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ABSTRACT In Smart Island (SI) systems, operators of power distribution system usually utilize actual-time

measurement information as the Advanced Metering Infrastructure (AMI) to have an accurate, efficient,

advanced control and monitor of whole their system. SI system can be vulnerable to complicated information

integrity attacks such as False Data Injection Attack (FDIA) on some equipment including sensors and

controllers, which can generate misleading operational decision in the system. Hence, lack of detailed

research in the evaluation of power system that links the FDIAs with system stability is felt, and it will be

important for both assessment of the effect of cyber-attack and taking preventive protection measures. In this

regards, time–frequency-based differential approach is proposed for SI cyber-attack detection according to

non-stationary signal assessment. In this paper, non-stationary signal processing approach of Hilbert–Huang

Transform (HHT) is performed for the FDIA detection in several case studies. Since various critical case

studies with a small FDIA in data where accurate and efficient detection can be a challenge, the simulation

results confirm the efficiency of HHT approach and the proposed detection frame is compared with shallow

model. In this research, the configuration of the SI test case is developed in the MATLAB software with

several Distributed Generations (DGs). As a result, it is found that the HHT approach is completely efficient

and reliable for FDIA detection target in AC-SI. The simulation results verify that the proposed model is

able to achieve accuracy rate of 93.17% and can detect FDIAs less than 50 ms from cyber-attack starting in

different kind of scenarios.

INDEX TERMS False data injection attack, Hilbert-Huang transform, smart island, AC system.

I. INTRODUCTION

Cyber Physical Systems (CPSs) usually concentrate on con-

necting the physical globe to the cyber and digital world; also

they are greatly utilized in the control of various industrial

systems until several individuals can be able to grasp numer-

ous kinds of required information in the real time [1]–[3].

The usage of CPS has a prominent potential of using in some

fields including power distribution systems and sewage treat-

ment plants. However, CPS safety subjects include integrity,

confidentiality and availability, which are different from tra-

ditional cyber-security problems. The SI is responsible for

monitoring, operation and control of transmission and distri-

bution of electrical systems that can remarkably develop the

reliability and efficiency of the power and energy systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Eklas Hossain .

If such systems fail, they might have several negative and

harmful effects on other systems, and can lead to short-term

or long-term collapse in important infrastructures [4], [5].

Nowadays, numerous countries in the world regard the power

network system as a pivotal infrastructure and have formed

and stablished security and safety measures and related poli-

cies for this important issue [6]. Additionally, modern power

systems, these days, are becoming more and more com-

plex in the design and architecture; the phasor measurement

units (PMUs) were accepted to develop the reliability of

system. One of the advantages of this structure is the ability of

making fast decisions by utilizing the collected information

and data. Nevertheless, hackers are able to exploit vulner-

abilities to intentionally causes of overloaded tripping of

branches which might trigger a cascading fault and therefore

impose considerable harms to the SIs [7], [8]. Consequently,

the operators should take full account of the possibility of
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grid attack in controlling, operation and monitoring to deal

with the power network protection that requires the expertise

of the grid and remarkable energy. As a main component

of the proposed approach, Hilbert–Huang Transform (HHT)

can be employed. References [9], [10] presented HHT for

reduction and decomposition in the dimensionality of a sig-

nal. Generally, HHT includes two steps: first, performing

a data-adaptive decomposition approach named Empirical

Mode Decomposition (EMD), and second, applying Hilbert

spectral assessment to the decomposed signals which named

Intrinsic Mode Functions (IMF’s). Additionally, EMD can

have several advantages and benefits over the Fourier assess-

ment in which firstly, the oscillations embedded in every

signal would be extracted adaptively and automatically from

the signals; secondly, it would be relatively simple to per-

form; and thirdly, it would be specifically robust for every

non-stationary and non-linear signal. In addition to this, EMD

efficiently can capture non-linear specifications with regards

to the frequency and amplitude modulations by local time

scale. While IMF’s are taken, Hilbert spectral assessment

gives frequency data changing over period of time which is

a major component of assessment for every non-stationary

signal including cyber-attack signals.

