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Abstract

The problem of multiple testing for the presence of signal in spatial data

can involve a large number of locations. Traditionally, each location is tested

separately for signal presence but then the findings are reported in terms of

clusters of nearby locations. This is an indication that the units of interests

for testing are clusters rather than individual locations. The investigator may

know a-priori these more natural units or an approximation to them. We

suggest testing these cluster units rather than individual locations, thus in-

creasing the signal to noise ratio within the unit tested as well as reducing

the number of hypotheses tests conducted. Since the signal may be absent

from part of each cluster, we define a cluster as containing signal if the sig-

nal is present somewhere within the cluster. We suggest controlling the false

discovery rate (FDR) on clusters, i.e. the expected proportion of clusters

rejected erroneously out of all clusters rejected, or its extension to general

weights (WFDR). We introduce a powerful two-stage testing procedure and

show that it controls the WFDR. Once the cluster discoveries have been made,

we suggest ’cleaning’ locations in which the signal is absent. For this purpose

we develop a hierarchical testing procedure that tests clusters first, then loca-

tions within rejected clusters. We show formally that this procedure controls

the desired location error rate asymptotically, and conjecture that this is so

also for realistic settings by extensive simulations. We discuss an application

to functional neuroimaging which motivated this research and demonstrate

the advantages of the proposed methodology on an example.

Key words : Signal detection, FDR, multiple testing, hierarchical testing, weighted
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testing procedures, functional MRI.

1 Introduction

Consider a spatial signal {µ(s) : s ∈ D ⊂ <d} that is deterministic and has spatial

structure in the loose sense that the signal is present over regions rather than in

singular points in the spatial domain. Let D0 = {s ∈ D : µ(s) ≤ 0} and D1 =

{s ∈ D : µ(s) > 0} denote the subsets of D with non-positive and positive signal

respectively. We wish to infer on the subset D1 of D with positive mean signal

(the restriction to positive is for ease of notation) from the N realized processes

{Xi(s) : i = 1, . . . , N, s ∈ D ⊂ <d}, where Xi(s) = µ(s) + εi(s) and εi(·) is a

Gaussian mean zero process. While a large part of the spatial literature is devoted

to the difficult case that N = 1, requiring extra assumptions on µ(·) that capture

the spatial structure of the signal, in recent important applications such as fMRI

and satellite measurements we encounter the more general setting N > 1.

The common approach to the problem is to test at each location separately for

the signal’s presence

H0(s) : µ(s) = 0 versus H1(s) : µ(s) > 0 (1)

and adjust the level of the test to the multiplicity of locations to control the family-

wise error (FWE, e.g. using random field theory or resampling methods) or the false

discovery rate (FDR).

We argue, for two main reasons, that the data should be aggregated into clusters

of locations before testing. First, in many applications the fundamental units of

interest are contiguous aggregates of measured locations that describe the regions
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of interest. For example, in functional magnetic resonance imaging (fMRI), the

signal is recorded over time for a series of brain slices yielding measured signal at

volumetric pixels (called voxels). The spatial resolution is set by the capacity of the

MRI machine used, but the fundamental units of interest are the contiguous brain

regions that participate in cognitive tasks and therefore are activated together (see

e.g. Penny and Friston (2003)) rather than the individual voxels. Second, spatial

clusters of measured locations can have increased signal to noise ratio (SNR), since if

the signal is present in one location there tends to be signal in neighboring locations

as well. For example, even if the SNR of every monitoring site in a region is too low

to detect a pollutant in water or in the air, the SNR of the pooled information may be

high enough. Another example is the across country mortality surveillance systems.

Currently each municipality is tested separately for a suspicious increase in mortality

(see e.g. sartorius et al. (2006)). These systems can benefit from our approach by

testing clusters of municipalities with similar death rates first, possibly weighing the

importance of a cluster by its population, and then only test municipalities within

detected clusters.

Let C1, C2, . . . , Cm be a partition of D into m contiguous components we call

clusters. We say that a cluster Ci does not contain signal, or is a null cluster, if the

signal is absent in all subsets of Ci (i.e. Ci ⊂ D0). This is the only definition that

guarantees that the p-values based on the spatially averaged signal are uniform or

stochastically larger than the uniform under the null. The collection of m hypotheses

tested are therefore

H0i : µ(s) = 0 ∀ s ∈ Ci versus H1i : µ(s) > 0 for at least one s ∈ Ci (2)

for all i = 1, . . . ,m.
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How to aggregate the data into spatial clusters is problem-specific and depends

on the information at hand: in the fMRI example, Heller et al. (2006) use the

data from a preparatory fMRI experiment to approximate the appropriate brain

units (subunits) by aggregating neighboring voxels that are highly correlated; in

the pollutant example, the clusters can be defined by considering the geographic

positions of the monitoring sites; in the mortality surveillance system example,

the clusters can be defined by aggregating municipalities with similar past death

rates. Two points are important regarding the construction of the partition. First,

it should be based on information outside the data we set out to analyze. This

guarantees that if the partitioning has a stochastic component it does not affect the

interpretation or the validity of the results. In practice such information is often

available for spatial data, as in the examples above. Second, the quality of the

partition does affect the potential gain from using clusters of locations rather than

individual locations. Intuitively, if the data is partitioned into the smallest possible

number of homogeneous clusters (in the sense that all its locations contain signal or

the signal is absent from all) the gain will be largest. From extensive simulations

and analytical examination of simple cases, we show that we can gain power by

testing clusters rather than individual locations even if the partitioning is far from

ideal. This is so, for example, for independent data if on average the proportion of

locations with (same) signal in a cluster multiplied by the square root of the cluster

size is greater than one.

