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Abstract 

Forbes, Wright, Markon, and Krueger (2017) state that “psychopathology networks have 

limited replicability” and that “popular network analysis methods produce unreliable results”. 

These conclusions are based on an assessment of the replicability of four different network 

models for symptoms of major depression and generalized anxiety across two samples; in 

addition, Forbes et al. (2017) analyze the stability of the network models within the samples 

using split-halves. Our re-analysis of the same data with the same methods led to results 

directly opposed to those of Forbes et al. (2017): All network models replicate very well 

across the two datasets and across the split-halves. We trace the differences between Forbes 

et al.’s (2017) results and our own to the fact that they did not appear to accurately implement 

all network models, and used debatable metrics to assess replicability. In particular, Forbes et 

al. (2017) deviate from existing estimation routines for relative importance networks, do not 

acknowledge the fact that the skip-structure used in the interviews strongly distorted 

correlations between symptoms, and incorrectly assume that network structures and metrics 

should not only be expected to be the same across the different samples, but also across the 

different network models used. In addition to a comprehensive re-analysis of the data, we end 

with a discussion of best practices concerning future research into the replicability of 

psychometric networks. 
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General scientific summary 

This commentary presents a reanalysis of the data presented in the target paper by Forbes, 

Wright, Markon, and Krueger (2017), which shows that, contrary to their conclusions, 

network models replicate well.   
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Introduction 

Network modeling is quickly gaining ground as a promising way of understanding 

psychopathological phenomena. As both the theoretical framework and the statistical 

modeling routines have seen rapid development over the past few years, recent papers have 

begun to take stock of what has been achieved and to evaluate which new directions 

psychopathological network research should take (Fried & Cramer, in press; Fried, van 

Borkulo, Cramer, Boschloo, Schoevers, & Borsboom, 2017). The reproducibility of network 

research ranks firmly among the top priorities: as Epskamp, Borsboom, and Fried (2017) 

state, “[t]he current replication crisis in psychology stresses the crucial importance of 

obtaining robust results, and we want the emerging field of psychopathological networks to 

start off on the right foot”. Similarly, replicability was recently highlighted as one of the five 

core challenges that the psychopathological network discipline is facing (Fried & Cramer, in 

press).  

Thus, the importance of assessing stability and replicability of network structures 

stands beyond doubt. Upon reading FWMK’s conclusions, therefore, our immediate reaction 

was one of concern about some of the network analysis methodologies currently in use; a 

response we expect many readers to share, especially because FWMK do not thread lightly in 

their assessment of psychopathology networks. Even though their analysis is limited to just 

two datasets, they do not hesitate to draw general conclusions and state that “popular network 

analysis methods produce unreliable results” (General Scientific Summary, p. 1), have “poor 

replicability” (p. 18) and “limited utility” (p. 18), so that “novel results originating from 
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psychopathology networks should be held to higher standards of evidence before they are 

ready for dissemination or implementation in the field” (p. 18).  

However, after we had acquired access to the datasets FWMK analyze and used the 

appropriate network analyses, we found that many of the numerical results from our 

statistical analyses turned out vastly different from those of FWMK, and support the exact 

opposite of FWMK’s conclusion: psychopathology networks replicate very well. We were 

able to trace the diverging results to a number of inaccuracies in FWMK’s analyses. First, 

contrary to their claims, FWMK do not accurately implement state-of-the-art network 

analyses, as we will show below. Second, FWMK’s methodology for assessing replication 

uses debatable measures of replicability. Third, the correlation matrices used by FWMK are 

distorted due to the presence of a skip structure in the interview.  

In the present commentary, we will illustrate how these issues have led FWMK to 

underestimate the quality of network methodology. In addition, we discuss best practices to 

most effectively conduct research into the reproducibility of psychopathology networks. 

 

Evidence that psychopathology networks replicate well 

When we set out to reproduce FWMK’s results using the same analyses on the same 

NCS-R and NSMHWB data and split-halves
1
, we found that networks replicated well. Table 

1 shows a summary of these results for Ising models, relative importance networks, and 

Directed Acyclic Graphs (DAGs). We do not report results for association networks, first 

                                                
1
 We would like to thank FWMK for providing us with the exact splits of the data used in the 

split-half analyses. 
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because FWMK do not challenge the replicability of association networks, and second 

because we encountered major issues with the correlation matrices that we discuss in the next 

section. In addition to the replicability metrics used by FWMK, we report additional metrics 

to facilitate assessment of the degree to which networks replicate
2
. The most intuitive and 

important of these metrics, in our view, is the correlation between the network connections in 

the NCS-R and NSMHWB datasets. This correlation measures the correspondence between 

the strength of network connections found in both datasets. If the correlation equals one, 

network connections in the networks are perfectly linearly related across samples, meaning 

that the networks have essentially the same structure; if it equals zero, the networks have no 

detectable linear correspondence; if it equals minus one, the networks are exact opposites.  

Table 1 shows that the correlations between network connection strengths are all well 

above .9, indicating that the networks found in the datasets under consideration are highly 

similar. Figure 1 shows this high correspondence between the network structures by 

representing them using the same layout; this is advisable because even when plotting two 

exactly identical networks with different layouts, it is impossible to tell visually how similar 

networks are. Our split-half analyses, using the same splits as used by FWMK, show 

comparable results: all parametric network models show correlations between network 

connection parameters of well over 0.9
3
. We shortly discuss these results, after which we will 

turn to the question why FWMK reach conclusions opposite from ours. 

                                                
2
 All analyses we report are performed using R version 3.3.1 and the relevant packages on 

platform x86_64-w64-mingw32. All code is available at https://osf.io/akywf, with the 

exception of the NSMHWB dataset which is not publicly accessible; an instructive summary 

of our analyses with a subset of sample code can be consulted in Appendix A. 
3
 Results of the split-half analyses are included in Appendix B. 
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________________________ 

Insert Table 1 about here 

Table and appendices are supplied below the manuscript 

________________________ 

 

The Ising model. The Ising model (Van Borkulo et al., 2014) is arguably the most important 

of the models fitted by FWMK, as it represents state-of-the-art regularized network model 

estimation for Pairwise Markov Random Fields (PMRFs; Epskamp, 2017) in dichotomous 

data. Tallying all networks that are reported in the literature at the moment of writing this 

comment, 62% used a variant of the PMRF, and this percentage is growing quickly because 

the PMRF has become the default network modeling technique. It is complemented by 

robustness analyses in bootnet (Epskamp, Borsboom, & Fried, 2017) as well as statistical 

tests for network invariance (Van Borkulo et al., 2016), which are powerful tools in assessing 

network estimation quality and testing the equivalence of network models in different 

populations, as we will illustrate in this comment. 

As FWMK note themselves, and as Figure 1 (left panels) shows, estimated Ising 

networks are nearly identical: node threshold parameters correlate .93 across the datasets, 

while network connection parameters (edge weights) show a correlation of .95 (Spearman 

correlations equal .85 and .88, respectively). Even though the absolute position of nodes in 

centrality orders is not invariant, as also reported by FWMK, their relative positions are 

strongly aligned: the centrality metrics of strength, betweenness and closeness correlate 0.94, 

0.94, and 0.76, respectively, across the two datasets. The only sign of non-replication 
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concerns the presence of three weak negative edges in the NCS-data that were absent in the 

NSMHWB data; however, this difference across samples was not statistically significant (see 

below). Split-half analyses, as reported in Appendix B, show similar results and indicate high 

stability of the Ising model. 

