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Summary

SAM (“Significance Analysis of Microarrays”) is a highly popular
permutation-based multiple testing method that estimates the false dis-
covery proportion (FDP), the fraction of false positives among all rejected
hypotheses. Perhaps surprisingly, until now this method had no known
properties. This paper extends SAM by providing (1 − α)-confidence
upper bounds for the FDP, so that exact confidence statements can
be made. As a special case, an estimate of the FDP is obtained that
underestimates the FDP with probability at most 0.5. Moreover, using
a closed testing procedure, this paper decreases the upper bounds and
estimates in such a way that the confidence level is maintained. We base
our methods on a general result on exact testing with random permutations.
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1 Introduction

When multiple hypotheses are tested, interest is often in estimating the false
discovery proportion (FDP), the number of false positives divided by the
total number of rejections. When there are no rejections, the FDP is defined
to be zero. When there is unknown dependence in the data, a challenge
is to find methods that are powerful but also require few assumptions on
the dependence structure (van der Laan et al., 2004; Meinshausen, 2006;
Genovese and Wasserman, 2006). A highly popular method for estimation
of the FDP is Significance Analysis of Microarrays (SAM) (Tusher et al.,
2001). SAM is a very general method that is not at all limited to microarray
data. It requires no parametric assumpions and almost no assumptions on
the dependence structure in the data. Instead, it adapts to the dependence
stucture by using permutations. Consequently Tusher et al. (2001) have
been cited more than 10,000 times.

The SAM procedure in Tusher et al. is based on two ideas. The first is
estimation of the FDP based on permutations of the data. The second idea
is a specific choice of the test statistic, involving a small fudge factor. In
this paper, focus is on the first idea. We do not consider a specific type of
test statistics, but allow any test statistics to be used.

The rationale of SAM is the following. SAM rejects all hypotheses with
test statistics lying in the user-defined rejection region. The number of
false positives is estimated by considering permuted versions of the data.
The median of the numbers of rejections for the permuted versions of the
data is the estimate of the number of false positives. This value divided by
the number of rejections is an estimate of the FDP. No properties of the
estimate have been proven (although Dudoit et al. (2002, 2003) note that
SAM estimates the Per-Family Error Rate). Until now SAM has been a
very sensible, but quite heuristic method.

Based on Storey (2002; 2004) an adaptation of SAM was suggested to
decrease the estimate. It is based on the idea that when there are relatively
many false hypotheses, the original SAM method tends to overestimate the
number of false positives. The reason is that the many false hypotheses
cannot lead to false positives and SAM did not take this into account. Hence
it was suggested to multiply the basic SAM estimate by an estimate π̂0 of
the fraction of true hypotheses π0. Usually this leads to a lower estimate
of the FDP. This multiplication by the plug-in π̂0 has been implemented in
the samr R-package, the main software for SAM (Chu et al., 2001). Like
the original SAM method, this newer procedure has no known properties.

The first aim of this paper is to construct a (1 − α)-confidence upper
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bound for the FDP for α ∈ [0, 1). That is, we extend SAM by providing a
confidence interval around the estimate of the FDP. Thus, for small α, we
obtain a high-confidence upper bound for the FDP. For α = 0.5, we obtain
an estimate of the FDP, which underestimates the FDP with probability at
most 0.5. This estimate coincides with the estimate of the samr package
without multiplication by π̂0. Our (1−α)-upper bound is the (1−α)-quantile
of the permutation distribution of the number of rejections. It was inspired
by a work by Meinshausen (2006), who provides upper bounds for the FDP
that are uniformly valid over multiple rejection regions.

The further contributions of this paper are procedures that decrease the
basic (1 − α)-bound, in such a way that the exact properties are main-
tained. In particular, for α = 0.5 the estimate is improved. These uniform
improvements do not require additional assumptions. As with the plug-in
method based on π̂0, the gain is largest when there are relatively many false
hypotheses. The improvements are derived using a result by Goeman and
Solari (2011), who provide uniform FDP bounds by using a closed testing
procedure. Our derivation reveals surprising connections between SAM and
closed testing.

All our methods are based on a general result on exact testing with
randomly sampled permutations, which extends the work of Phipson and
Smyth (2010). This result also allows proving properties of other existing
methods based on random permutations. All methods in this paper have
been implemented in the R package confSAM.

This paper is built up as follows. In Section 2.1 the basic (1 − α)-
bound for the FDP is discussed. A closed-testing based improvement of
this method is presented in Section 3, including a fast approximation of this
improvement. In Section 4 a conservative shortcut is constructed for the
method from Section 3. The proposed methods are applied to simulated
data in in Section 5. Section 6 contains an analysis of real data.

2 Basic upper bound

In this section the basic (1− α)-bound for the FDP is discussed.

2.1 Setting and notation

Througout the paper, we consider the following setting. Let X be data,
taking values in a sample space X . Consider hypotheses H1, ...,Hm and test
statistics Ti : X → R, 1 ≤ i ≤ m. For each 1 ≤ i ≤ m, let Di ⊆ R be a
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rejection region associated with hypothesis Hi and test statistic Ti. That is,
Hi is rejected if and only if Ti(X) ∈ Di, so that

R = {1 ≤ i ≤ m : Ti(X) ∈ Di}

is the set of indices of rejected hypotheses. We simply call R the set of
rejected hypotheses. We write Rc = {1, ...,m} \ R. Let

N = {1 ≤ i ≤ m : Hi is true}

be the set of true hypotheses. Let

N = #N , R = #R

and
V = #N ∩R,

the number of false positives. Since sets and numbers such as R, R and
V depend on the data, we denote them as functions on X . For example,
for x ∈ X , R(x) denotes the set of rejected hypotheses for data x. The
set N does not depend on the data, since the hypotheses are fixed. Thus
V (x) = #(R(x) ∩ N ). When no argument is written, this means that the
argument is X. For example, R is short for R(X). The false discovery
proportion is

FDP =
V

R

if R > 0 and 0 otherwise.
All methods in this paper are based on permutations or other transfor-

mations of the data. Let G be a set of transformations g : X → X , such
that G is a group under composition of maps. Throughout the paper we
use the word ‘group’ in the strict algebraic sense, rather than loosely in the
meaning of ‘set’ as is often done in the statistical literature. We write g(x)
as gx. In practice G is often a group of permutation maps. Sometimes other
groups of transformations will be used, such as rotations (Langsrud, 2005;
Solari et al., 2014) and multiplication of part of the data by −1 (Pesarin
and Salmaso (2010), pp. 54 and 168).

