both the hydrostatic pressure and the distance between
the impregnation front and the lateral wall grows linearly with the depth. The good
agreement validates the relevance of the Forchheimer’s formalism to describe the capillary
flows in the porous media for the parameters considered in this study.
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Figure 13. (a) Impregnation profiles for the experiments in the 1D geometry shown in figure
12 and the system W3. The profiles are plotted by superimposing the successive positions of the
front at each time as illustrated in figure 12(b). The theoretical prediction given by equation (5.6)
is plotted in black dashed line whereas the prediction of Eq. (5.10) is plotted in red dashed
line. (b) Evolution of the dimensionless horizontal speed of impregnation in the linear regime
as a function of the dimensionless plunging speed V0/V

⋆. The dashed line is the best fitting
power-law.

To evaluate the importance of the inertial term in the present situation, we compare
the prediction provided by the Forchheimer’s and Darcy’s formalisms. Neglecting the
Forchheimer’s correction in equation (5.6) leads to

dxf

dt
= V ⋆

(

hJ + V0t

xf + ℓg

)

. (5.9)

This equation, with the same initial condition xf (t0 = h0/V0) = 0, has an analytical
solution:

xf (z) =

[(

V ⋆

V0

)

(z − h0)
2

(

1 +
2(h0 + hJ)

z − h0

)

+ ℓg
2

]1/2

− ℓg (5.10)

where z = V0 t. This solution is plotted in red dashed lines in figure 13(a). This prediction
systematically overestimates the position of impregnation front because the additional
dissipation appearing when the fluid velocity is too large if not taken into account. This
discrepancy is maximum near the free surface, where the capillary pressure gradient is
the largest and the Frocheimer’s corrective term becomes significant. For larger depths,
the fluid velocity is smaller and the inertial correction becomes negligible. As a result, the
impregnation profiles predicted by the solution of equation (5.6) and by equation (5.10)
are parallel for z ≫ hJ .
The slopes of the profiles are evaluated in the linear part for different plunging velocity

V0. The evolution of tan θ with V0/V
⋆ is reported in figure 13(b). The experimental results

follow a power law (V0/V
⋆)−1/2, consistent with the theoretical prediction at large depths,

i.e. for z − h0 ≪ h0 + h∞. In this limit, the analytical solution reduces to

xf (z) =

(

V ⋆

V0

)1/2

(z − h0) (5.11)

tan θ =
dxf

dz
=

(

V0

V ⋆

)−1/2

. (5.12)
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This power-law also corresponds to the prediction proposed by Nasto et al. (2016) for
hairy surfaces plunged vertically into a liquid. In their configuration, Nasto et al. (2016)
assume that because the fibers are oriented horizontally, the induced lateral flows are only
horizontal, in the direction of the fibers. Equation (5.12) is plotted in figure 13(b) and
captures well the evolution of the impregnation front with the plunging speed at large
depth. The good collapse between the experimental data and equation (5.12) shows that
the non-linear dissipation modeled by the Forchheimer’s correction is localized in the
vicinity of the free surface. In this region, the pressure gradient is large because of the
capillary depression and locally generates a large velocity in the porous medium. The
rest of the profile can be described by the Darcy’s equation.

Furthermore, we should emphasize that the previous model assumes that the flow field
is purely lateral in the porous medium. Considering an infinite bi-dimensional material
without capillary effects, the solution of the Darcy equations leads to this particular flow
field. In the presence of capillary forces and for finite porous media, the flow direction
may be modified near the shouldering. Still, this effect seems to be marginal in the present
1D experiments. We now compare the analytical model, validated in the 1D situation,
to the experimental results obtained with the 2D porous media.

5.4. Theoretical model and experimental 2D impregnation profile

The solution of equation (5.7) is now compared to the stationary impregnation fronts
extracted from the experiments in the translated two-dimensional porous medium de-
scribed in section 4. Again, equation (5.7) is solved with a fourth-order Runge-Kutta
methods with the initial condition x(t0 = h0/V0) = 0. The solutions are plotted for
each systems (W1, W2 and W3) in figure 14(a)-(c) for several cell widths (W = 5, 10
and 20 cm). The theoretical solution captures well the shape of the front profile in the
first half of the profile, near the free surface. The discrepancy observed at the tip of the
profile comes from the assumption of a semi-infinite material, which does not predict the
junction between the profiles. In particular, the region at the tip, close to the junction, is
more challenging to describe since the pressure field and the streamlines become complex.
The focusing of the pressure gradients occurs near the tip of the impregnation profile
and imposes the inflection of the streamlines. This inflection results from the isotropy of
the porous material, which prevents the specific orientation of the fluid. The streamlines
reorientation and the bi-dimensional effects are more significant at low values of V0/V

⋆

and particularly when V ⋆ is large, i.e. for a porous media made of large grains. This point
is consistent with the limited agreement between experimental results and theoretical
prediction reported for large pore sizes (system W3) and wider cells (W = 20 cm) shown
in figure 14(c). A better prediction is observed for a narrow porous media with a low
permeability [figure 14(a)-(b)].