 

 

 

Figure 1. Network structures estimated with the Ising model (left panels), censored relative 

importance networks (middle panels), and Directed Acyclic Graphs (DAGs; right panels) for 

the NCS-R (top panels) and NSMHWB (bottom panels) data. 

depr

inte

weig

mSle

moto

mFat

repr

mCon

suic

anxi

even

ctrl

edge

gFat

irri

gCon

musc

gSle

NCS−R −− Ising model

depr

inte

weig

mSle

moto

mFat

repr

mCon

suic

anxi

even

ctrl

edge

gFat

irri

gCon

musc

gSle

NSMHWB −− Ising model

depr

inte

weig

mSle

moto

mFat

repr

mCon

suic

anxi

even

ctrl

edge

gFat

irri

gCon

musc

gSle

NCS−R −− Censored relative importance

depr

inte

weig

mSle

moto

mFat

repr

mCon

suic

anxi

even

ctrl

edge

gFat

irri

gCon

musc

gSle

NSMHWB −− Censored relative importance

depr

inte

weig

mSle

moto

mFat

repr

mCon

suic

anxi

even

ctrl

edge

gFat

irri

gCon

musc

gSle

NCS−R −− DAG

depr

inte

weig

mSle

moto

mFat

repr

mCon

suic

anxi

even

ctrl

edge

gFat

irri

gCon

musc

gSle

NSMHWB −− DAG



 

10 

 

Moving beyond descriptive measures, and in contrast to FWMK, we used the 

Network Comparison Test (NCT) to statistically evaluate the similarity of the Ising models 

estimated on the NCS-R and NSMHWB data using permutation testing (Van Borkulo et al., 

2016). The NCT results also indicate that the network structures of NCS-R and NSMHW 

replicate very well. First, a test for invariance of network structures, which tests the null 

hypothesis that all edges are precisely identical across the samples, was not significant 

(M=2.66, p=0.121). Second, testing for the invariance of individual edges revealed that none 

of the edges differed significantly across the two datasets. Thus, despite the high power to 

detect differences given the two large samples (N~9000 per sample), we could not reject the 

null hypothesis that the NCS-R and NSMHWB networks are precisely identical at the level 

of the populations from which these samples were drawn.  

 

Relative importance networks. As shown in Figure 1 (middle panels), relative importance 

networks, which were estimated by exactly following the original methodology described in 

Robinaugh et al. (2014), replicated even better than the Ising models. Uncensored relative 

importance networks featured a correlation of 0.99 between the estimated edge weights in the 

two datasets, as well as between split-halves of the same datasets (see Appendix B). These 

findings deviate significantly from those of FWMK; we will explain this divergence in the 

next section.  

 

DAG analysis. Replication results for DAGs were good, although not as excellent as the 

results for the Ising models and relative importance networks. This is not surprising because 
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DAGs require stronger assumptions
4
, which are less likely to be met in these data. As Table 1 

and Figure 1 show, 27 out of 34 DAG edges replicated from the NCS-R to the NSMHWB 

dataset (79.4%), which indicates that the results do converge. In addition, in- and outdegree 

of nodes featured correlations of .62 and .87 respectively. Visual inspection of Figure 1 (right 

panels) shows that the same bridge symptoms, which connect MDE to GAD, are identified in 

the two datasets. Of note, two edges (gFat - gCon and gCon - irri) switch direction between 

the datasets. 

 

Cross-method replicability. FWMK count how often edges show up in different network 

estimation routines. It is clear from the way they interpret the resulting findings that they 

assume that one should expect these different networks to converge to 100%. This, however, 

is not true. For instance, suppose the data arose from the DAG A → B ← C → D. Then one 

would not expect to find the Ising model to return the network A – B – C – D, because B is a 

common effect of A and C and therefore A and C must be conditionally dependent given B
5
 

(Pearl, 2011). Instead, one expects the network to also include a direct relation between A 

and C. In addition, given this network structure, one would never expect any correlations to 

be nonzero in the association network: because all variables are connected, one instead 

expects a fully connected association network. Thus, counting how often individual edges 

                                                
4
 For example, DAG analysis assumes that the causal graph contains no cycles and that there 

are no independence relations in the data that are not a function of the causal relations coded 

in the DAG (faithfulness); see e.g. Pearl (2009) for an extensive treatment. 
5
 This is because, if A and C are independent causes of B, then knowing that B is present 

means that, if A is not present and thus did not produce B, then C must have been the cause 

of B.  
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replicate across these different network structures is of limited utility, because it is 

implausible to expect them to be the same.  

In addition, network estimation techniques differ in sensitivity and specificity (Van 

Borkulo et al., 2014), meaning that some techniques more often err on the side of caution, 

and as such identify fewer edges, which should be accommodated in assessing replicability. 

For instance, in relative importance networks all connections are estimated, while Ising 

models only estimate connections that improve the fit of the model (van Borkulo et al., 

2014). Similarly, given the stronger causal interpretation of edges in a DAG opposed to Ising 

models, it is sensible that DAG estimation methods should be more conservative than Ising 

model estimation methods, leading DAGs to be sparser. Thus, in addition to principled 

differences between the edges the methods should detect in the first place, there are also 

differences in sensitivity and specificity that should be accounted for. 

Therefore, rather than counting how many edges are present in different networks, 

one should investigate a nesting relationship: a sparser network should not estimate edges 

that are absent from the denser network, and a denser network should not leave out edges that 

are present in the sparser network. When assessing this nesting relation, we found that 100% 

of the edges in the NCS-DAG (the sparser network) were present in the NCS-Ising model 

(the denser network). The same holds for the NSMHWB data. Strikingly, when we compare 

DAGs and Ising models across datasets, 97% of the NCS DAG-edges are included in the 

NSMHWB Ising model, and 100% of the NSMHWB DAG-edges are included in the NCS 

Ising model. In addition, we found that 100% of the edges that are missing in the Ising 

models are also missing in the DAGs. This is the case both in the split-half analysis and in the 
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replication analysis. Cross-method replication could hardly be better
6
.  

 

Why did FWMK underestimate the replicability of psychopathology networks? 

It is remarkable that our results differ so much from those of FWMK, especially given the 

strong conclusions FWMK draw. After studying their methodology in detail, we argue that 

the different conclusions originate from two sources. First, FWMK’s analyses contain several 

statistical inaccuracies. With “statistical inaccuracies”, we mean to identify statistical 

computations that we expect FWMK to acknowledge, upon reflection, as yielding a 

suboptimal representation of the relations in the data
7
. Unfortunately, these inaccuracies have 

had strong impact on the results. Second, their results rest on debatable methodologies. With 

“debatable methodologies” we mean to identify issues that we see as problematic, but that 

can be legitimately disputed depending on one’s point of view on what psychopathology 

networks should deliver or even on one’s underlying philosophy of science. We discuss these 

issues in turn.  

 

Statistical inaccuracies 

When studying their methodology, we found that FWMK do not adopt the standard 

estimation procedure for relative importance networks introduced by Robinaugh et al. (2014), 

                                                
6
 We have not investigated the cross-method replicability including relative importance 

networks, as these do not feature careful edge selection methods. 
7
 One of these inaccuracies was already acknowledged: the reader may note that the DAGs in 

Forbes et al. (2017) are different from the widely circulated version of their paper in April 

2017 that was accepted for publication in the Journal of Abnormal Psychology, and that we 

were asked to comment on. The difference is due to an error in the implementation of DAGs 

that FWMK caught in time to correct the paper between acceptance and publication.  
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nor any other published procedure
8
. It is unclear why they deviate from the standard 

procedure that is used in Robinaugh et al. (2014) and, to the best of our knowledge, in all 

other papers that have used relative importance networks (Bryant et al., 2017; Heeren & 

McNally, 2016; Hoorelbeke, Marchetti, De Schryver, & Koster, 2016; McNally, 2016; 

McNally et al., 2015). 

 First, FWMK use non-normalized instead of normalized estimates for the lmg metric 

to assess relative importance. While the optimal choice here is debatable, this poses a 

deviation from standing methodology that should have been acknowledged. Second, FWMK 

strictly threshold networks by permanently excluding edges under 0.05 from the network, 

while Robinaugh et al. (2014) removed these edges for visualization, but not in the 

computation of centrality measures. Third, and most importantly, FWMK deviate from 

existing work by introducing a thresholding procedure that has extreme consequences: 

whenever an edge between two nodes (e.g., A → B) does not have a weight of at least 0.005 

points higher than the corresponding reciprocal edge for the same two nodes (i.e., A ← B), 

FWMK remove that edge from the network. This thresholding rule has not been used 

anywhere else in the literature, and for good reason. For suppose A explains 50% of the 

variance in B, and B explains 50% of the variance in A: even though these could be the 

strongest edges in the network, they would be both removed because neither of these edges is 

>0.005 points higher than the other.  

The consequences of FWMK’s procedure are illustrated in Figure 2. When the 

                                                
8
 If we deviate in the same way from the literature, we can reproduce their reported results 

and hence we are certain this deviation is the source of the differences; see Figure 2 for 

details and https://osf.io/2t7qp/ for code replicating both our and FWMK’s analyses. 
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relative importance network is computed on the NCS-R data as described by Robinaugh et al. 

