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FALSE DISCOVERIES OCCUR EARLY ON THE LASSO PATH

BY WEIJIE SU1, MAŁGORZATA BOGDAN2 AND EMMANUEL CANDÈS3

University of Pennsylvania, University of Wroclaw and Stanford University

In regression settings where explanatory variables have very low correla-
tions and there are relatively few effects, each of large magnitude, we expect
the Lasso to find the important variables with few errors, if any. This pa-
per shows that in a regime of linear sparsity—meaning that the fraction of
variables with a nonvanishing effect tends to a constant, however small—this
cannot really be the case, even when the design variables are stochastically
independent. We demonstrate that true features and null features are always
interspersed on the Lasso path, and that this phenomenon occurs no matter
how strong the effect sizes are. We derive a sharp asymptotic trade-off be-
tween false and true positive rates or, equivalently, between measures of type
I and type II errors along the Lasso path. This trade-off states that if we ever
want to achieve a type II error (false negative rate) under a critical value, then
anywhere on the Lasso path the type I error (false positive rate) will need to
exceed a given threshold so that we can never have both errors at a low level
at the same time. Our analysis uses tools from approximate message pass-
ing (AMP) theory as well as novel elements to deal with a possibly adaptive
selection of the Lasso regularizing parameter.

1. Introduction. Almost all data scientists know about and routinely use the
Lasso [30, 32] to fit regression models. In the big data era, where the number
p of explanatory variables often exceeds the number n of observational units, it
may even supersede the method of least-squares. One appealing feature of the
Lasso over earlier techniques such as ridge regression is that it automatically per-
forms variable reduction, since it produces models where lots of—if not most—
regression coefficients are estimated to be exactly zero. In high-dimensional prob-
lems where p is either comparable to n or even much larger, the Lasso is believed
to select those important variables out of a sea of potentially many irrelevant fea-
tures.
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Imagine we have an n × p design matrix X of features, and an n-dimensional
response y obeying the standard linear model

y = Xβ + z,

where z is a noise term. The Lasso is the solution to

(1.1) β̂(λ) = argmin
b∈Rp

1

2
‖y − Xb‖2 + λ‖b‖1;

if we think of the noise term as being Gaussian, we interpret it as a penalized
maximum likelihood estimate, in which the fitted coefficients are penalized in an
ℓ1 sense, thereby encouraging sparsity. (There are nowadays many variants on this
idea including ℓ1-penalized logistic regression [32], elastic nets [41], graphical
Lasso [37], adaptive Lasso [40] and many others.) As is clear from (1.1), the Lasso
depends upon a regularizing parameter λ, which must be chosen in some fashion:
in a great number of applications this is typically done via adaptive or data-driven
methods; for instance, by cross-validation [16, 23, 27, 38]. Below, we will refer to
the Lasso path as the family of solutions β̂(λ) as λ varies between 0 and ∞. We
say that a variable j is selected at λ if β̂j (λ) �= 0.4

The Lasso is, of course, mostly used in situations where the true regression
coefficient sequence is suspected to be sparse or nearly sparse. In such settings,
researchers often believe—or, at least, wish—that as long as the true signals (the
nonzero regression coefficients) are sufficiently strong compared to the noise level
and the regressor variables weakly correlated, the Lasso with a carefully tuned
value of λ will select most of the true signals while picking out very few, if any,
noise variables. This belief is supported by theoretical asymptotic results discussed
below, which provide conditions for perfect support recovery, that is, for perfectly
identifying which variables have a nonzero effect, see [29, 35, 36] for instance.
Since these results guarantee that the Lasso works well in an extreme asymptotic
regime, it is tempting to over-interpret what they actually say, and think that the
Lasso will behave correctly in regimes of practical interest and offer some guar-
antees there as well. However, some recent works such as [19] have observed that
the Lasso has problems in selecting the proper model in practical applications, and
that false discoveries may appear very early on the Lasso path. This is the reason
why [7, 8, 28] suggest that the Lasso should merely be considered as a variable

screener rather than a model selector.
While the problems with the Lasso ordering of predictor variables are recog-

nized, they are often attributed to (1) correlations between predictor variables, and
(2) small effect sizes. In contrast, the novelty and message of our paper is that the
selection problem also occurs when the signal-to-noise ratio is infinitely large (no