The analytical model described previously allows determining the shape of the first half
of the impregnation profile when the flow remains mostly unidirectional and horizontal.
Nevertheless, this model does not predict correctly the slopes reported experimentally
in figure 10(a). The calculation presented in the previous section predicts an evolution
of tan θ as (V0/V

⋆)−1/2 regardless of the grains’ wettability. However, the experimental
results for wetting grains indicate an as evolution tan θ ∝ (V0/V

⋆)−0.64. This discrepancy
comes both from the 2D-effects in the flow through the porous medium, and the influence
of the grains wettability since a transition in the scaling law is only observed for the non-
wetting particles (see figure 11(a)). The complexity of the flow field around the tip of the
impregnation profile suggests using numerical simulations to determine the entire shape
of the impregnation front.
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Figure 14. Profiles of the impregnation front for different experimental configurations: (a)
System W1 and W = 5 cm, (b) system W2 and W = 10 cm, (c) system W3 and W = 20 cm.
The red dashed lines show the theoretical predictions given by equation (5.7).

6. Numerical modeling of the impregnation profile in the stationary

regime

The analytical approach developed in the previous section assumed a horizontal
orientation of the fluid flow to simplify the equations and obtain the shape of the profile.
This assumption is only relevant in the vicinity of the free surface and is not valid near
the tip of the profile, where the streamlines are deflected. In this section, we develop a
numerical model to predict the shape of the entire impregnation front in the stationary
regime. This approach allows us to account for the actual flow field in the porous medium.

6.1. Details of the numerical method

We solve numerically the pressure field p(x, z) in the liquid confined in the porous
medium. The liquid-air interface is imposed by the shape of the impregnation front,
related to the plunging velocity. The associated pressure field is obtained from the Laplace
equation and the boundary conditions. The velocity field in the porous medium, up(x, z),
is then derived from the pressure field p(x, z). The numerical calculation is performed in
the laboratory’s reference frame, where the porous medium translates into the liquid at
a constant velocity, leading to a stationary impregnation front. The stationary shape of
the impregnation front imposes that the flow velocity must remain constant along the
front and equal to the plunging speed V0.
The velocity field up = ux ex + uz ez in the porous medium is obtained from the

pressure field p(x, z) by solving the Darcy’s equation (3.4), which can be written in
dimensionless variables:

ũ = −∇̃ (p̃+ z̃) , (6.1)

where

ũ =
up

V ⋆
, p̃ =

p

ρgW
, x̃ =

x

W
, z̃ =

z

W
, ∇̃ =

∂

∂x̃
ex +

∂

∂z̃
ez. (6.2)

The Darcy’s law is not relevant to describe the flow field for large Reynolds numbers.
However, we have shown in the previous section that, locally, capillary effects can generate
large pressure gradients, in particular near the free-surface. Here, we focus on the shape
of the wetting front far from the free surface. In particular, we are interested in the
complexity of the fluid flow generated in the porous medium. With this in mind, the range
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of Reynolds numbers considered along the front remains compatible with the limitations
of the Darcy’s law and allows us to solve the problem numerically. The combination of
the dimensionless Darcy’s equation (6.1) and the incompressibility of the fluid flow in the
porous matrix, ∇̃ · ũ = 0, leads to the Laplace equation, which determines the evolution
of the pressure field in the stationary regime for given boundary conditions:

∇̃2p̃ = 0. (6.3)

The porous material is discretized into a finite number of rectangular elements. The
Laplacian is solved on a rectangular lattice of width Nx and height Nz as shown in
figure 15(a). The problem is symmetric along the vertical direction, we thus only solve
equation (6.3) in half of the porous medium, the other part being obtained by symmetry.
The discretized pressure field pi,j is defined at the node i, j (i along the horizontal
direction and j along the vertical direction) and we note ∆ the step of the mesh, such
that ∆ = 1/Nx = 1/Nz. Discretizing equation (6.3) leads to

1

∆

(

p̃i+1,j − p̃i,j
∆

− p̃i,j − p̃i−1,j

∆

)

+
1

∆

(

p̃i,j+1 − p̃i,j
∆

− p̃i,j − p̃i,j−1

∆

)

= 0. (6.4)

The stationary pressure field is obtained by solving the linear system composed ofNx×Nz

equations with Nx ×Nz unknowns:

p̃i+1,j + p̃i−1,j + p̃i,j+1 + p̃i,j−1 − 4p̃i,j = 0. (6.5)

The simulation is performed by considering a static porous medium with an imposed
impregnation profile, which separates the dry region to the wet region of the porous
material. The pressure at the dry-wet interface is p0 − pc where p0 is the atmospheric
pressure and pc the capillary pressure. The pressure along the side wall is the hydrostatic
pressure p0+ρgz and increases linearly with the depth. As the problem is solved on a half
domain, a symmetry condition is imposed on the other side. The atmospheric pressure
is taken as the reference pressure and the dimensionless boundary conditions are:























p̃0,j = j at the vertical boundary

p̃i,Nz
= Nz at the bottom boundary

p̃−i,j = p̃i,j along the symmetry axis

p̃iF ,jF = −p̃c at the liquid/air interface

(6.6)

The solution of the linear system with the boundary conditions and the shape of the
impregnation profile leads to the pressure field at each point of the lattice. The fluid
velocity is then computed using the Darcy’s law (6.1) along ex and ez:

{

ũx = −∇̃xp̃,

ũz = −∇̃z p̃.
(6.7)

An example of fluid velocity field ||ũ(x̃, z̃)|| =
√

ũ2
x + ũ2

z and the associated streamlines
are shown in figure 15(b) for non-wetting grains (p̃c = 0). The vertical component of
the velocity field is then evaluated along the dry-wet interface. The profile is stable and
stationary if the vertical projection of the velocity ũz along the interface is constant.
We vary the shape of the impregnation profile until reaching a constant fluid velocity all
along the impregnation front, equals to ||ũ(x̃F , z̃F ).ez|| = V0. The resulting profile then
corresponds to the plunging velocity V0.
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Figure 15. (a) Schematics of the numerical model of the stationary regime and the associated
notations. (b) Examples of streamlines (left side) and velocity field (right side) observed in the
stationary regime of impregnation for a non-wetting porous material (pc = 0) and V0/V

⋆ = 9.7.