The following assumption, made throughout this paper, underlies many
permutation-based multiple testing methods, e.g. Westfall and Young’s
maxT method (1993), Meinshausen and Bühlmann (2005) and Meinshausen
(2006).

Assumption 1. The joint distribution of the test statistics Ti(gX) with
i ∈ N , g ∈ G, is invariant under all transformations in G of X.
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In applications, an argument needs to be given for this distributional
assumption. As a mathematical example where the assumption is satisfied,
consider a basic randomized trial where Hi implies that the distribution of
the expression level of gene i is the same for cases and controls. Typically
each Ti only depends on the expression levels measured for gene i. Then
Assumption 1 is satisfied if the multivariate distribution of the expression
levels corresponding to N is the same for cases and controls.

It is allowed to define N simply as the largest set of hypotheses for which
Assumption 1 is satisfied, as in Meinshausen and Bühlmann (2005). This is
a less usual definition of N , but Assumption 1 is then guaranteed to hold.

Throughout the paper, random transformations from G are used. The
vector of random transformations is defined as follows.

Definition 2. Let G′ be the vector (id, g2, ..., gw), where id is the identity
in G and g2, ..., gw are random elements from G. Write g1 = id. The
random transformations can be drawn either with or without replacement:
the statements in this paper hold for both cases. In the latter case, w ≤ #G.
If we draw g2, ...gw without replacement, then we take them to be uniformly
distributed on G \ {id}, otherwise uniform on G.

For I ⊆ {1, ...,m} and x ∈ X , write

RI(x) = #R(x) ∩ I.

Let
R

(1)
I ≤ ... ≤ R

(w)
I

be the sorted values RI(gjX), 1 ≤ j ≤ w. We have R{1,...,m} = R, so write

R(j) := R
(j)
{1,...,m}, 1 ≤ j ≤ w.

Throughout the paper, α ∈ [0, 1) and k = d(1 − α)we, the smallest
integer at least as large as (1 − α)w. The minimum of two numbers a and
b is denoted by a ∧ b.

2.2 Upper bound and median unbiased estimate

Here the upper bound and estimate for the FDP are constructed. We first
prove the permutation principle that underlies our methods. It is known
that the permutation test is exact when the set of transformations (e.g.
permutations) has a group structure (Hoeffding, 1952). For example, the
set of all possible permutation maps is a group. In recent decades, permuta-
tion methods have become popular. Often random permutations are used,
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to limit the computation time. Usually a p-value based on random permu-
tations is seen as an estimate of the true permutation p-value. However, it
is also possible to compute an exact p-value based on random permutations,
if they are suitably sampled from a group. Phipson and Smyth (2010) pro-
vide formulas for exact p-values based on random permutations under some
assumptions. Their results imply that to obtain a valid test, the original
observation should be included with the random permutations. However,
they ignore the role of the group structure, which is fundamental to per-
mutation methods. Moreover, it has not been clear how results on testing
with random permutations generalise to other permutation methods (such
as SAM and Meinshausen, 2006). We now state a general result on testing
with random transformations. This result can be used to prove properties
of various permutation-based multiple testing methods. We will illustrate
this in Theorem 4, where we apply Theorem 3 in the SAM context.

Theorem 3. Let S : X → R be a test statistic. Let S(1)(X,G′) ≤ ... ≤
S(w)(X,G′) be the ordered test statistics S(gjX), 1 ≤ j ≤ w.

Consider a null hypothesis H0 which implies that the joint distribution
of the test statistics S(gX), g ∈ G, is invariant under all transformations
in G of X. Then under H0, P(S(X,G′) > S(k)(X,G′)) ≤ α.

Proof. From the group structure of G, it follows that for all 1 ≤ j ≤ w,
G′g−1j and G′ have the same distribution, if we disregard the order of the
elements. Let j have the uniform distribution on {1, ..., w} and write h = gj .
Under H0,

P
{
S(X) > S(k)(X,G′)

}
=

P
{
S(X) > S(k)(X,G′h−1)

}
=

P
{
S(hX) > S(k)(hX,G′h−1)

}
.

Since (G′h−1)(hX) = G′(h−1hX), the above equals

P
{
S(hX) > S(k)(h−1hX,G′)

}
=

P
{
S(hX) > S(k)(X,G′)

}
Since h = gj with j uniform, this equals

E
[
w−1#

{
1 ≤ j ≤ w : S(j)(X,G′) > S(k)(X,G′)

}]
≤ α,

as was to be shown.
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The value R(k) is the (1 − α)-quantile of the numbers of rejections for
the permuted versions of the data. The following theorem states that this
simple quantile is a (1 − α)-upper bound for the number of false positives
V .

Theorem 4. The number V := R(k) ∧ R is a (1 − α)-upper bound for V ,
i.e.

P
(
V ≤ V

)
≥ 1− α.

Proof. Let
V (1) ≤ ... ≤ V (w)

be the sorted values V (gjX) = #
(
R(gjX)∩N

)
, 1 ≤ j ≤ w. With Theorem

3 it follows that
P
(
V > V (k)

)
≤ α.

Since V (k) ≤ R(k),
P
(
V ≤ R(k)

)
≥ 1− α

and the result follows.

Note that V ≤ V holds if and only if V/R ≤ V /R, provided R > 0.
Thus V /R, which is interpreted as 0 when R = 0, is a (1− α)-upper bound
for the FDP. Note that taking α = 0.5 in the above theorem provides an
estimate V of V with the property that P

(
V ≤ V

)
≥ 0.5. We will call such

an estimate median unbiased, in line with the existing notion of a median
unbiased estimator of a parameter.

By assumption, the dependence structure of the test statistics Ti(X), i ∈
N , is maintained by their permutation distribution. The quantile V is based
on the permutation distribution of the number of rejections R, which is based
on the permutation distribution of the test statistics. Hence V is adapted
to the joint distribution of the test statistics Ti(X), i ∈ N . Therefore the
method does not need to take into account a worst-case scenario for their
dependence structure. Thus, by using permutations, relatively tight bounds
for the FDP tend to be obtained.

