
27 August 2022

False Data Detection for Fog and Internet of Things Networks / Romano Fantacci, Francesca Nizzi,
Tommaso Pecorella, Laura Pierucci, Manuel Roveri. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. -
19(2019), pp. 1-19. [10.3390/s19194235]

Original Citation:

False Data Detection for Fog and Internet of Things Networks

Published version:
10.3390/s19194235

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:

This version is available at: 2158/1172367 since: 2019-09-29T20:35:09Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



sensors

Article

False Data Detection for Fog and Internet of Things
Networks

Romano Fantacci 1 , Francesca Nizzi 1 , Tommaso Pecorella 1 , Laura Pierucci 1,* and

Manuel Roveri 2

1 Department of Information Engineering, University of Florence, 50139 Firenze, Italy
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milano, Italy

* Correspondence: laura.pierucci@unifi.it; Tel.: +39-055-2758626

Received: 14 August 2019 ; Accepted: 28 September 2019 ; Published: 29 September 2019

Abstract: The Internet of Things (IoT) context brings new security issues due to billions of smart

end-devices both interconnected in wireless networks and connected to the Internet by using different

technologies. In this paper, we propose an attack-detection method, named Data Intrusion Detection

System (DataIDS), based on real-time data analysis. As end devices are mainly resource constrained,

Fog Computing (FC) is introduced to implement the DataIDS. FC increases storage, computation

capabilities, and processing capabilities, allowing it to detect promptly an attack with respect to

security solutions on the Cloud. This paper also considers an attack tree to model threats and

vulnerabilities of Fog/IoT scenarios with heterogeneous devices and suggests countermeasure costs.

We verify the performance of the proposed DataIDS, implementing a testbed with several devices

that measure different physical quantities and by using standard data-gathering protocols.

Keywords: Internet of Things; security; dynamic protection; intelligence for embedded and

cyber-physical systems; adaptive systems; fault detection and diagnosis; smart sensor networks

1. Introduction

The advent of the Internet of Things (IoT) opens up new vulnerabilities for both security and

privacy due to the massive number of resource-constrained devices connected to the Internet by using

various technologies.

The IoT paradigm is worsening the overall security issues due to the heterogeneity of connected

IoT hardware platforms (i.e., different firmware types, revisions, etc.) and to the variety of network

technologies for interconnections (e.g., Bluetooth, 802.15.4, NarrowBand IoT (NB-IoT), etc.), all with

potential flaws and vulnerability to attacks. An IoT device (a thing) can be a light bulb, a thermostat, a

smartphone, a personal computer, or potentially everything. IoT devices have to face many threats

originating from the Internet and can also become a source of attacks towards the Internet. Many

IoT devices might become easy targets to cyber adversaries due to configuration mistakes, e.g.,

default password unchanged as for the case of My Friend Cayla, a famous toy [1]), or of unpatched

vulnerabilities. A fairly recent example of this issue is a Distributed Denial of Service (DDoS) attack

that occurred in 2016 against the service DynDNS [2]: the malware Mirai [3] was responsible of

the botnet creation composed by “innocent” IoT devices such as IP cameras, printers, and baby

monitors. Jackware is a ransomware version designed specifically for IoTs to hit smart devices, and

as a consequence, millions of users would be willing to pay the ransom if unable to carry out daily

commands at home or in the car.

Due to a massive number of interconnected devices and their low power and limited processing

power, IoT networks need to share data with the Cloud for storage and processing, entailing new

security requirements.

Sensors 2019, 19, 4235; doi:10.3390/s19194235 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5934-3321
https://orcid.org/0000-0003-4042-3019
https://orcid.org/0000-0002-0009-8154
https://orcid.org/0000-0001-6271-7988
http://dx.doi.org/10.3390/s19194235
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 4235 2 of 19

Fog Computing is a novel paradigm that complements Cloud Computing by moving storage,

computation, and application services from the Cloud towards the edge of network. This is really

useful for IoT applications, as in this way, data can be kept local to enable novel and more efficient

security and privacy methods. Therefore, this paper suggests Fog unit (FU) for supporting a novel

Data Intrusion Detection Systems (DataIDS) to detect malicious activities in IoT end-devices.

A typical Fog/IoT scenario is shown in Figure 1. IoT devices are organized into clusters, and each

cluster is managed by one or more FUs with higher computational power used to locally collect, store,

and process data. The FU acts as a bridge between IoT devices and the Cloud, possibly decoupling

the IoT-based protocols from the protocols used on the Internet, enabling moreover better energy

efficiency. Usually, the devices and network details are masqueraded by an appropriate abstraction

level. However, this also implies that the security layer cannot leverage the intrinsic information of

the physical system. Performing some security procedures in the Fog enables to leverage the physical

system (e.g., the network topology) along with all the information that are usually not transferred

to the Cloud. As an example, sensors produce a high number of data readings but only the data

subscribers are informed of the readings and usually only when a given threshold is reached. On

the other hand, the FU can perform a more accurate and prompt analysis of the IoT system behavior,

can react faster than an equivalent Cloud-based solution, can minimize the amount of data that is

exchanged on the Internet, and can prevent or promptly react to an attack with respect to a security

action performed on the Cloud, enhancing the IoT network security and privacy.

Cloud
Computing

Fog
Computing

IoT devices IoT devices IoT devices

Figure 1. Fog and Internet of Things (IoT) scenarios.

In IoT deployments, the standard security mechanisms, such as cryptography and authentication,

are mandatory. Nevertheless, devices are often vulnerable to a broader attack range due to the

particular attack surface (e.g., large number of devices, installation in non-monitored environments,

resource contains leading to weaker cryptography, etc.). As a consequence, Intrusion Detection Systems

(IDS) are needed.

Usually, IDSs analyze network traffic patterns, packet contents, or systems logs, searching for

evidence of security violations mainly at the network layer (e.g., for routing attacks). Sadly, a large

class of attacks targeting the IoT data cannot be easily detected by traditional IDSs.

In this paper, we propose a novel IDS, named DataIDS, specifically designed for Fog/IoT

networks, based on the analysis of physical (sensed) data to better recognize vulnerabilities against the

end-devices. The measurements carried out by sensors are sent to the FU, which locally processes the

data streams, and if an anomalous behavior is detected, it can raise an alarm and manage appropriate



Sensors 2019, 19, 4235 3 of 19

countermeasures, e.g., to isolate the devices under attack, to discard their data, to authenticate a sensor

and its data, or to reconfigure the IP addresses.

The DataIDS distinguishing features are i) the ability to detect a malicious (or false) data injection

by analyzing the datastreams acquired by the devices and, ii) at the same time, to find the devices

which are currently misbehaving. The key idea is to build a dependency graph by analyzing the cross

correlation among the respective data streams of sensors and to use that information to highlight any

anomalies in the system. This allows to react promptly to a threat with the appropriate actions and/or

to trigger further analysis mechanisms aimed at verifying the sensor health conditions. It is worth

mentioning that DataIDS can be easily integrated into Fog nodes without significantly impacting their

performance by enabling a Fog node to control a very large number of IoT devices and to raise an

alarm and related countermeasures if one or more devices are under attack.

