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SUMMARY

We introduce a new Empirical Bayes approach for large-scale hypothesis testing, including estimat-

ing false discovery rates (FDRs), and effect sizes. This approach has two key differences from existing

approaches to FDR analysis. First, it assumes that the distribution of the actual (unobserved) effects is

unimodal, with a mode at 0. This “unimodal assumption” (UA), although natural in many contexts, is

not usually incorporated into standard FDR analysis, and we demonstrate how incorporating it brings

many benefits. Specifically, the UA facilitates efficient and robust computation—estimating the unimodal

distribution involves solving a simple convex optimization problem—and enables more accurate infer-

ences provided that it holds. Second, the method takes as its input two numbers for each test (an effect

size estimate and corresponding standard error), rather than the one number usually used (p value or z

score). When available, using two numbers instead of one helps account for variation in measurement

precision across tests. It also facilitates estimation of effects, and unlike standard FDR methods, our

approach provides interval estimates (credible regions) for each effect in addition to measures of signifi-

cance. To provide a bridge between interval estimates and significance measures, we introduce the term

“local false sign rate” to refer to the probability of getting the sign of an effect wrong and argue that it is

a superior measure of significance than the local FDR because it is both more generally applicable and

can be more robustly estimated. Our methods are implemented in an R package ashr available from

http://github.com/stephens999/ashr.
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1. INTRODUCTION

Since its introduction in Benjamini and Hochberg (1995), the “False Discovery Rate” (FDR) has quickly

established itself as a key concept in modern statistics, and the primary tool by which most practitioners

handle large-scale multiple testing in which the goal is to identify the non-zero “effects” among a large

number of imprecisely measured effects.

Here we consider an Empirical Bayes (EB) approach to FDR. This idea is, of course, far from new:

indeed, the notion that EB approaches could be helpful in handling multiple comparisons predates intro-

duction of the FDR (e.g. Greenland and Robins, 1991). More recently, EB approaches to the FDR have

been extensively studied by several authors, especially Efron and co-workers (Efron and others, 2001;
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Efron and Tibshirani, 2002; Efron and others, 2003; Efron, 2008, 2010); see also Kendziorski and others

(2003), Newton and others (2004), Datta and Datta (2005), and Muralidharan (2010), for example.

So what is the “New Deal” here? We introduce two simple ideas that are new (at least compared with

existing widely used FDR pipelines) and can substantially affect inference. The first idea is to assume

that the distribution of effects is unimodal. We provide a simple, fast, and stable computer implementation

for performing EB inference under this assumption, and illustrate how it can improve inferences when

the unimodal assumption (UA) is correct. The second idea is to use two numbers—effect sizes and their

standard errors—rather than just one—p values or z scores—to summarize each measurement. Here we

use this idea to allow variation in measurement precision to be better accounted for, avoiding a problem

with standard pipelines that poor-precision measurements can inflate estimated FDR. (Ploner and others

(2006) also suggest using more than one number in FDR analyses, taking a rather different approach to

the one used here.)

In addition to these two new ideas, we highlight a third idea that is old but which remains under-

used in practice: the idea that it may be preferable to focus on estimation rather than on testing. In

principle, Bayesian approaches can naturally unify testing and estimation into a single framework—

testing is simply estimation with some positive prior probability that the effect is exactly zero. However,

despite ongoing interest in this area from both frequentist (Benjamini and Yekutieli, 2005) and Bayesian

(Zhao and Gene Hwang, 2012; Gelman and others, 2012) perspectives, in practice large-scale studies that

assess many effects almost invariably focus on testing significance and controlling the FDR, and not on

estimation. To help provide a bridge between FDR and estimation we introduce the term “local false sign

rate” (lfsr), which is analogous to the “local false discovery rate” (lfdr) (Efron, 2008), but which measures

confidence in the sign of each effect rather than confidence in each effect being non-zero. We show that

in some settings, particularly those with many discoveries, the lfsr and lfdr can be quite different and

emphasize benefits of the lfsr, particularly its increased robustness to modeling assumptions.

Although we focus here on FDR applications, the idea of performing EB inference using a flexible

unimodal prior distribution is useful more generally. For example, the methods described here can be

applied directly to perform shrinkage estimation for wavelet denoising (Donoho and Johnstone, 1995),

an idea explored in a companion paper (Xing and Stephens, 2016). And analogous ideas can be used

to perform EB inference for variances (Lu and Stephens, 2016). Importantly, and perhaps surprisingly,

our work demonstrates how EB inference under a general UA is, if anything, computationally simpler

than commonly used more restrictive assumptions—such as a spike and slab or Laplace prior distribution

(Johnstone and Silverman, 2004)—as well as being more flexible.

We refer to our EB method as adaptive shrinkage, orash, to emphasize its key points: using a unimodal

prior naturally results in shrinkage estimation, and the shrinkage is adaptive to both the amount of signal

in the data and the measurement precision of each observation. We provide implementations in an R

package, ashr, available at http://github.com/stephens999/ashr. Code and instructions for reproducing

analyses and figures in this paper are at https://github.com/stephenslab/ash.

2. METHODS

2.1. Model outline

Here we describe the simplest version of the method, before briefly discussing embellishments we have also

implemented. Implementation details are given in Supplementary Information, see supplementary material

available at Biostatistics online.

Let β = (β1, . . . , βJ ) denote J “effects” of interest. For example, in a genomics application βj might

be the difference in the mean (log) expression of gene j in two conditions. We tackle both the problem
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of testing the null hypotheses Hj : βj = 0, and the more general problem of estimating, and assessing

uncertainty in, βj.