(2014), the resulting network retains 118 edges (left panel). Using non-normalized lmg with 

the same threshold results in a network that retains 99 edges (middle panel). Finally, applying 

the deviant thresholding procedure used by FWMK duplicates their analysis, leaving only 31 

out of the original 118 edges (right panel; the red edges in the middle panel network indicate 

those removed by FWMK’s thresholding rule). Occasionally this procedure indeed deletes 

both edges between two nodes; e.g., both edges between even and ctrl are deleted, as one can 

see by comparing the correctly computed network (Figure 2, left panel) to the network 

reported by FWMK (Figure 2, right panel).  

 

Figure 2. Relative importance networks (estimated on the NCS-R data) using normalized lmg 

(left, as used by Robinaugh et al. 2014; 118 edges) and non-normalized lmg (middle and 

right). Red edges in the middle panel (99 edges) indicate edges that are removed by the 

thresholding rule used by Forbes et al. (2017), and the right panel shows the network they 

reported (31 edges).  
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Thus, these analyses do not replicate the standard procedure introduced by Robinaugh 

et al. (2014) or any other procedure currently in the literature, and introduce a thresholding 

rule that causes many edges, including some of the strongest, to be deleted. As a result, we 

suggest that the conclusions presented by FWMK that pertain to relative importance 

networks are not trustworthy, and that our results, as presented in Table 1, should be 

consulted instead. It should be noted that these results should still be interpreted with care, as 

it is unclear whether relative importance networks, as used by Robinaugh et al. (2014) on 

continuous data, generalize well to the binary data analyzed here in the first place; relative 

importance networks are computed using linear regressions, which introduces an 

inappropriate distributional assumption. However, in contrast to the above inaccuracies, we 

were not able to resolve this in the current work; hence the reader should keep in mind that 

both FWMK’s paper and our reanalysis are based on an incorrect distributional assumption 

insofar as relative importance networks are concerned. 

A second issue that we consider to qualify as a statistical inaccuracy concerns 

FWMK’s use of a distorted tetrachoric correlation matrix, which underlies both their factor 

analyses and their association networks. To see why this correlation matrix is distorted, first 

note that the Composite International Diagnostic Interview (CIDI), which yielded the 

symptom data, involves a skip-structure. This means that the full symptomatology of MDE is 

only interrogated if at least one of the core symptoms of depressed mood and loss of interest 

was present; the full symptomatology of GAD is only interrogated if the interviewee reported 

the presence of anxiety, anxiety about multiple events and loss of control about the worry. As 

such, both the NCS-R and the NSMHWB data contain a high percentage of missing values. 
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In both datasets, FWMK impute zeros for these missing values. This practice assumes 

Guttman scale properties for the skipped symptoms, i.e., if one does not have the symptom of 

feeling sad over a period of two weeks (a symptom that acts as a gateway in the skip 

structure), one cannot have the symptom of insomnia (a non-gateway item). This practice is 

acceptable in many contexts, and although the procedure can strongly affect all network 

models, it does not necessarily invalidate their results. For instance, as can be seen in Figure 

1, the GAD skip structure translates to the sequence anx → eve → ctrl in the DAG, with eve 

being the most important gateway item connecting to the other symptoms, while the MDE 

skip structure translates to the sequence depr → inte in MDE. These sequences accurately 

reflect the actual order of the symptoms in the interview, and thus the DAGs correctly pick 

up the skip structure, which we know is a true causal structure in the data (see also Borsboom 

& Cramer, 2013, Figure 7).  
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Figure 3. The effect of the imputation strategy used by FWMK on the network structure of 

the NCS-R data. The figure shows how imputation alters the tetrachoric correlation between 

depression symptoms, and the resulting networks. The correlations shown represent actual 

NCS-R correlations between four non-skip items (weight problems, sleep problems, 

psychomotor problems, and fatigue) before and after imputation. 
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Unfortunately, however, imputing zeros for missing values is not advisable when the 

goal is to analyze or represent a correlation matrix. This is because it alters the correlations in 

the data enormously, as is graphically represented in Figure 3. To give an indication of how 

serious these distortions are, we note that the average correlation between depression 

symptoms in the correlation matrix as used by FWMK equals .94 for the NCS-R data and .96 

for the NSMHWB data. This is unrealistically high and nowhere near the average tetrachoric 

correlation of .33 that characterizes the data if missing values are handled with, for example, 

pairwise deletion. Also, these values do not resemble correlations typically found for these 

kinds of symptoms (e.g. see Beard et al., 2016).  

In addition, the imputation process introduces deterministic dependencies in the data, 

which in this case leads the correlation matrices for both the NCS-R and the NSMHWB data 

to become non-positive definite (this means that the matrices do not have the characteristics 

every proper correlation matrix should have and, therefore, should not be used in standard 

statistical analyses). As a result, these correlation matrices are untrustworthy, and 

unrepresentative of the associations present in the data. Because of this, the results of both 

association networks and factor analyses reported by FWMK are unreliable. Note that the 

effects of the imputation strategy are visible in all analyses that FWMK report, and that they 

affect our analyses in the same way. At present we are unaware of an analytic strategy that 

could address this issue satisfactorily. 

It is important to recognize that, because of the problems outlined above, all statistics 

reported by FWMK that pertain to association networks and relative importance networks are 

either inaccurate or corrupted to an unknown extent by FWMK’s imputation strategy. This 
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has direct consequences for FWMK’s findings with respect to cross-method replicability. For 

example, FWMK’s abstract presents, as a main result, that “only 13-21% of the edges were 

consistently estimated across these networks”. These percentages are uninformative, not only 

because one does not in fact expect different networks to converge upon the same structure, 

as explained in the previous section, but also because the underlying computations are 

compromised by statistical inaccuracies, as identified in this section. In fact, the only 

interpretable results on cross-method replicability that FWMK could have obtained pertain to 

the comparison between Ising models and DAGs, because these are the only models that they 

estimated without problems
9
. With respect to this comparison, however, FWMK claim that 

41 edges of the NCS-R DAG were also present in their NCS-R Ising model (see their 

Footnote 7). Unfortunately, their NCS-R DAG only contained 34 edges, which means it is 

impossible that 41 edges would replicate. We therefore have no other option than to conclude 

that none of the statistics on cross-method replicability reported by FWMK are accurate.  

 

Debatable methodology for assessing replicability 

After pointing out the statistical inaccuracies in FWMK’s analyses, this section covers the 

methodology used to evaluate the replicability of network models. In contrast to the issues 

mentioned in the previous section, one can have legitimately different points of view on the 

appropriateness of the measures in question and the importance of the problems they 

encounter. In our view, the main problem with FWMK’s assessment of replicability is that 

                                                
9
 The reader should take care to interpret this statement as applying to FWMK’s published 

paper and not to their widely circulated preprint, which did not implement DAGs correctly. 
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they do not use any measures that would seem of immediate relevance to any such analysis 

(e.g., correlations between the edge weights across samples, as reported in Table 1, or 

statistical tests such as NCT), and instead rely on several replicability and stability measures 

that have not been validated, and that are problematic for reasons explained below.  

First, FWMK compute the percentage of change of the value of a parameter from one 

dataset to the next, and then average this percentage over all parameters. This percentage is 

relative to the original size of the edge. This means that small changes in parameters very 

close to zero can result in huge differences: for instance, when the same parameter is 0.00001 

in one dataset and 0.00003 in the second, the computations of FWMK convert this into a 

300% change, which may be entirely inconsequential for the interpretation of the network 

structure. Figure 4 (left panel) illustrates, for the Ising model, how it is possible for parameter 

values to feature an average 30% change across datasets, even though the network parameters 

are in fact nearly identical. The reason is indeed that large percentage changes are much more 

likely to occur in small edge weights: strong edge weights hardly change at all. As a result, 

the correlation between edge weights remains extremely high (Figure 4, right panel).  

To show that this problem arises in latent variable models as well as networks, we 

also computed FWMK’s measure for the parameters of a two-dimensional IRT model fitted 

on the NCS data; when replicating this model on the NMSHWB data, the percentage 

parameter change equals 44%, while the correlation between the discrimination parameters in 

the two samples equals 0.96. Moreover, a small simulation in which we simulated data from 

a two-factor model and applied FWMK’s measure resulted in an average parameter change 

no less than 483%, even though the parameters of the model correlate 0.99 across samples. 
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Thus, factor models show roughly the same behavior as network models with this measure.  

We conclude that it is inadvisable to attach normative evaluations to the absolute 

estimates of this metric, as FWMK do when they interpret the percentage differences in 

parameter estimates (“these are all substantial changes in the context of a model that is 

promoted for its specificity”, p. 14). The average parameter change metric may be 

productively used in various methodological investigations (e.g., to compare different models 

or estimation routines in simulation studies), but it is unfit to serve as an arbiter of 

replicability. 