To complement the DataIDS approach, we propose a novel attack tree with associate risks, costs,

and level of potential system damage. According to the detected threats, the attack tree is a valid

method to select the appropriate action to be undertaken, which can span from simply discarding the

data of attacked sensors to a full network reconfiguration.

We implemented a test bed to validate the proposed DataIDS performance on real datasets

acquired with several sensors measuring different physical quantities when different data injection

attacks occurr, such as stuck-at, replay, and sensor replacement.

The reminder of this paper is organized as follows. Section 2 provides a literature overview

on IDS for IoT and, in particular, the main differences of our method with similar works. Section 3

analyzes the attack tree to model the possible threats and vulnerabilities of the Fog/IoT system and

describes the data-injection attack models considered, while Section 4 shows the proposed solution for

detecting and isolating attacks. In Section 5, the experimental results are provided for the considered

attacks by using a real test bed, highlighting the effectiveness of the proposed method, and the related

countermeasure costs for the attacked sensor are shown. Finally, the conclusions are drawn.

2. Related Works

A Fog/IoT system is subjected to attacks both from the Internet and from within the wireless

sensor network; therefore, firewalls to isolate the sensitive part of the network and IDSs to detect

attacks are needed.

An IDS is a software tol [4,5] that collects and analyzes input data coming from a network, in

order to find possibles security breaches. Usually, IDSs are classified in two categories:

• Signature detection system. The possible intrusions are identified through traffic patterns and/or

predetermined attack signatures. The main benefit of this technique is the high detection reliably.

On the other hand, the signature of each known attack should be stored with significant storage

and computational costs increasing with the number of attacks. Moreover, the attack signatures

database must be always up-to-date.

• Anomaly detection system. The IDS compares user behaviors with a model. If the behavior differs

from the model, an alarm is raised. It can detect unknown attacks (the so-called zero-day) but it

requires definition of the model of normal system behavior.

Another IDS classification can be based on the type of data monitored by the IDS: a Network-based

IDS (NIDS) analyzes network traffic, while a Host-based IDS (HIDS) monitors a computer (its running

programs, application logs, etc.) [6]. The two types can be also used jointly in order to provide a

comprehensive networked system protection.

Surveys on different IDS types can be found in Reference [4,6–8], highlighting that IDSs mainly

work by analyzing log files and/or network traffic patterns. Moreover, most of them are not specifically

designed for IoT.

Applying an NIDS to the IoT scenario raises some noteworthy issues, like the number of traffic

flows to be analyzed and the need to collect traffic from multiple network points, which can be



Sensors 2019, 19, 4235 4 of 19

extremely costly in a multi-hop network. Moreover, the traffic pattern is not suitable for anomaly-based

IDS due to the huge differences in traffic patterns in case of particular events (e.g., a sensor might

increase suddenly its sampling rate depending on the environment it is controlling). HDISs are not

suitable either due to the limited sensor computational and energy resources. It is possible to add

mechanisms to prevent firmware tampering, but it is not a common solution for commercial systems.

Furthermore, NDISs and HDISs cannot detect a wide range of attacks highlighted in the attack tree in

Figure 2 and, in particular, the attacks targeting (or consequence of) a change in the physical world,

i.e., environment modifications (e.g., placing a heat source near a sensor), modifications to the device

hardware components, etc.

Sensor

Modify 
Environment

Infect with 
Malicious Code

Replace 
Component

Exploit 
Network 
Threat

Physical 
Tampering

Bribe 
Network 

Administrator

Jamming and 
Replacement

Figure 2. Attack tree for our IoT system.

In the literature, IDSs designed for IoT mainly consider attacks at the network layer (usually

routing attacks). Examples are SVELTE [9], used to detect sinkhole and selective-forwarding attacks;

Complex Event Processing (CEP) [10], able to analyze the information streams to detect events in

real-time; or the approach presented in Reference [11], able to detect Denial of Service Attacks (DoS)

targeting the Routing Protocol for Low-Power and Lossy Networks (RPL).

The authors in Reference [12] propose an algorithm based on four phases, i.e., initialization,

estimation, similarity check, and characterization. During the first phase, an estimation model is

produced and a similarity check is defined. The second phase, that is the core of the overall system,

extracts and iteratively aggregates the estimates of the measurements (following the information

defined in the first step) that are then sequentially analyzed by two different tests. When a

change is detected, the characterization phase is activated to identify the compromised sensor. This

solution encompasses only a linear fixed model among acquired measurement and is applied only

to homogeneous measurements (hence, gathered by the same type of sensors). Rather, our proposed

DataIDS can work on different heterogeneous measurements.

An IDS for the detection of malicious data injection based on wavelet transform is proposed in

Reference [13]. Even in this case, the algorithm is dived into three phases: detection, characterization,

and diagnosis. In the first phase, an anomaly score based on the wavelet coefficient is sequentially

analyzed over time, inspecting for changes by means of a thresholding mechanism. When a change

is detected, the next characterization and diagnosis phases are activated. Such solution focuses only

on the spatial correlation not exploiting the temporal correlation present in the acquired data as in

the detection phase of our proposed DataIDS. In addition, such a solution requires knowledge of the

conditions during the “event” target and relies on information about the position of the nodes.

In Reference [14], the authors present an anomaly behavior analysis IDS able to detect attacks in a

smart home system. This framework builds sensor profiles by using the Discrete Wavelet Transform

method on the sent data, and the euclidean distance (ED) is used for comparison with the reference

profiles obtained during the offline training phase to detect abnormal behaviors. As our proposed

algorithm, these processes are performed during the run time. The major difference with our DataIDS is

the learning phase: DataIDS does not need to know the data nature provided during training because

the dependency graph (see Section 4) could have measurements of different types (for example,



Sensors 2019, 19, 4235 5 of 19

humidity and temperature). Then, this leads to have a more flexible system in the monitoring phase:

the devices must monitor that their behavior is consistent with the other members of the dependency

graph (if a sensor evaluates a change and the other ones are the same, it means that it is really the

environment changing).

3. Attack Tree and Attack Models

A threat model and the associated risk management help to find security policies and

countermeasures that could prevent an attack or mitigate its outcomes [15]. As a matter of fact,

without a proper threat model, the system security cannot be guaranteed because some threats could

be underestimated or, on the other hand, some threats could be overestimated, leading to unnecessary

security restrictions and extra costs. A successful risk management process has to also balance the cost

of security techniques and the system usability for each potential attack. Therefore, an optimal security

system is the one where implementation does not become more expensive than the possible damage of

the attack that is being prevented.

3.1. Attack Tree

We consider the attack tree to model the possible threats and vulnerabilities of our system. The

term attack tree was introduced by Schneier in Reference [16] and represents a tool to evaluate the

effectiveness of an attack and appropriateness of a countermeasure, depending on the attack type and

extent. An attack tree describes the possible attacks to the network system through a graphical tree

structure where the root node is the target of the attacker (the goal) and the leafs are all the possible

(and impossible) means to compromise the target (i.e., the attacks) [17]. It is worth noticing that several

roots (targets) might exist in the same system. In this case, multiple attack trees must be considered.