A. BACKGROUND

Concepts such as Microgrid (MG), Smart Grid (SG) and

Smart Island (SI) in AC andDC power systemswith advances

in digital communication technologies have received more

attention in the past few years. Recently, several researchers

and studies have highlighted the vulnerability of traditional

AC and DC state estimators to the FDIAs in that an adversary

is able to present manipulated measurements to the mislead

operation systems [11]. Some kind of attacks are able to

bypass common Bad Data Detection (BDD) in the State Esti-

mation (SE) as the measurement remnants with FDIAs are

the same as the measurement residuals with no FDIAs. In the

FDIAs, the attacker can have aims to mislead the SE of the

system mechanism using sending corrupted measurements

which in turn will successfully and effectively pass the BDD

module and can bring mistake estimation in one or more of

the state variables.

One important point is that choosing the suitable set of

measurements to exploit between the accessible meters can

be more complicated. AC state estimators have been safe

against FDIA as long as the authors of the paper [12] showed

that even though attacks aiming DC state estimators might

not pass BDD in every AC-SE; nonetheless, an adversary

still was able to inject false data attack into the AC-SE, thus,

we observed that both AC and DC SE approaches were vul-

nerable and fragile to the FDIA. In reference [13], nonlinear

FDI attacks with inaccurate and wrong data were introduced.

Authors in the reference [14] displayed that an attacker was

able to do FDI attack on the sub-grid without having full data

about the whole power grid.

Another crucial point is that as an attacker, the issue of find-

ing the attack vector could be in general NP-hard [15]. For

this purpose, professionals and experts have suggested some

attack vector construction approaches taking into account

centralized and decentralized models. In reference [15]

authors have presented a greedy approach to seek for a sub-

system of measurement to be preserved by PMUs. Authors

in paper [16] proposed a connection between grid observ-

ability and attack detectability by a graph-theoretic design.

Machine learning approaches have also been presented in ref-

erence [17] to find stealth attacks (SA) in SE. Cyber-attacks,

also, in systems like Supervisory Control And Data Acqui-

sition (SCADA) can be very perilous, therefore, for such

systems this should be used in a particular path [18]–[20].

There is a prominent amount of publications on CPS in recent

years which a survey of this can be found in the paper [21].

Furthermore, authors of the paper [22] utilized noise fin-

gerprint processing and sensors in order to address stealthy

cyber-attack problems in CPS, and validated an approach in

a data set from an actual-globe water treatment plant, which

in this study the results displayed that the precision was about

98.1 percent. In reference [23] authors presented a Multi-

Modal Luenberger observer that could be able to isolate the

attacked sensors and SE of the basic dynamics of the remain-

ing sensors and their methods could be able to be performed

to large-scale CPSs. Reference [24] proposed a semantic

system grid-based orientation detection to find attacks on

control processing with utilizing grid traffic from water and

sewage plants. Such kinds of studies display the emphasis on

research in CPS safety; particularly, in the SGs that include

CPSs. The PMU or synchro-phasor was built upon the cyber

layer to serve real-time information [25] which can act as a

bridge among physical and cyber amplitudes [26]. Besides,

machine learning approaches have also been performed to

intrusion detection related issues; following studies can be

found in references [27]–[30]. Authors of the paper [27]

presented a machine learning behavior-based method for the

intrusion detection, and the data set that they utilized was

SecureWater Treatment (SWaT)-generated information from

eighteen attacks with ten type models. In paper [28] authors

utilized a rapid one- class category method that overcomes

the disadvantages of high sensitivity to the outliers; also, the

presented approach was examined on an actual data set from

distribution systems of drink water in France. In paper [29]

authors utilized a method named One Class SVM (OCSVM)

technology to discover SCADA grid intrusion.

B. MOTIVATION AND PRINCIPAL CONTRIBUTIONS OF

THIS PAPER

In this study, we propose an HHT-based approach to draw

out the dominant ingredients of a signal according to those

ingredients. The suggested approach can be categorized into

two parts: first, a signal will be decomposed using EMD; and

second, meaningful IMF’s ingredients will be opted using

Hilbert spectrum. In this regards, the suggested approach will

bring about development of FDI detection accuracy in AC-SI.

