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Abstract- The performance of the data cache in shared- 

memory multiprocessors has been shown to be different 
from that in uniprocessors. In particular, cache miss rates 
in multiprocessors do not show the sharp drop typical of 
uniprocessors when the size of the cache block increases. The 
resulting high cache miss rate is a cause of concern, since 
it can significantly limit the performance of multiprocessors. 
Some researchers have speculated that this effect is due to false 
sharing, the coherence transactions that result when different 
processors update different words of the same cache block in 
an interleaved fashion. While the analysis of six applications in 
this paper confirms that false sharing has a significant impact 
on the miss rate, the measurements also show that poor spatial 
locality among accesses to shared data has an even larger 
impact. To mitigate false sharing and to enhance spatial locality, 
we optimize the layout of shared data in cache blocks in a 
programmer-transparent manner. We show that this approach 
can reduce the number of misses on shared data by about 
10% on average. 

Index Terms- Multiprocessing, shared-memory multiproces- 
sor, cache memory, sharing, false sharing, optimizing compiler, 
placement of data. 

I. INTRODUCTION 

CALABLE machines that support a shared-memory par- s adigm are a promising way of attaining the benefits of 
large-scale multiprocessing without surrendering programma- 
bility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ I]-(61. An interesting subclass of these machines is the 
class that provides hardware cache coherence, which makes 
programming easier, while reducing storage access latencies 
by caching shared data. While these machines can do well on 
problems with low levels of data sharing, it is unclear how 
well caches will perform when accesses to shared data occur 
frequently. 

The cache performance of shared data is the subject of 
intense ongoing research. Agarwal and Gupta [7] studied 
locality issues in traces of memory references from a four- 
processor machine and reported a high degree of processor 
interleaving in the accesses to a given shared-memory location. 
This suggests that shared data can be the source of frequent 
misses. Indeed, Eggers and Katz [8], in a simulation of 5 to 12 
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processors in a bus, showed that shared data is responsible for 
the majority of cache misses and bus cycles. In addition, they 
show that the miss rate of the data cache in multiprocessors 
changes less predictably than in uniprocessors with increasing 
cache block size. While the miss rate in uniprocessors tends 
to go down with increasing cache block size, the miss rate in 
multiprocessors can go down or up with larger block sizes. 
A further understanding of the patterns of data sharing was 
provided by Weber and Gupta [9], who showed that write- 
shared variables are usually invalidated from caches before 
being replicated in more than a few different caches. Finally, 
in another example of unusual behavior, Lee et al. [ 101 found 
that the optimal cache block size for data is one or two words 
long, in contrast to the larger sizes used in uniprocessors [ 1 I ] .  
Clearly, given the performance impact of the cache behavior 
of shared data, a deeper understanding of it is necessary. 

In this paper, we focus on one parameter that has a major 
effect on the cache performance of shared data, namely the 
size of the cache blocks. A second issue that motivates the 
interest in this topic is that the measurements obtained so far 
on the impact of the block size on the miss rate of shared 
data show such wide variation [SI that they are difficult to 
generalize. In this paper, we explain the effect of the cache 
block size on the miss rate as a combination of two well- 
behaved components: false sharing and spatial locality. False 
sharing, in its simplest form, occurs when two processors 
repeatedly write to two different words of the same cache 
block in an interleaved fashion. This causes the cache block 
to bounce back and forth between the two caches as if the 
contents of the block were truly being shared. False sharing 
usually increases with the block size and tends to drive miss 
rates up with increasing block size. The second component, 
spatial locality in the data [12], is the property that indicates 
that the probability of an access to a given memory word is 
high if neighboring words have been recently accessed. This 
well-known property produces the opposite effect from false 
sharing-a reduction in the miss rate as the block size increase. 

We assess the contribution of each component by using a 
model of sharing where individual misses are classified as 
false sharing misses or as true sharing misses. The latter 
are due to the interprocessor communication intrinsic to the 
application. False sharing misses measure false sharing. The 
effectiveness of increasing the cache block size in eliminating 
true sharing misses measures the degree of spatial locality 
present. Experimental measurements show that poor spatial 
locality in shared data has a larger effect than false sharing in 
determining the overall miss rate. 
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TABLE I 
APPLICATION SET CHARA~~ERISTICS 

16 and 32 processor runs of the applications. They contain only 
application virtual address references and range in size from 8 
to over 32 million data references. Synchronization variables 
do not use spin-locking and, to minimize the possibility of hot 
spots, each synchronization variable is allocated to its own 
cache block. 

~~ 

The third column lists the size of the data structures declared shared. h o  simulated architectures are used in this paper, the 
ideal and the detailed architecture. In the ideal architecture, 
caches are infinite; all memory references, read or writes, 
hits or misses, take a single cycle; and every instruction 
executes in one cycle. We use the ideal architecture to remove 

To reduce the number of cache misses due to poor spatial 
locality and false sharing* we pmpse optimizations that 

by the compiler. Further, we do not consider techniques * 
require no P r o m e r  and can be dependencies on specific architechre characteristics from our 

that require changes to the assignment of computation to 
processors, as in loop intemhange or loop tiling 1131, [14], 
since they are only feasible in highly regular codes. Instead, 
we propose simple, local techniques that optimize the layout 
of shared data at the cache block level. These techniques are 
effective enough to eliminate, on average, about 10% of the 
misses on shared data in the applications. 

This paper is organized as follows. Section 11 discusses the 
methodology and characteristics of the application set used 
throughout the study. Section I11 presents a model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof data 
sharing. This model is used in Section IV to analyze experi- 
mental data on cache miss rates and processor-memory traffic. 
Based on-this analysis, we propose and evaluate optimizations 
to improve data caching in Section V. Finally, in Section 
VI, detailed simulations on an existing architecture examine 
the performance impact of the issues raised in the previous 
sections. 