Building an attack tree consists of four main steps:

1. Define the main attack goal.

2. Decompose the main attack goal into sub-targets.

3. Assign values to the leafs.

4. Calculate the cost of an attack.

The values assigned to the attack tree leaves can represent different properties of the attack,

and they can be boolean or continuous on a specified range. As an example of boolean properties,

we can list if the attack is easy, if it is expensive, if particular skills of the attacker are required, etc.

Continuous values can represent the attack cost, its likelihood, the time required to perform the

attack, etc. Moreover, if more than one condition must be fulfilled to perform an attack, nodes can

be connected, e.g., in case of an attack that could be exploited only after a different one has been

performed. The resulting values can be used to make assumptions about the attack and the attacker,

i.e., to build the threat model.

The attack tree evaluation is helpful in risk management because, if an attack is easy or the cost is

low, its occurrence is likely or, if the cost of countermeasures is much higher than the attack outcomes,

the attack can be ignored.

The attack tree for our Fog/IoT system is shown in Figure 2. We only highlighted the possible

attacks on the IoT domain without considering the well-known vulnerabilities of FUs and gateways.

Looking at Figure 2, we notice that some attacks can be detected by “traditional” systems,

such as IDS, logging programs, etc. but that some attacks are specific and do not leave any trace

in the parameters analyzed by the techniques mentioned above, as explained in Reference [18].

Therefore, we need a technique to detect possible attacks by analyzing alternative parameters, such as

data measurements sent by sensors as in the proposed DataIDS. The advantages of our approach is

summarized in Table 1.



Sensors 2019, 19, 4235 6 of 19

Table 1. Attack detection comparison.

Traditional IDS DataIDS

Jamming & Replacement Difficult Yes
Modify Environment No Yes
Replace Component No Yes
Physical Tampering No Yes
Bribe Network Administrator No Yes (if data are modified)
Exploit Network Threat Yes Yes (if data are modified)

The sensors can be classified according to the importance of the sensed value (e.g., if the reading

cannot be inferred from other sensors, if the reading is particularly critical for the IoT application, etc.)

or the topology of the network (e.g., if the sensor node acts as a router in a multi-hop topology).

The threats have to be analyzed according to their likelihood and damage factors. In the damage

and attack costs, we estimate respectively the cost of the countermeasure and the difficulty for an

attacker to successfully execute a particular attack.

To evaluate the damage cost, we consider the following factors:

• The node position in the routing tree: the damage cost is different if a node is a leaf or closer to

the root;

• The node position in the dependency graph in our DataIDS (as explained in Section 4);

• The number of nodes under attack (i.e., the cluster in the dependency graph);

• The importance of the data damaged;

• The time and signaling required to perform a countermeasure.

Attack cost is more difficult to evaluate because we must consider some features that are unknown

a priori, such as the time needed to perform the attack, the required skills, and the cost to buy

a particular equipment. All these elements are strictly dependent on the particular IoT device

vulnerability and hardware availability. However, we can assume that the hardware needed for

the attack is affordable (sensors are low cost normally), while for the time and skills, we expect high

costs because we can assume that the device firmware does not contain simple and easily exploitable

flaws. The damage and attacks are summarized in Table 2.

Table 2. Damage and attack costs.

Damage

Routing tree position

Number of nodes (cluster) under attack
Dependency graph position
Data importance

Attack

Cost to find the attack
Time required for the attack
Equipment cost
Skill required
Physical access to the nodes
Attack reproducibility

According to the damage and the attack costs, we can accept the risk or take proper

countermeasures to mitigate the attack. As an example, we can accept the risk when the attack

and countermeasure costs are high but the damage cost is low. In case of a likely attack, we must either

apply a countermeasure or increase the attack cost, e.g., by removing the vulnerabilities that lead to

that particular attack.

As an example, if in a Fog/IoT network there are several temperature sensors and only one is

under attack, we can evaluate if we can accept the risk that the attack propagates and simply apply a



Sensors 2019, 19, 4235 7 of 19

low-cost countermeasure by discarding data from the device under attack or by isolating the node and

by reauthenticating it. Instead, if the device is a central node which routes data towards the FU, we

need, e.g., to apply network reconfiguration with higher time and energy costs [19]. Therefore, the

countermeasure must be correlated to the attack according to the assessed risk outcomes.

3.2. Attack Models

Let us consider an IoT system composed by N IoT units U = {u1, . . . , uN}, each endowed with

one sensor.

Without loss of generality, we assume that units in U are synchronous, i.e., at each time instant t is

created, a vector of scalar measurements xt = {x1
t , . . . , xN

t } with xi
t ∈ Rxi ⊂ R, i ∈ {1, . . . , N}, and Rxi

is the range of allowed values from sensor i. This assumption can be relaxed by using appropriate data

processing techniques (e.g., interpolation, re-synchronization, etc.). We do not make any assumption

about the process generating the data stream xt, which is considered unknown a priori. We emphasize

that we are not assuming the stationary of xt that might evolve following the dynamic of the physical

phenomenon monitored.

It is worth stressing that, differently from the literature where the homogeneity or monotonicity

assumption is considered [4,12], our work units in U might be weakly or strongly related to each other,

i.e., sensors can be heterogeneous (they measure different physical quantities, e.g., temperature and

humidity) .

We only assume that our Fog/IoT system initially behaves in attack-free situations; an attack

might occur only later during the system lifetime. This assumption reflects the fact that an attack

requires some time to be performed and that we can assume that the system is behaving as intended at

the beginning of our modeled period.

We consider the case where a subset UA of units, with UA ⊂ U, could be gained by an attacker,

modifying data coming from units in UA as follows:

x
j
t =





x
j
t t < t∗j

fθj

(
x

j
t

)
, t ≥ t∗j ,

(1)

where uj ∈ UA, fθj

(
x

j
t

)
models the (possibly time-variant) perturbation affecting uj, and t∗j is the

on-set attack time of uj.

We model four different types of malicious data injections, i.e., stuck-at, replay, and sensor

replacements that are dived in two sub-cases: noise addition and dynamic perturbation attacks to

IoT units.

• Stuck-at: the attacker gains access to unit uj at time t∗j and replaces the values x
j
t, t ≥ t∗j , with the

constant value x
j
t∗j

, i.e.,

fθj

(
x

j
t

)
= x

j
t∗j

, t ≥ t∗j ; (2)

• Replay: the attacker gains access to unit uj at time t∗j and replaces the values x
j
t, t ≥ t∗j with the

data acquired up to time t∗j , i.e.,

fθj

(
x

j
t

)
= Π

(
t, t∗j

)
, t ≥ t∗j , (3)

where Π
(

t, t∗j

)
models the repetition at time t of data acquired before time t∗j ;



Sensors 2019, 19, 4235 8 of 19

• Sensor replacement (noise addition): the attacker gains access to unit uj at time t∗j and introduces a

random perturbation to the values x
j
t, t ≥ t∗j , i.e.,

fθj

(
x

j
t

)
= x

j
t + ηj, t ≥ t∗j ; (4)

where ηj is an independent and identically distributed random variable accounting, e.g., for an

additional noise affecting the original measurement x
j
t;

• Sensor replacement (dynamic perturbation): the attacker gains access to unit uj at time t∗j and perturbs

the values x
j
t, t ≥ t∗j by modifying the signal dynamic, i.e.,

fθj

(
x

j
t

)
= (1 + δ) · x

j
t, t ≥ t∗j ; (5)

where δ ∈ R accounts for the magnitude of the perturbation.