2.3 Choice of rejection regions

The rejection regions Di can be freely chosen, provided that they are not
based on the data. When they are based on the data, this may introduce
some selection bias, especially when the regions are cherry-picked in such a
way that the number of rejections is large compared the estimate of V .
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When the rejection regions Di do not depend on the data, it is not always
possible to choose sensible rejection regions when little is known about the
distribution of the test statistics. We can use permutation p-values as test
statistics however, such that we can always choose a sensible rejection region,
for instance (0, 0.01]. This leads to about 0.01N false positives on average.
In the setting of SAM, such p-values based on permutations (or other trans-
formations) can nearly always be calculated. These p-values can be based
on random permutations, as in Theorem 3. Moreover, it is allowed to base
all m p-values on a single collection of random permutations (independent
from g1, ..., gw), since the test statistics are essentially assumption-free. Note
that permutation p-values are never smaller than one divided by the number
of permutations. Thus, when the rejection region is (0, c), more than c−1

permutations should be used.
When the cutoff c is very small, the number of random permutations

needed is very large, which may make using permutation p-values time-
consuming. A possible practical solution is the following. Often the tail of
the permutation distribution of each Ti can be modeled by e.g. a generalized
Pareto distribution (Knijnenburg et al., 2009). In that case, draw a small
number of random permutations, compute the corresponding values of the
test statistic Ti and fit such a distribution to these values. Then use Di =
(qi,∞) as the rejection region for Ti, where qi is the (1 − c)-quantile of
the distribution determined for Ti. Note that this means that the rejection
regions are data-dependent. However, since they depend on permutations of
the data and not on cherry-picking the regions that give the strongest results,
the selection bias tends to be very limited or absent. Since this paper focuses
on proving exact properties however, we will keep the assumption that the
rejection regions Di are fully independent.

3 Closed testing for improved bounds

Especially when there are many false hypotheses, the basic bound V does
not exhaust α. The reason is that V then tends to be substantially larger
than the bound V (k), as can be seen from their definitions. The bound V (k)

cannot be computed in practice but has been shown to be a (1 − α)-upper
bound in the proof of Theorem 4. The closed testing principle (Marcus et al.,
1976) is a powerful method for familywise error rate control. Goeman and
Solari (2011) show how closed testing can be used to obtain upper bounds
for the FDP. By relating SAM to closed testing, we will be able to derive
a potentially smaller upper bound for V than the basic bound V . The
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improved bound is still valid with probability 1− α.

3.1 Closed testing

We recall the closed testing principle and how it can be used to obtain uni-
form upper bounds for the FDP. For each nonempty I ⊆ {1, ...,m}, denote
by HI the intersection hypothesis

⋂
i∈I Hi, the hypotheses that all hypothe-

ses Hi, i ∈ I, are true. Suppose that for each nonempty I ⊆ {1, ...,m}
an α-level test for HI is defined. These 2m − 1 tests are called local
tests. The closed testing procedure rejects all HI for which all HJ with
I ⊆ J ⊆ {1, ...,m} are rejected by their local tests. By Marcus et al.
(1976), the probability that the closed testing procedure rejects at least
one true intersection hypothesis is at most α. Thus the procedure strongly
controls the familywise error rate at level α.

The FDP upper bounds are derived as follows. Let

C = {I ⊆ {1, ...,m} : HI is rejected by the closed testing procedure}.

For each K ⊆ {1, ...,m} define

V ct(K) = max{#I : I ⊆ K, I 6∈ C},

where the maximum is defined to be zero if the set is empty. By Goeman
and Solari (2011) the following holds.

Theorem 5. Uniformly over all K ⊆ {1, ...,m}, V ct(K) is a (1− α)-upper
bound for #K ∩N , i.e.

P

[ ⋂
K⊆{1,...,m}

{
#K ∩N ≤ V ct(K)

}]
≥ 1− α.

The proof is in Goeman and Solari (2011). Note that #K ∩ N is the
number of false positives if K is the rejected set. Thus the theorem provides
bounds for the numbers of false positives that are uniform over all possible
rejected sets. Thus, if the rejected set is chosen based on the data, then the
corresponding upper bound is still valid with probability at least 1− α.

A closed testing procedure depends on its local tests. For different local
tests, different closed testing procedures are obtained. The more power the
closed testing procedure has, the lower the resulting FDP bound tends to
be. One particular closed testing procedure leads directly to the basic bound
V . The reader can check that this is the closed testing procedure based on
the local tests that reject HI if and only if RI > R(k). In Section 3.2 a more
powerful closed testing procedure is considered, which allows improvement
of the basic bound V .
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3.2 Improved FDP bounds

To obtain an improvement of the bound V for the number of false positives,
we use a more sophisticated closed testing procedure. For each nonempty

I ⊆ {1, ...,m} consider the local test that rejects HI if and only if RI > R
(k)
I .

(See the notation defined in Section 2.1.) This test has level at most α by
theorem 3. Throughout the rest of this paper, let V ct(K) refer to the closed
testing procedure based on these local tests. Note that V ct(R) provides an
upper bound for V = #R ∩ N , the number of true hypotheses in R. We
write V ct := V ct(R).

The bound V ct(R) is ideal in the sense that no smaller (1−α)-bound for
V is given in this paper or elsewhere in the literature, under our assumptions.
In practice however, it is often computationally infeasible to calculate this
bound without the use of shortcuts. Indeed, when naively computing V ct, a
huge number of local tests needs to performed unless m is small. This section
is devoted to deriving an exact shortcut for calculating V ct. In Section 4 a
conservative shortcut will be derived, i.e. an efficient method for finding an
upper bound for V ct.

The following lemma offers a shortcut for determining whether HI is
rejected by our closed testing procedure.

Lemma 6. For I ⊆ {1, ...,m}, I ∈ C if and only if RI > R
(k)
I∪Rc.

Proof. To prove the first implication, note that

I ∈ C ⇔

For all I ⊆ J ⊆ {1, ...,m}, RJ > R
(k)
J ⇒

RI∪Rc > R
(k)
I∪Rc ⇔

RI > R
(k)
I∪Rc .

For the reverse implication, suppose

#I ∩ R > R
(k)
I∪Rc (1)

and let I ⊆ J ⊆ {1, ...,m}. Then

RJ = #I ∩ R+ #(J \ I) ∩R (2)

and, because obviously #A ≥ R(k)
A∪B −R

(k)
B for A, B ⊆ {1, ...,m},

#(J \ I) ∩R ≥ R(k)
((J\I)∩R)∪(I∪Rc) −R

(k)
I∪Rc ≥ R(k)

J −R
(k)
I∪Rc . (3)
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Combining (1), (2) and (3) yields

RJ > R
(k)
I∪Rc +R

(k)
J −R

(k)
I∪Rc = R

(k)
J .