6.2. Non-wetting grains - p̃c = 0

We first consider the case of a porous medium composed of non-wetting grains. The
capillary pressure is thus equal to zero, p̃c = 0. Therefore, the boundary condition
imposed along the front profile simply becomes p̃iF ,jF = 0. The shape of the impregnation
front is modeled in the half domain [0, W/2] by the function

z̃(x̃) =
H

W

(

1

Cn + 1
− (1− x̃)n+1

Cn + (1− x̃)n

)

, (6.8)

which depends on three parameters H, C and n. These parameters are chosen to have
an impregnation profile along which the vertical projection of the fluid velocity remains
constant to ensure the stationarity of the liquid/air interface in the reference frame of
the laboratory. The parameter H/W controls the aspect ratio of the profile with no
curvature, the exponent n adjusts the slope of the profile and the parameter C modifies
the curvature at the tip of the profile.

6.2.1. Slope of the stationary profile

The evolution of tan θ and of the dimensionless radius of curvature at the tip of the
front Rc/W , are reported in figure 16(a) and 16(b), respectively, for different stationary
impregnation profiles computed numerically. The numerical results are in good agreement
with the experimental data obtained with non-wetting particles (contact angle around
75◦). The values of tan θ decreases with V0/V

⋆ following the scaling laws:

tan θ ∝
(

V0

V ⋆

)α

, with

{

α = −0.66 for V0/V
⋆ . 5

α = −0.50 for V0/V
⋆ & 5

(6.9)

The exponents of the power laws obtained by the best fit of the numerical results are
similar to the experimental values previously reported in section 4.2. The transition
between the two regimes is observed at approximatively the same value of V0/V

⋆.
Therefore, the numerical simulations correctly reproduce the evolution of the slope
of the stationary profile. Besides, the radius of curvature evaluated at the tip of the
impregnation profile for the numerical simulation is also in fairly good agreement with the
experiments. The dimensionless radius of curvature Rc/W decreases with the plunging
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Figure 16. (a) Evolution of tan θ of the stationary profile of impregnation obtained numerically
as a function of the dimensionless plunging speed V0/V

⋆ for pc = 0. (b) Evolution of the rescaled
radius of curvature Rc/W measured at the center of the profile as a function of the dimensionless
plunging speed V0/V

⋆. In the two figures, the numerical results are reported in black (+) and
the best fit is plotted in dashed lines. Numerical simulations are carried out with a mesh of
width Nx = 100 and length varying between Nz = 600 and Nz = 1300 depending on the aspect
ratio H/W of the impregnation front. In each case, preliminary tests are performed to ensure
that the size of the domain is large enough to not influence the front velocity.

speed as

Rc

W
∝
(

V0

V ⋆

)−0.95

. (6.10)

6.2.2. Velocity field

The numerical simulations allow obtaining the velocity field in the porous medium and
the associated streamlines. Figures 17(a) and 17(b) provide two examples of stationary
profiles and associated flow fields for two different dimensionless plunging speeds V0/V

⋆.
Figure 17(a) corresponds to an immersion velocity V0/V

⋆ = 0.65, below the change
of slope in the evolution of tan θ, whereas figure 17(b), obtained for V0/V

⋆ = 49.6,
reports the case beyond the transition. For V0/V

⋆ larger than 5, the streamlines are
mostly horizontal. The region affected by the tip effect is small and located close to
the tip. In this configuration, the assumption of a pure lateral flow in the porous media
is appropriate. It indeed correctly predicts the evolution of the slope tan θ of the front
profile with the dimensionless plunging speed. Conversely, for V0/V

⋆ smaller than 5, as
illustrated in figure 17(a), streamlines are not horizontal but instead bended around the
front. The flow reorientation induces a flattening of the front profile and an increase of
tan θ = dx/dz. The radius of curvature can reasonably be interpreted as a characteristic
length of the disturbance generated by the tip of the impregnation front. The larger the
radius of curvature, the broader the area of streamlines deformation is.
The numerical simulations suggest that the transition observed for the slope of the

impregnation profile results from a change of flow morphology inside the porous medium.
The exponent α = −0.66 observed at low plunging speed is the result of the deformation
of the streamlines of the flow on a characteristic length that increases as 1/V0. Below
a rescaled critical radius of curvature Rc/W ≃ 5 × 10−2, the change of direction of the
streamlines inside the porous medium remains confined near the tip of the impregnation
profile. It only affects the shape of the impregnation front in this region but not the
slope. The critical radius of curvature corresponds to a slope tan θ of about 0.5. It means
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Figure 17. Streamlines (left side) and amplitude of the velocity field (right side) for two
stationary impregnation fronts determined numerically for a non-wetting porous material
(pc = 0) and a dimensionless plunging velocity (a) V0/V

⋆ = 0.65 and (b) V0/V
⋆ = 49.6.

that the transition between the two regimes occurs for impregnation fronts presenting
an aspect ratio smaller than 0.5, which is consistent with the experimental observations.