Assume that the available data are estimates β̂ = (β̂1, . . . , β̂J ) of the effects, and corresponding (esti-

mated) standard errors ŝ = (ŝ1, . . . , ŝJ ). Our goal is to compute a posterior distribution for β given β̂, ŝ,

which by Bayes theorem is

p(β|β̂, ŝ) ∝ p(β|ŝ)p(β̂|β, ŝ). (2.1)

For p(β|ŝ) we assume that the βj are independent from a unimodal distribution g. This UA is a key

assumption that distinguishes our approach from previous EB approaches to FDR analysis. A simple way

to implement the UA is to assume that g is a mixture of a point mass at 0 and a mixture of zero-mean

normal distributions:

p(β|ŝ, π) =
∏

j

g(βj; π), (2.2)

g(·; π) = π0δ0(·) +

K∑

k=1

πkN (·; 0, σ 2
k ), (2.3)

where δ0(·) denotes a point mass on 0, and N (·; µ, σ 2) denotes the density of the normal distribution with

mean µ and variance σ 2. Here we take σ1, . . . , σK to be a large and dense grid of fixed positive numbers

spanning a range from very small to very big (so K is fixed and large). We encourage the reader to think of

this grid as becoming infinitely large and dense, as a non-parametric limit, although of course in practice

we use a finite grid—see Implementation Details. The mixture proportions π = (π0, . . . , πK), which are

non-negative and sum to one, are hyper-parameters to be estimated.

For the likelihood p(β̂|β, ŝ) we assume a normal approximation:

p(β̂|β, ŝ) =
∏

j

N (β̂j; βj, ŝ2
j ). (2.4)

This simple model features both the key ideas we want to emphasize in this paper: the UA is encapsulated

in (2.3) while the different measurement precision of different observations is encapsulated in the likelihood

(2.4)—specifically, observations with larger standard error will have a flatter likelihood, and therefore have

less impact on inference. However, the model also has several additional assumptions that can be relaxed.

Specifically,

1. The form (2.3) implies that g is symmetric about 0. More flexibility can be obtained using mixtures

of uniforms (Supplementary Information, equation S.1.1); indeed this allows g to approximate any

unimodal distribution.

2. The model (2.2) assumes that the effects are identically distributed, independent of their standard

errors ŝ. This can be relaxed [see (3.2)].

3. The normal likelihood (2.4) can be generalized to a t likelihood [see (Supplementary Information,

equation S.1.2)].

4. We can allow for the mode of g to be non-zero, estimated from the data by maximum likelihood.

These embellishments, detailed in supplementary material available at Biostatistics online, are imple-

mented in our software. Other limitations are harder to relax, most notably the independence and

conditional independence assumptions (which are also made by most existing approaches). Correla-

tions among tests certainly arise in practice, either due to genuine correlations or due to unmeasured

confounders, and their potential impact on estimated FDRs is important to consider whatever analysis

methods are used (Efron, 2007; Leek and Storey, 2007).
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2.2. Fitting the model

Together, (2.2)–(2.4) imply that β̂j are independent with

p(β̂|ŝ, π) =
∏

j

[
K∑

k=0

πkN (β̂j; 0, σ 2
k + ŝ2

j )

]
, (2.5)

where we define σ0 := 0.

The usual EB approach to fitting this model would involve two steps:

1. Estimate the hyper-parameters π by maximizing the likelihood L(π), given by (2.5), yielding

π̂ := arg max L(π).

2. Compute quantities of interest from the conditional distributions p(βj|β̂, ŝ, π̂). For example, the

evidence against the null hypothesis βj = 0 can be summarized by p(βj �= 0|β̂, ŝ, π̂).

Both steps are straightforward. Step 1 is a convex optimization problem, and can be solved quickly

and reliably using interior point methods (Boyd and Vandenberghe, 2004; Koenker and Mizera,

2013). (Alternatively a simple EM algorithm can also work well, particularly for modest J ; see

http:://stephenslab.github.io/ash/analysis/IPvsEM.html.) And the conditional distributions p(βj|β̂j, ŝj, π̂)

in Step 2 are analytically available, each a mixture of a point mass on zero and K normal distributions.

The simplicity of Step 1 is due to our use of a fixed grid for σk in (2.3), instead of estimating σk . This

simple device may be useful in other applications.

Here we slightly modify this usual procedure: instead of obtaining π̂ by maximizing the likelihood, we

maximize a penalized likelihood [see (Supplementary Information, equation S.2.5)], where the penalty

encourages π̂0 to be as big as possible whilst remaining consistent with the observed data. We introduce

this penalty because in FDR applications it is considered desirable to avoid underestimating π0 so as to

avoid underestimating the FDR.

Our R package implementation typically takes 20 s on a modern laptop for J = 100 000, and scales

linearly with J .

2.3. The local FDR and local false sign rate

As noted above, the posterior distributions p(βj|β̂, ŝ, π̂) have a simple analytic form. In practice it is

common, and desirable, to summarize these distributions to convey the “significance” of each observation j.

One natural measure of the significance of observation j is its “local FDR” (Efron, 2008)

lfdrj := Pr(βj = 0|β̂, ŝ, π̂). (2.6)

In words, lfdrj is the probability, given the observed data, that effect j would be a false discovery, if we

were to declare it a discovery.

The lfdr, like most measures of significance, is rooted in the hypothesis testing paradigm which focuses

on whether or not an effect is exactly zero. This paradigm is popular, despite the fact that many statistical

practitioners have argued that it is often inappropriate because the null hypothesis Hj : βj = 0 is often

implausible. For example, Tukey (1991) argued that “All we know about the world teaches us that the

effects of A and B are always different—in some decimal place—for any A and B. Thus asking ‘Are the

effects different?’ is foolish.” Instead, Tukey (Tukey, 1962, page 32) suggested that one should address

... the more meaningful question: “is the evidence strong enough to support a belief that the observed

difference has the correct sign?”
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Along the same lines, Gelman and co-workers (Gelman and Tuerlinckx, 2000; Gelman and others, 2012)

suggest focusing on “type S errors,” meaning errors in sign, rather than the more traditional type I errors.