In the system, HHT is going to extract the state features

of system, and define a threshold to detect AC-FDIA from
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usual operation occurrences. The principal contributions of

this study are mentioned as follows:

• This paper is located between the pioneering research of

the use of HHT in the FDIA detection studies to diagnose an

attack that is new and effective.

• The suggested method is going to identify FDIA in

the AC-SI, specifically new attack templates with imperfect

power grid data.

• In this work, the presented mechanism will be evaluated

with the recently introduced FDIA template in SI case studies.

The obtained results of the simulation confirm the accuracy

and satisfactory of attack detection and the rate of false alarm.

• The test of parameter sensitivity is performed to assess

the efficiency and accuracy of the suggested method.

C. PAPER STRUCTURE

The article will be organized as follows. In Section II, we will

introduce the HHT approach and main concepts of FDI.

In Section III, we will evaluate the SI information utiliz-

ing HHT, and also, their ability for FDI attack detection

in different case studies will be presented. In Section IV,

we will discuss obtained results of the simulation, and finally

in Section V, we will present the conclusions of the study.

II. BASIC CONCEPTS

A. HILBERT–HUANG TRANSFORM (HHT)

The growth of HHT is basically caused by the requiring and

describing nonlinear waves with changes in these signals

in non-constant processes [31]. HHT consists of 2 different

operations, Hilbert Transform (HT) and EMD, and these two

operations have to be performed sequentially.

A) Experimental mode analysis: The basic part of the HHT

is EMD. This is a sieving process that breaks down the signal

into a number of internal states. The main signal S(t) can be

given in the equation (1).

S (t) =

n
∑

i=1

ci (t) + rn(t) (1)

It is noted that the first IMF (IMF1) c1 (t) consists of the

highest signal processing frequency and is often utilized as

the input for subsequent processing with HT [31].

B) Hilbert transform (Conversion): by considering IMFs

which is derived using the EMD approach, HT can be used for

any component of the IMF which is defined in equation (2).

H [ci (t)] =

∫ ∞

−∞

ci(τ )

π(t − τ )
dτ (2)

Considering this equation, ci(t) and H [ci (t)] are able to fig-

ure a complicated conjugate pair, that generates the analytic

signal zi (t).

zi (t) = ci (t) + jH [ci (t)] (3)

Meanwhile, zi (t) can be given as the equation (4)

zi (t) = ai (t) exp(jωi (t)) (4)

Combined with instantaneous amplitude ai (t) and phase

θi (t) gives equation (5);

ai (t) =

√

c2i (t) + H2[ci (t)] (5)

and

θ (t) = tan−1[
H [ci (t)]

ci (t)
] (6)

The instantaneous frequency ωi (t) can be given by

ωi (t) =
dθi (t)

dt
(7)

As a result, the original data can be given in the form of

equation (8):

S (t) = Re

n
∑

i=1

ai (t) exp(j

∫

ωi (t) dt) (8)

where, the remnant rn(t) is remained and Re0 represents the

real part of a complicated quantity. Also, the signal spectral

energy can be given in equation (9).

E (H) = (ai (t))
2 (9)

B. FDIAS THREATS

Owing to the complication and fragility of the data transfer

procedure in power CPS, many hackers might attempt to

manipulate sensor measurements, inject incorrect into con-

trolling commands and topological parameters, replay or

postpone sensor observations, and also carry out many other

destructive measures. As can be seen from the Figure 1, the

operations of achieving, transmitting, and integrating mea-

surement are threatened using stealthy FDIAs, which are now

recognized as one of the most dangerous threats to CPS of

power network.

Depending on the different ways of attack, FDIA attack

scenarios can be identified as follows:

A) Tune using readings of some sensors including different

intelligent user meters, PMU and Remote Terminal Units

(RTUs).

B) Directly attacks to communication grids.

C) Infiltrate the SCADA system and the Main Domain

Controller (MDC).

The final aim is to divide the accuracy and integrity of

the measurements to provide accurate and sufficient obser-

vations and operational limitations are used for SE to deduce

the operating modes of the system in smaller quantities and

then it helps the control center decide. Owing to the risk of

the predetermined subset, hackers can infect SE results to

mislead operators which lead to wrong decisions, and even

touch additional problems and power outages [32].