6.3. Capillarity: wetting grains - p̃c > 0

The previous numerical simulations were performed without capillary pressure and
revealed an evolution of the flow morphology with the plunging velocity V0. This obser-
vation is consistent with the experiments carried out with non wetting grains (systems
N1 and N2). Nevertheless, for wetting grains (systems W1, W2 and W3), this transition
is not observed in the same range of plunging speeds. To understand the difference, we
now account for the capillary pressure along the impregnation front in the numerical
simulation. The new boundary condition at the dry/wet interface is p̃iF ,jF = −p̃c, with
p̃c > 0 for wetting grains. We have observed experimentally that the shape of the
stationary impregnation front exhibits two curvatures in opposite direction: one close
to the free surface of the water bath and another near the tip of the front. To capture the
numerical stationary fronts, we adjust the shape of the boundary in the porous material
using now the function:

z̃(x̃) =
H

W

(

1

C1
n + 1

− (1− x̃)n+1

C1
n + (1− x̃)n

+ (1− x̃)
x̃n+1

C2
n + x̃n

)

. (6.11)

The last term, with the parameter C2, is added to reproduce the upper part of the
profiles. Again, the parameters H, C1, C2 and n are optimized to get an impregnation
profile along which the vertical projection of the fluid velocity remains constant. Note
that at low plunging velocities V0, the fluid may move upward close to the top corner
because of the capillary forces. We adapted the numerical code by increasing the size
of the domain above the free surface of the bath with a no flux boundary condition at
the material/air interface for z̃ < 0. The capillary effects are expected to be important
when the capillary speed, V ⋆

c = k pc/(ηW ), is comparable to the plunging speed V0.
The simulations are performed with p̃c = 1, corresponding to pc = ρgW . As a result,
the capillary speed V ⋆

c is equal to the characteristic velocity V ⋆. The upward capillary
impregnation is only observed for V0 ≪ V ⋆ (V0/V

⋆ < 50 in practice).
An example of velocity profile is reported in figure 18(a). From the stationary front, we

extract the value of tan θ at the middle depth for varying V0/V
⋆ as shown in figure 18(b).
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Figure 18. (a) Streamlines and velocity field obtained numerically for the stationary
impregnation front for a wetting porous material, p̃c = 1 and V0/V

⋆ = 44.4. (b) Evolution
of the slope tan θ measured on the numerical stationary profiles as a function of the imposed
dimensionless velocity V0/V

⋆ for p̃c = 1. The dotted line is the best fit of the numerical data
(×) by a power law of exponent 0.66.

For wetting grains, we observe that tan θ ∝ (V0/V
⋆)

−0.66
over the whole range of V0/V

⋆

investigated here. This evolution is in quantitative agreement with the experimental
measurements, as reported in figure 10. The conservation of the power law for high
plunging speed V0/V

⋆ is thus related to the capillary effects, which constrained the
shape of the impregnation front near the free surface.

7. Discussion and extension to confined granular jet

In this section, we first discuss the main results for the morphology of the impregnation
front in the stationary regime. These results and predictions for porous media are then
compared to the observation of a confined granular jet falling into a water bath.

7.1. Front morphology

The morphology of the impregnation front results from a combination of hydro-
static, geometrical, and capillary effects, each predominant in different regions of the
impregnation front, depending on the plunging velocity. The numerical simulations
allowed us to decompose the different contributions. The capillary effects are predominant
for wetting grains at low depth, i.e. for z < h∞ = pc/(ρg). The capillary effects
induce large pressure gradients near the liquid surface and generate a shouldering of the
impregnation front profile. In this region, the low Reynolds flow assumption is not valid,
and additional inertial dissipation must be accounted for to capture the amplitude of the
capillary imbibition. For larger plunging depth, i.e. z ≫ h∞ = pc/(ρg), the hydrostatic
pressure is the dominant mechanism and increases linearly with the depth. The numerical
simulations revealed that the flow profile induced by the hydrostatic pressure gradient is
mainly horizontal. The flow profile leads to the linear portion of the impregnation front,
between the capillary shouldering at the top and the front tip. In the region surrounding
the front tip, the fluid flows coming from each side meet. The shape of the front tip
is mainly a geometrical effect. The streamlines have to bend, which strongly affects
the shape of the front. The radius of curvature Rc of the front tip can be seen as the
characteristic length of the bending of the streamlines. Indeed, the streamlines have to
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bend on a distance Rc/ tan θ to reach the curve tip. Moreover, the numerical results
reported in figures 18(a) show that the upwards streamlines arise from the iso-pressure
p = ρgW/(2 tan θ), which are parallel to the impregnation front. The resulting vertical
pressure gradient can be written as |∇p| ≃ ρgW/Rc. Using the Darcy’s equation at the
front tip, where the upwards speed is equal to V0, we can write:

V0 ≃ k

η(1− φ)∇p
so that

Rc

W
≃
(

V0

V ⋆

)−1

. (7.1)

This prediction is in satisfactory agreement with the experimental measurements and the
numerical simulation for the evolution of the radius of curvature at the tip as a function
of the dimensionless plunging speed V0/V

⋆.
The evolution of the main slope of the front shape is a consequence of the combination

of these different effects. By considering a pure horizontal impregnation without capillary
effect in a semi-infinite porous medium, Nasto et al. (2016) have also obtained a scaling
law tan θ ∝ (V0/V

⋆)−1/2. This prediction is observed experimentally and numerically
in our case but only for a porous medium composed of non-wetting grains at high
plunging speeds. For wetting grains where capillary effects are present, a transition to an
exponent -0.65 ± 0.01 is observed in the experiments and the simulations at low plunging
speeds. The change of exponent is induced by the tip of the front where impregnation
fronts from each side meet. The characteristic size of the tip increases as the inverse
of the plunging speed, as illustrated in figure 16(b). At low velocity, this geometrical
contribution affects the linear portion of the front and flattens it. The resulting slope,
1/ tan θ, becomes lower than the semi-infinite case, as shown in figure 16(a). Furthermore,
the transition is not present for porous media composed of wetting grains, as observed
both experimentally and numerically. This observation suggests that the exponent -
0.65 ± 0.01 at high plunging speed results from the addition of capillary effects to the
hydrostatic and geometrical effects. As the front shape confined by the curve tip, the
capillary shouldering increases the slope of the front compared to the non-wetting case.