Motivated by these suggestions, we define the “local False Sign Rate” for effect j, lfsrj, to be the

probability that we would make an error in the sign of effect j if we were forced to declare it either positive

or negative. Specifically,

lfsrj := min[Pr(βj ≥ 0|π̂ , β̂, s), Pr(βj ≤ 0|π̂ , β̂, s)]. (2.7)

To illustrate, suppose that

Pr(βj < 0|β̂, s, π̂) = 0.95,

Pr(βj = 0|β̂, s, π̂) = 0.03,

Pr(βj > 0|β̂, s, π̂) = 0.02.

Then from (2.7) lfsrj = min(0.05, 0.98) = 0.05 (and, from (2.6), lfdrj = 0.03). This lfsr corresponds to

the fact that, given these results, we would guess that βj is negative, with probability 0.05 of being wrong.

As our notation suggests, lfsrj is analogous to lfdrj: whereas small values of lfdrj indicate that we can

be confident that βj is non-zero, small values of lfsrj indicate that we can be confident in the sign of βj.

Of course, being confident in the sign of an effect logically implies that we are confident it is non-zero,

and this is reflected in the fact that lfsrj ≥ lfdrj [this follows from the definition because both the events

βj ≥ 0 and βj ≤ 0 in (2.7) include the event βj = 0]. In this sense lfsr is a more conservative measure of

significance than lfdr. More importantly, lfsr is more robust to modeling assumptions (see Results).

From these “local” measures of significance, we can also compute average error rates over subsets of

observations Ŵ ⊂ {1, . . . , J }. For example,

F̂SR(Ŵ) := (1/|Ŵ|)
∑

j∈Ŵ

lfsrj (2.8)

is an estimate of the total proportion of errors made if we were to estimate the sign of all effects in Ŵ [an

error measure analogous to the usual (tail) FDR]. And, we can define the “s-value”

sj := F̂SR({k : lfsrk ≤ lfsrj}) (2.9)

as a measure of significance analogous to Storey’s q-value (Storey, 2003). [Replacing lfsrj with lfdrj in

(2.8) and (2.9) gives estimates for the usual FDR(Ŵ), and the q-values respectively.]

2.4. Related work

2.4.1. Previous approaches focused on FDR Among previous methods that explicitly consider FDR, our

work seems naturally compared with the EB methods of Efron (2008) and Muralidharan (2010) (imple-

mented in the R packages locfdr and mixfdr, respectively) and with the widely used methods from

Storey (2003) (implemented in the R package qvalue), which although not formally an EB approach,

shares some elements in common.

There are two key differences between our approach and these existing methods. First, whereas these

existing methods take as input a single number—either a z score (locfdr and mixfdr), or a p value

(qvalue)—for each effect, we instead work with two numbers (β̂j, ŝj). Here we are building on Wake-

field (2009), which develops Bayes Factors testing individual null hypotheses in a similar way; see also

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

s
ta

tis
tic

s
/a

rtic
le

/1
8
/2

/2
7
5
/2

5
5
7
0
3
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



280 M. STEPHENS

Efron (1993). Using two numbers instead of one clearly has the potential to be more informative, as

illustrated in Results (Figure 4).

Second, our UA that the effects are unimodal about zero, is an assumption not made by existing methods,

and one that we argue to be both plausible and beneficial in many contexts. Although the UA will not hold

in all settings, it will often be reasonable, especially in FDR-related contexts that focus on rejecting the

null hypotheses βj = 0. This is because if “βj = 0” is a plausible null hypothesis then “βj very near 0”

should also be plausible. Further, it seems reasonable to expect that larger effects become decreasingly

plausible, and so the distribution of the effects will be unimodal about 0. To paraphrase Tukey, “All we

know about the world teaches us that large effects are rare, whereas small effects abound.” We emphasize

that the UA relates to the distribution of all effects, and not only the detectable effects (i.e. those that are

significantly different from zero). It is very likely that the distribution of detectable non-zero effects will

be multimodal, with one mode for detectable positive effects and another for detectable negative effects,

and the UA does not contradict this.

In further support of the UA, note that large-scale regression methods almost always make the UA for

the regression coefficients, which are analogous to the “effects” we estimate here. Common choices of

unimodal distribution for regression coefficients include the spike and slab, Laplace, t, normal-gamma,

normal-inverse-gamma, or horseshoe priors (Carvalho and others, 2010). These are all less flexible than

our approach, which provides for general unimodal distributions, and it may be fruitful to apply our

methods to the regression context; indeed see Erbe and others (2012) for work in this vein. Additionally,

the UA can be motivated by its effect on point estimates, which is to “shrink” the estimates towards the

mode—such shrinkage is desirable from several standpoints for improving estimation accuracy. Indeed

most model-based approaches to shrinkage make parametric assumptions that obey the UA (e.g. Johnstone

and Silverman, 2004).

Besides its plausibility, the UA has two important practical benefits: it facilitates more accurate estimates

of FDR-related quantities, and it yields simple algorithms that are both computationally and statistically

stable (see Results).

2.4.2. Other work There is also a very considerable literature that does not directly focus on the FDR

problem, but which involves similar ideas and methods. Among these, a paper about deconvolution (Cordy

and Thomas, 1997) is most similar, methodologically, to our work here: indeed, this paper includes all the

elements of our approach outlined above, except for the point mass on 0 and corresponding penalty term.

However, the focus is very different: Cordy and Thomas (1997) focuses entirely on estimating g, whereas

our primary focus is on estimating βj. Also, they provide no software implementation.

More generally, the related literature is too large to review comprehensively, but relevant key-words

include “empirical Bayes,” “shrinkage,” “deconvolution,” “semi-parametric,” “shape-constrained,” and

“heteroskedastic.” Some pointers to recent papers in which other relevant citations can be found include.

Xie and others (2012), Sarkar and others (2014), Koenker and Mizera (2014), and Efron (2016). Much of

the literature focusses on the homoskedastic case (i.e. ŝj all equal) whereas we allow for heteroskedasticity.