Therefore, it is important to figure out the AC-FDIA attack

mode, which can provide an opportunity for CPS of power

systems to increase reliability and performance economics by

developing appropriate interactions
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FIGURE 1. FDIAs threats in power CPS.

C. MAIN CONSTRUCTION OF AC-FDIAs

Hackers launched the FDIA by injecting false data into the

attacker’s vector z = [z1, z2, . . . , zm]
T in order to disrupt the

AC-SEwhich is given in the equation (10), where, z generally

consists of magnitudes of voltage and phase angles, com-

plicated load injections at branches, complicated load flows

on branches which included of forward and backward direc-

tions); x = [x1, x2, . . . , xn]
T defines the state vector (SV)

that included of phase angles and voltage magnitudes; h(·)

defines the nonlinear measurement function among SV x

and measurement vector (MV) z, that belongs the physical

parameters and features and also grid topology of the system.

Hence, measurement error vector e = [e1, e2, . . . , em]
T will

be the matter for the Gaussian white noise (WN) division by

covariance R. In experiment, weighted least square (WLS)

approach is a common method to solve static ACSE [12].

z = h (x) + e (10)

Due to the failure of communications or electromagnetic

interference, bad data is often present in the measurement,

which can bring about remarkable errors and faults in esti-

mating system modes. Therefore, the BDD module of EMS

is used to identify them that are based on the Largest Normal

Residual (LNR) approach. By assuming that the change vec-

tor of the SV x is determined as c, the residuals of the system

measurement before and after the attack would be r and ra.

In general, natural measurements z can cross the LNR-based

BDD module, by calculating the l2 − norm of the residual

measurement in order to detect bad measurements, we can

define equation (11):

‖r‖ = ‖z− h(x)‖ ≤ γ (11)

where in the equation (11), γ represents the detection thresh-

old of LNR-based BDD module.

Whenever the z-measurement vector is injected into the

false data, the effect of FDIAs on the BDD module can be

as follows:

‖ra‖ = ‖za − h(xa)‖

= ‖(z+ a) − h(x + c)‖

= ‖(z− h (x)) + (a+ h (x) − h(x + c))‖ (12)

where in the equation (12), za defines the compromised mea-

surement vector. In time of circumvent the BDD module to

remain stealthy, whenever hackers become familiar with the

topology of system and can have access to measurements,

the attack vector have to be constructed which is given in

equation (13).

a = h (x + c) − h(x) (13)

It should be noted that, in this case, the LNR value would be

unvaried after attack which means ‖ra‖ = ‖r‖ ≤ γ .

Unlike ideal conditions, it is highly unlikely for a hacker

to gain full knowledge of the system in practice. To address

this limitation, based on the attack model introduced in [14],

we obtain a sufficient number of practical AC attack samples

that they just need low prerequisites measurements in the

attacking area along with the border buses.

D. SMART ISLAND

Defining an island as intelligent and smart is related to

its ability to implement integrated solutions for managing

infrastructure and natural sources, called energy, mobility

and transportation, water and waste; all whenever promoting

using new and comprehensive social programs, governance

and funding plans. Introducing outstanding technologies

along with proper environmental management consists of

landscape protection and logical using of coastal and marine

sources, is an important part to fostering sustainable eco-

nomic and development activities on the islands. In addi-

tion, using information and communication technology (ICT)

ensures the availability of reliable data to improve efficiency,
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can decrease costs and increase the quality of local communi-

ties’ life, is of paramount importance features the SI concept.

With the growing trend towards a new type of energy market,

in that energy supply has been increasingly decentralized,

new forms of commercial models are emerging; consumers

are controlling their energy generation and consumption, and

technologies innovatively penetrate the market like smart

meters and electric vehicles (EVs) with priority of demand

management, so, islands appear as the ideal lands for testing

new technologies and scalable processes with the partici-

pation of all relevant actors, such as government officials,

water and electricity, market players, network operators, and

citizens.