Starting with a given partition of the data into clusters, testing clusters of loca-

tions rather than individual locations raises the question of which error criterion we

would like to control. Benjamini and Hochberg (1995) introduced the false discovery

rate (FDR), which is in our context the expected proportion of erroneously rejected

clusters out of all clusters rejected, say FDR on clusters (FDRCLUST). Benjamini
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and Hochberg (1997) also introduced the weighted FDR (WFDR) , which may be

especially appropriate here. For example, we may want to control a size weighted

FDR on clusters (WFDRCLUST), where the weights are proportional to the size of

the clusters, which means on the one hand that it is important to reject a large

cluster that contains signal since it considerably increases the weight of the total

discoveries, but on the other hand it also increases the weight of the errors if in fact

it is an error. Exact definitions and their relationships are given in section 2. In

section 3 we give procedures to control the WFDR on clusters. In particular, we

prove that the two stage procedure of Benjamini et al. (2006) can be applied using

weights and still control the WFDR, a property of interest by itself.

We have already identified the advantage of using clusters as building blocks

for inference. However, the researcher may want to detect not only the clusters

containing signal, but also the locations within the clusters where the signal is

present. For this purpose we introduce a Cluster Testing and Trimming procedure

for spatial data, that first tests clusters and then trims individual locations from

the cluster discoveries to control the FDR on locations as well (possibly at a more

lenient level). We show its asymptotic properties in section 4 and examine more

realistic models using simulations in section 5.

We demonstrate our analysis approach on an fMRI example in section 6. This

approach is especially useful for detecting activated brain regions, since the data is

very noisy and the number of tests (in the original units) is very large.

The first attempt to give FDR control over clusters was made by Pacifico et al.

(2004), but their approach is very different from ours in principle as well as in detail.

Moreover, their suggested procedure relies on power of single location intensities

and therefore does not make use of the power gain made possible by averaging over

locations within clusters (we come back to this point in section 7). An estimation
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procedure of the spatial signal using the FDR was given in Shen et al. (2002).

2 False Discovery Rates for Spatial Signals

We first propose useful error rates to control when drawing inference about the set

of locations that contain signal. For a rejected set A ⊆ D, and λ a measure on the

domain D, define λ1(A) ≡ λ(A∩D1), λ0(A) ≡ λ(A∩D0), Qλ = λ0(A)/λ(A)I{λ(A)>0}

where I{λ(A)>0} defines Qλ as 0 when λ(A) = 0. For example, with the 2-dimensional

Lebesgue measure, Qλ is the proportion of area where the signal is absent out of the

area rejected, unless the rejected set has measure zero, in which case Qλ is zero. A

natural generalization of the FDR for spatial applications is given in the following

definition.

Definition 2.1. Using the measure λ for rejected sets A ⊆ D, the false discovery

rate of a testing procedure is

FDRλ = E(Qλ) = E[
λ0(A)

λ(A)
I{λ(A)>0}].

FDRλ has been suggested by Pacifico et al. (2004) for a threshold procedure with

data dependent threshold T (X): A(T ) = {s ∈ D : X(s) ≥ T (X)}. In practice, the

signal is usually measured in a known, finite number of locations. When the loca-

tions are equally spaced and represent an equal area, the regular FDR on locations

approximates the FDR in terms of area.

When the fundamental unit of interest is a cluster, a useful error rate (in the

spirit of Pacifico et al. (2004)) for a testing procedure that rejects clusters is the

expected proportion of falsely discovered clusters out of all clusters discovered.

Definition 2.2. Let C1, . . . , Cm be a partition of D into clusters, let I0 be the subset
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of indices corresponding to null clusters, and let Ri = 1 if cluster i is rejected and

zero otherwise. The FDR on clusters is

FDRCLUST = E[

∑

i∈I0
Ri

∑m
i=1 Ri

I{∑m
i=1 Ri>0}]

When clusters are completely homogeneous, weighing each cluster by its size

leads to an error rate that is identical to FDRλ:

Definition 2.3. The size weighted FDR on clusters is

WFDRCLUST = E[

∑

i∈I0
λ(Ci)Ri

∑m
i=1 λ(Ci)Ri

I{∑m
i=1 Ri>0}]

The above two error rates are special cases of the weighted FDR defined in

Benjamini and Hochberg (1997) for general hypotheses:

WFDR = E[

∑

i∈I0
wiRi

∑m
i=1 wiRi

I{
∑m

i=1 Ri>0}]

where wi is the weight of cluster i and
∑m

i=1 wi = m. Specifically, the weight of

cluster i for FDRCLUST and WFDRCLUST is wi = 1 and wi = mλ(Ci)/
∑m

i=1 λ(Ci)

respectively.

Control of FDRCLUST or WFDRCLUST does not guarantee control of FDRλ, but

the following simple relation with WFDRCLUST can be used to get an upper bound

on FDRλ for a testing procedure that rejects clusters:

FDRλ = E[

∑m
i=1 Riλ0(Ci)

∑m
i=1 Riλ(Ci)

I{∑m
i=1 Ri>0}] = WFDRCLUST + E(

∑

i∈I1
Riλ0(Ci)

∑m
i=1 Riλ(Ci)

)

where I1 is the subset of indices corresponding to non-null clusters.

Recall that our motivation for using clusters rather than locations is that the
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units of interest are clusters and that these units may have higher SNR than loca-

tions. So the primary interest is to achieve control over WFDR on clusters, where

the choice of weights is goal oriented. This is done in the following section 3. But

once the cluster discoveries have been made, the investigator may be interested in

’cleaning’ the rejected clusters from null locations, thus reducing the FDRλ. This is

done in section 4.

3 Controlling the Weighted FDR on Clusters

Consider any test for testing H0i vs. H1i in (2) and let Pi be the corresponding

p-value and pi its realized value. Note that any test statistic is appropriate as long

as the p-value is valid, i.e. Pi
H0i∼ U(0, 1) or Â

stU(0, 1).

Benjamini and Hochberg (1995) introduced the FDR controlling linear step-up

procedure, also called the BH procedure. Benjamini and Hochberg (1997) extend

this procedure to general weights:

Procedure 3.1. The weighted BH procedure: Order the cluster p-values p(1) ≤ . . . ≤

p(j) ≤ . . . ≤ p(m). Let w(j) be the weight associated with p(j) and
∑m

j=1 w(j) = m.