And much of the recent shrinkage-oriented literature focuses only on point estimation of βj, whereas for

FDR-related applications measures of uncertainty are essential. Several recent papers consider more

flexible non-parametric assumptions on g than the UA assumption we make here. In particular, Jiang

and Zhang (2009) and Koenker and Mizera (2014) consider the unconstrained non-parametric maximum

likelihood estimate (NPMLE) for g. These methods may be useful in settings where the UA assumption

is considered too restrictive. However, the NPMLE for g is a discrete distribution, which will induce a

discrete posterior distribution on βj, and so although the NPMLE may perform well for point estimation,

it may not adequately reflect uncertainty in βj. To address this some regularization on g (e.g. as in Efron,

2016) may be necessary. Indeed, one way of thinking about the UA is as a way to regularize g.
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3. RESULTS

We compare results of ash with existing FDR-based methods implemented in the R packages qvalue

(v2.1.1),locfdr (v1.1-8), andmixfdr (v1.0, from https://cran.r-project.org/src/contrib/Archive/mixfdr/).

In all our simulations we assume that the test statistics follow the expected theoretical distribution under

the null, and we indicate this to locfdr using nulltype=0 and to mixfdr using theonull=TRUE.

Otherwise all packages were used with default options.

3.1. Effects of the UA

Here we consider the effects of making the UA. To isolate these effects we consider the simplest case,

where every observation has the same standard error, sj = 1. That is, β̂j|βj ∼ N (βj, 1) and ŝj = sj = 1. In

this case the z scores zj := β̂j/ŝj = β̂j, so modelling the z scores is the same as modelling the β̂j. Thus the

primary difference among methods in this setting is that ash makes the UA and other methods do not.

To briefly summarize the results in this section:

1. The UA can produce quite different results from existing methods.

2. The UA can yield conservative estimates of the proportion of true nulls, π0, and hence conservative

estimates of lfdr and FDR.

3. The UA yields a procedure that is numerically and statistically stable, and is somewhat robust to

deviations from unimodality.

3.1.1. The UA can produce quite different results from existing methods. We illustrate the effects of

the UA with a simple simulation, with effects βj ∼ N (0, 1) [so with sj = 1, β̂j ∼ N (0, 2)]. Though

no effects are null, there are many p values near 1 and z scores near 0 (Figure 1). We used qvalue,

locfdr, mixfdr, and ash to decompose the z scores (zj = β̂j), or their corresponding p values, into

null and alternative components. Here we are using the fact that these methods all provide an estimated

lfdrj for each observation j, which implies such a decomposition; specifically the average lfdrj within each

histogram bin estimates the fraction of observations in that bin that come from the null vs the alternative

component. The results (Figure 1) illustrate a clear difference between ash and existing methods: the

existing methods have a “hole” in the alternative z score distribution near 0, whereas ash, due to the UA,

has a mode near 0. (Of course the null distribution also has a peak at 0, and the lfdr under the UA is still

smallest for z scores that are far from zero—i.e. large z scores remain the “most significant.”)

This qualitative difference among methods is quite general, and also occurs in simulations where most

effects are null (e.g. http://stephenslab.github.io/ash/analysis/referee_uaza.html). To understand why the

alternative distribution of z scores from locfdr and qvalue has a hole at zero, note that neither of these

methods explicitly models the alternative distribution: instead they simply subtract a null distribution (of z

scores or p values) from the observed empirical distribution, letting the alternative distribution be defined

implicitly, by what remains. In deciding how much null distribution to subtract—that is, in estimating the

null proportion, π0—both methods assume that all z scores near zero (or, equivalently, all p values near 1)

are null. The consequence of this is that their (implicitly defined) distribution for the alternative z scores

has a “hole” at 0—quite different from our assumption of a mode at zero. (Why mixfdr exhibits similar

behavior is less clear, since it does explicitly model the alternative distribution; however we believe it may

be due to the default choice of penalty term β described in Muralidharan (2010).)

Figure 1 is also helpful in understanding the interacting role of the UA and the penalty term

(Supplementary Information, equation S.2.5) that attempts to make π0 as “large as possible” while remain-

ing consistent with the UA. Specifically, consider the panel that shows ash’s decomposition of z scores,

and imagine increasing π0 further. This would increase the null component (dark blue) at the expense
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Fig. 1. Illustration that the UA in ash can produce very different results from existing methods. The figure shows,
for a single simulated dataset, the way different methods decompose p values (left) and z scores (right) into a null
component (dark blue) and an alternative component (cyan). In the z score space the alternative distribution is placed
on the bottom to highlight the differences in its shape among methods. The three existing methods (qvalue,locfdr,
mixfdr) all produce a “hole” in the alternative z score distribution around 0. In contrast ashmakes the UA—that the
effect sizes, and thus the z scores, have a unimodal distribution about 0—which yields a very different decomposition.
(In this case the ash decomposition is closer to the truth: the data were simulated under a model where all of the
effects are non-zero, so the “true” decomposition would make everything cyan.)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

s
ta

tis
tic

s
/a

rtic
le

/1
8
/2

/2
7
5
/2

5
5
7
0
3
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



FDR: a new deal 283

of the alternative component (light blue). Because the null component is N (0, 1), and so is biggest at 0,

this would eventually create a “dip” in the light-blue histogram at 0. The role of the penalty term is to

push the dark blue component as far as possible, right up to (or, to be conservative, just past) the point

where this dip appears. In contrast the existing methods effectively push the dark blue component until

the light-blue component disappears at 0. See https://stephens999.shinyapps.io/unimodal/unimodal.Rmd

for an interactive demonstration.