However, because of these common trends, the inactivity

of politics and technology, along with the ongoing economic

crisis, prevent the islands from completely exploiting their

potential to host sustainable and innovative plans. This is

because of a wide range of factors. Such tests and scales

of innovative applications are considered as risky endeavor,

thus, new technological solutions can have challenges in

systems and economies of the island, and finally, technologies

and their consequences are not often fully understood in

different areas. In contrast with this drawback, the islands

have to build the groundwork for better understanding of

their potential and assessing priorities. This allows them to

take a holistic approach when developing and performing

new projects, including economic, social and environmental

considerations. Therefore, before an island is able transform

itself into a SI; it should be better first to find out precisely

where it is in relation to other regions by setting appro-

priate indicators to measure, monitor, and evaluate effects.

It allows sustainable islands to ensure that their ecosystems

are exploited while taking advantage of their comparisons.

Environmental CPSs are often utilized to monitor for under-

standing behaviors, and controlling the physical globe [33].

Because the representative CPS program is emerging, the

expansion of SIs has been seen. SI is a relatively new form of

power distribution system which connects power lines such

as traditional power grids as well as ICT infrastructure to

smart meters, which might be in the form of specialized tools

including telephones, mobile, laptops or other gadgets in the

island in oceans. Many of these SI devices allow data systems

to accomplish predictive assessment, which can balance the

generation and consumption of electricity in the network

system. Real-time pricing, for instance, gives consumers and

suppliers’ worthwhile clues to aid manage their demand and

energy resources. As a result, energy distribution that is able

to control the processes of energy production, consumption

and transmission can be carried out in a more efficient and

dynamic way.

Nonetheless, the incongruity, variety, and intricacy of

SIs provide fundamental challenges to ensuring the overall

integrity of the system [34]. This matter is because in the SIs,

network inference and decision-making might be carried out

on local smart components than on preserved control centers.

Thus, unlike common power networks where most attacks

FIGURE 2. Proposed FDIA detection approach.

and failures are transferred from physical access to impor-

tant facilities [35], the widespread use of SI components

invites most of these anomalies from cyber substructures. A

common SI attack is a FDI that can be utilized to distort

real power demand and supply resources. Therefore, energy

distribution might be incorrect, leading to further costs or

even more destructive risks. It is necessary to trust such sys-

tems and achieve security because national security and not

only cyber security can be compromised. Nonetheless, new

countermeasures against the FDI have concentrated on the

traditional state of the power systems [34], in that FDI attacks

on physical meters are performed rather than intelligent and

smart components [35]. Regardless of cyber-attacks and the

distributed design of SI substructure, these methods might

not dedicate any positive result with the full protection that

need to quickly make a decision for any local smart device or

component according to the status information. Considering

all the above mentioned issues, in this paper, a method which

can be easily performed on every smart island to detect FDI

in real time is presented.

E. PROPOSED FDIAS DETECTION SCHEME

Because the false attack vector satisfies Kirchhoff’s basic

underlying rules, it can escape the remaining BDD and

bring the system modes to deviate from normal events.

Nevertheless, we are going to make it clear that there is

time interdependence among dynamic system states, which

allows hackers to monitor the system for a long time and

continuously manipulate all relevant measurements to pro-

duce non-FDIA detection given a temporary correlation. This

complicated form of attack would be infeasible to create in

the actual power utilities [28].

Considering this issue, instead of out-of-line training and

the scattering of recognizing attack behaviors in previous
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FIGURE 3. Cyber-physical type of AC smart islanding: Blue arrows give the cyber layer; Black lines give the physical circuit.

FIGURE 4. Typical diagram of a three-phase MG with cyber-attack.

works, in this part, a real-time FDIAs detection mechanism

to identify possible attacks by recording changes in temporal

correlation properties between states of the systems is intro-

duces. Figure 2 displays the main structure of the presented

FDIA identification mechanism in real time. The signals are

retrieved and then the signal is processed by HHT to detect

the cyber-attack in AC SI.