Figure 3 shows an example for each of these four types of considered attacks. For instance, those

attack types would be realized by an attacker if they substitute or modify the code installed in the

sensors with a malicious one.

Our goal is to analyze the datastreams xt to promptly identify and isolate an attack affecting U.

0 500 1000 1500 2000 2500 3000

Samples

24

26

28

30

32

34

36

T
e
m

p
e
ra

tu
re

11 - Gamma DHT11 Temp

t*
j

(a) Noise attack

0 500 1000 1500 2000 2500 3000

Samples

24

26

28

30

32

34

36

38

T
e
m

p
e
ra

tu
re

11 - Gamma DHT11 Temp

t*
j

(b) Dynamic perturbation

0 500 1000 1500 2000 2500 3000

Samples

24

25

26

27

28

29

30

31

32

33

T
e
m

p
e
ra

tu
re

11 - Gamma DHT11 Temp

t*
j

(c) Replay attack

0 500 1000 1500 2000 2500 3000

Samples

24

25

26

27

28

29

30

31

32

33

T
e
m

p
e
ra

tu
re

11 - Gamma DHT11 Temp

t*
j

(d) Stuck-at attack

Figure 3. Examples of the attack models at sampling time t∗j = 1800 acquired in our test bed.

4. DataIDS

The idea of the proposed attack detection and isolation mechanisms is to characterize the

relationships existing among the acquired datastreams and to analyze them over time, looking for an

unexpected behavior of one node. In more details, the proposed algorithm relies on an initial data

sequence DS storing the first S samples acquired by all the sensors ui ∈ U, i.e.,

DS =




x1
1 · · · x1

S
...

. . .
...

xN
1 · · · xN

S


 . (6)



Sensors 2019, 19, 4235 9 of 19

where DS represents the measurements (e.g., temperature or humidity) acquired in an initial attack-free

situation. Tt is partitioned into training set TS and validation set VS, where TS stores the first T samples

acquired by all the sensors and VS stores the remaining S − T samples, i.e.,

TS =




x1
1 · · · x1

T
...

. . .
...

xN
1 · · · xN

T


 , VS =




x1
T+1 · · · x1

S
...

. . .
...

xN
T+1 · · · xN

S


 . (7)

TS is used to learn the relationships among the sensors in U by analyzing the cross correlation

between the respective data streams xt. To achieve this goal, we rely on the concept of dependency

graph [20] that has been introduced to capture and model the relationships among sensors. A

dependency graph is an undirected graph G = {N , E}, where nodes N represent the N sensors

in U and edges E represent the relationships between couples of sensors. In our specific case, the edge

ei,j between ui and uj exists in E when

rT
i,j > γ (8)

where rT
i,j is a cross-correlation index measured as the normalized absolute value of the peak of the

cross correlation between the data sequences {xi
1, · · · , xi

T} and {x
j
1, · · · , x

j
T} and where γ ∈ [0, 1]

represents the user-defined threshold value for the cross-correlation index. Such a value has a statistical

interpretation representing the minumum value of the cross correlation between two datasequences to

create an edge in the dependency graph. γ could range from 0.8 to 0.99 (i.e., from 80% to 99%). In the

experimental analysis described in Section 5, γ has been set to 0.9.

The idea of using the cross correlation resides in the ability to define an index, i.e., a scalar index

bounded between −1 and 1, characterizing the relationship between the functional behaviors of two

data streams. In such a way, we can move the analysis between data streams to the analysis of a scalar

value for each couple of data streams.

An example of a dependency graph, built from our test bed (described in Section 5.1) is shown in

Figure 4. The edges are particularly interesting because they show that temperature sensors (i.e., nodes

u1, u3, u5, u7, u9, and u11) are related each other, and the humidity sensors (i.e., nodes u2, u4, u8, and

u12 related to DHT22 sensors in the test bed) exhibit a similar behavior. Differently, other humidity

sensors (i.e., nodes u6, u10, and DHT11 sensors in the testbed) are not related with any of the sensors.

Moreover, we do not detect relationships in the dependency graph between temperature and humidity

sensors even if they are close in position. This validates the accuracy of our framework also in terms of

heterogeneity among the sensors. We emphasize that the physical position of sensors is not considered

in the building of a dependency graph that only comprises the information content present in data, i.e.,

two physically close sensors are connected through an edge in the dependency graph only if they are

cross correlated according to Equation (8). For example, if the attacked sensor is the number 11, it is

placed in the same position as number 9 (and with sensors 10 and 12), as shown in Figure 7, but in

the dependency graph (in Figure 4), it is also related with 1 and 3, that are in another location. We

emphasize that the absence of an edge connecting sensors 6 and 10 does not mean that those two

sensors are not related to the other sensors. It means that the cross correlations they have with the

other sensors is below the threshold value γ.



Sensors 2019, 19, 4235 10 of 19

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

1
2

3

4

5

6

7

8

9

10

11

12

1 - Alpha DHT22 A Temp

2 - Alpha DHT22 A Hum

3 - Alpha DHT22 B Temp

4 - Alpha DHT22 B Hum

5 - Beta DHT11 Temp

6 - Beta DHT11 Hum

7 - Beta DHT22 Temp

8 - Beta DHT22 Hum

9 - Gamma DHT11 Temp

10 - Gamma DHT11 Hum

11 - Gamma DHT22 Temp

12 - Gamma DHT22 Hum

Figure 4. The estimated dependency graph for the considered test bed.

This is an example of a dependency graph derived for a test bed with a limited number of sensors;

however, the dependency graph shows the relationships of each device with the other ones and does

not depend on the number of sensors considered. If there is a high number of sensors, it is possible to

expect an increased calculation time to build the dependency graph at the beginning.

4.1. Attack Detection

Once the dependency graph has been computed, FU monitors the relationships of each sensor

with the “most related” sensors (as shown in the dependency graph) over time, searching for changes.

It checks for changes in the cross-correlation index only for the sensors connected with the considered

sensor in the dependency graph (i.e., the most “related” in terms of cross-correlations index). Here,

changes refer to attacks perturbing the acquired data streams as previously shown.

In more detail, let Ci be the set of sensors connected to ui according to the dependency graph. At

each time instant t > S, the following change-detection index is calculated:

Ri(t) = ∑
j∈Ci

rt,W
i,j , (9)

where rt,W
i,j is the cross-correlation index defined above and computed over the last W recently acquired

samples {xi
t−W+1, · · · , xi

t} and {x
j
t−W+1, · · · , x

j
t} coming from sensors ui and uj, respectively.

A detection occurs when

Ri(t) < Θi
d (10)

where Θi
d is an automatically computed threshold defined as

Θi
d = Mi − λd(Mi − mi) (11)

and

Mi =
1

S − T

S

∑
t=T+1

Ri(t), (12)

mi = min{Ri(T + 1), . . . , Ri(S)}, (13)

and λd > 1 is a user-defined parameter representing a confidence parameter for the detection phase

acting as a multiplier coefficient in computing the threshold for detecting changes. The larger λd,

the smaller the threshold, i.e., a smaller threshold would reduce false-positive detections but at the

expenses of the (possible) increase of false negative detections and detection delays.