Thus all HJ with I ⊆ J ⊆ {1, ...,m} are rejected by their local tests, so
that I ∈ C.

Due to this shortcut, te determine whether I ∈ C it is not necessary
to perform all local tests for the hypotheses HJ with I ⊆ J . Instead, it

suffices to check if RI > R
(k)
I∪Rc .

Using this fact and additional observations, the following exact shortcut
is obtained for determining V ct.

Proposition 7. The bound V ct equals

R ∧
[

min
{

1 ≤M ≤ R : for all I ⊆ R with #I = M, M > R
(k)
I∪Rc

}
− 1

]
.

(4)

Proof. By Lemma 6, V ct(R) =

max{#I : I ⊆ R, RI ≤ R(k)
I∪Rc} =

max{#I : I ⊆ R,#I ≤ R(k)
I∪Rc} =

R ∧
[

min
{

1 ≤M ≤ R : for all I ⊆ R with #I ≥M, #I > R
(k)
I∪Rc

}
− 1

]
.

For any I ⊆ R, if #I > R
(k)
I∪Rc then for all I ⊆ J ⊆ R, #J > R

(k)
J∪Rc .

Hence the above equals (4).

Using Proposition 7, V ct can be calculated much faster than by naive
computation based on the definition of V ct. When R or V ct is large however,
calculating V ct is often still infeasible; the computation time is roughly
proportional to

(
R

V ct+1

)
if V ct < R. Hence in Section 3.3 a method for

approximating V ct is defined. Moreover, in Section 4 a conservative shortcut
is derived, which calculates an upper bound to V ct in relatively little time.
The performance of these methods is illustrated with simulations in Sections
5.5 and 5.6.
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3.3 Approximation method

We propose a method for approximating the bound V ct, for cases where
computing V ct is infeasible. Proposition 7 states that

V ct = R ∧
[

min
{

1 ≤M ≤ R : M > µ(M)
}
− 1

]
, (5)

where
µ(M) := max{R(k)

I∪Rc : I ⊆ R and #I = M}.

Determining µ(M) can be computationally infeasible, since the number of
subsets I ⊆ R with #I = M can be huge. Hence we propose to draw a big
number of random sets I ⊆ R with #I = M and calculate the maximum
for this collection of subsets. That is, we consider an approximation

µ∗(M) = max{R(k)
I∪Rc : I ∈ S},

where S is some large random subcollection of {I ⊆ R : #I = M}. This
leads to the estimate

V
∗
ct = R ∧

[
min

{
1 ≤M ≤ R : M > µ∗(M)

}
− 1

]
. (6)

Note that µ∗(M) ≤ µ(M) and consequently V
∗
ct ≤ V ct. Hence V

∗
ct is

not guaranteed to be a (1− α)-confidence upper bound. However, in many
cases, including the simulation scenarios considered in Section 5.6 , V

∗
ct is

still a (1− α)-confidence bound for V . The reason is that V
∗
ct converges to

V ct for #S → ∞. For details see Section 5.6.

4 Conservative shortcut

Here we will construct a conservative shortcut for the closed testing-based
method that provides V ct. The shortcut is much more computationally
efficient and can often be used when there are thousands of rejections. The
upper bound V sc that the shortcut provides is always less than or equal
to the basic bound V . On the other hand, it only improves V in specific
settings, some of which are considered in Section 5.5. The bound V sc is
often larger than V ct. It is never smaller than V ct, which guarantees its
validity as a (1− α)-confidence bound. Thus the following ordering holds:

V ≥ V sc ≥ V ct ≥ V
∗
ct.
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The bound V ct depends on µ(M), the computation of which can be
computationally infeasible. Lemma 8 provides an upper bound U(M) for
this maximum which can often be computed in a limited amount of time even
when there are thousands of rejections. This will lead to the conservative
shortcut for the full closed testing-based method.

Note that the upper bounds V and V ct are functions of
R(g1X), ...,R(gwX), the rejected sets for the transformed versions of the
data. Reindex the transformations such that R(g1X) ≤ ... ≤ R(gwX).
Hence R(gjX) = R(j) for all 1 ≤ j ≤ w. The collection of rejected sets can
be represented by a binary m× w-matrix M, where

M(i,j) =

{
1 if i ∈ R(gjX),

0 otherwise.

Since the upper bound V ct can be viewed as a function of this matrix, the
problem of finding shortcuts for the closed testing-based method is essen-
tially a combinatorial one.

To have an intuitive understanding of Lemma 8 below, it is useful to
view the quantities considered in it as functions of the matrix M. For each
1 ≤ j ≤ w, we define

Sj = RR(gjX).

Note that this is the sum of the elements of M that are both in the j-th
column and in the rows corresponding to the rejected set R = R(X). Next,
define for each i ∈ R

Σi =
∑

1≤j≤w
R{i}(gjX).

This is simply the sum of the elements of the i-th row of M. Let Σ(1) ≤
... ≤ Σ(R) be the sorted values Σi and for 1 ≤M ≤ R let

Σ = Σ(M) := Σ(1) + ...+ Σ(R−M).

We now state the main result on which the conservative shortcut is based.

Lemma 8. For each s ∈ N define

Ns = #{1 ≤ j < k : R(j) < R(k) − s},
Ms = k − 1−Ns.

For each s ∈ N and Ns < j ≤ w, let

Ks
j = max

{
0, Sj − (R(j) −R(k) + s)

}
13



and let Ks
(1) ≥ ... ≥ K

s
(w−Ns)

be these values sorted from large to small.
For 1 ≤M ≤ R let

U(M) = R(k) − 1−maxA,

where

A =

{
s ∈ N : Σ(M) >

∑
1≤j≤Ns

Sj+
∑

Ns<j≤w
min{Sj , R(j)−R(k)+s}+

∑
1≤j≤Ms

Ks
(j)

}
.

Then
U(M) ≥ µ(M).

Proof. Let 1 ≤M ≤ R. Write

B =
{
Rc ⊆ I ⊆ {1, ...,m} : #I = #Rc +M

}
.

Note that
µ(M) = max{R(k)

I : I ∈ B}.

