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Abstract— False data injection attacks have recently been
introduced as an important class of cyber attacks against smart
grid’s wide area measurement and monitoring systems. These
attacks aim to compromise the readings of multiple power grid
sensors and phasor measurement units in order to mislead the
operation and control centers. Recent studies have shown that
if an adversary has complete knowledge on the power grid
topology and transmission-line admittance values, he can adjust
the false data injection attack vector such that the attack remains
undetected and successfully passes the residue-based bad data
detection tests that are commonly used in power system state
estimation. However, in this paper, we explain that a realistic
false data injection attack is essentially an attack with incomplete
information due to the attackers lack of real-time knowledge
with respect to various grid parameters and attributes such as
the position of circuit breaker switches and transformer tap
changers and also because of the attacker’s limited physical
access to most grid facilities. We mathematically characterize
false data injection attacks with incomplete information from
both the attacker’s and grid operator’s viewpoints. Furthermore,
we introduce a novel vulnerability measure that can compare and
rank different power grid topologies against such attacks. To the
best of our knowledge, this paper is the first study to investigate
false data injection attacks with line admittance uncertainty.

Keywords: False Data Injection Attack, Smart Grid Security,
Incomplete Information, Transmission Line Admittance Uncer-
tainty, Transformer Tap Position, Topological Vulnerability.

I. INTRODUCTION

The recent advancements in smart grid control and monitor-

ing systems, such as two-way communication capabilities and

distributed intelligence, can significantly enhance efficiency

and reliability [1]. However, they may also create new vulner-

abilities in power infrastructures if they are not accompanied

with appropriate security enforcements. In particular, it has

recently been shown that cyber attacks against the wide area

measurement and supervisory control and data acquisition

systems have the potential to significantly damage the power

grid and the utilities and consumer equipment [2].

A new and important class of cyber attacks against smart

grid’s wide area measurement systems is recently identified

in [3] as false data injection attacks (FDIAs). In FDIA an

adversary aims to hack the readings of multiple sensors and

phasor measurement units (PMUs) to mislead smart grid’s

decision making process. In [3] showed that if the false data

injection vector fulfils certain conditions, the adversary will be

able to inject an arbitrary amount of error in state estimation

and yet the FDIA will still successfully pass the commonly

used residue-based bad data detection tests in power system

state estimation [4]. The later studies further revealed that an

adversary may even gain some economic advantages by using

FDIA against the wholesale electricity market [5].

In [6], the authors showed that one can prevent a false data

injection attack against state estimation by protecting a subset

of sensors and PMUs. However, the number of sensors that

need to be protected can be large, e.g., as many as one third

of all sensors connected to the grid buses [7]. Another thread

of research seeks to improve the existing residue-based bad

data detection methods in state estimation such that they can

also detect false data injection attacks. For example, the use

of L∞-norm versus L2-norm detectors are investigated in [8].

The more advanced generalized likelihood ratio test and the

adaptive cumulative sum control chart test are also recently

proposed to detect FDIAs in [9] and [10], respectively.

A common assumption in most prior work on FDIAs, e.g.,

in [3], [5]–[10], is that the attacker has complete knowl-
edge about the power grid topology and transmission-line

admittances. In fact, such information is implicitly assumed

available to the attacker in order to construct the false data

injection attack vector. However, an important practical sce-

nario is the case when the attacker has limited information with

respect to the power network topology or admittance for some

transmission-lines. Therefore, the focus of this paper is to take

the first step to investigate the possibilities for implementing a

successful false data injection attack with limited information.

The contributions of this paper can be summarized as follows.

• We explain that a realistic FDIA is essentially an attack

with incomplete information due to the attacker’s lack of

real-time knowledge with respect to the status of various

grid elements such as the position of circuit breaker

switches and transformer tap changers and also because

of his/her limited physical access to most grid facilities.

• We mathematically characterize FDIAs with limited in-

formation and show how the impact of the attack on the

power grid as well as the likelihood of the attack being

detected can be affected by the attacker’s lack of complete

knowledge about the grid parameters and attributes.

• We study FDIAs with limited information from both

attacker’s as well as grid operator’s viewpoints. From an

attacker’s point of view, depending on the uncertainty

patterns, we distinguish perfect and imperfect attacks.

From an operator’s point of view, we introduce a novel



vulnerability measure that can compare and rank various

power grid topologies. This can potentially help building

power grids that are less vulnerable against FDIAs.