Figure 4. The absolute percentage change in edge weights across datasets relative to the size 

of the edge weights (left panel). This panel shows that smaller edge weights show larger 

changes expressed as a percentage of the original weight. The right panel shows that these 

changes are mostly irrelevant: the strong linear relation (r=.95) between edge weights in the 

NCS-R and NSMHWB data (right panel) is unaffected by the parameter changes. 
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 Second, FWMK consider how well the absolute position of nodes in the centrality 

ordering replicates, i.e. the question whether a node that ranks 6th in one dataset also ranks 

6th in the other. Since edge weights and centrality measures are, as all other statistics, 

affected by sampling error, nodes can shift positions in the rank ordering due to sampling 

fluctuations. How strongly sampling fluctuations affects these statistics depends on (a) the 

sample size, and (b) the differences between nodes in terms of centrality at the population 

level (i.e., the network structure). Epskamp, Borsboom and Fried (2017) give the extreme 

example where, at a population level, there are no differences in centrality at all (i.e., all 

nodes are equally central). In this case, one should not expect that order to replicate at all, 

because any absolute ordering differences in a given sample must be due to sampling error.  

Therefore, instead of expecting the orderings to replicate by default, one should 

inspect both the network structure and the sampling variability of centrality measures, which 

shows how reliably they are estimated and whether differences between them are statistically 

significant. Fortunately, the R-package bootnet (Epskamp, Borsboom & Fried, 2017) can be 

used for this purpose. Running bootnet on the Ising model results obtained by FWMK shows 

that most of the edge weights, which are the basis of centrality calculations, are estimated 

reliably (see Appendix 1); however, the edges related to the gateway items used in the skip 

structure (especially item 11, which is the symptom of being anxious about multiple events) 

are much less reliable, which is likely due to structural zeros in the contingency tables for 

these items, as induced in FWMK’s treatment of missing values. Inspecting the robustness of 

the centrality ordering itself reveals that while strength centrality is estimated stably, 

closeness and betweenness were much less stable. Appendix C explains that this is due to a 
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particularity in the data that likely results from the skip structure; hence, one should hesitate 

to generalize this result to other datasets or modeling contexts. We advise that, in future 

research, investigators do well to interpret centrality results in the context of a robustness 

analysis using bootnet. 

In addition, correspondence of the absolute positions of nodes in the centrality 

ordering across samples, to which FWMK attach primary significance, is extremely strict as a 

primary measure of replicability. To see this, suppose we have twenty-six nodes, 

corresponding to the letters in the alphabet, for which centrality measures induce the ordering 

A,B,…, Z in dataset 1. Now one executes the same analysis in another dataset, which yields 

the ordering Z, A, B, C, … Y. Because none of the variables occupy the exact same place in 

the ordering, FWMK would interpret this as evidence that psychopathology networks do not 

replicate (in fact, there would be no correspondence at all in this case). However, only Z 

changed position from least to most central, and although no node occupies the exact same 

absolute position, one should at the same time conclude that the centrality order does 

replicate to a large degree, since the relative positioning is nearly entirely preserved. This 

does not invalidate FWMK’s measure of correspondence in absolute position, which can still 

be useful, but it does mean that this metric should be viewed with caution and, importantly, 

should always be assessed a) in the light of stability of the relative positioning of nodes as 

assessed by the correlation between centrality scores of nodes across samples (e.g.,  0.94 for 

strength and betweenness, and 0.76 for closeness in the Ising model) and b) in the light of 

sampling variability. 

Third, FWMK’s express concern over the fact that different centrality measures 
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identify different nodes as central. However, just as the various network estimation methods 

get at different aspects of the data and should not be expected to yield the same network 

solution, centrality measures such as strength, betweenness and closeness are not 

interchangeable measures that will converge on “the most influential node”, as FWMK 

suggest (p. 5). Instead, they are indices that assess different kinds of centrality. Thus, if 

strength centrality is highest for depressed mood but fatigue shows the highest score on 

closeness, or when anxiety about multiple events has the highest strength in the Ising model 

but depressed mood has the highest strength in the DAG, that signals neither a problem nor a 

cause for concern. Instead, these results, if robust across samples and assessment methods, 

should be viewed as potentially important clues about the structure of a psycho(patho)logical 

construct under consideration. 

 

So what about measurement error? 

Since the various network models replicate very well across datasets, the reader may wonder 

how this fits in with FWMK’s explanation of the supposed poor replication results in terms of 

measurement error. That is, FWMK hypothesize that, because edges between two nodes are 

controlled for other nodes in the network, networks primarily work on residual variances that 

are largely composed of measurement errors. The results of our reanalysis provide a direct 

refutation of this theory: if FWMK’s explanation were correct, one should expect bad 

replicability, but our analyses in fact show replicability to be good. Also, if FWMK’s 

explanation were correct, one would expect simulation studies and robustness analyses to 

show that network models produce unreliable results, which is not the case (van Borkulo et 
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al., 2014; Epskamp et al., 2017). 

Indeed, despite the suggestive Venn-diagrams used in their paper, the psychometric 

intuitions that underlie FWMK’s argumentation are inaccurate. The following thought 

experiment may help elucidate why this is the case. Suppose one encountered a situation in 

which all systematic relations between depression symptoms were due to a latent variable, 

and everything else was pure random measurement error. If FWMK were correct, this would 

imply that a network model should be expected to return a spurious network without any 

robust connections: after all, because in their view partial correlations are largely correlations 

between measurement errors, and measurement errors are not structurally related, there is 

nothing real for the network to go on. However, this is not what one would find: if a latent 

variable model gave rise to all correlations between variables, then we would not find an 

empty network but a fully connected one (Epskamp et al., in press; Ellis & Junker, 1997). 

Thus, a latent variable model corresponds to a dense network of systematic relations 

(Marsman, Maris, Bechger, & Glas, 2015), and not to an empty or spurious network, as 

FWMK’s theory would suggest. 

More generally, one can prove that every latent variable structure implies a specific 

network structure, as Molenaar (2003) already suspected and as Maris and his co-workers 

have been recently able to formally prove (Epskamp et al., in press; Marsman et al., 2015; 

Kruis & Maris, 2016). Thus, even though network models do not explicitly represent shared 

variance in a separate node that renders the other nodes conditionally independent (i.e., a 

latent variable), they do imply the presence of shared variance in sets of connected nodes. In 

fact, given that the known mathematical equivalence relations between the models implies 
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that they produce the same joint probability distribution for the items, the models should not 

be expected to differ in this respect. This has the somewhat ironic consequence that, if 

network structures replicated badly across two datasets, then this would imply that factor 

structures (i.e., the configuration of loadings in exploratory factor models) would replicate 

badly as well. Measurement error has little to do with this, because both latent variable 

models and network models operate on the same systematic relations in the data.  

Despite this, however, we do note that additional methodological research is 

necessary to systematically study the replication properties of different models under various 

conditions, as these would likely be influenced by various factors such as the overall fit of the 

model, the number of parameters (and an important caveat of network models is that they 

typically do require many parameters to be estimated), and the strength of the associations in 

the data. Psychometric intuition, however, is an unreliable guide in this respect. Thus, 

mathematical analyses and simulation studies are required to study these issues, especially 

when making critical generalized claims about an entire psychometric field based on the 

analysis of two datasets.  

 

Best practices for future research 

Despite the inadequacy of the data and analyses used by FWMK, we stress again that we 

consider both stability and replicability of networks to be extremely important topics. 

Therefore, we commend FWMK for taking up these issues. Regarding stability, we agree 

with FWMK that model stability should be tested in all statistical models, including both 

network and factor models. Thus, we hope that FWMK’s paper—together with the bootnet 
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R-package and the accompanying tutorial paper (Epskamp, Borsboom, and Fried, 2017)—

will shift the attention of both applied and technical researchers to this topic. Regarding 

replicability, we offer a roadmap for network replication studies in this section that may aid 

future researchers in obtaining more objective and trustworthy results. 

 

The method: Replication as a non-empirical question. First, we address a central issue in the 

design of FWMK: they confound evidence for replication problems that concern a particular 

estimated model with evidence for problems of the model in general. This is a non-sequitur. 

For suppose that one fitted a specific regression model to two different samples, and the 

regression coefficients were different from each other.  Nobody would conclude from such a 

result that “regression analysis has limited replicability”. The problem with equating “not the 

same result in two data sets” to “method does not work” is that we do not know whether the 

‘true’ relationship between variables is the same across samples. In the absence of this 

knowledge, we cannot know for sure if differences in results are due to differences in sample 

characteristics, or to a flawed method.  