3.1.2. The UA can produce conservative estimates of π0 Figure 1 suggests that the UA will produce

smaller estimates of π0 than existing methods. Consequently ash will estimate smaller lfdrs and FDRs,

and so identify more significant discoveries at a given threshold. This is desirable, provided that these

estimates remain conservative: that is, provided that π̂0 does not underestimate the true π0 and ˆlfdr does

not underestimate the true lfdr. The penalty term (Supplementary Information, equation S.2.5) aims to

ensure this conservative behavior. To check its effectiveness we performed simulations under various

alternative scenarios (i.e. various distributions for the non-zero effects, which we denote g1), and values

for π0. The alternative distributions are shown in Figure 2(a), with details in supplementary Table 1

available at Biostatistics online. They range from a “spiky” distribution—where many non-zero β are

too close to zero to be reliably detected, making reliable estimation of π0 essentially impossible—to a

much flatter distribution, which is a normal distribution with large variance (“big-normal”)—where most

non-zero β are easily detected making reliable estimation of π0 easier. We also include one asymmetric

distribution (“skew”), and one clearly bimodal distribution (“bimodal”), which, although we view as

generally unrealistic, we include to assess robustness of ash to deviations from the UA.

For each simulation scenario we simulated 100 independent data sets, each with J = 1000 observations.

For each data set we simulated data as follows:

1. Simulate π0 ∼ U [0, 1].

2. For j = 1, . . . , J , simulate βj ∼ π0δ0 + (1 − π0)g1(·).

3. For j = 1, . . . , J , simulate β̂j|βj ∼ N (βj, 1).

Figure 2(b) compares estimates of π0 fromqvalue,locfdr,mixfdr, andash (y-axis) with the true

values (x-axis). For ashwe show results for g1 modelled as a mixture of normal components (“ash.n”) and

as a mixture of symmetric uniform components (“ash.u”). (Results using the asymmetric uniforms, which

we refer to as “half-uniforms,” and denote “ash.hu” in subsequent sections, are here generally similar to

ash.u and omitted to avoid over-cluttering figures.) The results show that ash provides the smallest, most

accurate, estimates for π0, while remaining conservative in all scenarios where the UA holds. When the UA

does not hold (“bimodal” scenario) the ash estimates can be slightly anti-conservative. We view this as a

minor concern in practice, since we view such a strong bimodal scenario as unlikely in most applications

where FDR methods are used. (In addition, the effects on lfsr estimates turn out to be relatively modest;

see below.)

3.1.3. The lfsr is more robust than lfdr The results above show thatash can improve on existing methods

in producing smaller, more accurate, estimates of π0, which will lead to more accurate estimates of FDR.

Nonetheless, in many scenarios ash continues to substantially over-estimate π0 (see the “spiky” scenario,

for example). This is because these scenarios include an appreciable fraction of “small non-null effects”

that are essentially indistinguishable from 0, making accurate estimation of π0 impossible. Put another

way, and as is well known, π0 is not identifiable: the data can effectively provide an upper bound on

plausible values of π0, but not a lower bound (because the data cannot rule out that everything is non-null,

but with minuscule effects). To obtain conservative behavior we must estimate π0 by this upper bound,

which can be substantially larger than the true value.
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(a)

(b)

(c)

(d)

Fig. 2. Results of simulation studies (constant precision sj = 1). (a) Densities of non-zero effects, g1, used in
simulations. (b) Comparison of true and estimated values of π0. When the UA holds all methods typically yield con-
servative (over-)estimates for π0, with ash being least conservative, and hence most accurate. qvalue is sometimes
anti-conservative when π0 ≈ 1. When the UA does not hold (“bimodal” scenario) the ash estimates are slightly
anti-conservative. (c) Comparison of true and estimated lfdr from ash (ash.n). Black line is y = x and red line is
y = 2x. Estimates of lfdr are conservative when UA holds, due to conservative estimates of π0. (d) As in (c), but
for lfsr instead of lfdr. Estimates of lfsr are consistently less conservative than lfdr when UA holds, and also less
anti-conservative in bimodal scenario.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

s
ta

tis
tic

s
/a

rtic
le

/1
8
/2

/2
7
5
/2

5
5
7
0
3
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



FDR: a new deal 285

Table 1. Empirical coverage for nominal 95% lower credible bounds (all observations)

Spiky Near-normal Flat-top Skew Big-normal Bimodal

ash.n 0.90 0.94 0.95 0.94 0.96 0.96

ash.u 0.87 0.93 0.94 0.93 0.96 0.96

ash.hu 0.88 0.93 0.94 0.94 0.96 0.96

Coverage rates are generally satisfactory, except for the extreme “spiky” scenario. This is due to the penalty term

(Supplementary Information, equation S.2.5) which tends to cause over-shrinking towards zero. Removing this penalty term pro-

duces coverage rates closer to the nominal levels for uniform and normal methods (Table 2). Removing the penalty in the half-uniform

case is not recommended (see online Supplementary Information for discussion)

Table 2. Empirical coverage for nominal 95% lower credible bounds (significant negative discoveries)

Spiky Near-normal Flat-top Skew Big-normal Bimodal

ash.n 0.94 0.94 0.94 0.86 0.95 0.96

ash.u 0.93 0.93 0.93 0.84 0.95 0.95

ash.hu 0.92 0.92 0.93 0.92 0.95 0.95

Coverage rates are generally satisfactory, except for the uniform-based methods in the spiky and near-normal scenarios, and the

normal-based method in the flat-top scenario. These results likely reflect inaccurate estimates of the tails of g due to a disconnect

between the tail of g and the component distributions in these cases. For example, the uniform methods sometimes substantially

underestimate the length of the tail of g in these long-tailed scenarios, causing over-shrinkage of the tail toward 0

Table 3. Empirical coverage for nominal 95% lower credible bounds (significant positive discoveries)

Spiky Near-normal Flat-top Skew Big-normal Bimodal

ash.n 0.94 0.94 0.94 0.86 0.95 0.96

ash.u 0.93 0.93 0.93 0.84 0.95 0.95

ash.hu 0.92 0.92 0.93 0.92 0.95 0.95

Coverage rates are generally satisfactory, except for the symmetric methods under the asymmetric (“skew”) scenario

Since FDR-related quantities depend quite sensitively on π0, the consequence of this overestimation

of π0 is corresponding overestimation of FDR (and lfdr, and q values). To illustrate, Figure 2(c) compares

the estimated lfdr from ash.n with the true value (computed using Bayes rule from the true g1 and π0).