4We also say that a variable j enters the Lasso path at λ0 if there is there is ε > 0 such that
β̂j (λ) = 0 for λ ∈ [λ0 − ε,λ0] and β̂j (λ) �= 0 for λ ∈ (λ0, λ0 + ε]. Similarly, a variable is dropped
at λ0 if β̂j (λ) �= 0 for λ ∈ [λ0 − ε,λ0) and β̂j (λ) = 0 for λ ∈ [λ0, λ0 + ε].
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noise) and the regressors are stochastically independent; we consider a random de-
sign X with independent columns, and as a result, all population correlations van-
ish (so the sample correlations are small). We also explain that this phenomenon
is mainly due to the shrinkage of regression coefficients, and does not occur when
using other methods, for example, an ℓ0 penalty in (1.1) rather than the ℓ1 norm,
compare Theorem 3.1 below.

Formally, we study the value of the false discovery proportion (FDP), the ratio
between the number of false discoveries and the total number of discoveries, along
the Lasso path.5 This requires notions of true/false discoveries, and we pause to
discuss this important point. In high dimensions, it is not a trivial task to define
what are true and false discoveries; see, for example, [1, 5, 20, 22, 34]. These
works are concerned with a large number of correlated regressors, where it is not
clear which of these should be selected in a model. In response, we have selected
to work in the very special case of independent regressors precisely to analyze a
context where such complications do not arise and it is, instead, quite clear what
true and false discoveries are. We classify a selected regressor Xj to be a false
discovery if it is stochastically independent from the response, which in our setting
is equivalent to βj = 0. Indeed, under no circumstance can we say that that such a
variable, which has zero explanatory power, is a true discovery.

Having clarified this point and as a setup for our theoretical findings, Fig-
ure 1 studies the performance of the Lasso under a 1010 × 1000 a random Gaus-
sian design, where the entries of X are independent draws from N (0,1). Set
β1 = · · · = β200 = 4, β201 = · · · = β1000 = 0 and the errors to be independent stan-
dard normals. Hence, we have 200 nonzero coefficients out of 1000 (a relatively
sparse setting), and a very large signal-to-noise ratio (SNR). For instance, if we
order the variables by the magnitude of the least-squares estimate, which we can

FIG. 1. True positive and false positive rates along the Lasso path as compared to the ordering

provided by the least-squares estimate.

5Similarly, the TPP is defined as the ratio between the number of true discoveries and that of
potential true discoveries to be made.
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run since n = 1010 > 1000 = p, then with probability practically equal to one, all
the top 200 least-squares discoveries correspond to true discoveries, that is, vari-
ables for which βj = 4. This is in sharp contrast with the Lasso, which selects
null variables rather early. To be sure, when the Lasso includes half of the true
predictors so that the false negative proportion falls below 50% or true positive
proportion (TPP) passes the 50% mark, the FDP has already passed 8% meaning
that we have already made 9 false discoveries. The FDP further increases to 19%
the first time the Lasso model includes all true predictors, that is, achieves full
power (false negative proportion vanishes).

Figure 2 provides a closer look at this phenomenon, and summarizes the out-
comes from 100 independent experiments under the same Gaussian random design
setting. In all the simulations, the first noise variable enters the Lasso model be-
fore 44% of the true signals are detected, and the last true signal is preceded by at
least 22 and, sometimes, even 54 false discoveries. On average, the Lasso detects
about 32 signals before the first false variable enters; to put it differently, the TPP
is only 16% at the time the first false discovery is made. The average FDP evalu-
ated the first time all signals are detected is 15%; for related empirical results see,
for example, [19].

The main contribution of this paper is to provide a quantitative description of
this phenomenon in the asymptotic framework of linear sparsity defined below
and previously studied, for example, in [4]. Assuming a random design with in-
dependent Gaussian predictors as above, we derive a fundamental Lasso trade-off
between power (the ability to detect signals) and type I errors or, said differently,
between the true positive and the false positive rates. This trade-off says that it is
impossible to achieve high power and a low false positive rate simultaneously. For-
mally, we compute the formula for an exact boundary curve separating achievable
(TPP,FDP) pairs from pairs that are impossible to achieve no matter the value

FIG. 2. Left: power when the first false variable enters the Lasso model. Right: false discovery

proportion the first time power reaches one (false negative proportion vanishes).
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of the signal-to-noise ratio (SNR). Hence, we prove that there is a whole favor-
able region in the (TPP,FDP) plane that cannot be reached; see Figure 3 for an
illustration.