One may think that this problem is circumvented in FWMK’s evaluation of split-half 

results, which are based on the correspondence of networks within the same sample. 

However, this only partly addresses the problem. First, because one does not know whether 

split-half performance with this particular kind of data (here: MDE-GAD symptom data 

obtained with interviews containing skips) generalizes to other kinds of data, as is necessary 

for blanket statements like “popular network analysis methods produce unreliable results”, as 

touted in FWMK’s General Scientific Summary. Second, because even in a given sample one 
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does not know whether any given network model is true, let alone which one, and in the 

absence of this knowledge it is impossible to assess which part of model instability arises 

from defects in the methodology, and which part arises from model misfit, population 

heterogeneity, violations of distributional assumptions, etc. 

Thus, if the primary aim of research is to assess the general methodological adequacy 

of a method, the evaluation of two specific empirical datasets is of limited use. Putting a 

network method to the test requires that one knows the ‘true’ network structure and this can 

only be done by (a) establishing mathematical proof that the method converges on the true 

structure in the long run (as, e.g., Meinshausen and Bühlmann, 2006, have done for the 

Gaussian graphical model and Ravikumar et al., 2010 for the Ising model) or (b) simulating 

such ‘true’ network structures and, subsequently, assess the capability of a method, in a 

variety of settings, to accurately estimate that ‘true’ network structure (as executed by Van 

Borkulo et al., 2014 for the Ising model). This motivates the rule that methodological 

adequacy should be established on methodological grounds.  

 

The network structure of a psychological construct: Replication as an empirical question. 

Once a particular method is proven to accurately retrieve a ‘true’ network structure using 

methodological studies, there is another question of replicability that is empirical in nature; 

namely, what is the particular network structure of a psychological construct such as major 

depression, or generalized anxiety disorder? Answering this question does entail the 

comparison of network structures across many data sets and many participants. As we have 

shown above, the design used by FWMK is suboptimal in this respect, and this raises the 
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question what kind of methodological design would be needed to properly assess replicability 

in network analysis. Although the below list is not meant to be exhaustive (see Anderson & 

Maxwell, 2016, for additional issues in replication research), we suggest the following best 

practices: 

1. No skip structure. If one desires a replicability assessment that is not confounded 

by methodological design, one needs data that do not contain a skip structure. We 

realize this may be a challenge given that many data sets, such as NCS-R and 

NSMHBW, do contain a skip structure. We also realize that we are guilty as 

charged in this respect since we, too, used NCS-R data, albeit it for illustration or 

hypothesis-generating purposes (Borsboom & Cramer, 2013; Cramer et al., 2010). 

Also, in certain cases there is no other option than to use a design with skip 

structures (e.g., one cannot ask a person who does not drink whether they got into 

legal problems because of drinking; Rhemtulla et al., 2016). Future studies in 

datasets without skip structure will enable us to gauge the replicability of 

psychopathology networks, and we are glad to see that such studies are already on 

the way (e.g., network replicability across four large clinical PTSD datasets: 

https://osf.io/2t7qp/). 

2. Open access data and code. Reproducibility studies should themselves be 

reproducible. The NSMHWB data used in this research, however, are not publicly 

accessible, which means that third parties cannot replicate either our results or 

those of FWMK without engaging in a lengthy, cumbersome, and costly 

procedure to gain access to the data (we were charged 947 USD just to be able to 
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check the veracity of FWMK’s analyses). This is highly undesirable. Replication 

studies are different from other studies in that their consequences may be more 

far-reaching, because they can discredit or invalidate whole research programs. 

Therefore, we need to be sure that the analyses and reported results are sound. The 

only way interested third parties can verify this is through free access to the data 

used. We acknowledge that freely available data sets containing clinical patient 

data may be challenging, for example due to issues concerning extending 

informed consent of patients to third parties. However, we feel encouraged by a 

recent paper about replicability in clinical science, which contains a multitude of 

valuable recommendations, that important progress is forthcoming (Tackett et al., 

in press). Analysis code should naturally always be available, as it is needed to 

replicate and verify reported analyses – the current report illustrates how 

important this is – and we commend FWMK for sharing their code.  

3. Preregistration of analyses. Replication research differs from the exploratory 

designs in which network analyses are most often used, because researchers have 

a clear idea of the hypothesis to be tested: replication across samples. In addition, 

especially in replication research, the selection of measures used to gauge 

replicability is important: after the data are in, it is always possible to come up 

with a particular selection of measures that emphasizes evidence for or against 

replicability. To minimize the influence of subjective choices made after the data 

are in, we encourage any replicability effort to be preregistered, for example at the 

Open Science Framework (OSF: https://osf.io). Preregistration has an additional 



 

32 

 

advantage, because interested researchers are able to check 1) a-priori hypotheses 

and 2) the analysis plan. The Open Science Framework also allows for uploading 

the code that was used for the analyses, so other researchers can check the 

veracity of the reported results before the paper is even submitted for review. This 

reduces the probability of submitting or even publishing papers that later turn out 

to be ill-founded. In the current study, such a procedure would have safeguarded 

against the statistical inaccuracies manifest in Forbes et al. (2017).  

 

Conclusion 

We think that practically all researchers are united by a common goal: the pursuit of scientific 

knowledge. As such, we stress the importance of expanding our knowledge about 

psychopathological networks and acknowledge the challenges ahead (Fried & Cramer, in 

press). If one day we were to find out that networks are either not replicable, or that they 

cannot be suitable candidate models for explaining psychopathology, then we would consider 

this a victory for clinical science — despite our investment in these models. Falsification is 

an essential component of the scientific enterprise and the burden of doing so should befall 

on all of us and on all our theories and hypotheses.  

In our comprehensive re-analysis, however, we have shown that FWMK’s devastating 

conclusions are not licensed by their analysis. We conclude that the main conclusion of 

FWMK that “popular network analysis methods produce unreliable results”, is a strongly 

overstated generalization that is not warranted on the basis of their research design and 

statistical analyses. The replicability issue, however, is not settled with the publication of 
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either FWMK’s paper nor our commentary. It is for this reason that we have formulated best 

practices to investigate the important replication issue properly, by using adequate data and 

optimal analysis designs. Our hope is that future work will lead towards the robust and 

replicable scientific knowledge that we should all be looking for.  
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Table 1. Replication results of comparing the networks for the NCS-R and NSMHWB data. In addition to the metrics discussed by Forbes et al. 

(see their Table 2 for detailed explanations), the table reports Pearson correlations between network parameters in the two samples (all  > .9), 

replication statistics for censored and uncensored relative importance networks as implemented in accordance with Robinaugh et al. (2014), and 

most central nodes for different centrality measures. See Table 1 of Forbes et al. (2017) for node abbreviations. 
 Ising models Relative importance 

networks (censored) 

Relative importance networks 

(uncensored) 

DAGs 

 NCS-R NSMHWB NCS-R NSMHWB NCS-R NSMHWB NCS-R NSMHWB 

Network characteristics
a 

        

Nr. of edges (% of possible) 80 (52.3%) 79 (51.6%) 118 (38.6%) 124 (40.5%) 306 (100%) 306 (100%) 34 (22.2%) 33 21.6%) 

Density (as in Forbes et al.) 1.08 1.17 0.13 0.12 0.06 0.06 N/A N/A 

Quality of replication         

Correlation between all edges 0.95 0.98 0.99 N/A 

Correlation for non-zero edges 0.97 0.98 0.99 N/A 

Jaccard index
b
 0.77 0.92 1.00 0.68 

% change in edge weights
a
  30.4% 8.3% 22.2% N/A 

Replicated edges
a
 69 (86.3%) 116 (98.3%) 306 (100%) 27 (79.4%) 

Non-replicated edges
a
 11 (13.8%) 2 (1.7%) 0 (0%) 7 (20.6%) 

Edges unique to replication set
a
 10 (12.7%) 8 (6.5%) 0 (0%) 6 (18.2%) 

Node centrality correlations         

Strength/Outstrength/Outdegree 0.94 0.94 0.98 0.87 

Instrength/Indegree N/A 0.76 N/A 0.62 

Closeness 0.76 N/A 0.98 1.00 

Betweenness 0.94 0.84 0.92 0.79 

Most central nodes
c
     

Strength/Outstrength/Outdegree even even depr depr depr depr depr depr;inte 

Instrength/Indegree N/A N/A inte weig tie (15 nodes) mFat tie (4 nodes) irri 

Closeness depr mFat N/A N/A mFat mSle anxi anxi 

Betweenness depr even ctrl even gFat gFat edge depr 

Rank-order correspondence
a
 Correlation 

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation 

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation  

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation  

(Kendall tau-b) 

Matches in 

Rank-Order 

Strength/Outstrength/Outdegree 0.69 3 (16.7%) 0.82 9 (50%) 0.8 4 (22.2%) 0.75 14 (77.8%) 

Instrength/Indegree N/A N/A 0.39 2 (11.1%) N/A N/A 0.57 16 (88.9%) 

Closeness 0.71 3 (16.7%) N/A N/A 0.87 6 (33.3%) 1.00 18 (100%) 

Betweenness 0.77 11 (61.1%) 0.84 14 (77.8%) 0.57 9 (50%) 0.66 10 (55.6%) 



a
 Computed following the methodology of Forbes et al. (2017). 

b
 The Jaccard index is the proportion of shared edges relative to the total number of edges in both networks (shared and non-shared). 

c
 Computed following the methodology of Forbes et al., but for single centrality measures. 