III. CASE STUDIES

A. SMART ISLAND MODEL

Figure 3 depicts the islanded MG by m-th distributed pro-

duction units in the mode of parallel connection. Other

units are working in load sharing mode and current control

state [36], [37]. Some units in this MG are in the voltage

frequency mode. They are responsible for stabilizing the volt-

age of MG. Figure 4 illustrates the power circuit of a typical

three-phase inverter which connected to MG. For simplicity,

in this study, the single-phase system is examined first; the

equations are then generalized to these types of three-phase

inverters that the topology of all three phases being the same

as the single-phase system.

The block diagram of used single-phase inverter is dis-

played in Figure 5 [36, 37]. The LC output filter was

used to reduce the harmonic components of the output

VOLUME 8, 2020 179007
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FIGURE 5. The scheme of a single-phase inverter.

voltage generated by the Pulse Width Modulation (PWM)

inverter.

The state equations in the single-phase inverter depicted in

the Figure 5 are given in formulas (14) and (15).

L
dIL

dt
+ Vo = VINV (14)

IL = Ic + Io, Ic = C
dV o

dt
(15)

where, VINV = uVdc is the output voltage of inverter;

u represents the input signal of controller. By combining

formulas (14) and (15) gives equation (16)

d

dt

[

Vo
İL

]

=







0
1

C

−
1

L
0







[

Vo
IL

]

+

[

0
Vdc

L

]

u+

[

−
Io

C
0

]

(16)

where in this equation, both capacitor voltage (Vo) and induc-

tive current (IL) are chosen as the state variables. Vdc also

represents the DC link voltage or Uninterruptable Power

Supply (UPS). Io and Ic define the filter output current and

the capacitor current, respectively.

Based on sliding mode controller, the index of cyber-

attack detection for FDIA in voltage and current parameters

is defined in equation (17) and (18) [36], [37].

SV = ˜̇x − λx̃, x̃ = x − xbase (17)

SI = z− zbase (18)

where SV and SI (switching surface of voltage and current) is

the voltage index and current index for cyber-attack detection,

respectively, which are applied as a input of Huilbert-Huang

transform. λ is a positive number, x and z are the SI voltage

and current, respectively. xbase and zbase are the base volt-

age and current of SI, respectively. xbase has a constant ampli-

tude and frequency. zbase is measurable for each agent.

In this paper, the considered autonomous AC-MG is dis-

played in Figure 6.

DC sources are connected to each other by DC-AC invert-

ers via tie lines, thus forming the physical layer of the

MG. Every DC-AC inverter works to maintain the output

voltage according to the values of reference generated by

the main and secondary local controllers. In this article, the

unexplained cyber chart from the communication grid has

been considered to send and receive data from its neighbors.

In addition, they are repeatedly connected at the output of the

converter of each unit.

The suggested attack detection scheme is performed on

a cyber-physical AC-MG as displayed in Figure 6(b) with

Vref = 110sin(2 ∗ pi ∗ 60). V includes three factors of equal

capacity connected to each other through resistance lines. It is

important tomention that every agent includes a battery factor

with DC / AC inverters are shown in Figure 6 (a). In order

to test the performance and feasibility of the presented attack

FIGURE 6. Intended system: (a) Agent model; (b) Cyber-physical AC-MG with three resources.
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FIGURE 7. FDI attack to the amplitude of voltage signal (cyber-attack has started at t = 0.2 second and has
eliminated at t = 0.4 second): a) Waveform of SI voltage, b) Empirical mode decomposition of input index of
voltage, c) Hilbert-Huang spectral energy of input index of voltage.
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FIGURE 8. FDI attack to the frequency of voltage signal (cyber-attack has started at t = 0.2 second and has
eliminated at t = 0.4 second): a) Waveform of SI voltage, b) Empirical mode decomposition of input index of
voltage, c) Hilbert-Huang spectral energy of input index of voltage.
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FIGURE 9. FDI attack by adding a white noise to the voltage signal (cyber-attack has started at t = 0.2 second and has
eliminated at t = 0.4 second): a) Waveform of SI voltage, b) Empirical mode decomposition of input index of voltage,
c) Hilbert-Huang spectral energy of input index of voltage.
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FIGURE 10. FDI attack to the current signal on agent II (cyber-attack has started at t = 0.2 second and has
eliminated at t = 0.4 second): a) Waveform of SI voltage, b) Waveform of production DG2’s current, c) Empirical
mode decomposition of input index of current, d) Hilbert-Huang spectral energy of input index of current.
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FIGURE 10. (Continued.) FDI attack to the current signal on agent II (cyber-attack has started at t = 0.2 second and
has eliminated at t = 0.4 second): a) Waveform of SI voltage, b) Waveform of production DG2’s current, c) Empirical
mode decomposition of input index of current, d) Hilbert-Huang spectral energy of input index of current.