2. The Lasso trade-off diagram.

2.1. Linear sparsity and the working model. We mostly work in the setting
of [4], which specifies the design X ∈ R

n×p , the parameter sequence β ∈ R
p and

the errors z ∈ R
n. The design matrix X has i.i.d. N (0,1/n) entries so that the

columns are approximately normalized, and the errors zi are i.i.d. N (0, σ 2), where
σ is fixed but otherwise arbitrary. Note that we do not exclude the value σ = 0
corresponding to noiseless observations. The regression coefficients β1, . . . , βp are
independent copies of a random variable � obeying E�2 < ∞ and P(� �= 0) =
ǫ ∈ (0,1) for some constant ǫ. For completeness, X, β and z are all independent
from each other. As in [4], we are interested in the limiting case where p,n → ∞
with n/p → δ for some positive constant δ. A few comments are in order.

Linear sparsity. The first concerns the degree of sparsity. In our model, the ex-
pected number of nonzero regression coefficients is linear in p and equal to ǫ ·p for
some ǫ > 0. Hence, this model excludes a form of asymptotics discussed in [29, 35,
36], for instance, where the fraction of nonzero coefficients vanishes in the limit of
large problem sizes. Specifically, our results do not contradict asymptotic results
from [36] predicting perfect support recovery in an asymptotic regime, where the
number of k of variables in the model obeys k/p ≤ δ/(2 logp) · (1 + o(1)) and the
effect sizes all grow like c ·σ

√
2 logp, where c is an unknown numerical constant.

The merit of the linear sparsity regime lies in the fact that our theory makes accu-
rate predictions when describing the performance of the Lasso in practical settings
with moderately large dimensions and reasonable values of the degree of sparsity,
including rather sparse signals. The precision of these predictions is illustrated in
Figure 5 and in Section 4. In the latter case, n = 250, p = 1000 and the number of
k of signals is very small, that is, k = 18.

Gaussian designs. Second, Gaussian designs with independent columns are
believed to be “easy” or favorable for model selection due to weak correlations
between distinct features. (Such designs happen to obey restricted isometry prop-
erties [9] or restricted eigenvalue conditions [6] with high probability, which have
been shown to be useful in settings sparser than those considered in this paper.)
Hence, negative results under the working hypothesis are likely to extend more
generally.

Regression coefficients. Third, the assumption concerning the distribution of
the regression coefficients can be slightly weakened: all we need is that the se-
quence β1, . . . , βp has a convergent empirical distribution with bounded second
moment. We shall not pursue this generalization here.
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2.2. Main result. Throughout the paper, V (resp., T ) denotes the number of
Lasso false (resp., true) discoveries while k = |{j : βj �= 0}| denotes the number of
true signals; formally, V (λ) = |{j : β̂j (λ) �= 0 and βj = 0}| whereas T (λ) = |{j :
β̂j (λ) �= 0 and βj �= 0}|. With this, we define the FDP as usual:

(2.1) FDP(λ) =
V (λ)

|{j : β̂j (λ) �= 0}| ∨ 1

and, similarly, the TPP is defined as

(2.2) TPP(λ) =
T (λ)

k ∨ 1

(above, a ∨ b = max{a, b}). The dependency on λ shall often be suppressed when
clear from the context. Our main result provides an explicit trade-off between FDP
and TPP.

THEOREM 2.1. Fix δ ∈ (0,∞) and ǫ ∈ (0,1), and consider the function

q⋆(·) = q⋆(·; δ, ǫ) > 0 given in (2.4). Then under the working hypothesis and for

any arbitrary small constants λ0 > 0 and η > 0, the following conclusions hold:

(a) In the noiseless case (σ = 0), the event

(2.3)
⋂

λ≥λ0

{
FDP(λ) ≥ q⋆(TPP(λ)

)
− η

}

holds with probability tending to one. [The lower bound on λ in (2.3) does not

impede interpretability since we are not interested in variables entering the path

last.]
(b) With noisy data (σ > 0) the conclusion is exactly the same as in (a).
(c) Therefore, in both the noiseless and noisy cases, no matter how we choose

λ̂(y,X) ≥ c1 adaptively by looking at the response y and design X, with proba-

bility tending to one we will never have FDP(̂λ) < q⋆(TPP(̂λ)) − c2.
(d) The boundary curve q⋆ is tight: any continuous curve q(u) ≥ q⋆(u) with

strict inequality for some u will fail (a) and (b) for some prior distribution � on

the regression coefficients.