	



Appendix	A:	Example	codes	

R-code	to	execute	the	NCS-R	network	analyses	

This	appendix	describes	the	R-code	used	to	run	the	analyses	that	give	rise	to	the	network	

models	reported,	using	the	NCS-R	dataset.	Codes	to	perform	all	analyses	are	present	at	

https://osf.io/akywf/?view_only=a0634a2b063c4538abca59e5f18c2baf,	with	the	

exception	of	the	NMSHWB	data,	which	are	unfortunately	not	public.	To	replicate	the	full	

analyses,	one	needs	to	purchase	access	to	the	data	from	the	the	Australian	Bureau	of	

Statistics.	

Estimating	network	structures	

Step	1:	Load	packages	and	data.	

#	Packages	to	load:	
library("bootnet")	
library("bnlearn")	
library("qgraph")	
library("relaimpo")	
library("IsingFit")	

	
#	Set	the	random	seed:	
set.seed(123)	

	
#	Load	NCS	dataset:	
DataNCS	<-	read.csv("NCS.csv",	header	=	TRUE)	

	
#	Node	labels:	
Labels	<-	c("depr",	"inte",	"weig",	"mSle",	"moto",	"mFat",	"repr",	"mCon",		
														"suic",	"anxi",	"even",	"ctrl",	"edge",	"gFat",	"irri",	"gCon",		
														"musc",	"gSle")	

	
#	Variables:	
Vars	<-	names(DataNCS)	

Step	2:	Replicate	Forbes	et	al.'s	Ising	model	analyses.	These	analyses	replicate	Forbes	et	al.	

(2017)	exactly.	

res_Ising_NCS	<-	IsingFit(DataNCS)	
Ising_NCS	<-	res_Ising_NCS$weiadj	

Step	3:	Replicate	Forbes	et	al.'s	DAG	analyses.	These	analyses	can	replicate	Forbes	et	al.	

(2017)	exactly,	although	using	certain	R	versions	or	operating	systems	might	lead	to	

slightly	different	results	due	to	randomness	in	the	bootstrap	(even	though	set.seed	is	used).	



E.g.,	we	obtained	35	edges	in	the	NCS	DAG	network	often.	For	the	commentary,	we	used	a	

laptop	that	replicated	the	34	edge	network	reported	by	Forbes	et	al	using	the	codes	below.	

#	Make	data	categorical:	
DataNCScat	<-	DataNCS	
for	(i	in	1:ncol(DataNCScat)){	
		DataNCScat[,i]	<-	as.factor(DataNCScat[,i])	
}	

	
#	Using	codes	from	McNally,	R.	J.,	Mair,	P.,	Mugno,	B.	L.,	&	Riemann,	B.	C.	(

2017).	Co-morbid	obsessive-compulsive	disorder	and	depression:	a	Bayesian	net

work	approach.	Psychological	Medicine,	1-11.	
set.seed(123)	
bnlearnRes_NCS	<-	boot.strength(DataNCScat,	R	=	1000,	algorithm	=	"hc",	algor

ithm.args	=	list(restart	=	5,	perturb	=	10),	debug	=	TRUE)			

	
#	Edges	with	strength	>	0.85:	
DAG_NCS	<-	amat(averaged.network(bnlearnRes_NCS,	threshold	=	0.85))	

Step	4:	Run	relative	importance	networks	using	Robinaugh	et	al.'s	(2014)	procedure,	using	

normalized	lmg.	Two	networks	are	generated,	one	in	which	no	edges	are	censored	(as	

analyzed	by	Robinaugh	et	al)	and	one	in	which	edges	below	0.05	are	removed	(as	shown	by	

Robinaugh	et	al).	

#	Empty	matrix:	
relimp_NCS_uncensored	<-	matrix(0,	18,	18)	

	
#	For	every	node,	compute	incomming	relative	importance	(normalized	lmg,	as	u

sed	by	Robinaugh	et	al	(2014)):	
#	Robinaugh,	D.	J.,	LeBlanc,	N.	J.,	Vuletich,	H.	A.,	&	McNally,	R.	J.	(2014).	

Network	analysis	of	persistent	complex	bereavement	disorder	in	conjugally	ber

eaved	adults.	Journal	of	abnormal	psychology,	123(3),	510-522.	
for	(i	in	1:18){	
		formula	<-	as.formula(paste0(Vars[i],"	~	",paste0(Vars[-i],collapse="	+	"))

)	
		res	<-	calc.relimp(formula,	DataNCS,	rela	=	TRUE)	
		relimp_NCS_uncensored[-i,i]	<-	res@lmg	
}	

	
#	Censor	(note,	Robinaugh	et	al	(2014)	only	hide	edges	under	0.05,	they	do	no

t	censor):	
relimp_NCS_censored	<-	ifelse(relimp_NCS_uncensored	<	0.05	,0,	relimp_NCS_unc

ensored)	

Replicating	errors	in	Forbes	

Error	1:	Relative	Importance	Networks	These	codes	replicating	the	relative	importance	

network	error	by	Forbes	et	al	and	generate	Figure	2	



###	Replicating	Forbes	et	al'	error:	
#	Compute	relative	importance	networks	using	non-normalized	lmg:	
relimp_NCS_nonnormalized	<-	matrix(0,18,18)	

	
for	(i	in	1:18){	
		formula	<-	as.formula(paste0(Vars[i],"	~	",paste0(Vars[-i],collapse="	+	"))

)	
		resNCS	<-	calc.relimp(formula,	DataNCS,	rela	=	FALSE)	
		relimp_NCS_nonnormalized[-i,i]	<-	resNCS@lmg	
}	

	
#	Threshold	according	to	Forbes	et	al:	
relimp_NCS_nonnormalized_censored	<-	ifelse(	
		relimp_NCS_nonnormalized	>	0.05	&	#	Retain	edges	above	0.05	
				(relimp_NCS_nonnormalized	>	(t(relimp_NCS_nonnormalized)	+	0.005)),	#	Ret

ain	*only*	edges	that	are	0.005	stronger	than	edge	in	transpose	
		relimp_NCS_nonnormalized,0)	

	
#	Number	of	edges:	
sum(relimp_NCS_nonnormalized_censored!=0)	
#	31:	same	as	reported	by	Forbes	et	al	

	
#	Figure	2:	
g_robinaugh	<-	relimp_NCS_censored	
g_nonNorm	<-	ifelse(relimp_NCS_nonnormalized	>	0.05,	relimp_NCS_nonnormalized

,	0)	
g_Forbes	<-	relimp_NCS_nonnormalized_censored	

	
#	Layout:	
L	<-	averageLayout(g_robinaugh,	g_nonNorm,	g_Forbes)	

	
#	Plot	figure:	
layout(t(1:3))	
qgraph(g_robinaugh,	layout	=	L,	title	=	"Normalized	lmg",	labels	=	Labels,	
							asize	=	4,	edge.color	=	"black",	parallelEdge	=	TRUE)	
box("figure")	
qgraph(g_nonNorm,	layout	=	L,	title	=	"Non-normalized	lmg",	labels	=	Labels,	
							asize	=	4,	edge.color	=	ifelse(g_nonNorm	!=	g_Forbes,	"red","black"),	
							parallelEdge	=	TRUE)	
box("figure")	
qgraph(g_Forbes,	layout	=	L,	title	=	"Forbes	et	al",	labels	=	Labels,	
							asize	=	4,	edge.color	=	"black",	parallelEdge	=	TRUE)	
box("figure")	
#	Shape	of	curve	and	placement	of	nodes	might	differ	using	different	qgraph	v

ersions	

Error	2:	Implausible	correlation	matrix	due	to	imputation	method.	