7.2. Origin of the entrance depth h0

We now discuss the evolution of the impregnation depth h0, illustrated in figure 19(a),
with the plunging speed V0, observed for non-wetting grains. This length corresponds to
the dry length of porous medium under the liquid/air interface of the liquid bath. Our
experiments have shown that h0 increases as V0

0.5, as reported in figure 11(b). This effect
can be described by considering the role of the metal mesh wire that keeps the grains
in the cell. As the mesh of the grid, of opening 250 microns, is comparable to the size
of the particles, the arrangement of the grains on the mesh wire leads to effective pores
of smaller size. This layer then behaves locally as an effective porous medium of lower
permeability over a thickness δ. The thickness δ can be assumed to be of the order of
the grain size, so that we consider δ ∼ dg in the following. We note kg the local effective
permeability of this layer. As this permeability is lower, the fluid flowing through it is
subject to a delay. This effect generates an apparently dry height h0 in the experiments,
as illustrated schematically in figure 19(a).
The flow in this layer results from the hydrostatic pressure gradient. Since the size of

the effective pores in the layer is rather small and the grains are not wetting, the flow can
be modeled by the Darcy’s equation. In this case, the impregnation profile is a straight
line of slope

tan θ =
δ

h0 − h⋆
0

=

(

V0

V ⋆
g

)−1/2

, (7.2)
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where V ⋆
g is the characteristic impregnation velocity under gravity in the layer of thickness

δ, and h⋆
0 is the forcing depth of impregnation in the static regime. This velocity is related

to the effective permeability though the the Carman-Kozeny’s equation (Carman 1937)

V ⋆
g =

kgρg

(1− φ)η
=

(

deff
dg

)2
kρg

(1− φ)η
=

(

deff
dg

)2

V ⋆. (7.3)

Assuming that the compacity φ remains the same in each region, the permeability is
proportional to the square of the pores size. The diameter deff corresponds in this case to
the diameter of the effective pores created by the distribution of the grains near the grid
and depends on the ratio between the opening of the mesh wire and the grain diameter.
The evolution of h0−h⋆

0 as a function of V0 is reported in figure 19(b) for different values
of mesh wire opening. The value of h0−h⋆

0 increases when decreasing the size of the wire
mesh opening, which corresponds to a decrease of the effective local permeability. As a
result, the impregnation depth, h0 − h⋆

0, can be written as a function of the plunging
velocity:

h0 − h⋆
0

dg
≃ dg

deff

√

V0

V ⋆
. (7.4)

The experimental data deff(h0−h⋆
0)/dg

2 are plotted as a function of V0/V
⋆ in figure 19(c)

for different grains sizes of non-wetting systems (N1 and N2) and metal mesh wire. A
good collapse of the data is obtained for a value of deff between 5 and 10 microns for all
mesh wire considered here. The order of magnitude of the effective pore size is consistent
with the space created by the arrangement of the grains on the grid.

7.3. Comparison with the confined granular jet

We now consider the initial situation of a dense granular jet entering a water bath, as
illustrated in figure 1. We perform granular jet experiments in conditions close to those
of the porous media. We consider a free jet of width W = 5 cm confined between two
PMMA plates at the rear and front, separated by a distance 12 mm and by two lateral
wire mesh [figure 20(a)]. The jet is quasi-bidimensional, allowing us to visualize the
impregnation front, similar to the situation of a confined porous medium. Figure 20(b)
illustrates the morphology of the dense granular jet of glass beads of diameter dg = 400-
460 µm entering the water bath. The jet slows down when crossing the water-air interface
and permeates while remaining dense. A V-shape impregnation front is observed for the
granular jet, similar to the impregnation of the porous media reported previously. After
being wetted by the liquid, the grains form a ”granular plug”, composed of dry grains
and immersed grains, from which the bottom grains wetted by the liquid escape at a flow
rate Qc. We should emphasize that even if the transient free-fall velocity of the grains
is initially large, a dense flowing column, shown in figure 20(b), is observed as soon as
the granular plug is formed. Besides, the velocity V0 in the case of a granular jet in the
steady-state is selected by the system itself and does not depend on the height at which
the grains are initially released. Below the dense, dry phase, the wet grains form a dense
jet instead of falling freely as a dilute suspension. This immersed jet configuration may
be enhanced by recirculations of fluid on both sides of the jet of grains dispersed into
water.
Following the same analysis as in the previous sections, we measure the morphology of

the impregnation front in the steady-state for all the systems of wetting grains: the mean
slope tan θ and the mean radius of curvature at the tip Rc. The results are reported in
figure 21(a)-(b), where we have also added the experimental results obtained previously
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Figure 19. (a) Schematic illustration of the physical origin of the impregnation depth h0. The
length h⋆

0 represents the hydrostatic forcing depth required to get the non-wetting grains wet
(θ > θ⋆ = 55◦). The arrangement of grains on the metal grid is modeled by a thin layer of
thickness δ with a lower permeability kg. (b) Evolution of the impregnation depth h0 − h⋆