A different way to phrase the trade-off is via false discovery and false negative
rates. Here, the FDP is a natural measure of type I error while 1−TPP (often called
the false negative proportion) is the fraction of missed signals, a natural notion of
type II error. In this language, our results simply say that nowhere on the Lasso
path can both types of error rates be simultaneously low.

REMARK 1. We would like to emphasize that the boundary is derived from
a best-case point of view. For a fixed prior �, we also provide in Theorem D.2
from Appendix D [31] a trade-off curve q� between TPP and FDP, which always



FALSE DISCOVERIES ON LASSO PATH 2139

FIG. 3. The Lasso trade-off diagram: left is with δ = 0.5 and ǫ = 0.15, and right is with δ = 0.3
and ǫ = 0.15 (the vertical truncation occurs at 0.6791).

lies above the boundary q⋆. Hence, the trade-off is of course less favorable when
we deal with a specific Lasso problem. In fact, q⋆ is nothing else but the lower
envelope of all the instance-specific curves q� with P(� �= 0) = ǫ.

Figure 3 presents two instances of the Lasso trade-off diagram, where the curve
q⋆(·) separates the red region, where both type I and type II errors are small, from
the rest (the white region). Looking at this picture, Theorem 2.1 says that nowhere
on the Lasso path we will find ourselves in the red region, and that this statement
continues to hold true even when there is no noise. Our theorem also says that we
cannot move the boundary upward. As we shall see, we can come arbitrarily close
to any point on the curve by specifying a prior � and a value of λ. Note that the
right plot is vertically truncated at 0.6791, implying that TPP cannot even approach
1 in the regime of δ = 0.3, ǫ = 0.15. This upper limit is where the Donoho–Tanner
phase transition occurs [12]; see the discussion in Section 2.6 and Appendix C.

Support recovery from noiseless data is presumably the most ideal scenario.
Yet, the trade-off remains the same as seen in the first claim of the theorem. As ex-
plained in Section 3, this can be understood by considering that the root cause un-
derlying the trade-off in both the noiseless and noisy cases come from the pseudo-
noise introduced by shrinkage.

2.3. The boundary curve q⋆. We now turn to specify q⋆. For a fixed u, let
t⋆(u) be the largest positive root6 of the equation in t ,

2(1 − ǫ)[(1 + t2)�(−t) − tφ(t)] + ǫ(1 + t2) − δ

ǫ[(1 + t2)(1 − 2�(−t)) + 2tφ(t)]
=

1 − u

1 − 2�(−t)
.

6If u = 0, treat +∞ as a root of the equation, and in (2.4) conventionally set 0/0 = 0. In the case
where δ ≥ 1, or δ < 1 and ǫ is no larger than a threshold determined only by δ, the range of u is
the unit interval [0,1]. Otherwise, the range of u is the interval with endpoints 0 and some number
strictly smaller than 1; see the discussion in Appendix C.
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FIG. 4. Top-left is with δ = 1; top-right is with ǫ = 0.2; bottom-left is with δ = 0.1; and bot-

tom-right is with ǫ = 0.05.

Then

(2.4) q⋆(u; δ, ǫ) =
2(1 − ǫ)�(−t⋆(u))

2(1 − ǫ)�(−t⋆(u)) + ǫu
.

It can be shown that this function is infinitely many times differentiable over its
domain, always strictly increasing, and vanishes at u = 0. Matlab code to calculate
q⋆ is available at https://github.com/wjsu/fdrlasso.

Figure 4 displays examples of the function q⋆ for different values of ǫ (spar-
sity), and δ (dimensionality). It can be observed that the issue of FDR control
becomes more severe when the sparsity ratio ǫ = k/p increases and the dimen-
sionality 1/δ = p/n increases.

2.4. Numerical illustration. Figure 5 provides the outcomes of numerical sim-
ulations for finite values of n and p in the noiseless setup where σ = 0. For each
of n = p = 1000 and n = p = 5000, we compute 10 independent Lasso paths and
plot all pairs (TPP,FDP) along the way. In Figure 5(a), we can see that when
TPP < 0.8, then the large majority of pairs (TPP,FDP) along these 10 paths are

https://github.com/wjsu/fdrlasso
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FIG. 5. In both (a) and (b), n/p = δ = 1, ǫ = 0.2, and the noise level is σ = 0 (noiseless). (a) FDP

vs. TPP along 10 independent Lasso paths with P(� = 50) = 1 − P(� = 0) = ǫ. (b) Mean FDP vs.
mean TPP averaged at different values of λ over 100 replicates for n = p = 1000, P(� = 0) = 1 − ǫ

as before and P(� = 50|� �= 0) = 1 − P(� = 0.1|� �= 0) = ǫ′.

above the boundary. When TPP approaches one, the average FDP becomes closer
to the boundary and a fraction of the paths fall below the line. As expected this
proportion is substantially smaller for the larger problem size.