The rest of this paper is organized as follows. The system

model and the background on FDIAs with limited information

are given in Section II. We mathematically characterize FDIAs

with limited information in Section III. Optimizing such at-

tacks from the attacker’s viewpoint is discussed in Section IV.

Analyzing the grid vulnerability from the operator’s viewpoint

are investigated in Section V. Simulation results are presented

in Section VI. The paper is concluded in Section VII.

II. SYSTEM MODEL AND BACKGROUND

A. State Estimation in Power Systems

Let z denote an m×1 vector of all measurements in a power

system such as power flows at transmission lines and power

injections and loads at buses. The power flow measurements

can be taken at one or both ends of a transmission line. In the

state estimation problem in power systems, we are interested in

using the collected set of measurements to estimate an n× 1
vector of unknown states x, where n � m. The unknown

states can be, for example, the voltage angles at different buses.

Let H denote the m× n network topology matrix. We have

z = Hx+ e, (1)

where e denotes measurement noise. In general, there are three

criteria that are commonly used to estimate the system states:

maximum likelihood, weighted least-square, and minimum

variance. When the measurement noise is Gaussian with zero

mean, these criteria lead to the same estimator [4]:

x̂ = (HTWH)−1HTWz, (2)

where the m×m noise co-variance matrix W is diagonal.

Next, we explain how the network topology matrix H is

constructed. Let A denote the l× n grid connectivity matrix,

where l denotes the number of transmission lines. Without

loss of generality we assume an arbitrary direction for each

transmission line. For each transmission line i, the element in

ith row and jth column is Aij = 1, if the direction of link i
is from bus j, Aij = −1, if the direction of link i is towards

bus j, and Aij = 0, otherwise. Note that the power flow on a

transmission line is assumed positive if it is at the direction of

the line and negative if it is at the opposite of the direction of

the line. Let D denote an l × l diagonal matrix representing

the admittance of all transmission lines. For the rest of this

paper, we assume that the collected measurements for state

estimation comprise of all bus injections and power flows at

both directions of all buses. Therefore, we have [11]:

H =

⎡
⎣A

TDA
DA
−DA

⎤
⎦ . (3)

B. False Data Injection Attack with Complete Information

In False Data Injection Attack against smart grid, an ad-

versary aims to hack the readings of sensors such that the

vector of measurement z is replaced by a compromised vector

za = z+a, where a is an m×1 false data vector. Clearly, given

the false measurement vector za, the state estimation solution

becomes x̂a �= x̂. As shown in [3], false data injection can

sometimes be detected by using bad data detection methods

which evaluate the measurement residue:

za −Hx̂a, (4)

and trigger an alarm if the residue becomes greater than a

preset limit. However, the results in [3] also show that if the

attacker selects the false data injection vector a to be a linear

combination of the rows in matrix H, i.e., a = Hc for some

arbitrary n× 1 vector c, then the bad data detection methods

based on residue test will not be able to detect the attack since

the injected false data will no longer affect the residue:

za −Hx̂a = z+ a−H(x̂+ c) = z−Hx̂, (5)

where

x̂a = x̂+ (HTWH)−1HTWHc = x̂+ c. (6)

In other words, if the attacker has complete knowledge of the

grid topology and line admittances such that he can accurately

construct matrix H, then he will be able to implement a false

data injection attack which is not detected by a residue test,

yet it is able to inject an arbitrary error to the state estimation

solution. However, we believe that in practice, the attacker’s

knowledge can be limited and involve uncertainties.

C. Obtaining Grid Connectivity and Admittance Matrices

As explained in Section II-B, to implement a false data

injection attack, an adversary needs to construct matrix H.

From (3), this requires knowledge on connectivity matrix A
and admittance matrix D. Such knowledge can be gained

through both offline and online data collections. Offline data

collection can be done weeks, months, or even years before

implementing the actual attack and may involve getting access

to the grid topology maps through intruders or former utility

company employees. However, offline data collection may not

be enough to implement an attack. On one hand, some offline

data could be outdated due to new construction and expansion

of the existing transmission lines. On the other hand, in most

practical cases, the exact position of circuit breaker switches,

transformer tap changers, etc. can significantly affect the

connectivity and admittance matrices, and thus the true value

of matrix H. Therefore, an adversary may need to implement

some online data collection efforts, e.g., by deploying its own

sensors and PMUs. Nevertheless, due to limited resources and

restricted physical access to the grid, online data collection

may not be feasible and the attack may essentially become

an attack with incomplete information. Investigating this re-

alistic scenario is the focus of this paper. In particular, we

are interested in the case where the adversary has limited

information of the line admittance values. This can be due

to various practical reasons as we explain next.