As predicted, lfdr is overestimated, especially in scenarios which involve many non-zero effects that are

very near 0 (e.g. the spiky scenario with π0 small) where π0 can be grossly overestimated. Of course other

methods will be similarly affected by this: those that more grossly overestimate π0, will more grossly

overestimate lfdr and FDR/q-values.

The key point we want to make here is that estimation of π0, and the accompanying identifiability

issues, become substantially less troublesome if we use the local false sign rate lfsr (2.7), rather than lfdr,

to measure significance. This is because lfsr is less sensitive to the estimate of π0. To illustrate, Figure 2(d)

compares the estimated lfsr from ash.n with the true value: although the estimated lfsr continue to be

conservative, overestimating the truth, the overestimation is substantially less pronounced than for the

lfdr, especially for the “spiky” scenario. Further, in the bi-modal scenario, the anti-conservative behavior

is less pronounced in lfsr than lfdr.

Compared with previous debates, this section advances an additional reason for focusing on the sign of

the effect, rather than just testing whether it is 0. In previous debates authors have argued against testing

whether an effect is 0 because it is implausible that effects are exactly 0. Here we add that even if one
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believes that some effects may be exactly zero, it is still better to focus on the sign, because generally the

data are more informative about that question and so inferences are more robust to, say, the inevitable

mis-estimation of π0. To provide some intuition, consider an observation with a z score of 0. The lfdr

of this observation can range from 0 (if π0 = 0) to 1 (if π0 = 1). But, assuming a symmetric g, the

lfsr > 0.5 whatever the value of π0, because the observation z = 0 says nothing about the sign of the

effect. Thus, there are two reasons to use the lfsr instead of the lfdr: it answers a question that is more

generally meaningful (e.g. it applies whether or not zero effects truly exist), and estimation of lfsr is more

robust.

Given that we argue for using lfsr rather than lfdr, one might ask whether we even need a point

mass on zero in our analysis. Indeed, one advantage of the lfsr is that it makes sense even if no

effect is exactly zero. And, if we are prepared to assume that no effects are exactly zero, then remov-

ing the point mass yields smaller and more accurate estimates of lfsr when that assumption is true

(supplementary Figure 2a available at Biostatistics online). However, there is “no free lunch”: if in fact

some effects are exactly zero then the analysis with no point mass will tend to be anti-conservative, under-

estimating lfsr (supplementary Figure 2b available at Biostatistics online). We conclude that if ensuring a

“conservative” analysis is important then one should allow for a point mass at 0.

3.1.4. The UA helps provide reliable estimates of g An important advantage of our EB approach based on

modelling the effects βj, rather than p values or z scores, is that it can estimate the effects βj. Specifically, it

provides a posterior distribution for each βj, which can be used to construct interval estimates, etc. Further,

because the posterior distribution is, by definition, conditional on the observed data, interval estimates

based on posterior distributions are also valid Bayesian inferences for any subset of the effects that have

been selected based on the observed data. This kind of “post-selection” validity is much harder to achieve

in the frequentist paradigm. In particular the posterior distribution solves the (Bayesian analogue of the)

“False Coverage Rate” problem posed by Benjamini andYekutieli (2005) which Efron (2008) summarizes

as follows: “having applied FDR methods to select a set of non-null cases, how can confidence intervals be

assigned to the true effect size for each selected case”? Efron (2008) notes the potential for EB approaches

to tackle this problem, and Zhao and Gene Hwang (2012) considers in detail the case where the non-null

effects are normally distributed.

The ability of the EB approach to provide valid “post-selection” interval estimates is extremely attractive

in principle. But its usefulness in practice depends on reliably estimating the distribution g. Estimating

g is a “deconvolution problem,” which are notoriously difficult in general. Indeed, Efron emphasizes

the difficulties of implementing a stable general algorithm, noting in his rejoinder “the effort foundered

on practical difficulties involving the perils of deconvolution ... Maybe I am trying to be overly non-

parametric ... but it is hard to imagine a generally satisfactory parametric formulation ...” (Efron, 2008

rejoinder, page 46). We argue here that the UA can greatly simplify the deconvolution problem, producing

both computationally and statistically stable estimates of g.

To illustrate, we compare the estimated g from ash (under the UA) with the non-parametric maximum

likelihood estimate (NPMLE) for g (i.e. estimated entirely non-parametrically without the unimodal

constraint). The NPMLE is straightforward to compute in R using the REBayes::GLmix func-

tion (Koenker and Mizera, 2014). Figure 3 shows results under six different scenarios. The estimated

cdf from ash is generally closer to the truth, even in the bi-modal scenario. [ash tends to sys-

tematically overestimate the mass of g near zero; this can be avoided by removing the penalty term

(Supplementary Information, equation S.2.5); supplementary Figure 1 available at Biostatistics online.]

Furthermore, the estimate from ash is also substantially more “regular” than the NPMLE, which has sev-

eral almost-vertical segments indicative of a concentration of density in the estimated g at those locations.

Indeed the NPMLE is a discrete distribution (Koenker and Mizera, 2014), so this kind of concentration
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Fig. 3. Comparison of estimated cdfs from ash and the NPMLE. Different ash methods perform similarly, so only
ash.hu is shown for clarity. Each panel shows results for a single example data set, one for each scenario in
Figure 2(a). The results illustrate how the UA made by ash regularizes the estimated cdfs compared with the NPMLE.

will always occur. The UA prevents this concentration, effectively regularizing the estimated g. While the

UA is not the only way to achieve this (e.g. Efron, 2016), we view it as attractive and widely applicable.

3.1.5. Calibration of posterior intervals To quantify the effects of errors in estimates of g we examine

the calibration of the resulting posterior distributions (averaged over 100 simulations in each Scenario).

Specifically we examine the empirical coverage of nominal lower 95% credible bounds for (i) all obser-

vations; (ii) significant negative discoveries; (iii) significant positive discoveries. We examine only lower

bounds because the results for upper bounds follow by symmetry (except for the one asymmetric scenario).