Let k = max{j : p(j) ≤ (
∑j

i=1 w(i)/m)q} and reject the clusters corresponding to the

smallest k p-values.

This procedure was shown in Benjamini and Hochberg (1997) to guarantee that

for independent test statistics WFDR ≤ (
∑

i∈I0
wi/m)q. Benjamini and Yekutieli

(2001) further prove that FDRCLUST ≤ q if the joint distribution of the test statistics

is positive regression dependent (PRDS) on the subset of true nulls. For example the

PRDS property is satisfied if the cluster test statistics are Gaussian, non-negatively

correlated, and the testing hypotheses are one-sided. Kling (2005) proved that the

bound on WFDR is valid under the same conditions.
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In line with many others (e.g. Storey et al. (2004), see Benjamini et al. (2006) for

a review), Benjamini et al. (2006) suggest a two stage procedure that first estimates

the number of null hypotheses and then uses it to enhance the power when wi =

1, i = 1, . . . ,m. They prove that it controls the FDR at level q for independent

test statistics. The generalization of their procedure, that is especially useful when
∑

i∈I0
wi/m is believed to be small, is as follows

Procedure 3.2. The weighted two stage procedure

1. Use procedure 3.1 at level q′ = q/(q + 1).

2. Estimate the sum of weights of null clusters by m̂0(w) = m −
∑k

i=1 w(i). Let

k2 = max{j : p(j) ≤ (
∑j

i=1 w(i)/m̂0(w))q′}. The clusters corresponding to the

smallest k2 p-values are rejected.

Theorem 3.1. For independent test statistics, the weighted two stage procedure 3.2

controls the WFDR at level q.

See appendix A.1 for a proof. Note that although the development of the weighted

two stage procedure was motivated by the problem of testing clusters, it is more

general and can be applied to any multiple testing problem with weights.

Benjamini et al. (2006) argue (by a simulation study) that the two-stage pro-

cedure for unit weights controls the FDR at level q under the PRDS assumption.

The argument can be extended under weighting as follows: approximate the set

of weights by integer positive weights {Wi : i = 1, . . . ,m}, then produce a vec-

tor of mnew =
∑m

i=1 Wi p-values by repeating Wi times the p-value pi for every

i = 1, . . . ,m, thus producing an extreme case of positive dependency between the

mnew p-values.

A more rigorous result under more general dependency structures can be given in

an asymptotic framework. In this framework, we assume the locations are measured
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on a grid. Let the nth set of spatial observations consist of a grid of locations Dn. As

the number of locations goes to infinity, we consider the following two asymptotic

settings: (1)increasing domain asymptotics, where the distance between locations

remains fixed but the domain goes to infinity D1 ⊂ D2 ⊂ . . . ⊂ <d, and (2)infill

asymptotics, where the domain remains fixed but the number of points increases to

infinity Dn = D∩(Z/Λn)d, where {Λn} is an increasing sequence of positive integers

and (Z/Λn)d = {k/λn : k ∈ Zd} is the 1/λn lattice. The first setting is common

in spatial statistics. The second setting makes sense if we think of an improved

measuring device (e.g. an MRI machine), so that as the resolution of the device

increases the device is also able to differentiate better between nearby locations.

Let S and S0 be the number of locations measured and the number of null

locations respectively. Consider the following asymptotic conditions:

lim
S→∞

S0

S
= A0 Exists and A0 < 1 (3)

FS =
1

S

S
∑

s=1

1[ps < t|H0s]
a.s.
→

S→∞
A0F (t), F (t) ≤ t ∀t ∈ (0, 1] (4)

GS =
1

S

S
∑

s=1

1[ps < t|H1s]
a.s.
→

S→∞
(1 − A0)G(t) ∀t ∈ (0, 1] (5)

These conditions can be satisfied, for example, if we assume that the spatial depen-

dence of the noise between locations is local (m-dependence). The two asymptotic

settings are equivalent under this assumption of local dependence. Since the de-

pendence among the location test statistics is finite, if condition (3) is satisfied, the

empirical processes (4) and (5) converge by the lemma of Glivenko-Cantelli (which

is valid under local dependence).

Let Fm = 1
m

∑m

i=1 1[pi < t|H0i] and Gm = 1
m

∑m

i=1 1[pi < t|H1i] be the empirical

distribution functions of the p-values coming from the cluster null and alternative
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hypotheses respectively.

Theorem 3.2. Assume conditions (3)-(5) hold, that the number of clusters m(S)

satisfies limS→∞ m(S) = ∞ and that lim m0

m
exists. Suppose also that

δ ≡ sup{t : t
limm→(Fm(t)+Gm(t))

≤ q} ∈ (0, 1]. Then, as S → ∞ Procedure 3.2 with unit

weights controls the FDR asymptotically at level q.

Proof. The threshold in procedure 3.2 is t∗m = sup{t :
m̂0
m

(1+q)t

(Fm(t)+Gm(t))∨ 1
m

≤ q}. There-

fore

FDR = E(
Fm(t∗m)

(Fm(t∗m) + Gm(t∗m)) ∨ 1
m

) = E(
m̂0

m
(1 + q)t∗m

(Fm(t∗m) + Gm(t∗m)) ∨ 1
m

+
Fm(t∗m) − m̂0

m
(1 + q)t∗m

(Fm(t∗m) + Gm(t∗m)) ∨ 1
m

)

≤ q + supt≥δ{
(Fm(t) − lim m0

m
t)

(Fm(t) + Gm(t)) ∨ 1
m

} + supt≥δ{
(lim m0

m
− m̂0

m
(1 + q))t

(Fm(t) + Gm(t)) ∨ 1
m

} + I{t∗m < δ}

From (3)-(5) and the definition of δ, it follows that (a) the second term is asymp-

totically negative because these conditions guarantee that the variance of Fm(t) is

asymptotically zero so lim Fm(t) ≤ lim(m0

m
)t, (b) the third term is asymptotically

negative because our estimate m̂0

m
= m−R1

m
≥ (1 − V1

m0
)m0

m
, where R1 and V1 are the

number of hypotheses rejected and rejected falsely respectively in the first stage,

has a lower bound since E(V1) ≤ m0q
′:

limm→∞
m̂0

m
(1 + q) ≥ limm→∞(1 − q′)m0

m
(1 + q) = lim m0

m
, and (c) the fourth term is

0. Therefore the asymptotic upper bound for the FDR is q.

See Genovese and Wasserman (2004), Storey et al. (2004) and Ferreira and Zwin-

derman (2006) for similar results under slightly different conditions and for different

estimates of the proportion of null hypothesis.
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4 Hierarchical Testing Procedure

As explained before, even a researcher interested in clusters prefers to avoid errors

in specific locations, so after applying an FDR procedure on clusters, we look within

the rejected clusters and eliminate locations that contain no signal.