Establish	correlation	matrices	using	different	methods	for	handling	missing	data.	R	gives	a	

warning	saying	that	the	correlation	matrix	is	not	positive	definite.	We	examine	(a)	the	non-



positive	definite	tetrachoric	correlations,	and	(b)	the	nearest	positive	definite	matrix.	This	

shows	that	the	main	problem	lies	in	the	imputation	of	zeroes	and	not	in	the	fact	that	the	

nearest	positive	definite	matrix	is	used.	

#	Association	network	as	comuted	by	Forbes	et	al:	
tetrachorNearPD_NCS	<-	cor_auto(DataNCS)	

##	Variables	detected	as	ordinal:	V1;	V2;	V3;	V4;	V5;	V6;	V7;	V8;	V9;	V10;	V1

1;	V12;	V13;	V14;	V15;	V16;	V17;	V18	

##	Warning	in	cor_auto(DataNCS):	Correlation	matrix	is	not	positive	definite.	
##	Finding	nearest	positive	definite	matrix	

#	Gives	a	warning	searching	for	nearest	positive	definite	matrix.	This	can	be	

disabled:	
tetrachor_NCS	<-	cor_auto(DataNCS,forcePD	=	FALSE)	

##	Variables	detected	as	ordinal:	V1;	V2;	V3;	V4;	V5;	V6;	V7;	V8;	V9;	V10;	V1

1;	V12;	V13;	V14;	V15;	V16;	V17;	V18	

#	Both	produce	implausibly	high	correlations	(these	are	all	depression	sympto

ms):	
round(tetrachorNearPD_NCS[1:9,1:9],2)	

##						V1			V2			V3			V4			V5			V6			V7			V8			V9	
##	V1	1.00	0.99	0.98	0.99	0.93	0.98	0.93	0.99	0.95	
##	V2	0.99	1.00	0.97	0.98	0.91	0.97	0.92	0.98	0.94	
##	V3	0.98	0.97	1.00	0.98	0.91	0.96	0.88	0.97	0.93	
##	V4	0.99	0.98	0.98	1.00	0.93	0.98	0.91	0.99	0.95	
##	V5	0.93	0.91	0.91	0.93	1.00	0.89	0.79	0.94	0.82	
##	V6	0.98	0.97	0.96	0.98	0.89	1.00	0.90	0.98	0.92	
##	V7	0.93	0.92	0.88	0.91	0.79	0.90	1.00	0.91	0.88	
##	V8	0.99	0.98	0.97	0.99	0.94	0.98	0.91	1.00	0.94	
##	V9	0.95	0.94	0.93	0.95	0.82	0.92	0.88	0.94	1.00	

round(tetrachor_NCS[1:9,1:9],2)	

##						V1			V2			V3			V4			V5			V6			V7			V8			V9	
##	V1	1.00	0.99	0.99	1.00	0.96	0.99	0.96	0.99	0.98	
##	V2	0.99	1.00	0.97	0.98	0.91	0.97	0.92	0.98	0.94	
##	V3	0.99	0.97	1.00	0.98	0.91	0.96	0.87	0.97	0.93	
##	V4	1.00	0.98	0.98	1.00	0.93	0.98	0.91	0.98	0.95	
##	V5	0.96	0.91	0.91	0.93	1.00	0.89	0.78	0.94	0.81	
##	V6	0.99	0.97	0.96	0.98	0.89	1.00	0.89	0.98	0.92	
##	V7	0.96	0.92	0.87	0.91	0.78	0.89	1.00	0.91	0.87	
##	V8	0.99	0.98	0.97	0.98	0.94	0.98	0.91	1.00	0.94	
##	V9	0.98	0.94	0.93	0.95	0.81	0.92	0.87	0.94	1.00	



Stability	Analyses	

These	codes	use	bootnet	to	establish	stability	assessments	of	the	Ising	model,	such	as	

reported	in	Appendix	A.	Shown	here	are	results	based	on	100	bootstrap	samples	

network	<-	estimateNetwork(DataNCS,	default="IsingFit")	

	
#	Bootstraps	ran	on	24-core	supercomputer.	Reduce	nCores	to	present	number	of	

cores	
boota	<-	bootnet(network,	nBoots	=	5000,	nCores	=	20)	
bootb	<-	bootnet(network,	nBoots	=	5000,	type	=	"case",		nCores	=	20,	caseN	=	

25)	

	
#	Plot	edge	weight	CI	
plot(boota,	labels	=	FALSE,	order	=	"sample")		

	
#	Centrality	stability	
plot(bootb)	

	
#	Edge	weights	diff	test	
plot(boota,	"edge",	plot	=	"difference",	onlyNonZero	=	TRUE,	order	=	"sample"

)	

	
#	Centrality	diff	test	
plot(boota,	"strength",	order="sample")	

	
#	Centrality	stability	coefficient	
corStability(bootb)			



Appendix B: Split-half comparisons 

 

This appendix contains two tables that present summary results for the split-half comparisons for NCS-R and NSMHWB samples, after running 

the analyses with accurately implemented relative importance networks (see main text for details) on the same splits used by FWMK. In 

addition, these tables give general information about the relation between the models arrived at in both splits in addition to the results presented 

in Forbes et al. (2017): the correlation between edge weights, the correlation between non-zero edge weights, Jaccard index, and correlations 

across split halves for centrality measures. Matches in rank order across split-halves appear to have been assessed by hand in Forbes et al. 

(2017); we wrote an automated R-script to assess these across split-halves, which gives slightly different results. 

  



Table B1. Summary of split-half comparisons for the NCS-R data. This table matches the analysis reported in Table 3 of Forbes et al. (2017). In 

addition to the metrics discussed by FMWK (see their Table 2 for detailed explanations), the table reports Pearson correlations between network 

parameters in the two samples (all  > .9), and replication statistics for censored and uncensored relative importance networks as implemented in 

accordance with Robinaugh et al. (2014). 
 Ising models Relative importance networks 

(censored) 

Relative importance networks 

(uncensored) 

DAGs 

 First half Second half First half Second half First half Second half First half Second half 

Network characteristics         

Connectivity  (% of possible) 46.7% (45.1-

48.4) 

47.1% (44.4-

49.7) 

38.6% (37.9-

39.2) 

38.6% (37.9-

38.9) 

100% (100-100) 100% (100-100) 17% (16.3-19) 17.3% (15.7-

18.3) 

Density (as in Forbes et al.) 1.14 (1.11-1.17) 1.12 (1.08-1.19) 0.13 (0.13-0.13) 0.13 (0.13-0.13) 0.06 (0.06-0.06) 0.06 (0.06-0.06) N/A N/A 

Quality of replication         

Correlation between all edges 0.95 (0.93-0.97) 0.99 (0.99-0.99) 0.99 (0.99-1) N/A 

Correlation for non-zero edges 0.96 (0.95-0.97) 0.99 (0.98-0.99) 0.99 (0.99-1) N/A 

Jaccard index 0.76 (0.69-0.82) 0.98 (0.96-0.98) 1 (1-1) 0.61 (0.49-0.66) 

% change in edge weights  35.6% (27.7-41.8) 6.8% (5.5-8.5) 10.4% (7.9-15.4) N/A 

% replicated edges 86% (81.9-91.4) 98.3% (96.7-100) 100% (100-100) 74% (64.3-80) 

% non-replicated edges 14% (8.6-18.1) 1.7% (0-3.3) 0 % (0-0) 26% (20-35.7) 

Edges unique to replication set 15% (8.8-18.1) 1.3% (0-2.5) 0 % (0-0) 27.7% (16-33.3) 

Node centrality correlations         

strength/outstrength/outdegree 0.97 (0.93-0.99) 0.99 (0.98-0.99) 0.99 (0.97-0.99) 0.89 (0.82-0.94) 

Instrength/Indegree N/A 0.93 (0.89-0.95) N/A 0.51 (0.29-0.66) 

Closeness 0.76 (0.43-0.89) N/A 0.97 (0.85-0.98) N/A 

Betweenness 0.82 (0.54-0.96) 0.99 (0.98-1) 0.73 (0.39-0.82) 0.87 (0.44-0.96) 

Rank-order correspondence Correlation 

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation 

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation  

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation  

(Kendall tau-b) 

Matches in 

Rank-Order 

Strength/outstrength/outdegree 0.8 (0.63-0.87) 27.8% (5.6-50) 0.88 (0.87-0.93) 44.4% (33.3-

55.6) 

0.91 (0.87-0.96) 58.3% (33.3-

72.2) 

0.68 (0.53-0.76) 55.6% (44.4-

72.2) 

Instrength/Indegree N/A N/A 0.71 (0.54-0.79) 16.7% (5.6-38.9) N/A 100% (All 1) 0.42 (0.18-0.61) 55.6% (11.1-

72.2) 

Closeness 0.58 (0.41-0.71) 19.4% (11.1-

27.8) 

N/A 100% (All 0) 0.84 (0.79-0.95) 47.2% (11.1-

66.7) 

N/A 100% (88.9-100) 

Betweenness 0.61 (0.21-0.77) 50% (38.9-66.7) 0.87 (0.62-1) 100% (77.8-100) 0.63 (0.36-0.75) 44.4% (33.3-

61.1) 

0.46 (0.27-0.66) 61.1% (27.8-

88.9) 



Table B2. Summary of split-half comparisons for the NSMHWB data. This table matches the analysis reported in Table 4 of Forbes et al. (2017). 