detection strategy for the AC-MG cooperative, several attacks

including the FDIAs have been tested on multiple sensors,

which are not usually detected by distributed observers an

is necessary to confirm security. The control system and

parameters were presented in our previous work in the ref-

erence [37]. Another important point is that every event in

the above scenarios is divided by a certain time interval for a

better understanding.

Case Study I: Instability arising from injecting an attack

by changing the amplitude of voltage signals.

In this part, an example of a FDI cyber-attack on the voltage

range is stated. An attack can be on a voltage measuring

sensor, the amount sent via wireless or fiber optic, or the

reference value given in the controller or changing the values

of the controller. To better understanding the issue, the attack

started and ended in a period of time. The attack started at

0.2 seconds and ended at 0.4 seconds. Sample simulation

results are shown in Figure 7. Figure 7(a) is the intelligent

island network voltage to which the FDI attack has been

reported in time. Figure 7(b) shows the Hilbert-Huang con-

version under different IMFs along with the residual value.

Figure 7(c) Hilbert-Huang spectral energy shows the Sv index

signal, which is able to detect a cyber-attack by determining

the threshold at 1000. This value (1000) is obtained according

to experimental results. The detection time is less than 5 ms

from the FDIA occurred.

Case Study II: Instability arising from injecting an attack

by changing the frequency of voltage signals.

In this part, an example of an FDI cyber-attack on the volt-

age signal frequency is described. The attack can be on a volt-

agemeasuring sensor, or the amount sent via wireless, or fiber

optic, or the reference value given in the controller, or changes

the values of the controller. To better understanding the issue,

the attack began and ended over a period of time. The attack

started at 0.2 seconds and ended at 0.4 seconds. The simula-

tion results of the sample are shown in Figure 8. Figure 8(a)

is the intelligent island network voltage to which the FDI

attack has been reported in time. Figure 8(b) shows the

Hilbert-Huang conversion under different IMFs with residual

value. Figure 8(c) Hilbert-Huang spectral energy shows the Sv
index signal, which can detect a cyber-attack by determining

the threshold at 1000. The detection time is less than 5 ms

from the FDIA occurred.

Case Study III: Instability arising from injecting an attack

by adding a white noise to the voltage signals.

In this section, an example of a FDI cyber-attack on a

voltage signal is expressed by adding white noise to the

voltage signal. The attack can be on a voltage measuring

sensor, the amount sent via wireless or fiber optic. To better

understanding the issue, the attack began and ended over a

period of time. The attack started at 0.2 seconds and ended at

0.4 seconds. Sample simulation results are shown in Figure 9.

Figure 9(a) is the intelligent island network voltage to which

the FDI attack has been reported in time. Figure 9(b) shows

the Hilbert-Huang conversion under different IMFs along

with the residual value. Figure 9(c) Hilbert-Huang spectral

energy shows the Sv index signal, which is able to detect

a cyber-attack by determining the threshold at 1000. The

detection time is less than 50 ms from the FDIA occurred.

Case Study IV: Instability arising from injecting an attack

by changing the current signal on agent II.

In this part, an example of a FDI cyberattack on signal

flow of units II is described. An attack can be on a current

measuring sensor, the amount sent via wireless or fiber optic,

or the reference value given in the controller, or changing the

values of the controller. In order to better understanding the
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FIGURE 11. Load changing: a) Waveform of SI voltage, b) Waveform of loads current, c) Hilbert-Huang spectral energy of
input index of voltage, d) Hilbert-Huang spectral energy of input index of current.

issue, the attack began and ended over a period of time. The

attack started at 0.2 seconds and ended at 0.4 seconds. Sample

simulation results are shown in Figure 10. Figure 10(a) is

the intelligent island network voltage. Figure 10(b) shows the

flow of the production unit II that was attacked by the FDI,

which was declared the FDI attack. Figure 10(c) shows the
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FIGURE 11. (Continued.) Load changing: a) Waveform of SI voltage, b) Waveform of loads current, c) Hilbert-Huang
spectral energy of input index of voltage, d) Hilbert-Huang spectral energy of input index of current.