For any chosen location-wise test statistic, let the location-wise p-value map be

{p̃li|l = 1, . . . , ci i = 1, . . . ,m}, where the number of locations in cluster i is ci and

zli = Φ−1(1− p̃li) is the corresponding z-score for location l in cluster i. The regular

FDR on locations takes the following form:

FDRLOC = E[

∑m
i=1

∑ci
l=1 Vli

∑m
i=1

∑ci
l=1 Rli

I{∑m
i=1

∑ci
l=1 Rli>0}]

where Rli = 1 if location l in cluster i is rejected and 0 otherwise, and Vli = 1 if

location l in cluster i is rejected erroneously and 0 otherwise.

If the test statistic used at the location level is independent of the one used at

the cluster level, the BH procedure (or its two stage variant) can be directly applied

at the location level (for locations within rejected clusters) to control FDRLOC. This

is also the case asymptotically if the number of locations within each cluster grows

to infinity in such a way that the correlation between the location test statistic and

that of its cluster goes to zero. But what if the location test statistic is correlated

with the test statistic at the cluster level?

To answer this, we will first test the cluster hypothesis (2) using the standardized

z-score average of its locations as the cluster test statistic. Then, we will test the

location hypothesis (1) for every location included in a rejected cluster.

The relevant location p-value is no longer the marginal one, but conditional on

it being in a rejected cluster. The following notations will be convenient in the

derivation of the p-value: ρli = corr(Zli, Z i)(e.g. ρli = 1/
√

ci if the measured
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signal between locations is independent), σZi
is the standard deviation of Zi, and

µi = EH1i
(Zi)/σZi

is the standardized expectation of the cluster test statistic under

the alternative hypothesis H1i. The conditional p-value pli(u1,m0/m, µi, ρli) of a

location within a cluster that passed an initial fixed cut-off u1 is

pli =

∫ ∞

zli
(m0

m
)(

∼

Φ (
∼

Φ
−1

(u1)−ρliu√
1−ρ2

li

)) + (1 − m0

m
)(

∼

Φ (
∼

Φ
−1

(u1)−ρliu−µi√
1−ρ2

li

))φ(u)du

m0

m
u1 + (1 − m0

m
)(

∼

Φ (
∼

Φ
−1

(u1) − µi))
(6)

where Φ,
∼

Φ and φ are respectively the cumulative distribution, the right tail prob-

ability, and the density of a standard normal distribution.

Lemma 4.1. Assume that the non-null clusters’ standardized z-scores are normally

distributed. Then pli given in (6) is a valid p-value for testing whether location l in

rejected cluster i contains signal.

Proof. We have to show that pli ∼ U(0, 1) (or stochastically larger than U(0, 1)) if

location l in cluster i contains no signal. Assume, as in ?, that the cluster hypothesis

come from a Bernoulli distribution with marginal probability m0/m of being a null

hypothesis. Then

pvalue = P0(Zli ≥ zli|Zi/σZi
≥

∼

Φ
−1

(u1)) =
P0(Zli ≥ zli, Zi/σZi

≥
∼

Φ
−1

(u1))

P0(Zi/σZi
≥

∼

Φ
−1

(u1))

=
m0

m
P0(Zli ≥ zli, Zi/σZi

≥
∼

Φ
−1

(u1)|H0i) + (1 − m0

m
)P0(Zli ≥ zli, Zi/σZi

≥
∼

Φ
−1

(u1)|H1i)

m0

m
u1 + (1 − m0

m
)P (Zi/σZi

≥
∼

Φ
−1

(u1)|H1i)

where the subscript zero indicates that the probabilities are calculated under the

null hypothesis. Since Zi is normally distributed under H1i, the p-value is exactly

pli because the joint distribution of a location z-score with its standardized cluster
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average z-score is bivariate normal with unit variance, correlation ρli, zero loca-

tion mean and zero or µi mean for the standardized cluster average, depending on

whether the cluster null hypothesis is true or false.

Note that the average of ci independent (or m-dependent) random variables

will be approximately Gaussian for ci large enough. Still, some caution should be

exercised in using (6) since it is sensitive to the Gaussian distribution assumption of

the average z-score in the extreme right tail of the distribution for non-null clusters.

So it is possible to take the more conservative approach of approximating the p-value

by an upper bound that will be valid regardless of whether the Gaussian distribution

assumption on non-null clusters holds. This upper bound occurs when µi → 0:
∼

Φ (zli)+ 1
u1
{
∫ ∞

zli
(
∼

Φ (
∼

Φ
−1

(u1)−ρliu√
1−ρ2

li

))φ(u)du−
∼

Φ (zli)u1}. Note that the smallest p-value

is achieved when µi = ∞:
∼

Φ (zli) + 1

u1+
m−m0

m0

{
∫ ∞

zli
(
∼

Φ (
∼

Φ
−1

(u1)−ρliu√
1−ρ2

li

))φ(u)du−
∼

Φ (zli)u1}, so this upper bound is

a tight upper bound as the fraction of null clusters goes to 1.