0

as a function of the plunging speed V0 for grains of diameters 280-420 µm (system N2) and
different grid openings. (c) Evolution of the rescaled impregnation depth deff(h0 − h⋆

0)/dg
2 for

different grains sizes (systems N1 and N2) and different grid openings. The dashed line shows
the prediction given by equation (7.4).

for the translating porous media. The velocity V0 of the granular jet in the steady-state
is normalized by the characteristic velocity V ⋆ = k ρ g/η.
The values obtained for the slope of the granular jet, tan θ, are similar to those obtained

with the porous media. This result supports our initial approach to approximate the dense
jet by a porous media translating into water at the velocity V0. The radius of curvature
at the tip, Rc, seems to be more significant in the case of the confined jet than for the
porous media. Qualitatively, we expect the shape of the interface between the suspension
and the water to be modified the shape of the impregnation front. Indeed, the shape
of the impregnated region in the jet configuration is slightly different, and the liquid
needs to flow through a shorter distance in a porous medium before reaching the dry
region [Figure 20(b)]. Therefore, the position of the tip of the impregnation front for
the jet should be slightly higher, while the slope of the profile should remain similar
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Figure 20. (a) Schematic of a granular jet entering into water, confined by a lateral wire mesh
of aperture 250 µm. (b) Steady-state of the confined granular jet of beads of diameter 400-460
µm. Scale bar is 2 cm. (c) 1D model of the confined jet, assuming that the motion of the grains
is only vertical and three different zones are on top of each other: dense dry grains, dense wet
grains, and grains dispersed in water.
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Figure 21. (a) Evolution of the mean slope tan θ of the stationary front as a function of the
dimensionless velocity V0/V

⋆ (red symbols). The experiments performed with the model porous
media are also reported. (b) Evolution of the mean radius of curvature at the tip of the steady
profile Rc/W as function of the normalized flowing velocity V0/V

⋆ (red symbols). The open
symbols are the same as in figure 10.

between the two situations for the same velocity. As a result, the entry of the porous
media was characterized by a V-shape, whereas in the case of the jet, the impregnation
profile becomes closer to a U-shape with the same profile slope.
The remaining question is to understand the selection of the velocity V0 at which

the grains enter into water in a steady state. Figure 20(c) shows the configuration of
the simplified model considered. We simplify the problem by assuming a flat interface
between the wet and dry grains and between the water and the wet grains. Moreover,
the jet is considered to be dense up to the water/wet grains interface, where the grains
can freely escape and flow as a suspension without disturbing the water. The relative
velocity between the grains and the liquid inside the pores is equal to V0, i.e. the flowing
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velocity of the grains. Therefore, our model is based on three equations. First, the flow
dynamics of the water in the pores is governed by the Darcy’s equation (3.4), where the
pressure gradient is given by the pressure at the bottom and the capillary pressure at
the dry/wet interface. The second equation corresponds to the balance of the forces on
the granular media composed of the dense column of grains and the water inside the
pore. The third equation is obtained by assuming that the upward flux of liquid at the
interface between the wet grains and the water is adjusted to the limit velocity allowing
the immersed grains to fall. Indeed, if the fluid flux is larger, or smaller, then the length of
the immersed media will grow by blocking the grains, or decrease by the quick production
of a suspension, respectively.
The first equation relates the relative velocity of the water inside the pores with respect

to the grains, up, to the water pressure at the bottom:

up = − k

η (1− φ)
(∇p− ρ g) = − k

η (1− φ)

pc + ρ g (H − hw)

hw
. (7.5)

The second equation, which describes the force balance on the grains and the liquid in
the pores, involves the weight of the grains, the air and liquid pressure at the bottom,
and the friction on the vertical walls. Since the grains are confined in a gap of e = 12 mm
between two plates of width W = 5 cm, their apparent weight at the bottom of the
column is modified by the solid friction at the walls. Janssen (1895) has described this
effect in the case of homogeneous dry grains. To evaluate the granular pressure pg and
the friction on the walls in the layer of the immersed grains, we need to account for all
the forces acting on the grains: the buoyancy and the drag force of the liquid. In the
steady-state, the resulting equilibrium equation for a horizontal slice of wet grains is:

−pg
λ

+ φρgg −
dpg
dz

− φ
pc + ρgH

hw
− (1− φ)

[

pc + ρg(H − hw)

hw

]

= 0, (7.6)

with

λ =
eW

2(e+W )Kµ
, (7.7)

where µ is the friction coefficient between the grains and the walls and is typically taken
equal to 0.15 (Shojaaee et al. 2012). The parameter K corresponds to the redirection
coefficient, which is the proportionality between the vertical and the horizontal pressures,
and the value is typically around 0.8 (Vanel & Clément 1999). The three first terms in
equation (7.7) correspond to the terms derived by Janssen (1895): the solid friction force
on the walls, the weight of the grains and the differential of the granular pressure. For dry
grains, these terms lead to the saturation of the apparent pressure (or apparent weight) at
the bottom of a long column pJdry = λρgg. The fourth term corresponds to the effect of
the water pressure gradient on the grains and is equivalent to the static Archimede force.
The fifth term corresponds to the drag force induced by the vertical Darcy flow in the
grains. The granular pressure can be calculated with the appropriate boundary condition
at the dry/wet interface. Due to capillary effects, the granular pressure is subjected to
a discontinuity starting from the assumed saturated-granular-pressure in the dry phase
pg = pJdry + pc. Applying a global force balance on the entire system in the steady-state
allows us to find a second relation between H and hw.
Finally, we assume that the velocity up can be estimated from experiments performed in

fluidized bed (Campos & De Carvalho 1992). For excessive flux, the grains are entrained
to the top of the column and form a dense granular plug. Decreasing the fluid velocity,
Campos & De Carvalho (1992) estimated the critical velocity supporting a dense granular
plug at the top of a fluidized column to be proportional to the Ergun velocity, i.e. the
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(a) (b) (c)