Sensors 2019, 19, 4235 11 of 19

An example of detection is given in Figure 5. Here, the attacked sensor is u11 at time t∗j = 1800

and, as expected, by looking at the dependency graph in Figure 4, the cross-correlation indices Ri(t)

computed in sensors u1, u3, u9, and u11 perceived a change. The cross-correlation indices Ri(t)sin the

other sensors do not exhibit changes.

1000 1500 2000 2500 3000
0

0.5

1
Sensors 1

R
1
(t)

Th
d

1

1000 1500 2000 2500 3000
0

0.5

1
Sensors 2

R
2
(t)

Th
d

2

1000 1500 2000 2500 3000
0

0.5

1
Sensors 3

R
3
(t)

Th
d

3

1000 1500 2000 2500 3000
0

0.5

1
Sensors 4

R
4
(t)

Th
d

4

1000 1500 2000 2500 3000
0

0.5

1
Sensors 5

R
5
(t)

Th
d

5

1000 1500 2000 2500 3000
0

0.5

1
Sensors 6

R
6
(t)

Th
d

6

1000 1500 2000 2500 3000
0

0.5

1
Sensors 7

R
7
(t)

Th
d

7

1000 1500 2000 2500 3000
0

0.5

1
Sensors 8

R
8
(t)

Th
d

8

1000 1500 2000 2500 3000
0

0.5

1
Sensors 9

R
9
(t)

Th
d

9

1000 1500 2000 2500 3000
0

0.5

1
Sensors 10

R
10

(t)

Th
d

10

1000 1500 2000 2500 3000
-0.5

0

0.5

1
Sensors 11

R
11

(t)

Th
d

11

1000 1500 2000 2500 3000
0

0.5

1
Sensors 12

R
12

(t)

Th
d

12

Figure 5. An example of change detection analysis carried out on cross-correlation indices Ri(t) of all

the sensors when the attacked sensor is u11. The first S = 1000 samples belong to the training sequence.

In each sub-figure, on the x-axis, we have the samples and, on the y-axis, we have the cross-correlation

index. In the legends, the symbol Thi
d corresponds to Θi

d in the text.

From the technological point of view, the IoT devices are constrained in memory, computation, and

energy and, for this reason, the detection step is carried out by the FU layer, where more computation

and storage resources are available. The use of FU leads to less network overhead, but it also increases

the attack risks (if the same FU is attacked). However, if the IoT devices have processing capabilities to

calculate cross-correlation indices, the change-detection phase can be implemented in a distributed

way directly at the IoT devices, under the assumption that the sensors connected in the dependency

graph can exchange the acquired information. Hence, each sensor in U monitors its own Ri(t) over

time and the first sensor detecting a change according to Equation (9) raises an alarm and activates

the next isolation phase. We emphasize that, in both cases, the change-detection phase is carried out

for sensors for which Ci 6= ∅, i.e., the sensor must be related to at least one of the other sensors in U

according to the dependency graph. When Ci = ∅, as in the case of sensors u6 and u10, the analysis

based on cross correlation cannot be considered and one could resort on change-detection analysis

based on inspection of the residual between the output of a suitably trained prediction model (e.g.,

linear input–output models or recurrent neural networks) on the acquired data (see, for example,

Reference [21]).

4.2. Attack Isolation

Once an attack has been detected on an IoT device in U, the isolation procedure is activated to

identify the device representing the target of the attack. We emphasize that, thanks to the analysis of

cross correlations, the sensor with the change in cross-correlation index could not be the one attacked

(and, in most cases, the attacked sensor could be interested in not raising an alarm at all).

With u
î

as the sensor with the cross correlation changing at time t̂, the isolation procedure

analyses acquired data from Ĉ = {u
î

⋃
C

î
}, with C

î
as the set of sensors connected to u

î
according

to the dependency graph up to time t̂ to identify the attacked IoT device. The isolation procedure

must run on the FU, being able to store a large number of data and to execute more computationally

demanding procedures.



Sensors 2019, 19, 4235 12 of 19

More specifically, the isolation procedure removes one IoT device at a time from Ĉ and analyses

the behavior of the cross correlation among the remaining sensors, i.e.,

R̂i(t) = ∑
j,k 6=i∈Ĉ

rt,W
j,k , t = S + 1, . . . , t̂, (14)

for all i ∈ Ĉ. The cross-correlation isolation index R̂i(t) for t = S + 1, . . . , t̂ is inspected, looking for

changes by relying on an automatically computed threshold defined as

Θi
is = Mi − λis(Mi − mi) (15)

where 1 < λis < λd is a user-defined parameter. Once we remove sensor ui from Ĉ and compute R̂i(t),

two different situations arise:

• R̂i(t) < Θi
is for t = S + 1, . . . , t̂: the set of sensors Ĉ − ui includes the attacked sensor since

the cross-correlation isolation index still shows a decreasing behavior (revealing that the sensor

providing perturbed behavior is still in Ĉ − ui);

• R̂i(t) > Θi
is for t = S+ 1, . . . , t̂: the sensor ui can be safely considered the target of the attack, since

its removal from Ĉ prevents the decrease of R̂i(t), meaning that the considered data sequences

still exhibit the expected behavior.

In addition, once the attacked sensor ûi has been isolated, the isolation procedure also computes

an estimate t̂ of the time instant t∗j when the attack occurred. t̂ is computed by averaging the largest

time instant for which R̂i(t) ≤ Θi
is for all the sensors Ĉ − ûi.

An example of isolation is given in Figure 6, where the attacked sensor is u11. The detection has

been raised by sensor u9 at time t̂ = 2481. Here, Ĉ = {u1, u3, u9, u11} and no detection occurs for

R̂11(t), t = 1001, . . . , 2481, meaning that u11 is the attacked sensor. Conversely, R̂1(t), R̂3(t), and R̂9(t)

raise detection before t̂ = 2481.

1200 1600 2000 2400

Samples

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

C
ro

s
s
-c

o
rr

 I
n

d
e

x

R
1
(t)

Th
is

1

(a) Removing u1

1200 1600 2000 2400

Samples

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

C
ro

s
s
-c

o
rr

 I
n

d
e

x

R
3
(t)

Th
is

3

(b) Removing u3

1200 1600 2000 2400

Samples

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

C
ro

s
s
-c

o
rr

 I
n

d
e

x

R
9
(t)

Th
is

9

(c) Removing u9

1200 1600 2000 2400

Samples

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

2.38

C
ro

s
s
-c

o
rr

 I
n

d
e

x

R
11

(t)

Th
is

11

(d) Removing u11

Figure 6. An example of isolation when the attacked sensor is u11: The detection has been raised by

sensor u9 at time t̂ = 2481. The first 1000 samples belong to the training sequence, i.e., S = 1000. In the

legends, the symbol Thi
is corresponds to Θi

is in the text.

When none of the IoT devices in Ĉ was revealed to be the target of the attack, i.e., no detection

occurred in any of the sensors in Ĉ, our isolation procedure was not able to isolate the attacked sensor.