2.5. Sharpness. The last conclusion from the theorem stems from the follow-
ing fact: take any point (u, q⋆(u)) on the boundary curve; then we can approach
this point by fixing ǫ′ ∈ (0,1) and setting the prior to be

� =

⎧
⎪⎪⎨
⎪⎪⎩

M, w.p. ǫ · ǫ′,

M−1, w.p. ǫ ·
(
1 − ǫ′),

0, w.p. 1 − ǫ.

We think of M as being very large so that the (nonzero) signals are either very
strong or very weak. In Appendix C, we prove that for any u between 0 and 1
there is some fixed ǫ′ = ǫ′(u) > 0 such that7

(2.5) lim
M→∞

lim
n,p→∞

(
TPP(λ),FDP(λ)

)
→

(
u,q⋆(u)

)
,

where convergence occurs in probability. This holds provided that λ → ∞ in such
a way that M/λ → ∞; for example, λ =

√
M . Hence, the most favorable config-

uration is when the signal is a mixture of very strong and very weak effect sizes
because weak effects cannot be counted as false positives, thus reducing the FDP.

7In some cases, u should be bounded above by some constant strictly smaller than 1. See the
previous footnote for details.
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Figure 5(b) provides an illustration of (2.5). The setting is as in Figure 5(a)
with n = p = 1000 and P(� = 0) = 1 − ǫ except that, here, conditionally on
being nonzero the prior takes on the values 50 and 0.1 with probability ǫ′ ∈
{0.3,0.5,0.7,0.9} and 1 − ǫ′, respectively, so that we have a mixture of strong
and weak signals. We observe that the true/false positive rate curve nicely touches
only one point on the boundary depending on the proportion ǫ′ of strong signals.

2.6. Technical novelties and comparisons with other works. The proof of The-
orem 2.1 is built on top of the approximate message passing (AMP) theory devel-
oped in [2, 3, 13], and requires nontrivial extensions. AMP was originally designed
as an algorithmic solution to compressive sensing problems under random Gaus-
sian designs. In recent years, AMP has also found applications in robust statistics
[14, 15], structured principal component analysis [11, 25] and the analysis of the
stochastic block model [10]. Having said this, AMP theory is of crucial importance
to us because it turns out to be a very useful technique to rigorously study various
statistical properties of the Lasso solution whenever we employ a fixed value of
the regularizing parameter λ [4, 24, 26].

There are, however, major differences between our work and AMP research.
First and foremost, our paper is concerned with situations where λ is selected
adaptively, that is, from the data; this is clearly outside of the envelope of cur-
rent AMP results. Second, we are also concerned with situations where the noise
variance can be zero. Likewise, this is outside of current knowledge. These dif-
ferences are significant and as far as we know, our main result cannot be seen as
a straightforward extension of AMP theory. In particular, we introduce a host of
novel elements to deal, for instance, with the irregularity of the Lasso path. The ir-
regularity means that a variable can enter and leave the model multiple times along
the Lasso path [17, 33] so that natural sequences of Lasso models are not nested.
This implies that a naive application of sandwiching inequalities does not give the
type of statements holding uniformly over all λ’s that we are looking for.

Instead, we develop new tools to understand the “continuity” of the support of
β̂(λ) as a function of λ. Since the support can be characterized by the Karush–
Kuhn–Tucker (KKT) conditions, this requires establishing some sort of continuity
of the KKT conditions. Ultimately, we shall see that this comes down to under-
standing the maximum distance—uniformly over λ and λ′—between Lasso esti-
mates β̂(λ) and β̂(λ′) at close values of the regularizing parameter. A complete
statement of this important intermediate result is provided in Lemma B.2 from
Appendix B.