The proof consists of three parts. In part 1 we show that 0 ∈ A implies
R(k) > µ(M). In part 2 we note that for all s ∈ N, s ∈ A implies R(k)− s >
µ(M). We then conclude that by definition U(M) ≥ µ(M).
–Part 1.
Suppose 0 ∈ A. Consider any I ∈ B. Write Ic = {1, ...,m} \ I. Note that
#Ic = R−M . Hence, by choice of Σ,∑

1≤j≤w
RIc(gjX) ≥ Σ. (7)

Since 0 ∈ A,∑
1≤j≤w

RIc(gjX) >
∑

1≤j≤N0

Sj +
∑

N0<j≤w
min{Sj , R(j) −R(k)}+

∑
1≤j≤M0

K0
(j).

(8)
First note that ∑

1≤j≤N0

RIc(gjX) ≤
∑

1≤j≤N0

Sj ,

since RIc(gjX) ≤ Sj for all j. Hence with (8) it follows that∑
N0<j≤w

RIc(gjX) >
∑

N0<j≤w
min{Sj , R(j) −R(k)}+

∑
1≤j≤M0

K0
(j). (9)
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Suppose that R
(k)
I = R(k). This implies that

#
{
N0 < j ≤ w : RI(gjX) < R(k)

}
≤M0, (10)

and equivalently

#
{
N0 < j ≤ w : RI(gjX) ≥ R(k)

}
> (w −N0)−M0. (11)

For the indices j in the set at (10),

RIc(gjX) ≤ Sj .

Moreover, for the indices j in the set at (11),

RIc(gjX) = R(j) −RI(gjX) ≤ min{Sj , R(j) −R(k)}.

These observations imply that
∑

N0<j≤w RIc(gjX) is at most the right side

of (9), which contradicts (9). Hence R(k) 6= R
(k)
I , i.e. R(k) > R

(k)
I . Since

this holds for all I ∈ B, by definition R(k) > µ(M).
–Part 2.
Consider any I ∈ B. Let s ∈ N. In part 1 we supposed that 0 ∈ A;
we now more generally suppose that s ∈ A. It follows like in part 1 that

R(k) − s > R
(k)
I and consequently R(k) − s > µ(M).

–Part 3.
Since this holds for all s ∈ A, we have R(k) −maxA > µ(M), i.e.

R(k) − 1−maxA = U(M) ≥ µ(M).

By (5), Lemma 8 and the fact that V ct ≤ V ,

V sc := V ∧
[

min
{

1 ≤M ≤ R : M > U(M)
}
− 1

]
is an upper bound for V ct. Recall that the calculation of V sc is usually
feasible when there are many thousands of rejections, but this shortcut only
provides an improvement over V in some situations with many false hy-
potheses, as is illustrated with simulations in Section 5.5.
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5 Simulations

We investigate the performance of the discussed methods on simple simu-
lated data. In sections 5.2 and 5.3 variants of the basic SAM method are
investigated as upper bounds (for α = 0.05) and as estimates (for α = 0.5).
Some of the variants considered are based on plug-in estimates of the frac-
tion of true hypotheses π0 as in the samr package. In section 5.4 the closed
testing-based bound V ct is compared to the basic bound V . The perfor-
mance of the shortcut is illustrated in Section 5.5. All simulations were
performed with R.

5.1 Simulated data and tests used

Here we describe the simulated data and tests used for all simulations. The
simulated data matrix was the 2n×m-matrix

X = X′ + Z.

It can be seen as representing m gene expression levels of 2n persons. Here
X′ is a 2n ×m-matrix of independent normally distributed variables with
variance 1. For some 0 ≤ F ≤ m, in the first F columns of X the first n
entries had mean 1 and all other entries had mean 0. The matrix Z was
used to make the entries in each row of X correlated. It is defined by Zji :=
siZj , where si = 1 − 21{i>m/2} and each Zj is independent and normally
distributed with mean 0 and standard deviation σZ . For 1 ≤ j ≤ 2n and
1 ≤ i < i′ ≤ m we have Cov(Xji,Xji′) = E(±Z2

j ) = ±σZ2, hence the
correlation is

ρ(Xji,Xji′) =
±σZ2

1 + σZ2
.

For each 1 ≤ i ≤ m, let Hi be the null hypothesis that X1,i...,X2n,i are
independent and standard normally distributed. Thus the first F hypotheses
were false, such that the fraction of true hypotheses was π0 = (m− F )/m.

Under Hi, the test statistic

Ti :=

n∑
j=1

Xj,i −
2n∑

j=n+1

Xj,i

is normally distributed with variance 2n ·(1+σZ
2), so that we can efficiently

calculate the corresponding two-sided p-value, i.e. the probability under
Hi of a larger value of |Ti| than observed. The test statistics used in the
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simulations were these p-values. For each hypothesis we used the same
rejection region D of the form (0, c), where c ∈ (0, 1) is some cutoff.

As the group of transformations we used the (2n)! maps that shuffle the
rows of X, leaving each individual row intact. These can e.g. be seen as
permutations of cases and controls. In all the simulations except those of
Section 5.5 we used w = 100, i.e. each time we drew 99 random permutations
and added the identity. For larger w similar results are obtained (see also
Marriott, 1979). The values of m, π0, the cutoff c, α and |ρ| are specified
per case below.

5.2 Performance of variants of SAM as bounds

For m = 1000, α = 0.05 and rejection region D = (0, 0.01), we investigate
the performance of variants of SAM as (1−α)100%-confidence upper bounds
of the FDP. Some of the variants of SAM discussed here are based on an
estimate π̂0 of π0 = N/m. Like the samr package, we calculated π̂0 as

#{1 ≤ i ≤ m : Pi > qi}
0.5 ·m

,

where qi is the 0.5-quantile of the permutation distribution of Pi. We write
FDP := R(k)/R, where FDP = 0 for R = 0. Note that FDP is potentially

larger than 1. We also write π̂′0 = π̂0 ∧ 1 and FDP
′
= FDP ∧ 1.

Table 1 shows 95%-confidence intervals for the probabilities that the
bounds were smaller than the real FDP, for different values of π0 and |ρ|.
The value |ρ| = 0.5 corresponds to σZ = 1. From Table 1 it can be seen

that FDP
′

is the only bound with the desired property P(upper bound <
FDP ) ≤ α. For the other bounds, this probability is much larger than α
for many settings (see also Korn et al., 2007), especially under dependence.
This is related to the known fact that the estimate π̂0 often has low accuracy
under dependence (Qiu et al., 2005; Qiu and Yakovlev, 2006; Kim and van de
Wiel, 2008; Schwartzman and Lin, 2011). For α = 0.1 we got similar results.

The tables in Sections 5.2 and 5.3 are based on 5000 simulations per
setting, which took about half an hour per setting on a good PC.