In practice, the parameters necessary for the p-value calculation are unknown

and need to be estimated from the data. Moreover, unless the locations have inde-

pendent statistics the standard error of Zi, σZi
, is unknown and has to be estimated

from the data. The first step towards estimation of ρli and σZi
is the estimation

of the correlations between locations that belong to the same clusters. We sug-

gest estimating the correlations between locations by first estimating the variogram,

var(Zli−Z(ki)) = 2γ(Zli, Zki). If the Z-score process satisfies the following ”intrinsic

stationarity on clusters” assumptions (which are satisfied if the Z-map is intrinsi-

cally stationary): var(Zli −Zki) = 2γ(
√

sli − ski) where sli and ski are the locations

in space of Zli and Zki respectively, and E(Zli) = E(Zki), then the variogram 2γ(h)

can be empirically estimated. However, since E(Zli) = E(Zki) holds in most pairs
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of locations, the variogram is estimated robustly by (page 75 in Cressie (1991))

2γ̂(h) = [med{(Zki − Zli)
2 : (ski, sli) ∈ N(h)}]/0.455. (7)

On the estimated pli’s, we propose to use the two stage FDR procedure of Ben-

jamini et al. (2006). The gain in power over the BH FDR procedure may be high

since the potential number of true location discoveries within discovered clusters

is expected to be quite large. The following procedure summarizes the suggested

analysis steps so far.

Procedure 4.1. The Clusters Testing and Trimming procedure:

1. Testing Stage:

(a) For every location calculate its original p-value and let zli be the corre-

sponding z-score for location l in cluster i.

(b) Use the robust variogram estimator (7) to estimate the correlation between

the z-scores of locations within clusters.

(c) Let the correlation between two locations be ρ̂i
l,k = 1 − γ̂(sli − ski). Then

σ̂Zi
= 1

ci

√

(ci + 2
∑ci

l=1

∑l−1
k=1 ρ̂i

l,k).

(d) Apply procedure 3.1 at level q on {
∼

Φ (Zi/σ̂Zi
), i = 1, . . . ,m}. Let k be the

number of clusters rejected and let u1 be the cut-off point of the largest

p-value rejected (e.g. u1 = kq/m for a BH procedure).

2. Trimming Stage:

(a) Let m̂0 = (m−k)
1−q

, µ̂i = (
∑m

i=1

∑ci
l=1 zli

∑m
i=1 ci

)/σ̂Zi
, ρ̂li =

1+
∑ci

k 6=l,k=1 ρ̂i
l,k

ciσ̂Zi

.

(b) Estimate the p-value by plugging in the estimated parameters above in

equation (6) to get p̂li.
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(c) Apply the two-stage procedure at level q2:

i. Sort the resulting m2 p-values p̂li: p̂(1) ≤ . . . ≤ p̂(m2). Let q′2 =

q2/(1 + q2), k1 = max{j : p̂(j) ≤ (j/m2)q
′
2}.

ii. Let m̂02 = m2 − k1 and k2 = max{j : p̂(j) ≤ (j/m̂02)q
′
2}. Keep all

locations with p̂li ≤ (k2/m̂02)q
′
2 in the clusters, trimming the others.

Consider the following condition: limm→∞

∑m
i=1 ciz·i

∑m
i=1 ci

≤ mini:i∈I1,i rejected E(Zi).

This condition is satisfied if the expected cluster average of every non-null clus-

ter (that is rejected in the testing stage) is larger than the expected average of the

entire z-score map. This is a fairly weak assumption, especially when m0/m is close

to 1.

Lemma 4.2. Assume the conditions of theorem 3.2 and lemma 4.1 are satisfied.

Moreover, assume that the correlations between the locations within the clusters are

consistently estimated and the above additional condition. Then p̂li converges to a

r.v. that is stochastically larger than pli.

See appendix A.2 for a proof.

Lemma 4.2 guarantees that the p-values are asymptotically valid, in the sense

that p̂∞li ≡ lim p̂li(m) is U(0, 1) or stochastically larger than the uniform under

the null hypothesis. The conditions of theorem 3.2 guarantee that the dependency

between the p-values in the set {p̂∞li } is local, so that the two-stage procedure in

4.1 controls the FDRLOC asymptotically at level q2 when the asymptotic threshold

is greater than zero.
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5 A Simulation Study

We conducted a simulation study in order to (1) validate that the Cluster Testing

and Trimming Procedure 4.1 controls the FDRLOC at level q2 under realistic settings,

and (2) compare the performance of procedures 3.1 and 4.1 with that of a location-

wise analysis on the entire data.

For 1024 points, we chose 13 different cluster configurations: equal size clusters

(of size 2, 4, 8, 16 and 32); uniform, ∩-shaped or ∪-shaped symmetric, right and

left skewed distributions of sizes. For each cluster configuration the percent of

active clusters considered was p = 0, 0.01, 0.05, 0.10, 0.15. The proportion of active

locations within each active cluster was h = 1, 0.75, 0.5, 0.25. The proportion h

was either fixed for a data set or varied among clusters with the above set average.

The signal at each location was either zero or positive. Active locations either

had identical signal intensity or variable signal intensity, and in the latter non-

zero signals were drawn independently from a truncated normal distribution with

fixed mean and variance (the coefficient of variation of the location means within a

cluster ranged from 0.2 to 2). White noise was added to each location so the signal

to noise ratio ranged from 0 to 5. The same noise was added for all signal and

cluster configurations. We used 150 simulation repetitions. The simulations were

performed in Matlab (version 6.5).

For simulations with spatial dependence, a map of 32 × 32 points was consid-

ered with various cluster and signal configurations. White noise convolved with

a Gaussian filter created spatially correlated noise. The filter width varied in the

simulations.