Our results can also be compared to the phase-transition curve from [12], which
was obtained under the same asymptotic regime and describes conditions for per-
fect signal recovery in the noiseless case. The solution algorithm there is the linear
program, which minimizes the ℓ1 norm of the fitted coefficients under equality
constraints, and corresponds to the Lasso solution in the limit of λ → 0 (the end
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or bottom of the Lasso path). The conditions for perfect signal recovery by the
Lasso turn out to be far more restrictive than those related to this linear program.
For example, our FDP-TPP trade-off curves show that perfect recovery of an in-
finitely large signal by Lasso is often practically impossible even when n ≥ p (see
Figure 4). Interestingly, the phase-transition curve also plays a role in describing
the performance of the Lasso, since it turns out that for signals dense enough not
to be recovered by the linear program, not only does the Lasso face the problem
of early false discoveries, it also hits a power limit for arbitrary small values of λ

(see the discussion in Appendix C).
Finally, we would like also to point out that some existing works have investi-

gated support recovery in regimes including linear sparsity under random designs
(see, e.g., [29, 35]). These interesting results were, however, obtained by taking an
information-theoretic point of view and do not apply to computationally feasible
methods such as the Lasso.

3. What is wrong with shrinkage?

3.1. Performance of ℓ0 methods. We wrote earlier that not all methods share
the same difficulties in identifying those variables in the model. If the signals are
sufficiently strong, some other methods, perhaps with exponential computational
cost, can achieve good model selection performance; see, for example, [29]. As an
example, consider the simple ℓ0-penalized maximum likelihood estimate:

(3.1) β̂0 = argmin
b∈Rp

‖y − Xb‖2 + λ‖b‖0.

Methods known as AIC, BIC and RIC (short for risk inflation criterion) are all of
this type and correspond to distinct values of the regularizing parameter λ. It turns
out that such fitting strategies can achieve perfect separation in some cases.

THEOREM 3.1. Under our working hypothesis, take ǫ < δ for identifiability,
and consider the two-point prior:

� =
{
M, w.p. ǫ,

0, w.p. 1 − ǫ.

Then we can find λ(M) such that in probability, the discoveries of the ℓ0 estimator

(3.1) obey

lim
M→∞

lim
n,p→∞

FDP = 0 and lim
M→∞

lim
n,p→∞

TPP = 1.

The proof of the theorem is in Appendix E. Similar conclusions will certainly
hold for many other nonconvex methods, including SCAD and MC+ with properly
tuned parameters [18, 39].
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3.2. Some heuristic explanation. In light of Theorem 3.1, we pause to dis-
cuss the cause underlying the limitations of the Lasso for variable selection, which
comes from the pseudo-noise introduced by shrinkage. As is well known, the Lasso
applies some form of soft-thresholding. This means that when the regularization
parameter λ is large, the Lasso estimates are seriously biased downwards. Another
way to put this is that the residuals still contain much of the effects associated
with the selected variables. This can be thought of as extra noise that we may want
to call shrinkage noise. Now as many strong variables get picked up, the shrink-
age noise gets inflated and its projection along the directions of some of the null
variables may actually dwarf the signals coming from the strong regression coef-
ficients; this is why null variables get picked up. Although our exposition below
dramatically lacks in rigor, it nevertheless formalizes this point in some qualita-

tive fashion. It is important to note, however, that this phenomenon occurs in the
linear sparsity regime considered in this paper so that we have sufficiently many
variables for the shrinkage noise to build up and have a fold on other variables that
becomes competitive with the signal. In contrast, under extreme sparsity and high
SNR, both type I and II errors can be controlled at low levels; see, for example,
[21].

For simplicity, we fix the true support T to be a deterministic subset of size ǫ ·p,
each nonzero coefficient in T taking on a constant value M > 0. Also, assume
δ > ǫ. Finally, since the noiseless case z = 0 is conceptually perhaps the most
difficult, suppose σ = 0. Consider the reduced Lasso problem first:

β̂T (λ) = argmin
bT ∈Rǫp

1

2
‖y − XT bT ‖2 + λ‖bT ‖1.

This (reduced) solution β̂T (λ) is independent from the other columns X
T

(here
and below T is the complement of T ). Now take λ to be of the same magnitude
as M so that roughly half of the signal variables are selected. The KKT conditions
state that

−λ1 ≤ X⊤
T (y − XT β̂T ) ≤ λ1,

where 1 is the vectors of all ones. Note that if |X⊤
j (y −XT β̂T )| ≤ λ for all j ∈ T ,

then extending β̂T (λ) with zeros would be the solution to the full Lasso problem—
with all variables included as potential predictors—since it would obey the KKT
conditions for the full problem. A first simple fact is this: for j ∈ T , if

(3.2)
∣∣X⊤

j (y − XT β̂T )
∣∣ > λ,

then Xj must be selected by the incremental Lasso with design variables indexed
by T ∪ {j}. Now we make an assumption which is heuristically reasonable: any j

obeying (3.2) has a reasonable chance to be selected in the full Lasso problem with
the same λ (by this, we mean with some probability bounded away from zero). We
argue in favor of this heuristic later.
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Following our heuristic, we would need to argue that (3.2) holds for a number
of variables in T linear in p. Write

X⊤
T (y − XT β̂T ) = X⊤

T (XT βT − XT β̂T ) = λgT ,

where gT is a subgradient of the ℓ1 norm at β̂T . Hence, βT − β̂T =
λ(X⊤

T
XT )−1gT and

XT (βT − β̂T ) = λXT

(
X⊤

T XT

)−1
gT .