5.3 Performance of variants of SAM as estimators

We performed the same simulations as in Section 5.2, but with α = 0.5.

For α = 0.5 we write F̂DP := FDP and we let F̂DP
′

= F̂DP ∧ 1. Table
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π0 |ρ| FDP
′

π̂0 · FDP π̂′0 · FDP π̂′0 · FDP
′

1 0 .038± .006 .063± .007 .063± .007 .505± .014
1 0.5 .047± .006 .114± .010 .114± .010 .381± .013
0.95 0 .012± .004 .028± .005 .028± .005 .028± .005
0.95 0.5 .043± .006 .106± .009 .106± .009 .238± .012
0.8 0 .000± .001 .002± .002 .002± .002 .002± .002
0.8 0.5 .029± .005 .088± .009 .088± .009 .181± .011
0.5 0 .000± .001 .000± .001 .000± .001 .000± .001
0.5 0.5 .016± .004 .055± .007 .055± .007 .116± .009

Table 1: 95%-confidence intervals for P(upper bound < FDP ), for α = 0.05.
Probabilities larger than 0.05 are shown in boldface.

2 shows for the different estimates the probability of underestimating the
FDP, for different values of π0 and of the correlation.

The simulations confirm that, as we have proven, P(F̂DP
′
≤ FDP ) ≤

0.5 = α, i.e. it is a median unbiased estimator. Note also that for the

estimate π̂′0 · F̂DP
′
, this does not hold in all situations. For many of the

simulated settings however, all estimates were median unbiased.

π0 |ρ| F̂DP
′

π̂0 · F̂DP π̂′0 · F̂DP π̂′0 · F̂DP
′

1 0 0.44 0.51 0.51 0.69
1 0.5 0.45 0.47 0.47 0.47
0.95 0 0.32 0.43 0.43 0.43
0.95 0.5 0.44 0.46 0.47 0.47
0.8 0 0.08 0.29 0.29 0.29
0.8 0.5 0.37 0.45 0.45 0.45
0.5 0 0.00 0.16 0.16 0.16
0.5 0.5 0.28 0.40 0.40 0.40

Table 2: Estimates of P(estimate < FDP ) for α = 0.5. Each estimate is
based on 5000 simulations, such that it differs less than 0.015 from the real
value with probability at least 95%.

In Table 3 95%-confidence intervals are shown (assuming normality) for
the expected absolute errors of the different estimators. Note that for large

π0, F̂DP
′

was a more accurate estimator than the estimators that use π̂0
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or π̂′0. For small π0 and no correlation, the other estimates were more
accurate. When there was correlation, the estimates based on π̂0 were often

less accurate than F̂DP
′
. The reason for this may be that π̂0 and π̂′0 were

less accurate estimators of π0 under dependence than under independence.
The low accuracy of π̂0 under dependence is a known issue (Qiu et al., 2005;
Qiu and Yakovlev, 2006; Kim and van de Wiel, 2008; Schwartzman and Lin,
2011).

π0 |ρ| F̂DP
′

π̂0 · F̂DP π̂′0 · F̂DP π̂′0 · F̂DP
′

1 0 .091± .004 .305± .012 .298± .012 .104± .004
1 0.5 .332± .011 .543± .018 .469± .014 .348± .011
0.95 0 .099± .002 .096± .002 .096± .002 .096± .002
0.95 0.5 .387± .009 .520± .017 .456± .014 .399± .009
0.8 0 .050± .001 .034± .001 .034± .001 .034± .001
0.8 0.5 .236± .008 .268± .010 .256± .009 .244± .008
0.5 0 .044± .000 .015± .000 .015± .000 .015± .000
0.5 0.5 .145± .006 .144± .007 .143± .007 .142± .007

Table 3: 95%-confidence intervals for E|estimate − FDP | for α = 0.5. In
each row, the smallest average error is shown in boldface.

Apart from recording the absolute errors we also recorded the relative
differences

|estimate

FDP
− 1|.

For this error measure we got similar results. In particular, F̂DP
′

was the
best estimator of the FDP for large π0.

The closed testing-based estimate V ct/R (for α = 0.5) and its approxi-

mation V
∗
ct/R are often more accurate than F̂DP

′
(results not shown). For

|ρ| = 0 and π0 ≤ 0.8 however, the estimates based on π̂0 still performed
best.

5.4 Performance of the closed testing-based bound

Here we illustrate that the bound V ct based on the full closed testing pro-
cedure often improves the basic bound V . We computed V ct using the
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shortcut in Proposition 7. Recall that calculating V ct is often computation-
ally infeasible when R or V ct is large, hence we took m = 100. Further,
we took α = 0.1 and D = (0, 0.01) as the rejection region. We calculated
95%-confidence intervals (assuming normality) for the expected values of the
(1 − α)-upper bounds. The results are shown in Table 4. Recall that V /R
and V ct/R are the (1− α)-confidence FDP bounds corresponding to V and
V ct.

π0 |ρ| R V /R V CT/R

0.9 0 8.8± 0.1 0.35± 0.01 0.33± 0.01
0.9 0.2 7.6± 0.2 0.47± 0.01 0.46± 0.01
0.7 0 23.9± 0.5 0.18± 0.01 0.12± 0.00
0.7 0.2 20.2± 1.1 0.23± 0.02 0.18± 0.02
0.5 0 39.1± 0.5 0.15± 0.01 0.08± 0.00
0.5 0.2 40.0± 1.8 0.17± 0.01 0.11± 0.01

Table 4: 95%-confidence intervals for E(upper bound). The column below
“R” shows the average number of rejections. The value |ρ| = 0.2 corresponds
to σZ = 0.5.

The table shows that if π0 is near 1, the basic bound V and the closed
testing-based bound V ct are close, but when there are many false hypotheses,
closed testing provides a substantial improvement. The same holds for α =
0.5.

The simulations were computationally intensive, especially for π0 = 0.5
when there were many rejections. For this value of π0, 100 simulations took
about 40 hours on a good PC.

5.5 Performance of the conservative shortcut

We illustrate that in some settings for α = 0.5 the estimate V sc obtained
with the conservative shortcut defined in Section 4 is lower than the basic
estimate V . In these simulations m = 2000. We also took w = 2000 and
D = (0, 0.1), because the shortcut usually does not improve V if the cutoff
and w are small. For different values of π0 and the correlation, we calcu-
lated confidence intervals (assuming normality) for the expected absolute

difference from the real FDP , for F̂DP
′
and F̂DP sc := V sc/R. The results

are shown in Table 5. The computation time was a few minutes per 100
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simulations.
As expected, the shortcut only improved F̂DP

′
when π0 was far from

1. The shortcut provides less small bounds than the full closed testing
procedure, but is computationally feasible for larger datasets. For such
datasets, it is the best computationally feasible bound that has been proven
to be a (1− α)-confidence bound.