Procedure 4.1 was applied to each simulated data set. We restricted the analysis

of the testing stage to the BH procedure with a 0.05 threshold. In the trimming

18



stage q2 was either 0.05 or 0.25. The FDR was estimated by averaging over the

simulations the proportion of false units rejected among all rejected units. For

FDRCLUST and FDRLOC the units were clusters and locations respectively. Note

that after the trimming stage a cluster is a discovery if at least one location within

the cluster is rejected. If no clusters were rejected in the testing stage, the realized

FDRCLUST and FDRLOC were set to zero. The power was estimated by averaging

over the simulations the proportion of true discoveries out of the number of potential

discoveries at the appropriate units: locations or clusters. If no discoveries were

made in the testing stage, the power was set to zero. Four power measures were

calculated: the power of clusters after the testing stage, the power of locations

after the trimming stage with q2 = 0.05 and with q2 = 0.25, and the power of a

location-wise analysis on the entire data.

FDR Control For all signal configurations, even with variable cluster size, vari-

able signal intensity µ for non-null locations and a variable percent of active locations

within an active cluster h, control over FDRCLUST, FDRs and FDRLOC is achieved.

We show the results graphically for a small representative subset of signal configu-

ration. In this subset, 15% of the clusters were active, the cluster sizes were equal

and the data satisfied the fixed alternative model assumptions. Figure 1 shows that

the FDRCLUST after the testing stage is around 0.05. After the trimming stage, the

FDRCLUST is much lower than 0.05 for small µ. Note that although the Procedure

4.1 with fixed q2 does not guarantee that the FDR on clusters is preserved, it was

preserved in all our simulations. The reason why it is low for small µ is that only

very few locations were rejected, and they belonged mostly to true cluster rejections.

The estimated FDRCLUST is most variable for small µ and large c (standard errors

are at most 0.021, 0.010 and 0.013 after the testing stage and the trimming stage
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either with q2 = 0.05 or with q2 = 0.25 respectively). FDRLOC is not preserved after

the testing stage, yet for all signal and cluster configurations the FDRLOC is below

q2 after the trimming stage. This holds even for fairly large deviations from the

fixed alternative model (standard errors are at most 0.03 and 0.02 after the testing

stage and trimming stage respectively).

Power Figure 2 shows the power improvements achieved by procedures 3.1 and

4.1 over a single location analysis of the entire data at the 0.05 level as a function of

µ (with standard errors ≤ 0.02). Note that the power advantage is largest when µ

is not too small and not too large. In figure 2, only for percent signal within cluster

h = 0.25 and cluster size c = 8, the single location analysis has more power. This is

so since
√

ch < 1 in this case.

For independent test statistics, we observed via simulations that the power is

higher for testing clusters than a single location analysis if h > 1/
√

c, where h is

the average percent of signal within clusters containing signal, and c is the average

cluster size. The gain in power is due to the reduced number of hypotheses tested

as well as the higher SNR per cluster than per location (E(Zi/σZi
)

H1i=
√

chµ/σ and

E(Zi(s))
H1(s)
= µ/σ). Note that although a cluster is considered a true discovery if

at least one location within it contains signal, i.e ch > 1, the power is guaranteed to

increase only if
√

ch > 1. As
√

ch increases the advantage in power of our procedures

over single location analysis is larger. The gain in power is of course even larger for

q2 > 0.05.
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Figure 1: FDRCLUST(left) and FDRLOC(right) as a function of µ for (1) cluster-
wise analysis (dash-dot line); (2)Cluster Testing and Trimming Procedure 4.1 with
q2 = 0.05 (dashed line); (3) Cluster Testing and Trimming Procedure 4.1 with
q2 = 0.25 (solid line). The FDRCLUST after the testing stage is around 0.05. After
the trimming stage, the FDRCLUST is much lower than 0.05 for small µ. The FDRLOC

is below q2 after the trimming stage.

6 An fMRI Example

The functional magnetic resonance imaging (fMRI) signal is recorded over time for

a series of brain slices, while the subject performs a sequence of cognitive tasks. The
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Figure 2: Power difference from location-wise analysis as a function of µ for (1)
cluster-wise analysis (dash-dot line); (2)Cluster Testing and Trimming Procedure
4.1 with q2 = 0.05 (dashed line); (3) Cluster Testing and Trimming Procedure 4.1
with q2 = 0.25 (solid line). The power advantage is largest when µ is not too small
and not too large. As

√
ch increases the advantage is larger. Disadvantage only

when
√

ch < 1.

fMRI researcher looks for brain regions that are correlated with the experimental

paradigm in the form of clusters of voxels showing task related activity, whereas the

unit of a ’voxel’ is arbitrarily determined by the measurement technique and does
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not represent a primary neural entity. We used the correlation between neighboring

voxels in order to identify clusters during a preparatory scan, see Heller et al. (2006)

for details. From the preparatory scan we also defined a limited region of interest

(ROI, see Heller et al. (2006) for details) that contained 232 voxels grouped into 20

clusters.

In this fMRI example, an observer viewed stimuli that contained perceptually

completed (“illusory”) contours versus a control stimuli that shared local features

but did not contain illusory contours in a block design experiment. The p-value

of each voxel was calculated from a general linear model (GLM). Next, we applied

procedure 4.1 within the ROI with the modification that the variogram was esti-

mated from brain regions outside the ROI. Procedure 4.1 is valid in this setting since

(1) intrinsic stationarity is a good approximation for brain imaging data (see e.g.

Worsley and Friston (2000)) (2) we only need this assumption for distances within

clusters (3) according to Genovese et al. (2002) the correlations between locations

are local and tend to be positive, so moving to clusters the correlations will also be

positive and local.

Testing clusters at an FDR level of 0.05 within the region of interest, we found

195 voxels grouped into 14 clusters. Trimming further at an FDR level of 0.25 and

0.05 discovered 118 voxels within the 14 clusters and 34 voxels within 12 clusters

respectively. For comparison, single voxel testing at an FDR level of 0.05 (using the

two-stage FDR procedure) found 36 voxels. See figure 3 for the estimated location p-

values within detected clusters in slices 9-10. From the estimated location p-values

within rejected clusters we can see, for example, that for the light blue cluster

most of the cluster contains signal except at the edges in slice 10. The largest p-

value rejected when trimming at an FDR level of 0.25 and 0.05 was 0.23 and 0.01

respectively.
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If the investigator wants control over FDR on locations at the 0.05 level, the

Cluster Testing and Trimming Procedure 4.1 discovers almost the same voxels as

single voxel testing. However, if the investigator is willing to control the FDRLOC

at a higher level (say 0.25) as long as he already has control over FDRCLUST at the

0.05 level, then many more voxels are discovered.