Figure 22. Steady morphologies of the confined jets for wetting grains of increasing diameter:
(a) system W1, (b) system W2 and (c) system W3. Scale bar is 2 cm.

minimum fluidizing velocity:

(1− φ)up = 2.5 uErgun = 2.5
kφ

η
(ρg − ρ)g. (7.8)

We can solve the system of three equations numerically. Equation (7.8) sets the
dimensionless velocity to a fixed value for all grains: V0/V

⋆ = 2.5 φ(ρg − ρ)/ρ ≈ 2.25.
Despite the simplified approach, the experimental velocities reported in figure 21 are of
the same order of magnitude. The predicted values the height of immersed grains before
this dispersion, H, are 4.2 cm, 4.3 cm, and 4.7 cm for increasing bead diameters, and the
predicted values of hw are 3.2 cm, 3 cm, and 2 cm, respectively. Those values are also
in qualitative agreement with the values that can be estimated from figures 22(a)-(c),
where all the systems exhibit a height of dry grains in a comparable range.
While this model is rather simplified, the results are in good agreement with the

experimental values. This encouraging comparison calls for a more refined model of
granular jet entering water to thoroughly understand the dynamics of the jet and the
dispersion mechanism of the initially dry grains.

8. Conclusion

In this paper, we have investigated the impregnation in a 2D porous medium plunged
from the air into water using experimental, analytical, and numerical approaches. Our
results indicate that the impregnation of the grains is characterized by a transient
phase followed by a stationary regime. During the transient phase, the shape of the
impregnation front continuously evolves to finally reach a stationary V-shape. The
impregnation dynamics can be modeled through a 1D impregnation process. Then,
the shape of the stationary impregnation front has been experimentally measured and
compared to an asymptotic model. This model, based on the Forchheimer’s equation,
captures well the shape of the impregnation front near the surface of the liquid bath.
The front profile is also characterized experimentally for porous media made of wetting
and non-wetting grains. We have reported the evolution of the opening angle θ of the
impregnation profile for varying plunging velocity. A scaling law, tan θ ∝ (V0/V

⋆)−0.65,
is reported for different porous media made of wetting grains. However, a transition from



30 G. Saingier, A. Sauret and P. Jop

an exponent -0.65 to -0.5 in this power law at high plunging speeds is observed for porous
media made of non-wetting grains.
Using a numerical approach, we have determined the origin of the exponent -0.65,

which results from a combination of hydrostatic pressure-driven flows with capillary and
geometrical effects. The capillary forces are dominating at low penetration depth and
affect the exponent value at high plunging speed. The geometrical effects are located
in the vicinity of the front tip, where the streamlines concentrate and bent. These
geometrical effects modify the scaling law’s exponent at low plunging speed since the
impregnation front is flattened and curved.
These results aiming at getting a better understanding of how dry grains enter into

water have been confronted with experiments of confined 2D granular jets falling into a
water bath. Similar observations are reported: a stationary impregnation front exhibiting
a V-shape. The front shape follows the scaling law obtained for the porous media. We
also provided an estimate of the velocity at which the dense jet of grains enters the water
bath. This last result confirms that, at first order, we can assimilate a confined dense
granular jet to a porous medium during its impregnation. This work constitutes a first
milestone to model the complex interactions between the particles, the interface, and the
fluid when grains are entering a liquid.

Appendix A. Characterization of the properties of the grains

A.1. Size distribution and porosity

To obtain the different batches of grains used in this study, glass beads are preliminarily
sieved by using a sieve column installed on a vibrated table to reduce the granulometric
dispersion. The size distributions are then determined by an optical analysis. An example
of size distribution is reported for the system W1 in figure 23(a).
The porosity ε = 1−φ of the porous medium is experimentally estimated by measuring

the volume Vg occupied by a mass Mg of beads. The porosity is given by:

ε = 1−
(

Mg

ρgVg

)

, (A 1)

where ρg is the density of glass. This measurement highly depends on the preparation
of the granular packing. Indeed, a granular material is compacting under vibration or
cyclic shearing (Knight et al. 1995; Nicolas et al. 2000; Richard et al. 2005; Kiesgen de
Richter et al. 2015). This phenomenon is illustrated in figure 23(b), where we report
the progressive compaction of a granular packing as a function of the number of taps.
Note that a similar behavior is also observed for granular suspensions and was used as
a reliable protocol to prepare controlled samples (Jerome et al. 2016). In our case, for
each experiment, the granular material is compacted by tapping the sample 20 times to
ensure that the final porosity is reached.

A.2. Contact angle of water on glass beads

To measure the contact angle of water on glass beads, a drop is generated at the outlet
of a needle of diameter 1 mm. Once deposited at the water/air interface, the particle
stabilizes at the extremity of the drop and exhibits a contact angle θc, which can be
measured as illustrated in figure 24. Pictures of the particle are recorded with a standard
camera and a macro-lens (F-105 Macro). This measurement is performed on 20 beads and
averaged to obtain a reasonable estimate of the contact angle. Note that other methods
could have been used, such as placing a single particle at the surface of a bath of liquid
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Figure 23. (a) Example of distribution of the glass beads diameter obtained with the system
W1. A gaussian fit is plotted in red line. Here the size of the grains is dg = 340 ± 40µm. (b)
Evolution of the porosity ε of the granular packing during the compaction (Syst. W3). The
porosity after compaction is ε = 0.38 (horizontal dashed line).