In addition to the metrics discussed by FMWK (see their Table 2 for detailed explanations), the table reports Pearson correlations between 

network parameters in the two samples (all  > .9), and replication statistics for censored and uncensored relative importance networks as 

implemented in accordance with Robinaugh et al. (2014). 
 Ising models Relative importance networks 

(censored) 

Relative importance networks 

(uncensored) 

DAGs 

 First half Second half First half Second half First half Second half First half Second half 

Network characteristics         

Connectivity  (% of possible) 47.7% (43.1-

48.4) 

45.8% (43.1-

48.4) 

40.2% (39.5-

41.5) 

40.5% (39.2-

41.8) 

100% (100-

100) 

100% (100-

100) 

14.7% (12.4-

15) 

14.7% (13.7-

18.3) 
Density (as in Forbes et al.) 1.17 (1.14-

1.25) 

1.22 (1.12-

1.33) 

0.12 (0.12-

0.12) 

0.12 (0.12-

0.12) 

0.06 (0.06-

0.06) 

0.06 (0.06-

0.06) 

N/A) N/A 

Quality of replication         
Correlation between all edges 0.93 (0.92-0.96) 0.99 (0.99-0.99) 0.99 (0.99-0.99) N/A 
Correlation for non-zero edges 0.95 (0.93-0.97) 0.98 (0.97-0.99) 0.99 (0.99-0.99) N/A 
Jaccard index 0.74 (0.68-0.77) 0.96 (0.94-0.98) 1 (1-1) 0.47 (0.41-0.55) 
% change in edge weights  48.4% (36.8-68.7) 7.1% (5.9-8.3) 9.6% (8.3-12.3) N/A 
% replicated edges 83.4% (78.1-89.4) 98.4% (94.5-100) 100% (100-100) 68.2% (56.5-73.7) 
% non-replicated edges 16.6% (10.6-21.9) 1.6% (0-5.5) 0% (0-0) 31.8% (26.3-43.5) 
Edges unique to replication set 13% (11.9-16.9) 2.4% (0-5.5) 0% (0-0) 37.8% (27.3-48.1) 
Node centrality correlations         
strength/outstrength/outdegree 0.98 (0.96-0.99) 0.99 (0.98-0.99) 0.99 (0.99-0.99) 0.82 (0.62-0.94) 
Instrength/Indegree N/A 0.87 (0.79-0.95) N/A 0.39 (0.01-0.78) 
Closeness 0.74 (0.59-0.91) N/A 0.97 (0.92-0.98) N/A 
Betweenness 0.73 (0.47-0.89) 0.95 (0.82-0.99) 0.44 (0.06-0.79) 0.82 (0.03-0.93) 
Rank-order correspondence Correlation 

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation 

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation  

(Kendall tau-b) 

Matches in 

Rank-Order 

Correlation  

(Kendall tau-b) 

Matches in 

Rank-Order 
Strength/outstrength/outdegree 0.78 (0.61-

0.84) 

33.3% (16.7-

44.4) 0.9 (0.84-0.95) 

38.9% (27.8-

55.6) 0.9 (0.86-0.93) 

50% (33.3-

66.7) 

0.61 (0.36-

0.79) 

66.7% (50-

77.8) 
Instrength/Indegree 

  0.59 (0.4-0.76) 

27.8% (11.1-

44.4) N/A 100% (All 1) 

0.38 (0.12-

0.76) 

44.4% (11.1-

72.2) 
Closeness 

0.58 (0.39-0.8) 16.7% (0-27.8) N/A 100% (All 0) 

0.83 (0.69-

0.87) 

27.8% (22.2-

50) N/A 

100% (100-

100) 
Betweenness 0.57 (0.44- 55.6% (38.9- 0.78 (0.7-0.87) 86.1% (66.7- 0.42 (0.26- 22.2% (11.1- 0.51 (0.16- 66.7% (44.4-



0.81) 72.2) 100) 0.76) 44.4) 0.68) 83.3) 
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Appendix C: Stability & Accuracy Analyses 

 

This document contains the results of the bootstrapping pipeline using the R-package bootnet explained in detail in:  

Epskamp, S., Borsboom, D., & Fried, E. I. (2017). Estimating Psychological Networks and their Accuracy: A Tutorial Paper. Behavior Research 

Methods, 1–34. DOI 10.3758/s13428-017-0862-1. 
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Figure S1. Bootstrapped edge-weights. The red line depicts point estimates of the edge weights, the grey bar 95% confidence 

intervals. Left: Ising Model estimated on NCS data. Right: Ising Model estimated on NSMHWB data.  
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Figure S2. Bootstrapped significance (α = 0.05) between edges. Each row and column indicates an edge. Black boxes represent significant 

differences and gray boxes represent non-significant differences. The color in the diagonal corresponds with the edge colors in the original 

network figures. Left: Ising Model estimated on NCS data. Right: Ising Model estimated on NSMHWB data.  
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Figure S3. Bootstrapped significance (α = 0.05) between strength centrality metric of the networks. Each row and column indicates a node. 

Black boxes represent significant differences and gray boxes represent non-significant differences. The value in the diagonal corresponds with 

the strength of a node. Left: Ising Model estimated on NCS data. Right: Ising Model estimated on NSMHWB data. 
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Figure S4. The correlation between the original centrality index and the centrality index after dropping a percentage of subjects at random 

from the data. Left: Ising Model estimated on NCS data. Right: Ising Model estimated on NSMHWB data. Stability centrality coefficients 

(i.e. % of cases that can be dropped to retain with 95% certainty a correlation of 0.7 of centrality between network estimated on original 

data and network estimated on subsampled data): Betweenness NCS=0.49, NSMHWB=0; Closeness NCS=0.46, NSMHWB=0.55; Strength 

NCS=0.75, NSMHWB=0.75. 
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Explanation of diverging betweenness centrality results across the two datasets 

There was a strong difference between the CS coefficients for betweenness (cf. Figure S4): 0.49 for the Ising Model estimated in the NCS data, but 

0 for the Ising Model estimated in the NSMHWB data. Given the similarity of the datasets and networks, this is surprising. We further investigated 

this difference. Below is a figure showing betweenness of all sampled datasets with only 5% of the cases dropped: 

 

 

Figure S5. Investigation of differences in betweenness CS coefficients across the Ising Models in NCS and NSMHWB data.  
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We can see that the NSMHWB dataset showed some bifurcations in betweenness centrality estimates, whereas the NCS does not. This is especially 

pronounced in nodes 4, 6, 14, and 8, which are the bridge symptoms that connect anxiety and depression symptom clusters. In NCS, the edge 6—

14 is slightly stronger than 4—18, leading shortest paths between the two clusters (on which betweenness centrality is estimated) to more 

consistently (irrespective of the particular participants included in the sample) go through nodes 6 and 14. In the NSMHWB dataset, however, 6—

14 and 4—8 are nearly identical, and slight variations due to sampling (i.e. bootstrapping) lead to the shortest paths between clusters go through 

one of the two edges, resulting in high betweenness for the pair of nodes through which all shortest paths go—e.g. 6 and 14—and low betweenness 

for the other two nodes, e.g. 4 and 18. This leads to a betweenness CS coefficient of 0 because the shortest path differs strongly with very small 

fluctuations of participants in the data.  
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