Remark 6.1. Typically the experiment is run on more than one subject and a

group analysis is performed per voxel. We can apply our clustering algorithm on

the averaged or concatenated multi-subject time series to find clusters common to

all subjects. Once the cluster units are defined our suggested testing procedures can

be easily applied. For example, we can apply the Cluster Testing and Trimming

Procedure 4.1 on the p-value map that is produced from a standard fMRI group

analysis per voxel. The difficult question is how to define common cluster units for

the group that take into account the variability between the subjects.

7 Discussion

We argued in favor of testing clusters of locations rather than individual locations

in situations where (i) the investigator’s main interest is in regions of activity rather

than activity in individual locations; (ii) the SNR in individual locations is low but

increases when pooling information from neighboring locations; and (iii) the number

of locations tested is high.

We suggested controlling the FDR or the WFDR on clusters. We generalized the

two-stage FDR procedure in Benjamini et al. (2006) to arbitrary weights, and showed

that it controlled the WFDR under independence of test statistics. When the test

statistics are not independent, we know that procedure 3.1 controls the WFDR if the

PRDS property is satisfied. We believe that, as argued in Benjamini et al. (2006), the
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two-stage weighted procedure 3.2 controls the WFDR under dependency, but this

remains to be proved. We showed that the procedure is valid for local dependencies

asymptotically.

The only previous attempt to control the FDR on clusters that is known to us

is in Pacifico et al. (2004). They defined the FDR criterion on clusters as EΘτ (T )

where Θτ (T ) = #{1 ≤ k ≤ mT : λ0(Ci)/λ(Ci) ≥ τ}/mT , mT is the number of

clusters rejected and τ is the maximal proportion of null signal allowed within a

true cluster discovery. Our definition of FDR on clusters looks at first glance similar

to theirs, except that we take τ = 1. However, the mT clusters rejected in Pacifico

et al. (2004) were found by considering a rejection threshold T (X), and the rejection

set RT = {s ∈ S : X(s) ≥ T (X)}. Then the decomposition of RT into connected

components C1, . . . , CmT
defines the set of clusters rejected. Thus their procedure

is based on each location’s individual test statistic, and no advantage is taken of

the SNR increase that an aggregation of locations within a cluster can offer. In this

paper we showed the advantage of such averaging, in terms of power, over single

location analysis. The partition of Pacifico et al. (2004) is obtained from the data

used for testing, whereas our method relies on the assumption that the investigator

can obtain a partition from other data or other information but this is quite often

feasible in spatial applications. An advantage of Pacifico et al. (2004) is that the

clusters detected are separate regions, whereas our method may find a region that

is comprised of several detected clusters. An interesting point for further research is

to combine the two approaches, so that we gain power from cluster testing as well

as control the FDR on separate regions.

The gain in power when testing clusters rather than individual locations depends

on the quality of the partition. For independent test statistics, we showed via

simulations that the power is higher for testing clusters if h > 1/
√

c, where h is
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the average percent of signal within clusters containing signal, and c is the average

cluster size. A small simulation study that examined the damage in applying the

cluster based analysis when in fact there was no cluster structure in the data showed

that there is hardly any damage (though no advantage as well) when the fraction of

locations containing signal in the data is at least 1/
√

c.

For each cluster detected, we can only conclude that there is signal somewhere

within the cluster. We developed the Cluster Testing and Trimming procedure to

indicate where the signal is within the detected cluster. This procedure extends

the theory on hierarchical FDR controlling procedures in Yekutieli et al. (2006) to

control the FDR at the desired level, even though the test statistics between the

two levels of testing are dependent. The degree of confidence by which we report

the discoveries depends on the FDR levels used. We can achieve the same degree

of confidence as when testing individual locations only, but this is not necessary.

For example, the investigator may be satisfied in knowing that the detected clusters

with no signal at all comprise no more that 5% of the clusters (on average), but that

25% of the detected locations within these clusters may be false. The willingness

to allow a large FDR level for individual locations follows from the fact that the

precision necessary is often that of a general region, rather than the exact spatial

locations where the signal is present. We allow the investigator to choose the degrees

of confidence that he feels are necessary for his application.

Although the p-value calculation for the trimming stage is exact, taking into

account that the cluster average has passed an initial cut-off, the estimated trimming

stage p-values are conservative due to the conservative estimation of the unknown

parameters. If these parameters were known, the FDR controlling procedure would

have been even more powerful. This is a point for further research.
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A Appendix: Proofs of Theorems

A.1 Proof of theorem 3.1

Let a be the sum of weights rejected. Note that a need not be an integer, but that

its range is finite since we have a finite number of weights. The WFDR is

WFDR = E[

∑

i∈I0
wiRi

∑m

i=1 wiRi

I{∑m
i=1 Ri>0}] =

∑

a>0

1

a
E[

∑

i∈I0

wiRiI{∑m
i=1 wiRi=a}]

=
∑

i∈I0

wi

∑

a>0

1

a
E[RiI{∑m

i=1 wiRi=a}] =
∑

i∈I0

wi

∑

a>0

1

a
P (Ri = 1 ∩

m
∑

i=1

wiRi = a)

=
∑

i∈I0

wi

∑

a

1

a
P (Ri = 1 ∩

m
∑

j=1,j 6=i

wjRj = a − wi)

=
∑

i∈I0

wiEP (i) [
1

a

∑

a>0

P (Ri = 1 ∩
m

∑

j=1,j 6=i

wjRj = a − wi|P (i))] =
∑

i∈I0

wiEP (i)Q(P (i))

where P (i) a vector of p-values of the m − 1 hypotheses excluding H0i.