π0 |ρ| F̂DP
′

F̂DP sc
0.8 0 0.117± 0.006 0.117± 0.006
0.8 0.2 0.145± 0.010 0.145± 0.010
0.5 0 0.157± 0.002 0.150± 0.002
0.5 0.2 0.140± 0.006 0.140± 0.006
0.1 0 0.177± 0.001 0.105± 0.001
0.1 0.2 0.171± 0.002 0.157± 0.003

Table 5: 95%-confidence intervals for E|estimator− FDP |. The value |ρ| =
0.2 corresponds to σZ = 0.5.

5.6 Performance of the approximation method

We now investigate the approximation method (Section 3.3), which provides
smaller bounds than the conservative shortcut. Its validity as a (1 − α)-
confidence bound has not been proven (for finite #S), hence we use simula-
tions to investigate its validity.

Firstly we show that in the simulation settings where computation of
V ct was feasible, the estimate V

∗
ct is on average close V ct. In the settings of

Section 5.4 (α = 0.1), we constructed S as a collection of 1000 independent,
uniformly distributed random subsets from {I ⊆ R : #I = M} (duplicates
were allowed). In table 6 it can be seen that V

∗
ct was on average close to V ct.

This means that they were usually equal and sometimes V
∗
ct was equal to

V ct− 1 or V ct− 2. Taking #S smaller (larger) than 1000 naturally resulted
in a larger (smaller) average estimation error (result not shown).

The estimate V
∗
ct of V ct is good, but not perfect. This is irrelevant for

our purposes however, as long as V
∗
ct has the desired property of being a

(1− α)-confidence bound. In the last column of Table 7 it can be seen that
this is the case for the simulation setting of Sections 5.2 and 5.3. (Note that
we took m = 1000 again, since the approximation method is feasible for
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π0 |ρ| V ct/R |V ct/R− V
∗
ct/R|

0.9 0 0.33± 0.01 0.000
0.9 0.2 0.46± 0.01 0.000
0.7 0 0.12± 0.00 0.005
0.7 0.2 0.18± 0.02 0.006
0.5 0 0.08± 0.00 0.005
0.5 0.2 0.11± 0.01 0.006

Table 6: The last column shows the average absolute difference between the
two upper bounds of the FDP. The second-last column shows confidence
intervals for the expected values of V ct/R. The value |ρ| = 0.2 corresponds
to σZ = 0.5.

large m.) Here #S was again taken to be 1000.
It was also interesting to compare V

∗
ct to the bound V (k). The bound

V (k), which is unknown in practice, was shown to be a (1 − α)-confidence
bound in the proof of Theorem 4. Table 7 shows that the probability that
V
∗
ct < V (k) was very small in the simulation settings of Sections 5.2 and

5.3, with V
∗
ct > V (k) being much more likely. Since V (k) is a (1− α)-upper

bound, it is then not surprising that V
∗
ct is also a (1 − α)-upper bound in

these settings.
For other values of α (and for p-values based on a t-statistic), we similarly

found that V
∗
ct was a (1− α)-confidence bound. Based on these findings, it

seems reasonable to use V
∗
ct as a (1−α)-confidence upper bound in practice,

given that the test statistics are p-values as was the case in our simulation
settings. We recommend taking #S as large as possible in practice (try
#S ≥ 104).

6 Application to data

We illustrate the performance of the (1−α)-upper bound V /R on real data.
We analyse the freely available dataset that was used for the original SAM
paper by Tusher et al. (2001). The dataset contains gene expression levels of
about 7000 genes measured with a microarray. For each gene there are eight
observations, of which four from unirradiated cells and four from irradiated
cells. In each of these two groups there are two observations from one cell
line and two observations from another cell line (making four observations
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π0 |ρ| ER P(V
∗
ct < V (k)) P(V

∗
ct < V )

1 0 10.0 0.000 0.039
1 0.5 10.0 0.018 0.050
0.95 0 27.9 0.000 0.014
0.95 0.5 18.2 0.013 0.048
0.8 0 81.6 0.000 0.002
0.8 0.5 40.0 0.007 0.035
0.5 0 188.3 0.000 0.000
0.5 0.5 87.8 0.002 0.024

Table 7: The same simulation setting as in Sections 5.2 and 5.3 was taken.
The second last column shows the estimated probability that V

∗
ct was smaller

than the bound V (k). The last column shows the error rate. The estimates
are based on 5000 simulations per setting (taking up to 5 hours).

per cell line). More details are in Tusher et al. (2001).
We performed the same analysis as Tusher et al., with the addition

that we calculated (1 − α)-confidence upper bounds for the FDP. Not all
8! permutations were used but only the permutation maps that permuted
within the two cell lines. There are 4!4! = 576 such permutation maps. Note
that this set of permutation maps has a group structure. This group consists
of 36 classes of 16 equivalent permutations that always give the same test
statistic. Using one permutation from each class leads to the same analysis
as with 576 permutations, so we only use 36 distinct permutations. The
same permutations are used in Tusher et al. (2001).

For gene i, Hi is defined as the hypothesis that the distribution of the
expression level of gene i is the same for all cells. Note that Assumption 1 is
satisfied if the joint distribution of the gene expression levels corresponding
to N is the same for cases and controls. As a biological argument for this
exhangeability, note that it seems unlikely that the treatment would affect
the joint distribution of the gene expressions corresponding to N , while
leaving the marginal distributions unchanged.

In Tusher et al. and here, the user chooses a threshold ∆ ≥ 0. Based
on ∆ and the data, the rejection region D is calculated. This region is of
the form (−∞, c1) ∪ (c2,∞), with c1, c2 ∈ R. Details on how the cut-offs
c1 and c2 are based on ∆ and the data are in Tusher et al.. The larger ∆
is, the fewer hypotheses are rejected and the smaller the FDP tends to be.
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The dependence of the cut-offs on the data might lead to bias. The bias is
minor or absent however, as long as ∆ is not cherry-picked after looking at
the data. In the analysis here and in Tusher et al. no plug-in estimate of π0
was used.