Since δ > ǫ, XT (X⊤
T
XT )−1 has a smallest singular value bounded away from

zero (since XT is a fixed random matrix with more rows than columns). Now
because we make about half discoveries, the subgradient takes on the value one (in
magnitude) at about ǫ · p/2 times. Hence, with high probability,

∥∥XT (βT − β̂T )
∥∥ ≥ λ · c0 · ‖gT ‖ ≥ λ · c1 · p

for some constants c0, c1 depending on ǫ and δ.
Now we use the fact that β̂T (λ) is independent of X

T
. For any j /∈ T , it follows

that

X⊤
j (y − XT β̂T ) = X⊤

j XT (βT − β̂T )

is conditionally normally distributed with mean zero and variance

‖XT (βT − β̂T )‖2

n
≥

c1λ
2p

n
= c2 · λ2.

In conclusion, the probability that X⊤
j (y−XT β̂T ) has absolute value larger than λ

is bounded away from 0. Since there are (1 − ǫ)p such j ’s, their expected number
is linear in p. This implies that by the time half of the true variables are selected,
we already have a nonvanishing FDP. Note that when |T | is not linear in p but
smaller, for example, |T | ≤ c0n/ logp for some sufficiently small constant c0, the
variance is much smaller because the estimation error ‖XT (βT − β̂T )‖2 is much
lower, and this phenomenon does not occur.

Returning to our heuristic, we make things simpler by considering alternatives:
(a) if very few extra variables in T were selected by the full Lasso, then the value
of the prediction Xβ̂ would presumably be close to that obtained from the reduced
model. In other words, the residuals y − Xβ̂ from the full problem should not
differ much from those in the reduced problem. Hence, for any j obeying (3.2),
Xj would have a high correlation with y − Xβ̂ . Thus, this correlation has a good
chance to be close to λ, or actually be equal to λ. Equivalently, Xj would likely
be selected by the full Lasso problem. (b) If on the other hand, the number of
variables selected from T by the full Lasso were a sizeable proportion of |T |, we
would have lots of false discoveries, which is our claim.

In a more rigorous way, AMP claims that under our working hypothesis,
the Lasso estimates β̂j (λ) are, in a certain sense, asymptotically distributed as
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ηατ (βj + τWj ) for most j and Wj ’s independently drawn from N (0,1). The pos-
itive constants α and τ are uniquely determined by a pair of nonlinear equations
parameterized by ǫ, δ, �, σ 2, and λ. Suppose as before that all the nonzero coeffi-
cients of β are large in magnitude, say they are all equal to M . When about half of
them appear on the path, we have that λ is just about equal to M . A consequence
of the AMP equations is that τ is also of this order of magnitude. Hence, under the
null we have that (βj + τWj )/M ∼ N (0, (τ/M)2) while under the alternative, it
is distributed as N (1, (τ/M)2). Because τ/M is bounded away from zero, we see
that false discoveries are bound to happen.

Variants of the Lasso and other ℓ1-penalized methods, including ℓ1-penalized
logistic regression and the Dantzig selector, also suffer from this “shrinkage to
noise” issue.

4. Discussion. We have evidenced a clear trade-off between false and true
positive rates under the assumption that the design matrix has i.i.d. Gaussian en-
tries. It is likely that there would be extensions of this result to designs with general
i.i.d. sub-Gaussian entries as strong evidence suggests that the AMP theory may
be valid for such larger classes; see [2]. It might also be of interest to study the
Lasso trade-off diagram under correlated random designs.