Let P0i is the p-value associated with H0i, and for each value of P (i) let r(P0i) be

the sum of weights rejected and l(P0i) be the indicator that H0i has been rejected

as a function of P0i . Since the p-values are independently distributed (specifically,

P0i is independent of P (i)), for every i ∈ I0 we can express Q(P (i)) as

Q(P (i)) = EP0i
(
l(P0i)

r(P0i)
|P (i)) =

∫

l(p)

r(p)
dF01(p) (8)

where F01 is the cumulative distribution function of P01.

Note that m̂0 = m̂0(P0i, P
(i)) is non decreasing in P0i for fixed P (i), and it can
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have two values depending on whether P0i is rejected in the first stage:

m01(i) = m − ∑j1
l=1 w(l) − wi if P0i ≤ (

∑j1
l=1 w(l) + wi)q

′/m and m02(i) = m −
∑j2

k=1 w(k) otherwise, where j1 = arg max1≤k≤m−1{P (i)
(k) ≤ (

∑k

l=1 w(l) + wi)
q′

m
} and

j2 = arg max1≤k≤m−1{P (i)
(k) ≤ (

∑k

l=1 w(l))
q′

m
}.

Let the number of hypotheses rejected in the second stage along with H0i be

rh + 1, where rh = arg max1≤k≤m−1{P (i)
(k) ≤ (

∑k

l=1 w(l) + wi)q
′/m0h(i)}, h = 1, 2.

Using equation (8) we get

Q(P (i)) =
1

∑r1

l=1 w(l) + wi

∑j1
l=1 w(l) + wi

m
q′

+
1

∑r2

l=1 w(l) + wi

(

∑r2

l=1 w(l) + wi

m02(i)
q′ −

∑j1
l=1 w(l) + wi

m
q′)

≤ 1
∑r2

l=1 w(l) + wi

(

∑r2

l=1 w(l) + wi

m02(i)
q′) =

q′

m02(i)

(9)

where the inequality follows since r2 ≤ r1.

A lower bound on m02(i) is wi +
∑m0

j=1,j 6=i wjYj, where Yj ∼ B(1, 1 − q′).

Lemma A.1. If Yj ∼ B(1, 1 − q′), j = 1, . . . ,m0 are independent, then
∑

i∈I0
wiE( 1

wi+
∑m0

j=1,j 6=i
wjYj

) = 1
1−q′

(1 − (q′)m0).

Proof. Let S(k, i) and S(k) denote all possible subsets of size k from {1, . . . , i −

1, i + 1, . . . ,m0} and {1, . . . ,m0} respectively.

∑

i∈I0

wiE(
1

wi +
∑m0

j=1,j 6=i wjYj

) =
∑

i∈I0

m0−1
∑

k=0

∑

s∈S(k,i)

wi

wi +
∑

j∈s wj

(1 − q′)k(q′)m0−1−k

=

m0−1
∑

k=0

(1 − q′)k(q′)m0−1−k
∑

i∈I0

∑

s∈S(k,i)

wi

wi +
∑

j∈s wj

=

m0−1
∑

k=0

(1 − q′)k(q′)m0−1−k
∑

s∈S(k+1)

∑

j∈s

wj
∑

j∈s wj

=

m0−1
∑

k=0

(1 − q′)k(q′)m0−1−k

(

m0

k + 1

)
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The result is immediate

WFDR ≤ q′
∑

i∈I0

wiEP (i)

1

m02(i)
≤ q′

∑

i∈I0

wiE(
1

wi +
∑m0

j=1,j 6=i wjYj

) ≤ q′

1 − q′
= q.

A.2 Proof of theorem 4.2

Proof. Let A0 = m0/m and A1 = 1−A0. Let us first show, under the conditions of

theorem 4.2, the asymptotic properties of our estimators:

Property 1. Let A∞
0 = limm→∞ m̂0/m. Then A∞

0 ≥ A0 with probability 1:

m̂0

m
=

(m − R1)

m(1 − q)
≥ (m0 − V1)

m(1 − q)
=

1 − V1

m0

1 − q
A0

where V1 and R1 are the number of falsely rejected and rejected null hypotheses at

the testing stage. Result follows since at the testing stage for a rejection the p-value

has to be less than q so limm→∞ V1/m0 < q.

Property 2. Let µ∞
c = limm→∞

∑m
i=1

∑ci
l=1 zli

∑m
i=1 ci

. Then µ∞
c ≤ E(Zi) with probability 1:

this follows from the condition on the cluster means in the theorem.

Property 3. The cluster testing procedure corresponds to a positive asymptotic

threshold procedure with threshold δ (defined in theorem 3.2).

The asymptotic p-value of a location in the trimming stage is, using the notation in

(6), p∞li = pli(δ, A0, µi, ρli). The estimated p-value is p(u1, Â0, µ̂i, ρ̂li). By Slutsky’s

theorem p̂∞li = limm→∞ p(u1, Â0, µ̂i, ρli)
d
= p(δ, A∞

0 , µ∞
c , ρli). Property 1 guarantees

that p(δ, A∞
0 , µ∞

c , ρli) ≥ p(δ, A0, µ
∞
c , ρli). Property 2, together with the fact that

P0(Zli ≥ zli|Zi/σZi
≥

∼

Φ
−1

(u1), H1i) is decreasing in µi (since the joint density of

(Zli, Z i/σZi
− µi) is totally positive of order 2 and therefore P0(Zli ≥ t|Zi/σZi

−

µi ≥ x,H1i) is increasing in x for every fixed t), guarantees that p(δ, A0, µ
∞
c , ρli) ≤

p(δ, A0, µi, ρli). Therefore p̂∞li ≥ p∞li .
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Figure 3: Results of the cluster testing and trimming procedure in brain slices 9-10.
Top panel, clusters detected in the testing stage (every cluster in a different color).
Bottom panel, estimated location p-values within detected clusters . The largest
p-value rejected when trimming at an FDR level of 0.25 and 0.1 was 0.18 and 0.03
respectively.
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