We separately examine positive and negative discoveries because the lower bound plays a different role

in each case: for negative discoveries the lower bound is typically large and negative and limits how big

(in absolute value) the effect could be; for positive discoveries the lower bound is positive, and limits how

small (in absolute value) the effect could be. Intuitively, the lower bound for negative discoveries depends

on the accuracy of g in its tail, whereas for positive discoveries it is more dependent on the accuracy of g

in the center.

The results are shown in Tables 1–3. Most of the empirical coverage rates are in the range 0.92–0.96 for

nominal coverage of 0.95, which we view as adequate for practical applications. The strongest deviations

from nominal rates are noted and discussed in the table captions. One general issue is that the methods

based on mixtures of uniform distributions often slightly curtail the tail of g, causing the probability of very

large outlying effects to be understated; see also http://stephenslab.github.io/ash/analysis/efron.fcr.html.

3.2. Differing measurement precision across units

We turn now to the second important component of our work: allowing for varying measurement

precision across units. The key to this is the use of a likelihood, (2.4) (or, more generally, in
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Supplementary Information, equation (S.1.2)), that explicitly incorporates the measurement precision

(standard error) of each β̂j.

To illustrate, we conduct a simulation where half the measurements are quite precise (standard error

sj = 1), and the other half are very poor (sj = 10). In both cases, we assume that half the effects are null

and the other half are normally distributed with standard deviation 1:

p(β) = 0.5δ0(β) + 0.5N (β; 0, 1). (3.1)

In this setting, the poor-precision measurements (sj = 10) tell us very little, and any sane analysis should

effectively ignore them. However, this is not the case in standard FDR-type analyses (Figure 4). This is

because the poor measurements produce p values that are approximately uniform [Figure 4(a)], which,

when combined with the good-precision measurements, dilute the overall signal (e.g. they reduce the

density of p values near 0). This is reflected in the results of FDR methods like qvalue and locfdr:

the estimated error rates (q-values, or lfdr values) for the good-precision observations increase when the

low-precision observations are included in the analysis [Figure 4(b)]. In contrast, the results from ash for

the good-precision observations are unaffected by including the low-precision observations in the analysis

[Figure 4(b)].

Another consequence of incorporating measurement precision into the likelihood is that ash can

re-order the significance of observations compared with the original p values or z scores. Effectively

ash downweights the poor-precision observations by assigning them a higher lfsr than good precision

measurements that have the same p value [Figure 4(c)]. The intuition is that, due to their poor precision,

these measurements contain very little information about the sign of the effects (or indeed any other

aspect of the effects), and so the lfsr for these poor-precision measurements is always high; see Guan

and Stephens (2008) for related discussion. Here this re-ordering results in improved performance: ash

identifies more true positive effects at a given level of false positives [Figure 4(d)].

3.2.1. Dependence of βj on sj Although downweighting low-precision observations may seem intuitive,

we must now confess that the issues are more subtle than our treatment above suggests. Specifically, it

turns out that the downweighting behavior depends on an assumption that we have made up to now, that

βj is independent of sj (2.2). In practice this assumption may not hold. For example, in gene expression

studies, genes with higher biological variance may tend to exhibit larger effects βj (because they are less

constrained). These genes will also tend to have larger sj, inducing a dependence between βj and sj.

Motivated by this, we generalize the prior (2.2) to

βj

ŝα
j

∣∣ŝj ∼ g(·; π), (3.2)

where α is to be estimated or specified. Setting α = 0 yields (2.2). Setting α > 0 implies that the effects

with larger standard error tend to be larger (in absolute value). Fitting this model for any α is straightforward

using the same methods as for α = 0 (see supplementary material available at Biostatistics online).

The case α = 1 in (3.2) is of special interest because it corresponds most closely to existing methods.

Specifically, it can be shown that with α = 1 the lfsrj values from ash.n are monotonic in the p values:

effects with smaller p values have smaller lfsrj. This result generalizes a result in Wakefield (2009), who

referred to a prior that produces the same ranking as the p values as a “p value prior.” Of course, if the lfsrj

are monotonic in the p values then the downweighting and reordering of significance illustrated in Figure 4

will not occur. The intuition is that under α = 1 the poor precision observations have larger effects sizes,

and consequently the same power as the high-precision observations—under these conditions the poor

precision observations are not “contaminating” the high precision observations, and so downweighting
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(a)

(b)

(c) (d)

Fig. 4. Simulations showing how, with existing methods, but not ash, poor-precision observations can contaminate
signal from good-precision observations. (a) Density histograms of p values for good-precision, poor-precision, and
combined observations. The combined data show less signal than the good-precision data, due to the contamination
effect of the poor-precision measurements. (b) Results of different methods applied to good-precision observations
only (x-axis) and combined data (y-axis). Each point shows the “significance” (q values from qvalue; lfdr for
locfdr; lfsr for ash) of a good-precision observation under the two different analyses. For existing methods
including the poor-precision observations reduces significance of good-precision observations, whereas for ash the
poor-precision observations have little effect (because they have a very flat likelihood). (c) The relationship between
lfsr and p-value is different for good-precision (s = 1) and low-precision (s = 10) measurements: ash assigns the
low-precision measurements a higher lfsr, effectively downweighting them. (d) Trade-off between true positives (y)
vs false positives (x) as the significance threshold (lfsr or p value) is varied. By downweighting the low-precision
observations ash re-orders the significance of observations, producing more true positives at a given number of false
positives. It is important to note that this behaviour of ash depends on choice of α. See Section 3.2.1 for discussion.
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them is unnecessary. Thus running ashwith α = 1 will produce the same significance ranking as existing

methods. Nonetheless, it is not equivalent to them, and indeed still has the benefits outlined previously:

due to the UA ash can produce less conservative estimates of π0 and lfdrj; and because ash models the

βj it can produce interval estimates.