Sensors 2019, 19, 4235 13 of 19

In this case, a general “attack alarm” message is raised, signaling that one of the sensors in Ĉ has

been attacked.

We emphasize that the proposed isolation procedure implicitly assumes that only one IoT device

in Ĉ has been attacked. If multiple sensors are under attack, this assumption can be weakened by

forcing the dependency graph to create clusters of IoT devices characterized by smaller cardinalities to

isolate the only sensor compromised.

It is worth noting that this approach is not able to divide attacks from faults, but if we implement

the relative countermeasures and the algorithm is triggered very quickly, it is certainly a sensor fault.

5. Experimental Results

In this section, we describe the test bed used to validate the methods presented in Section 4.

5.1. Description of the Test Bed

The test bed at the University of Florence is made by 6 DHT11–DHT22 devices by Aosong,

generating 12 independent humidity and temperature data streams. DHT11 and DHT22 are low-cost

environmental devices and are made of two parts: a thermal resistor and a capacitive humidity sensor.

Details about the used sensors are summarized in Table 3. Each sensing device is connected to a

Raspberry Pi3 which is responsible for data collection.

Table 3. DHT 11–DHT 22 details.

Max
Sampling Rate

Type
Readings
Interval

Accuracy

DHT 11 1 Hz
Humidity (20 ÷ 80) % 5 %
Temperature (0 ÷ 50) ◦C ± 2 ◦C

DHT 22 0.5 Hz
Humidity (0 ÷ 100) % (2 ÷ 5) %
Temperature (−40 ÷ 80) ◦C ± 0.5 ◦C

We want to emphasize that our measurements are obtained in a real context. The devices are

placed in different positions characterized by an unevenly distributed air conditioning system. As a

result, the readings are expected to be similar but not identical. The assignment (i.e., name sensor and

type of sensors) is summarized in Table 4, and the map of the Raspberry Pi3 positions is shown in

Figure 7.

Figure 7. Laboratory floor map and devices positions.



Sensors 2019, 19, 4235 14 of 19

Table 4. Test bed sensors names and types.

Pi3 Sensors Number Type

Alpha
DHT22 A

#1 Temperature
#2 Humidity

DHT22 B
#3 Temperature
#4 Humidity

Beta
DHT11

#5 Temperature
#6 Humidity

DHT22
#7 Temperature
#8 Humidity

Gamma
DHT11

#9 Temperature
#10 Humidity

DHT22
#11 Temperature
#12 Humidity

The configuration of the system and the dataset (about 10, 430 samples) acquired every 5 minutes

are available at the link https://www.gaucho.unifi.it. The dataset is shown in Figure 8.

0 500 1000 1500 2000 2500 3000

Sample

23

24

25

26

27

28

29

30

31

32

33

T
e
m

p
e
ra

tu
re

 (
C

°)

Dataset Temperature

1- Alpha DHT22 A Temp

3 - Alpha DHT22 B Temp

5 - Beta DHT11 Temp

7 - Beta DHT22 Temp

9 - Gamma DHT11 Temp

11 - Gamma DHT22 Temp

0 500 1000 1500 2000 2500 3000

Sample

0

10

20

30

40

50

60

70

80
H

u
m

id
it
y
 (

%
)

Dataset Humidity

2 - Alpha DHT22 A Hum

4 - Alpha DHT22 B Hum

6 - Beta DHT11 Hum

8 - Beta DHT22 Hum

10 - Gamma DHT11 Hum

12 - Gamma DHT22 Hum

Figure 8. Measured temperature and humidity dataset.

5.2. Description of the Considered Attacks

We defined four different attacks according to the models shown in Section 3.2:

• Stuck-at, where x
j
t = x

j
1800, t ≥ t∗j ;

• Replay, where Π (t, 1800) replaces x
j
t, t ≥ t∗j with values acquired 24 hours before t∗j = 1800;

• Sensor replacement (noise addition), where ηj = N(0, 1.5) is a Gaussian random variable with zero

mean and standard deviation equal to 1.5;

• Sensor replacement (dynamic perturbation), where the magnitude of the perturbation is δ = 0.2.

Every attack starts at t = 1800. Each attack is repeated on all sensors (one at a time) for a total of 48

experiments.

5.3. Figures of Merit

In order to evaluate the effectiveness of the proposed algorithm, we defined the following seven

figures of merits:

• Attack detected: binary value describing whether the attack has been detected (1) or not (0);

• Detection counter: number of sensors within the network that detected an attack (excluding the

attacked sensor);

https://www.gaucho.unifi.it


Sensors 2019, 19, 4235 15 of 19

• Min detection time: when the first sensor detected an attack within the network;

• MW detection time: when at least half the sensors connected to the sensor under the attack detect

the attack;

• Max detection time: when the last sensor detected an attack within the network;

• Isolated attack: binary value describing whether the attack has been correctly isolated (1) or not (0);

• t̂: estimation time.

5.4. Experimental Results

The experimental results are summarized in Table 5. The four types of cyber attacks described in

Section 5.2 have been applied to all the IoT devices in the test bed, i.e., #1–#12. In this experimental

analysis the parameters of the proposed solution have been set as in Table 6.

Cyber attacks have been detected in 97.5% of the cases, i.e., 39 of the “detected attacks” over

40 experiments. We emphasize that we did not experience false-positive detection, equivalent to a

precision of 100% and to a recall of 97.5%. The isolation capability worked in 82.5% of the cases, i.e., 33

of the “isolated attacks” over 40 tests, which is still a very good result. We emphasize that, in those

cases where a correct isolation is not achieved, the proposed solution is not able to isolate an attacked

sensor. Hence, in the considered experimental analysis, the proposed solution is either able to correctly

isolate the attacked sensor or it does not provide any isolation (i.e., we do not isolate wrong sensors).

This lead to a precision of 100% and to a recall of 82.5%

For what concerns the sensibility of the proposed methods to the attack type, it is worth observing

that the replay, stuck-at, and dynamic perturbation attacks have been correctly detected and isolated

with extreme high accuracy (100% detection and 96.7% correct isolation). The most difficult attack to

deal with is the noise addition attack, where the detection still performs well (90% of detection) but the

isolation presents poor performances (40% correct isolation).

Table 5. Experimental results on the considered dataset: The symbol Xmeans that the attack has been

detected/isolated, while the symbol – means that the attack has not been detected/isolated.