Figure 24. Picture of a glass bead from the system N1 trapped at the surface of a pending drop
of water and zoom on the water/air/bead interface. The measured contact angle is θ = 72◦.

and measuring the depth of intrusion of the center of the grain (Raux et al. 2013; Saingier
et al. 2017).

A.3. Permeability of the model porous medium

A custom-made U-shaped tube is filled with glass beads and compacted following the
same protocol reported previously. The material is then saturated with water and the two
branches of the tube are filled with different level of liquid z1 and z2 such that z2 > z1,
as shown in figure 25(a). The evolution of the water levels is then recorded and the time
evolution of the difference ∆z = z2− z1 is shown in figure 25(b) for the systems W1, W2
and W3. The height ∆z decreases exponentially with a characteristic time τD. According
to the Darcy’s law, the flow velocity uDarcy through the porous material is:

uDarcy = −k

η
∇p with uDarcy = −dz1

dt
=

dz2
dt

. (A 2)

The pressure gradient is imposed by the difference of hydrostatic pressure resulting from
the difference of altitude ∆z. This leads to the ordinary differential equation describing
the time evolution of ∆z:

d∆z

dt
= −2k

η

ρg

L
∆z, (A 3)
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Figure 25. (a) Picture of the U-shaped tube filled with glass beads over a length L. (b)
Exponential decrease of the difference of altitude ∆z as function of time for different systems of
glass beads.

where L is the length of the porous medium. The difference of altitude ∆z decreases
exponentially and the characteristic time τD depends on the permeability k:

τD =
η L

2 k ρ g
. (A 4)

Measuring the characteristic time of decrease τD, we obtain the permeability k1 reported
in table 1.

A.4. Forchheimer coefficient

The Forchheimer’s coefficient β is measured by fitting the evolution of the pressure
gradient ∇p as a function of the Darcy’s velocity uDarcy corresponding to the fluid
velocity outside of the porous medium. The set-up consisting of the U-shaped tube is
modified to impose a larger hydrostatic pressure at the beginning of the experiments.
The evolution of the pressure gradient as a function of the Darcy’s velocity is shown in
figure 26. For small pressure gradients, a linear evolution is observed between ∇p and
the Darcy velocity uDarcy. At larger pressure gradients, we observe a quadratic deviation
resulting from the inertial effects. The experimental measurements are fitted by the
equation (5.1), and the measurements of the Forcheimer’s coefficients β are obtained
from these fits and summarized in table 1 for the systems W1, W2, and W3.

Appendix B. Analytical expression for the vertical impregnation in a

porous medium

We here derive an implicit solution for the equation describing the impregnation in a
1D porous medium translating into a water bath at the constant speed V0. This situation
corresponds to the configuration studied in section 3. We recall the dimensionless equation
(3.7) governing the evolution of Lwet:

dLwet

dT
=

1 + (V0/V
⋆)T

Lwet
− 1, (B 1)

where Lwet, T and V ⋆ are the dimensionless impregnation length, the dimensionless
time and the characteristic speed of impregnation under gravity, respectively, as defined
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Figure 26. Evolution of the gradient pressure as function of the Darcy’s velocity for several
size distributions and large Reynolds numbers.

in section 3. We introduce a reduced dimensionless time T̃ = T V0/V
⋆ + 1, and a new

variable ũ = Lwet/T̃ such that the equation (B 1) becomes:

V0

V ⋆

dũ

dT̃
=

1

T̃

(

1

ũ
− 1− V0

V ⋆
ũ

)

. (B 2)

Introducing the parameters Ũ = ũ (2V0/V
⋆) and Ṽ = (4V0/V

⋆ + 1)
1/2

we obtain:

dŨ

dT̃
=

1

T̃

[

Ṽ 2 − (Ũ + 1)2

Ũ

]

. (B 3)

Equation (B 3) can be expressed in an integrable form:

dT̃

T̃
=

dŨ

2Ṽ

[

−(Ṽ + 1)

Ṽ + Ũ + 1
+

Ṽ − 1

Ṽ − (Ũ + 1)

]

. (B 4)

The solution of equation (B 4), with the initial condition Ũ(T̃ = 1) = 0 corresponding to
Lwet(T = 0) = 0, is

log T̃0 − log T̃ =
1

2

[(

1 +
1

Ṽ

)

log (Ṽ + Ũ + 1) +

(

1− 1

Ṽ

)

log
(

Ṽ − (Ũ + 1)
)

]

, (B 5)

where

log T̃0 =
1

2

[(

1 +
1

Ṽ

)

log (Ṽ + 1) +

(

1− 1

Ṽ

)

log
(

Ṽ − 1
)

]

. (B 6)

Finally, the implicit solution can be rewritten as:

T̃ 2 =





(

1 +
Ũ

Ṽ + 1

)1+ 1

Ṽ

(

1− Ũ

Ṽ − 1

)1− 1

Ṽ





−1

(B 7)

At long time, i.e. T̃ → ∞, we have 1− Ũ/(Ṽ − 1) → 0, which finally leads to

Lwet = νT with ν = −1

2
+

1

2

√

1 + 4

(

V0

V ⋆

)

. (B 8)
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