As an aside, we note that with α = 1 the ash estimates of both g and lfsrj depend on the pairs (β̂j, ŝj)

only through the z scores zj = β̂j/ŝj [though interval estimates for βj still depend on (β̂j, ŝj)]. This means

that ash can be run (with α = 1) in settings where the zj are available but the (β̂j, ŝj) are not. It also opens

the intriguing possibility of running ash on p values obtained from any test (e.g. a permutation test), by

first converting each p value to a corresponding z score. However, the meaning of and motivation for the

UA may be unclear in such settings, and caution seems warranted before proceeding along these lines.

In practice, appropriate choice of α will depend on the actual relationship between βj and sj, which

will be dataset-specific. Further, although we have focused on the special cases α = 0 and α = 1, there

seems no strong reason to expect that either will necessarily be optimal in practice. Following the logic of

the EB approach we suggest selecting α by maximum likelihood, which is implemented in our software

using a simple 1-d grid search (implementation due to C. Dai).

4. DISCUSSION

We have presented an Empirical Bayes approach to large-scale multiple testing that emphasizes two ideas.

First, we emphasize the potential benefits of using two numbers (β̂, and its standard error) rather than

just one number (a p value or z score) to summarize the information on each test. While requiring two

numbers is slightly more onerous than requiring one, in many settings these numbers are easily available

and if so we argue it makes sense to use them. Second, we note the potential benefits—both statistical

and computational—of assuming that the effects come from a unimodal distribution, and provide flexible

implementations for performing inference under this assumption. We also introduce the “false sign rate”

as an alternative measure of error to the FDR, and illustrate its improved robustness to errors in model fit,

particularly mis-estimation of the proportion of null tests, π0.

Multiple testing is often referred to as a “problem” or a “burden.” In our opinion, EB approaches

turn this idea on its head, treating multiple testing as an opportunity: specifically, an opportunity to learn

about the prior distributions, and other modelling assumptions, to improve inference and make informed

decisions about significance (see also Greenland and Robins, 1991). This view also emphasizes that, what

matters in multiple testing settings is not the number of tests, but the results of the tests. Indeed, the FDR

at a given fixed threshold does not depend on the number of tests: as the number of tests increases, both

the true positives and false positives increase linearly, and the FDR remains the same. [If this intuitive

argument does not convince, see Storey (2003), and note that the FDR at a given p value threshold does

not depend on the number of tests m.] Conversely, the FDR does depend on the overall distribution of

effects, and particularly on π0, for example. The EB approach captures this dependence in an intuitive

way: if there are lots of strong signals then we infer π0 to be small, and the estimated FDR (or lfdr, or lfsr)

at a given threshold may be low, even if a large number of tests were performed; and conversely if there

are no strong signals then we infer π0 to be large and the FDR at the same threshold may be high, even if

relatively few tests were performed. More generally, overall signal strength is reflected in the estimated

g, which in turn influences the estimated FDR.

Two important practical issues that we have not addressed here are correlations among tests, and

the potential for deviations from the theoretical null distributions of test statistics. These two issues

are connected: specifically, unmeasured confounding factors can cause both correlations among tests and

deviations from the theoretical null (Efron, 2007; Leek and Storey, 2007). And although there are certainly

other factors that could cause dependence among tests, unmeasured confounders are perhaps the most
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worrisome in practice because they can induce strong correlations among large numbers of tests and

profoundly impact results, ultimately resulting in too many hypotheses being rejected and a failure to

control FDR. We are acutely aware that, because our method is less conservative than existing methods,

it may unwittingly exacerbate these issues if they are not adequately dealt with. Approaches to deal with

unmeasured confounders can be largely divided into two types: those that simply attempt to correct for

the resulting inflation of test statistics (Devlin and Roeder, 1999; Efron, 2004), and those that attempt

to infer confounders using clustering, principal components analysis, or factor models (Pritchard and

others, 2000; Price and others, 2006; Leek and Storey, 2007; Gagnon-Bartsch and Speed, 2012), and then

correct for them in computation of the test statistics (in our case, β̂, ŝ). When these latter approaches are

viable they provide perhaps the most satisfactory solution, and are certainly a good fit for our framework.

Alternatively, our methods could be modified to allow for test statistic inflation, an idea that may be worth

pursuing in future work.

Another important practical issue is the challenge of small sample sizes. For example, in genomics

applications researchers sometimes attempt to identify differences between two conditions based on only a

handful of samples in each. In such settings the normal likelihood approximation (2.4) will be inadequate.

And, although the t likelihood (Supplementary Information, equation (S.1.2)) partially addresses this issue,

it is also, it turns out, not entirely satisfactory. The root of the problem is that, with small sample sizes,

raw estimated standard errors ŝj can be horribly variable. In genomics it is routine to address this issue by

applying EB methods (Smyth, 2004) to “moderate” (i.e. shrink) variance estimates, before computing p

values from “moderated” test statistics. We are currently investigating how our methods should incorporate

such “moderated” variance estimates to make it applicable to small sample settings.

Our approach involves compromises between flexibility, generality, and simplicity on the one hand,

and statistical efficiency and principle on the other. For example, in using an EB approach that uses a point

estimate for g, rather than a fully Bayes approach that accounts for uncertainty in g, we have opted for

simplicity over statistical principle. And in summarizing every test by two numbers and making a normal

or t approximation to the likelihood, we have aimed to produce generic methods that can be applied

whenever such summary data are available—just as qvalue can be applied to any set of p values, for

example—although possibly at the expense of statistical efficiency compared with developing multiple

tailored approaches based on context-specific likelihoods. Any attempt to produce generic methods will

involve compromise between generality and efficiency. In genomics, many analyses—not only FDR-based

analyses—involve first computing a series of p values before subjecting them to some further downstream

analysis. An important message here is that working with two numbers (β̂j, ŝj), rather than one (pj or zj),

can yield substantial gains in functionality (e.g. estimating effect sizes, as well as testing; accounting for

variations in measurement precision across units) while losing only a little in generality. We hope that our

work will encourage development of methods that exploit this idea in other contexts.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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