First, the position of the transformer tap changers across the

power grid may sometimes change to adjust the voltage and

current ratios based on the power system operation conditions.

An example is shown in Fig. 1. In this figure, the transmission



Fig. 1. A transmission line with a transformer. The transformer tap position
can change from time to time and affect the line admittance a2X1 +X2.

line between bus 1 and bus 2 includes fixed admittance values

X1 and X2 and a transformer with turns ratio 1 : a. In this

case, the total admittance for the transmission lines between

the two buses is a2X1 +X2 for the right side. Clearly, while

offline data collection can be used to obtain X1 and X2, the

exact position of the tap changer, i.e., the value of parameter a
may only be obtained via online data collection and/or physical

access to the transformer site. If such access is not feasible, the

uncertainty with respect to parameter a will affect constructing

matrix D and thus H. Second, even for transmission lines

without transfer, obtaining the line admittance may require

knowledge of the exact length of the transmission line and type

of the conductor being used. Finally, even if the adversary can

measure line admittance in an offline effort, the values may

change by the time of implementing the attack due to weather

conditions and changes in temperature [12].

III. FALSE DATA INJECTION ATTACKS

WITH INCOMPLETE INFORMATION

Consider a false data injection attack with incomplete infor-

mation where the attacker does not have accurate knowledge

about matrix H, e.g., because of the issues discussed in Section

II-C. Let us denote the attacker’s understanding of the topology

matrix H as H̄ = H+ δ, where δ is an m× n error matrix.

Therefore, the false data injection attack vector implemented

by the attacker in this case will be in the following form:

a = H̄c = (H+ δ) c = Hc+ δc. (7)

Of course, since a �= Hc, most existing theorems on FDIAs,

e.g., those in [3], [5], are no longer applicable and the attack is

no longer guaranteed to pass the residue test in Section II-B.

In other words, the adversary’s limited information may cause

the attack to be detected by the grid operator.

From [3], vector c in (7) is the estimation error that the

attacker intends to inject into the state estimation solution.

Similarly, let c̄ denote the estimation error that the attacker

actually injects into the solution in case of an attack with

incomplete information. Note that, in general, c̄ �= c. The

state estimation solution under attack is obtained as,

x̂a = (HTWH)−1HTWza

= (HTWH)−1HTW(z+ a)

= (HTWH)−1HTW(z+Hc+ δc)

= x̂+ c+ (HTWH)−1HTWδc.

(8)

By definition, we have

x̂a = x̂+ c̄. (9)

From (8) and (9), we can conclude that

c̄ = c+ (HTWH)−1HTWδc. (10)

Next, we can obtain the residue in presence of a false data

injection attack with limited information as

ra = za −Hx̂a

= z+ a−H(x̂+ c̄)

= r+ δc+H(c− c̄)

= r+ (I− Γ)δc,

(11)

where

Γ � H(HTWH)−1HTW. (12)

Note that Γ is a fixed m × m matrix which only depends

on the matrixes H and W. In presence of no false data

injection attack, i.e., when a = 0, bad data detection works

by evaluating the following residue-related inequality test [4]:

J(x̂) ≤ C, (13)

where C is a control parameter that is selected based on the

choice of false alarm rate. We also have

J(x̂) =
m∑
i=1

(
zi − ẑi
σi

)
=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

⎡
⎢⎣

z1−ẑ1
σ1

...
zm−ẑm

σm

⎤
⎥⎦
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

⎡
⎢⎣

r1
σ1

...
rm
σm

⎤
⎥⎦
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

⎡
⎢⎣

1
σ1

0 . . .

0 1
σ2

...

0 . . . 1
σm

⎤
⎥⎦
⎡
⎢⎣

r1
...

rm

⎤
⎥⎦
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=
∣∣∣
∣∣∣√Wr

∣∣∣
∣∣∣2 .