Sensor #1 #2 #3 #4 #5 #7 #8 #9 #11 #12

Replay
Attack

Detected Attack X X X X X X X X X X

Detection counter 5 / 5 3 / 3 5 / 5 3 / 3 3 / 3 3 / 3 3 / 3 3 / 3 3 / 3 3 / 3
Min Detection Time 2088 2144 2091 2160 2542 2862 2151 2442 2760 2150
MW Detection Time 2783 2256 2824 2254 2747 3022 2168 3095 2840 2166
Max Detection Time 3086 2440 3072 2472 2867 3043 2454 3095 3006 2260
Isolated Attack X X X X – X X X X X

t̂ 2009.9 2063.3 2027.4 2055.3 – 2253.6 2068.3 2162.1 2291.4 2114.0

Stuck-At
Attack

Detected Attack X X X X X X X X X X

Detection Counter 5 / 5 3 / 3 5 / 5 3 / 3 3 / 3 3 / 3 3 / 3 3 / 3 3 / 3 3 / 3
Min Detection Time 1865 1911 1863 1925 1857 1950 1900 1924 2431 1938
MW Detection Time 1952 2114 1945 1980 1938 1955 1939 2181 2694 1974
Max Detection Time 1964 2137 1961 2133 1954 1967 2136 2241 2718 2122
Isolated Attack X X X X X X X X X X

t̂ 1816.0 1854.0 1818.0 1839.7 1831.1 1830.2 1856.7 1843.7 1909.4 1886.3

Noise
Addition
Attack

Detected Attack X X X X X X X X X –
Detection Counter 5 / 5 1 / 3 5 / 5 1 / 3 2 / 3 2 / 3 1 / 3 1 / 3 2 / 3 0 / 3
Min Detection Time 1974 2795 1920 3055 1973 2715 3067 2062 2431 –
MW Detection Time 2473 – 2431 – 2749 2747 – – 2734 –
Max Detection Time 2742 2795 2493 3055 2749 2747 3067 2062 2734 –
Isolated Attack X – X – – X – – X –
t̂ 1846.6 – 1834.4 – – 1847.0 – – 1863.6 –

Dynamic
Perturbation
Attack

Detected Attack X X X X X X X X X X

Detection Counter 5 / 5 3 / 3 5 / 5 2 / 3 3 / 3 3 / 3 3 / 3 3 / 3 3 / 3 3 / 3
Min Detection Time 1810 1947 1807 2557 1813 1859 1896 1933 1862 1975
MW Detection Time 1936 2147 1872 2750 1920 1938 1944 2001 1974 2094
Max Detection Time 2003 2702 1896 2750 1975 1982 2509 2060 2017 2311
Isolated Attack X X X X X X X X X X

t̂ 1803.5 1858.3 1802.7 1974.0 1807.0 1804.3 1847.0 1809.2 1803.8 1910.3



Sensors 2019, 19, 4235 16 of 19

Table 6. Parameters of the proposed solution and attack models.

t∗j = 1800 Time instant the attack started (for the four models of attacks)

δ = 0.2 Magnitude of the perturbation in the sensor replacement (dynamic perturbation) model
γ = 0.9 Threshold value for the cross-correlation index in Equation (10)
σ = 1.5 Standard deviation of the Gaussian random variable in the sensor replacement (noise addition) model
λ = 4 Confidence parameter for detection phase
λis = 1.4 Confidence parameter for isolation phase in Equation (15)
γ = 0.9 Threshold value for the cross-correlation index in Equation (10)

The results about the “detection counter” show the efficiency of the proposed distributed analysis.

In almost all replay, stuck-at, and dynamic perturbation attacks, all the IoT devices belonging to the cluster

where the specific sensor has been attacked detect the change. Even in the case of a noise addition

attack (the most critical for the isolation procedure), the “detection counter” is larger than or equal to 1

even when the attacked IoT device cannot been isolated successfully. This means that the proposed

algorithm is able to detect the presence of the attack at the cluster level even when it was not able to

specifically isolate the attacked IoT device.

The detection times (i.e., min, MW, and max detection times) show the ability of the proposed

solution to promptly detect the presence of an attack. The results about t̂, i.e., the estimate of the time

instant when the attack started, show excellent capability of the proposed solution to correctly estimate

when a given attack started in a given sensor. This allows to discard the erroneous values transmitted

by the attacked sensor, obtaining a cleaner dataset.

We also evaluated the average computational time for the creation of the dependency graph

and the detection/isolation phases of the proposed solution. The reference hardware platform is a

2.5-GHz Intel Core i7 with 16-GB RAM at 2133-MHz LPDDR3. Creating the dependency graph is the

most time-consuming process and requires (on average) 36.2 s, while the average computational time

per unit of the detection and isolation phases is 26.4 ms. We want to stress that the creation of the

dependency graph can be done in the FU and that the detection and isolation phases can be performed

even by a small device like a Raspberry Pi.

5.5. Countermeasures

In order to evaluate the countermeasure-decision process, we will assume that an IoT device in the

network is being attacked (e.g., sensor #11, Gamma DHT22-Temp). The attack has been successfully

detected, and we must decide the appropriate countermeasure to be applied. As shown in Figure 2,

we divided the attacks into families depending on the attack type: stuck-at and replay are a (probable)

consequence of an attack to the sensor software, while noise addition and dynamic perturbation are

most probably related to sensor replacement. Without loss of generality, all the value costs will be in

the range [0 − 10], where 10 is the maximum value.

The attack cost is summarized in Table 7, and it assumes that the attacker is able to physically

access the nodes. Moreover, we assume that replacing a node is more difficult than tampering with an

existing one. As a matter of fact, using software vulnerability should be easier than gaining access to

the network and replacing an existing device (without triggering an immediate alarm).

Table 7. Attack table cost.

Stuck-At Replay Noise dd. Dyn. Pert.

Time required 2 5 7 7
Equipment cost 3 3 3 3
Skill required 5 5 7 7
Physical access 4 4 4 4
Average 3.5 4.25 5.25 5.25



Sensors 2019, 19, 4235 17 of 19

The damage costs for the related IoT device are shown in Table 8. Here, we do not consider the

data relevance, since in our system, all collected data are equally significant.

The possible countermeasures costs are summarized in Table 9. Note that a higher security

countermeasure should imply also the use of the lower level ones.

The adopted countermeasure will have total cost less or equal to the damage cost: in our example,

when an attack is detected, we can change the MAC-16 (MAC short) [19,22] address of our devices

and, if a new attack is perform, we can modify the routing algorithm tree with a complete network

reconfiguration.

From the analysis, it is possible to conclude that an address refresh (e.g., by using the techniques

outlined in References [19,22]) is a valid countermeasure. On the contrary, if the sensor is more central

in the dependency graph (i.e., sensors #1 and #3), the appropriate countermeasure would be to apply

an address refresh and a routing reconfiguration. Cryptography key renewal will be used as a last

resort in case of an attack to sensors generating important data or if the attack persists after the network

reconfiguration.

Table 8. Damage cost for sensor 11.

Routing Cluster Dependency
Tree Position Under Attack Graph Position Average

Cost 4 3 2 3

Table 9. Countermeasure cost for sensor 11.

Refresh Refresh Change
Address Routing Tree Keys

Signaling Cost 3 5 10
Time Cost 4 6 7

Average 3.5 5.5 8.5

6. Concluding Remarks

In this paper, we proposed a novel IDS based on the analysis of data acquired in real-time by

different Fog/IoT devices. DataIDS can promptly detect a cyber attack affecting a device of the FC/IoT

system as well as effectively isolate it within the network to support the reaction phase. In order to

react to the attack, we propose an attack-tree-based evaluation system, which has the advantage of

avoiding countermeasures that are disproportionate with respect to the attack and the damage costs.