As we previously mentioned in the Introduction, a copious body of literature
considers the Lasso support recovery under Gaussian random designs, where the
sparsity of the signal is often assumed to be sub-linear in the ambient dimen-
sion p. Recall that if all the nonzero signal components have magnitudes at least
cσ

√
2 logp for some unspecified numerical constant c (which would have to ex-

ceed one), the results from [36] conclude that, asymptotically, a sample size of
n ≥ (2+o(1))k logp is both necessary and sufficient for the Lasso to obtain perfect
support recovery. What do these results say for finite values of n and p? Figure 6
demonstrates the performance of the Lasso under a moderately large 250 × 1000
random Gaussian design. Here, we consider a very sparse signal, where only
k = 18 regression coefficients are nonzero, β1 = · · · = β18 = 2.5

√
2 logp ≈ 9.3,

β19 = · · · = β1000 = 0, and the noise variance is σ 2 = 1. Since k = 18 is smaller
than n/2 logp and β is substantially larger than

√
2 logp one might expect that

Lasso would recover the signal support. However, Figure 1(left) shows that this
might not be the case. We see that the Lasso includes five false discoveries be-
fore all true predictors are included, which leads to an FDP of 21.7% by the time
the power (TPP) reaches 1. Figure 6(right) summarizes the outcomes from 500
independent experiments, and shows that the average FDP reaches 13.4% when
TPP = 1. With these dimensions, perfect recovery is not guaranteed even in the
case of “infinitely” large signals (no noise). In this case, perfect recovery occurs
in only 75% of all replicates and the averaged FDP at the point of full power is
equal to 1.7%, which almost perfectly agrees with the boundary FDP provided in
Theorem 2.1. Thus, quite surprisingly, our results obtained under a linear sparsity
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FIG. 6. Simulation setup: n = 250, p = 1000, β1 = · · · = β18 = 2.5
√

2 logp ≈ 9.3 (the other

coefficients all vanish), σ 2 = 1 (with noise) and σ 2 = 0 (no noise). Left: noisy case. True positive and

false positive rates along a single realization of the Lasso path. The least squares path is obtained

by ordering least squares estimates from a model including the first 50 variables selected by the

Lasso. Right: mean FDP as a function of TPP. The mean FDP was obtained by averaging over 500
independent trials.

regime apply to sparser regimes, and might prove useful across a wide range of
sparsity levels.

Of concern in this paper are statistical properties regarding the number of true
and false discoveries along the Lasso path but it would also be interesting to study
perhaps finer questions such as this: when does the first noise variable get selected?
Consider Figure 7: there, n = p = 1000, σ 2 = 1, β1 = · · · = βk = 50 (very large
SNR) and k varies from 5 to 150. In the very low sparsity regime, all the signal

FIG. 7. Rank of the first false discovery. Here, n = p = 1000 and β1 = · · · = βk = 50 for k ranging

from 5 to 150 (βi = 0 for i > k). We plot averages from 100 independent replicates and display the

range between minimal and maximal realized values. The vertical line is placed at k = n/(2 logp)

and the 45◦ line passing through the origin is shown for convenience.
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variables are selected before any noise variable. When the number k of signals
increases we observe early false discoveries, which may occur for values of k

smaller than n/(2 logp). However, the average rank of the first false discovery
is substantially smaller than k only after k exceeds n/(2 logp). Then it keeps on
decreasing as k continues to increase, a phenomenon not explained by any result
we are aware of. In the linear sparsity regime, it would be interesting to derive a
prediction for the average time of the first false entry, at least in the noiseless case.

Methods that are computationally efficient and also enjoy good model perfor-
mance in the linear sparsity regime would be highly desirable. (The Lasso and the
ℓ0 method each enjoys one property but not the other.) While it is beyond our scope
to address this problem, we conclude the discussion by considering marginal re-
gression, a technique widely used in practice and not computationally demanding.
A simple analysis shows that marginal regression suffers from the same issue as
the Lasso under our working hypothesis. To show this, examine the noiseless case
(σ = 0) and assume β1 = · · · = βk = M for some constant M > 0. It is easy to see
that the marginal statistic X⊤

j y for the j th variable is asymptotically distributed as

N (0, σ̃ 2), where σ̃ = M
√

(k − 1)/n, if j is a true null and N (M, σ̃ 2) otherwise.
In the linear sparsity regime, where k/n tends to a constant, the mean shift M and
standard deviation σ̃ have comparable magnitudes. As a result, nulls and nonnulls
are also interspersed on the marginal regression path, so that we would have either
high FDR or low power.
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SUPPLEMENTARY MATERIAL

Supplement to “False discoveries occur early on the Lasso path” (DOI:
10.1214/16-AOS1521SUPP; .pdf). The supplementary materials contain proofs of
some technical results in this paper.
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