(14)

Similarly, for the case of a false data injection attack with

incomplete information, the bad data detection test becomes

J(x̂a) = ||
√
Wr+

√
W(I− Γ)δc||2 ≤ C. (15)

Together, (10) and (15) characterize an FDIA false data

injection attack with incomplete information. Note that, for an

attack with complete information, where δ = 0, from (10) and

(15), we have c̄ = c and J(x̂a) = J(x̂). Furthermore, we can

see that the amount of injected estimation error in (10) and the

residue test outcome in (15) depend on not only the attacker’s

modeling error δ but also some grid-specific parameters, i.e.,

matrixes H and W. Of course, neither the attacker nor the grid

operator are aware of the exact value of attacker’s modeling

error matrix δ. However, while the attacker does not have an

accurate knowledge of H, W, and Γ, these matrices are indeed

known to the power grid operator. Therefore, we investigate

the false data injection attacks with limited information first

from the attacker’s viewpoint and then from the grid operator’s

viewpoint.

IV. ATTACKER’S VIEW POINT

In this section, we will discuss what an attacker can achieve

when he has limited information. From (10) and (15) we

can distinguish two different scenarios: a) Perfect Attacks: the

attacks that can assure achieving δc = 0 even though δ �= 0;

b) Imperfect Attacks: the attacks that cannot assure achieving

δc = 0. Next, we characterize perfect and imperfect attacks.



A. Perfect Attacks with Limited Information

A perfect attack is a false data injection attack in which

δc = 0 and consequently c̄ = c and J(x̂a) = J(x̂). A

perfect FDIA cannot be detected by a residue test, regardless

of the fact that the attacker’s knowledge about matrix H is not

accurate. The following definition and theorem explain how we

can characterize perfect FDIAs under attacks with incomplete

information and transmission-line admittance uncertainties.

Definition: A cut is a set of transmission lines in a grid

that can divide the power network into two disjoint islands. In

general, each power grid topology may have several cuts.

Theorem 1: We can show that a) An attacker can implement

a perfect FDIA under transmission-line admittance uncertain-

ties if it has complete knowledge about the admittance values

of all transmission lines on at least one cut. b) Let N1 and

N2 denote the set of buses in the two disjoint islands that are

formed by the aforementioned cut, if the attacker selects

ci = cj ∀ i, j ∈ N1, (16)

ci = cj ∀ i, j ∈ N2, (17)

then achieving δ c = 0 is guaranteed regardless of the values

of the admittances for the rest of the grid transmission lines.

Proof : First, we note that by definition, the summation of

all entries in each row of the connectivity matrix A is zero.

That is, for each row i = 1, . . . , l, we always have

n∑
j=1

Aij = 0. (18)

Let ε denote the diagonal matrix of errors in the attacker’s

knowledge on the lines admittance values. From (3), we have

H+ δ =

⎡
⎣A

T (D+ ε)A
(D+ ε)A
−(D+ ε)A

⎤
⎦ ⇒ δ =

⎡
⎣A

T εA
εA
−εA

⎤
⎦ . (19)

Thus, a sufficient condition to have δ c = 0 is to have

εAc = 0. (20)

Consider an arbitrary cut for the power network topology and

the two constructed disjoint islands of buses N1 and N2, as

defined in Theorem 1. Next, we reorder the rows of matrix

A such that the first rows correspond to the links in the

first island, denoted by [A1 0], then it comes to the rows

corresponding to the links that belong to the cut, denoted by

Ac, and finally it comes to the tows corresponding to the links

in the second island, denoted by [0 A2]. That is,

A =

⎡
⎣A1 0

Ac

0 A2

⎤
⎦ . (21)

If the attacker knows the admittance values for all the

transmission lines on the cut, then we have

ε =

⎡
⎣ε1 0 0
0 0 0
0 0 ε2

⎤
⎦ ⇒ εA =

⎡
⎣ε1A1

0
ε2A2

⎤
⎦ , (22)

where ε1 and ε2 are diagonal. From (18) and (22), condition

(20) holds if vector c is selected as in (16) and (17). �
From Theorem 1, knowing the admittance values for all

transmission lines in the power grid is not necessary for im-

plementing a perfect FDIA with limited information. Instead,

the attacker only needs to know the admittance values for only

a small group of transmission lines that together can form a

cut. That is, having limited information on other transmission

lines does not affect the attacker’s ability in implementing a

successful and effective FDIA. Of course, the attack would

still face some limitations in terms of the injected estimation

errors into the state estimation solution as such errors cannot

be arbitrary and need to follow the conditions in (16) and (17).