Hilbert-Huang conversion under different IMFs with residual

values. Figure 10(d) Hilbert-Huang spectral energy shows the

signal of the S_I index, which is able to detect cyber-attack

by determining the threshold of 1000. The detection time is

less than 5 ms from the FDIA occurred.

Case Study V: Load changing.

In this part, the behavior of the system under load changes

is examined; the Hilbert-Huang spectral energy index of

the Sv voltage index and the SI current, which is used as

the FDI detection index, has been investigated during load

changes. Sample simulation results are shown in Figure 11.

Figure 11(a) is the SI network voltage. Figure 11(b) shows

the unit load current. As can be seen, the resistive and

ohmic loads are connected to the network at 0.2 and

0.4, respectively, and are disconnected both times at 0.5.

It is also connected to the system nonlinearly 0.5 times.

Figures 11(c) and 8d show Hilbert-Huang spectral energy

signals Sv and SI , respectively. As can be seen, it is less than

the threshold value for detecting a cyber-attack, and in this

method, the FDI attack is distinguished from load changes.

IV. DISCUSSION ABOUT SIMULATION RESULTS

Generally, it is said that when an issue is considered as a

cyber activity, it can be a positive decision. In contrast, it is

a negative decision when the model of anomaly detection

recognizes as a normal behavior. The true decision is made

whenever the pattern of abnormal detection is correct. As a

result, it is obvious that a wrong decision indicates a wrong

reaction from the cyber-attack detection model. Based on

this, it can be concluded that a suitable model for detec-

tion anomalies is a model with a low false rate. According

to these definitions, we can define 4 different type named:

False Alarm Rate (FAR), Hit Rate (HR), Correct Reject Rate

TABLE 1. Confusion rate matrix of the presented detection layout.

TABLE 2. Confusion result matrix of the presented detection layout.

(CRR), and Miss Rate (MR). In order to better understanding

of these issues, Table 1 gives the confusion matrix.

To verify the efficiency and validation of suggested

Hilbert-Huang transform in FDI attack detection, different

sample test is applied. The performance of the proposed

detection scheme is assessed through applying the FDIA

layout and the evaluation results are displayed. The efficiency

of suggested detection scheme is analyzed through applying

the FDI attack model and the evaluation results are in Table 2.

In addition, to show the efficiency of proposed cyber-attack

detection frame, it has been compared with Shallow model.

VOLUME 8, 2020 179015



M. Dehghani et al.: False Data Injection Attack Detection based on Hilbert-Huang Transform in AC Smart Islands

Table 2 can remark that the suggested technique can detect the

FDIAs with detection accuracy over 93%, and the detection

accuracy based shallow model is able to detect FDIAs over

90%, so, it shows the efficiency of the proposed detection

technique to detect the FDIAs.

V. CONCLUSION

The positive point of using HHT in cyber-attack detection

is that the signals in the SI are unstable, meaning that

their frequency changes with time. Hence, in this paper,

HHT has been presented to compute spectral energy for

FDI attack detection applications in AC Smart Islands. The

presented technique successfully identified the true time of

the cyber-attack by displaying a dramatic deviation in the

time frequency spectrum at the time of the FDIA occurrence

in AC-SI. The suggested scheme is able to detect FDIAs

such as cyber-attacks in current and voltage signals of sen-

sor or transmission data from wireless or fiber optic from

common system operating status variations like load varia-

tion. The simulation results on a test SI demonstrated and

proved the high performance and effectiveness of the pro-

posed scheme, especially in the FDI attack detection, where

the presented model was able to gain accuracy rate of 93.17%

(3% more than detection based on shallow model). Addition-

ally, the suggested protection scheme is able to detect FDI less

than 50 ms after cyber-attack is started in different scenarios

and it would be simple and easy to perform.
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