Considering the same values of the threshold ∆ as Tusher et al. and
some larger values, we calculated the corresponding estimates of the FDP
as well as the basic (1−α)-confidence upper bound for the FDP. The results
are shown in Table 8. Here FDP γ stands for V /R for 1−α = γ, so that e.g.

FDP 0.9 is a 90%-confidence upper bound for the FDP. F̂DPmean stands for
V̂mean/R where V̂mean is the mean of the values R(gX), g ∈ H, where H is
the set of 36 permutations . This is the estimate that is reported in Table 1
in Tusher et al. (2001). Keep in mind that the bounds are not uniform over
∆ or α.

∆ R F̂DPmean FDP 0.5 FDP 0.9 FDP 0.95

0.3 571 0.56 0.45 0.97 1
0.4 282 0.46 0.34 0.99 1
0.6 162 0.35 0.25 0.98 1
0.9 80 0.24 0.13 0.88 0.98
1.2 46 0.18 0.09 0.67 0.98
1.8 26 0.14 0.08 0.46 0.85
2.5 12 0.12 0.08 0.42 0.75
3 10 0.12 0.10 0.30 0.70
3.5 3 0.06 0 0.33 0.33

Table 8: For different values of the threshold ∆, estimators and bounds for
the FDP are shown. R is the number of rejected hypotheses. The value
FDP 0.5 is a median unbiased estimator of the FDP and FDP 0.95 is a 95%-
confidence upper bound for the FDP.

Some of our results are slightly different from those in Table 1 in Tusher
et al. (2001), which may be due to a minor difference in the code or the
data used. Note that for every ∆ the estimate FDP 0.5 based on the median
is smaller the estimate F̂DPmean based on the mean. This is because the
permutation distribution of R tended to be skewed to the right. Note that
for α = 0.05 and smaller values of ∆, we obtain trivial 95%-confidence
bounds. For example, for ∆ = 0.6 we do not have 95% confidence that at
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least one of the 162 rejected hypotheses is false. For larger values of ∆ the
cut-offs are stricter and we do get useful 95%-confidence bounds.

Note that since there are only 36 permutations, the 95%-confidence
bound for V is the second largest value among R(gX), g ∈ H. Thus it
is in fact a (35/36)100% ≈ 97.2% confidence bound. For ∆ = 3.5 there are
3 rejections and we know with 97.2% confidence that at least two of these
are true findings. We also know with 50% confidence that all three rejections
are true findings. For ∆ = 3 there are 10 rejections and we know with 90%
confidence (and indeed (33/36)100% ≈ 91.7% confidence) that at least 7 of
these are true findings, although we cannot generally pinpoint which of the
rejected hypotheses are false.

Calculating V ct was only feasible for ∆ ≥ 2.5 and sometimes offered an
improvement over V . For example, for ∆ = 3 and α = 0.05, the bound
was 0.6 instead of 0.7. Usually the basic bound was not improved for ∆ ≥
2.5, due to the relatively small number of rejections for such ∆ and the
discreteness of the already small bound V ct.

For ∆ < 2.5, when computing V ct was not feasible, we performed the
approximation method (with #S = 104). The results are shown in Table
9. The improvements are relatively small in this situation, since there is no
proof that π0 is far away from 1 for these data.

In many practical situations FDP bounds (and the FDP itself) tend to
decrease with R, but this is only a tendency. Examples of exceptions can be
seen in both Table 8 and Table 9. Hence a user might find that decreasing
∆ post hoc would both increase R and decrease the bound, which would
be very tempting. This could lead to selection bias however; ∆ should be
chosen before looking at the data.

∆ R FDP
∗
0.5 FDP

∗
0.9 FDP

∗
0.95

0.3 571 0.43 0.81 1
0.4 282 0.34 0.82 1
0.6 162 0.25 0.88 1
0.9 80 0.13 0.88 0.94
1.2 46 0.09 0.67 0.96
1.8 26 0.08 0.46 0.81

Table 9: For different values of the threshold ∆, estimators and bounds for
the FDP, derived with the approximation method, are shown. Here FDP

∗
γ

stands for V
∗
ct/R for 1 − α = γ. Where it improved the basic bound (see

Table 8), the result is shown in boldface.
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Conclusion

SAM is a widely applied method, since it requires few assumptions on the
dependence structure of the data and nevertheless adapts to this structure.
Until now SAM had no known properties. In this paper the assumptions
underlying SAM have been made explicit. Moreover it has been shown how
SAM can be extended to provide a (1− α)-confidence upper bound for the
FDP. For α = 0.5 a median unbiased estimate of the FDP is obtained. The
samr R-package multiplies this estimate by an estimate of the fraction of
true hypotheses π0 to obtain a lower estimate of the FDP. We have shown
using simulations that this often still results in a median unbiased estimate
of the FDP, although in many cases the estimate becomes less accurate. For
α = 0.05 and α = 0.1, multiplying the (1 − α)-confidence bound by the
estimate of π0 often does not result in a (1− α)-confidence bound.

We have shown that by using a closed testing procedure the basic bound
can be decreased, in such a way that the confidence level is maintained.
The improvement over the basic bound can be appreciable, as simulations
illustrate. The improved bound only depends on rejected sets for permuted
versions of the data. Once these are known, the computation time is not
influenced by the complexity of the test statistics. Hence the choice of test
statistics typically does not determine the computational feasibility of the
method.

When there are many rejected hypotheses, the closed testing-based
method is often computationally infeasible. Therefore we have included
a fast approximation of this method, which still provides confidence for our
simulation settings. We have also constructed a conservative shortcut, which
provides larger bounds but has proven validity. This shortcut only improves
the basic bound in specific settings. Both these fast alternatives to the
closed testing-based method are feasible when there are many thousands of
rejections.

Our methods provide an FDP bound for the prespecified rejection re-
gion. The region cannot generally be picked after looking at the data, since
the bounds are not uniform over multiple rejection regions. There exists a
limited amount of literature on uniformly valid FDP bounds (Meinshausen,
2006; Goeman and Solari, 2011). An example is the method by Meinshausen
(2006), which is closely related to SAM. There are opportunities to improve
some of these methods, similarly to the way SAM has been improved here.
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This may be the subject of future research.
Theorem 3 provides a general permutation principle which can be used

to prove properties of methods based on random permutations (SAM; Mein-
shausen, 2006; Westfall and Young, 1993). This result is related to Phipson
and Smyth (2010) but is more generally useful. We have used it to prove the
validity of the methods in this paper. It may be used to prove properties of
other permutation-based procedures in the future.
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