B. Imperfect Attacks with Limited Information

Next, assume that the attacker does not have exact knowl-

edge about the transmission line admittance values for any cut

in the power grid topology. In that case, reaching δc = 0, i.e.,

implementing a perfect attack, may not be possible. Instead,

the attacker may only have some probability distribution of the

transmission line admittance values. Such information can be

obtained from offline data collection, e.g., the historical data

of the position of each transformer’s tap changer, etc.

From (10) and (15), the attacker should seek to simulta-

neously minimize (HTWH)−1HTWδc to achieve c̄ ≈ c
and minimize

√
W(I − Γ)δc to achieve J(x̂a) ≈ J(x̂).

However, these objectives can be reached only if the attacker

is accurately aware of matrixes H, W, and Γ, which is not

the case in an attack with limited information. Therefore, an

attacker may have no choice but using some offline knowledge

on the probability distribution of the elements of matrix δ as

mentioned earlier and rather focus on minimizing ||δc||. In

this regard, the adversary may aim to select vector c such that

it can solve the following stochastic optimization problem:

maximize
c

minimum
i∈N

ci

subject to E {‖δ c‖} ≤ κ
√
C

(23)

Here, the objective is to maximize the impact of the attack

by maximizing the minimum amount of error to be injected

into the state estimation solutions. However, in order to limit

the chance of the attack being detected, the solution should be

subject to maintaining the expected norm of δc below κ
√
C,

where 0 < κ < 1 is an attack planning parameter. We note

that if a perfect attack is feasible, then the optimal solution of

problem (23) will automatically become as in (16) and (17)

and the optimal objective value will be unbounded regardless

of the probability distribution of the unknown transmission

line admittance values. Furthermore, we note that one can

introduce an auxiliary variable t and replace problem (23) with

the following equivalent optimization problem:

maximize
c,t

t

subject to E {‖δ c‖} ≤ κ
√
C

ci ≥ t, ∀ i ∈ N .

(24)

Problem (24) is a standard stochastic convex program that can

be solved, e.g., using scenario generation as explained in [13].
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Fig. 2. Two power grids with six buses and eight lines. We can show that the
grid on the left is more vulnerable against FDIAs with incomplete information.

V. GRID OPERATOR’S VIEW POINT

Similar to the attacker, the grid operator is not aware of

the attacker’s modeling mismatch matrix δ. However, unlike

the attacker, the grid operator does know the true and up-to-

date values of matrices H, W, and Γ. Given such knowledge,

the grid operator is interested in answering the following two

questions: 1) Which power grid topologies, characterized by

matrices H, W, and Γ, are less vulnerable against FDIAs

with incomplete information. 2) Can we slightly change a

power grid topology and make it less vulnerable against

FDIAs with incomplete information. For example, consider

the two partly similar power grid topologies in Fig. 2. From

[3], if the attacker has complete knowledge about matrix H
corresponding to each of these two topologies, then the two

networks are equally vulnerable to a FDIA as long as the

adversary selects the attack vector as a = Hc as discussed in

Section II-B. However, as shown next, one can argue that in

case of FDIAs with incomplete information, the power grid in

Fig. 2(b) is less vulnerable compared to the grid in Fig 2(a).

To obtain an analytical measure for vulnerability against

FDIAs with limited information, we note that an attack is

successful if it is likely to pass the bad data detection test

in (15) while it imposes a significant error in power state

estimation solution. Thus, given H, W, and Γ for each grid

topology and given a probability distribution function for

mismatch matrix δ, we can introduce a vulnerability measure
(VM) specific to the power grid topology of interest as follows:

VM = maximum
c,t

t

subject to E

{
‖
√
W(I− Γ)δ c‖

}
≤
√
C

ci ≥ t, ∀ i ∈ N .

(25)

We may note the following remarks. First, the difference

between problems (24) and (25) is in the choice of constraints.

In (24), the grid operator obtains an estimate on how strong

an attack can become while it is not detected, in a stochastic

sense, by a bad data detection test. Second, For each topology,

the VM in (24) depends on the probability distribution function

for matrix δ. Assuming a Gaussian distribution with zero

mean for each element of matrix δ, one can expect that the

VM decreases, i.e., the grid becomes less vulnerable, as the

mismatch variance increases. Finally, the VM in (24) can be

used to compare the vulnerability of different power grids with

similar probability distribution functions for mismatch matrix

δ. As we will explain in detail in Section VI for the case of

topologies in Fig. 2, some power grid topologies can be seen

to less vulnerable to FDIAs with incomplete information.