We like to stress that the proposed system can be used also to strengthen the robustness of a

Fog/IoT system against attacks.From the dependency graph, it is in fact possible to highlight 1) the

nodes that are unconnected and 2) the nodes with high correlation indices. In the first case, the nodes

are either collecting outlier measures (thus, discardable) or important measures (thus, more nodes

should be installed in that particular point). It is obvious that nodes with high correlation indices, i.e.,

more related in the dependency graph, should be more protected. As a consequence, it is possible

to choose the best candidate nodes to be, for example, hardened by physical security measures (e.g.,

anti-tampering hardware).

We implemented a test bed to validate the performance of DataIDS on a real dataset and, as

shown by our results, the proposed intrusion detection system has several advantages over other kinds

of approaches, and it can be easily implemented in constrained resource devices.

In future works, we plan to extend our model in order to better address the problem of data

privacy by using fog devices. This will allow to maintain user data privacy while enabling cooperative

intrusion detection capabilities among different and logically separated sensors zones [23]. Moreover,

we plan to study how the attack detection and isolation capabilities are influenced by the dependency

graph properties (e.g., size, number of connected vertex, etc.).



Sensors 2019, 19, 4235 18 of 19

Author Contributions: Conceptualization M.R., R.F., L.P., T.P.; data curation, F.N.; investigation, L.P. and M.R.;
methodology, L.P., M.R., T.P.; software, M.R.; supervision, R.F.

Funding: This research was funded in part by the project “GAUChO—A Green Adaptive Fog Computing and
Networking Architecture” funded by Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2015
grant number 2015YPXH4W_004.

Conflicts of Interest: The authors declare no conflict of interest.The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript; and in the decision to publish
the results.

References

1. A Cute Toy Just Brought a Hacker Into Your Home. Available online: https://www.nytimes.com/2017/12/

21/technology/connected-toys-hacking.html (accessed on 28 September 2019).

2. What We Know About Friday’s Massive East Coast Internet Outage. Available online https://www.wired.

com/2016/10/internet-outage-ddos-dns-dyn/ (accessed on 28 September 2019).

3. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. Comput. 2017,

50, 80–84. doi:10.1109/MC.2017.201.

4. Patcha, A.; Park, J.M. An overview of anomaly detection techniques: Existing solutions and latest

technological trends. Comput. Netw. 2007, 51, 3448–3470.

5. Bostani, H.; Sheikhan, M. Hybrid of anomaly-based and specification-based IDS for Internet of

Things using unsupervised OPF based on MapReduce approach. Comput. Commun. 2017, 98, 52–71.

doi:10.1016/j.comcom.2016.12.001.

6. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of

Things. J. Netw. Comput. Appl. 2017, 84, 25–37.

7. Garcia-Teodoro, P.; Diaz-Verdejo, J.; Maciá-Fernández, G.; Vázquez, E. Anomaly-based network intrusion

detection: Techniques, systems and challenges. Comput. Secur. 2009, 28, 18–28.

8. Yi, S.; Qin, Z.; Li, Q. Security and privacy issues of fog computing: A survey. In Prceedings of International

Conference on Wireless Algorithms, Systems, and Applications. Springer, Qufu, China, 10–12 August 2015;

pp. 685–695.

9. Raza, S.; Wallgren, L.; Voigt, T. SVELTE: Real-time Intrusion Detection in the Internet of Things. Ad Hoc

Netw. 2013, 11, 2661–2674. doi:10.1016/j.adhoc.2013.04.014.

10. Cugola, G.; Margara, A. Processing Flows of Information: From Data Stream to Complex Event Processing.

ACM Comput. Surv. 2012, 44, 15:1–15:62. doi:10.1145/2187671.2187677.

11. Zhang, K.; Liang, X.; Lu, R.; Shen, X. Sybil Attacks and Their Defenses in the Internet of Things. IEEE

Internet Things J. 2014, 1, 372–383. doi:10.1109/JIOT.2014.2344013.

12. Illiano, V.P.; Lupu, E.C. Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks.

IEEE Trans. Netw. Serv. Manag. 2015, 12, 496–510. doi:10.1109/TNSM.2015.2448656.

13. Illiano, V.P.; Muñoz-González, L.; Lupu, E.C. Don’t fool Me!: Detection, Characterisation and Diagnosis

of Spoofed and Masked Events in Wireless Sensor Networks. IEEE Trans. Dependable Secure Comput. 2017,

14, 279–293. doi:10.1109/TDSC.2016.2614505.

14. Pacheco, J.; Hariri, S. Anomaly behavior analysis for IoT sensors. Trans. Emerging Telecommun. Technol. 2018,

29, e3188.

15. Myagmar, S.; Lee, A.J.; Yurcik, W. Threat modeling as a basis for security requirements. In Proceedings of

the Symposium on Requirements Engineering for Information Security (SREIS), Paris, France, 29 August

2005; Volume 2005, pp. 1–8.

16. Schneier, B. Attack trees. Dr. Dobb’s J. 1999, 24, 21–29.

17. Mauw, S.; Oostdijk, M. Foundations of attack trees. In Proceedings of the 8th International Conference on

Information Security and Cryptology, Seul, Korea, 1–2 December 2005; pp. 186–198.

18. Illiano, V.P.; Lupu, E.C. Detecting Malicious Data Injections in Wireless Sensor Networks: A Survey. ACM

Comput. Surv. 2015, 48, 24:1–24:33. doi:10.1145/2818184.

19. Brilli, L.; Pecorella, T.; Pierucci, L.; Fantacci, R. A Novel 6LoWPAN-ND Extension to Enhance Privacy in IEEE

802.15.4 Networks. In Proceedings of IEEE Global Communications Conference (GLOBECOM), Washington,

WA, USA, 4–8 December, 2016; pp. 1–6.

https://www.nytimes.com/2017/12/21/technology/connected-toys-hacking.html
https://www.nytimes.com/2017/12/21/technology/connected-toys-hacking.html
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://www.wired.com/2016/10/internet-outage-ddos-dns-dyn/
https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1016/j.comcom.2016.12.001
https://doi.org/10.1016/j.adhoc.2013.04.014
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1109/JIOT.2014.2344013
https://doi.org/10.1109/TNSM.2015.2448656
https://doi.org/10.1109/TDSC.2016.2614505
https://doi.org/10.1145/2818184


Sensors 2019, 19, 4235 19 of 19

20. Alippi, C.; Ntalampiras, S.; Roveri, M. A cognitive fault diagnosis system for distributed sensor networks.

IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1213–1226.

21. Alippi, C.; D’Alto, V.; Falchetto, M.; Pau, D.; Roveri, M. Detecting changes at the sensor level in cyber-physical

systems: Methodology and technological implementation. In Proceedings of the Neural Networks (IJCNN),

2017 International Joint Conference on IEEE, Anchorage, Alaska, 14–19 May 2017; pp. 1780–1786.

22. Nizzi, F.; Pecorella, T.; Pierucci, L.; Esposito, F.; Fantacci, R. IoT Security via Address Shuffling: the Easy Way.

Internet Things J. 2019. doi:10.1109/JIOT.2019.2892003.

23. Pecorella, T.; Pierucci, L.; Nizzi, F. “Network Sentiment” Framework to Improve Security and Privacy for

Smart Home. Future Internet 2018, 10. doi:10.3390/fi10120125.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/JIOT.2019.2892003
https://doi.org/10.3390/fi10120125
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