VI. SIMULATION RESULTS

In this section, we assess the efficiency of FDIAs with

incomplete information. First, the results on detecting an

imperfect FDIA in an IEEE 118 bus test system are shown

in Fig. 3. Here, we have plotted the measurement residue

under the attack versus 1000 different measurement noise

scenarios. The residue test parameter C is set at such a value

that 2.5% residue goes up it without attack. We can see

that the rate of detecting the attack with the residue test is

as low as only 3.5%, which is minor indicating that having

incomplete information has not affected the attacker’s ability

in implementing a successful FDIA attack significantly.

Fig. 3. The measurement residues after an FDIA with incomplete information
of transmission line admittance values for 1000 different noise scenarios.

κ

Fig. 4. The trade-off between attack strength and the probability of detection.

From (23), the attacker may increase κ to implement

stronger attacks, i.e., attacks with higher values for the entries

of vector c. However, higher κ will increase the risk of the

FDIA being detected. The trade-off is shown in Fig. 4. Here,

the attack strength is defined as the optimal objective value of

problem (24). We can see that if the attack strength is limited

to 10%, then the probability of detecting the imperfect FDIAs

with limited information on transmission line admittance is



Fig. 5. The strength of an attack and the probability of detecting attack for
20 topology and measurement noise scenarios under admittance uncertainties.

Fig. 6. Comparing the vulnerability measures of the two power grid
topologies in Figs. 2(a) and (b). The topology in Fig. 2(b) is less vulnerable.

as small as only 5%. As we increase κ, although the attacks

become stronger, the probability of detecting the attacks will

increase. Note that, these results are for the cases where the

attack is imperfect. Clearly, if the attack is perfect or the

attacker has complete information, then the attack strength

can arbitrarily increase without affecting the measurement

residues, as long as vector c is selected according to the

conditions in (16) and (17) as explained in Theorem 1.

Next, we simulate 20 different attack scenarios under dif-

ferent topologies and different transmission line admittance

uncertainties. The results are shown in Fig. 5. In each case,

the attack vector a is calculated based on (7) where c
is chosen according to the solution of problem (24). The

probability distribution of the unknown admittance parameters

are assumed to be normal and spanned within ±20% of

the correct admittance values. We can see that except for

scenario 14, the probability of detecting the attack is small

and below 10%. On the other hand, in almost all cases

the FDIA under uncertainties have significant strengths. For

example, in scenario 6, while the minimum injected error in

state estimation (i.e., the attack strength) is around 135%, the

probability of attack being detected is only 4%. The trade-off

between the attack strength and the probability of detecting

the attack depends on the configuration of the transmission

line admittance uncertainties as explained in Theorem 1.

Finally, we compare the vulnerability measures of the

two topologies in Fig. 2. For each topology, we plot the

vulnerability measure, as defined in (25), versus the variance

in the attacker’s modeling error δ. Recall that the vulnerability

measure is calculated by the grid operator to assess how

vulnerable a topology can become given different uncertainty

levels in the attacker’s knowledge of the grid. We can see in

Fig. 6 that, for all variance levels, the grid in Fig. 2(b) has

a lower vulnerability measure than the one in Fig. 2(a). This

suggest that the topology in Fig. 2(b) is less vulnerable to

FDIAs with limited information. It is worth mentioning that

if the variance is zero, i.e., in case of an attack with complete
information, then the two topologies are equally vulnerable to

an FDIA as long as the adversary selects the attack vector as

a = Hc as explained in Section II-B.

VII. CONCLUSIONS

We addressed the problem of implementing an FDIA when

the attacker has incomplete information about the admittances

of transmission lines. Such attacks were investigated from both

attacker’s and grid operator’s viewpoints. We introduced two

types of attacks. First, perfect attacks, where the attacker has

complete knowledge of the admittance for all lines on at least

one cut on the grid topology. Second, imperfect attacks, where

such information is not available. We showed that an attacker

may construct a probability distribution function for each

unknown admittance to design an imperfect attack according

to the solution of a stochastic optimization problem. We also

introduced a novel vulnerability measure to compare and

rank different grid topologies against FDIAs with incomplete

information. This measure can potentially help building power

grids that are less vulnerable against practical false data

injection attacks when the attacker has limited information.
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