11. METHODOLOGY AND APPLICATION SET CHARACTERISTICS 

The results reported in this paper are based on simulations 
driven by traces of parallel applications. The applications 
are compiled with a conventional optimizing compiler. This 
section describes the characteristics of the applications used, 
presents the simulator models, and evaluates the effect of 
conventional code optimizations on the frequency of data 
sharing. 

A. Application Set and Trace Characteristics 

The parallel applications studied represent a variety of 
engineering algorithms [15]-[20] (Table I). Csim, Mp34 and 
LOCusRoute are research tools with between loo0 and 60oO 
lines of code. The other three applications, namely DWF, 
Maxflow, and Mincut implement several commonly used par- 
allel algorithms and are less than loo0 lines of code each. Each 
application uses the synchronization and sharing primitives 
provided by the Argonne National Laboratory macro package 
[21]. The synchronization primitives are locks, barriers, and 
distributed loop control variables. The applications are in C 
and written so that they can run on any number of processors. 
We use code compiled with standard code optimization. 

We trace the applications using Tango [22], a tracing pro- 
gram that simulates a multiprocessor. The traces correspond to 

1 

! 
I 

I 

study of shared data. 
The detailed architecture, used to determine the practical 

implications of the ideal study, resembles the Silicon Graphics 
POWER Station 4D/240 [23] in memory system bandwidth 
and latency. Unlike the 4D/240 system, however, the detailed 
architecture has 16 processors, each of which has one 256 
Kbyte direct-mapped data cache. In addition, synchronization 
accesses use the same bus as regular transactions. The memory 
access times without contention for 4- and l6-word blocks are 
22 and 31 cycles respectively, during which the bus is locked 
for 6 and 15 cycles respectively. To simulate a steady state, 
the applications are executed twice; the first run warms up 
the cache, and the measurements are taken in the second run. 
Because bus contention would be too high with 32 processors, 
the detailed architecture is used for 16 processor runs only. 

Both architectures use the invalidation-based Illinois cache 
coherence protocol [24]. Because in the 4D/240 a request for 
ownership on a shared block has the same timing and traffic 
requirements as a cache miss, we do not distinguish between 
the two in this paper. 

C. Effect of an Optimizing Compiler on 
the Frequency of Sharing 

While code optimizations are known to speed up unipro- 
cessor applications [25], they have an important second ef- 
fect in multiprocessor code: they increase the frequency of 
shared data references. This results from the different ways in 
which optimizations affect data. While some private references 
are eliminated by register allocation and other optimizations, 
shared data consistency prevents existing compilers from 
optimizing data declared shared, even if not used as such. 
Consequently, since some cycles are saved while the number 
of shared references remains the same, data sharing has a larger 
impact on the speed of the application. 

To study the effect of an optimizing compiler, we measure, 
before and after compiler optimization, the fraction of ref- 
erences to data declared shared. The target architecture is the 
MIPS R2000 processor [26], which has 32 integer registers and 
16 double-precision floating point registers. The optimizations 
applied include global register allocation and other conven- 
tional global optimizations. All data in the shared space is 
declared volatile, and therefore are not register-allocated or 
optimized. Because optimizations affect the different types of 



- 
. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TORRELLXS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/. :  FALSE SHARING AND SPATIAL LOCALITY IN MULTIPROCESSOR CACHES 

Csim 

DWF 

Mp3d 

LocusR 

Maxflow 

Mincut 

Unopt. 

Unopt. 

Unopt. 

Unopt. 

Unopt. 

Unopt. 

opt. 

opt. 

opt. 

opt. 

opt. 

opt. 

Millions of Data Refs. Millions of Data Refs 
0 20 40 60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Private Local 

Private Global 

Sharcd 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  Decomposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the optimized and unoptimized data reference 
htreams for 16 and 32 processes. 

private data differently, we consider local and global private 
data separately. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALocal data are the variables declared within 
procedures. Global data is mostly static data set up by the 
master process for the slave processes. 

Fig. 1 shows the decomposition of the data reference streams 
for the optimized and unoptimized applications running with 
16 and 32 processes. Due to limited disk space, the unopti- 
mized versions of some traces were not run to completion (bars 
with a star). In those cases, the total number of references is 
calculated assuming the same relative ratios of private local, 
global, and shared references that existed when the trace 
was interrupted and the same number of shared references 
as the optimized trace. From the figure, we see that, for all 
applications, a large number of private references are elim- 
inated, particularly among those directed to local variables. 
References to private global variables show a smaller change, 
almost solely due to the register allocation of the global pointer 
to the shared data space. shared data references, therefore, 
account for a larger fraction of references. We also see that the 
number of processes has little effect on the results. Appendix 
A shows tables with the actual numbers obtained in the 
experiments. The large difference in the ratio of shared to total 
references between optimized and unoptimized code suggests 
that performance studies of multiprocessor programs must be 
based on optimized code. 

111. ANALYZING SHARING 

Data miss rates in large uniprocessor caches tend to vary 
predictably as cache blocks increase in size [ I l l ,  [27], [28]. 
Initially, the miss rate drops quickly as the block size increases; 
for large blocks, around 32 words, the curve flattens out; 
eventually, there is a slight reversal of the curve because 
of misses resulting from conflicts. In contrast, how miss 
rates on shared data change with block size is much less 
predictable; experimental data shows a significant variation 
across programs (Fig. 2). In this section, we first present a 
model of sharing that decomposes the widely varying miss 
rates on shared data in an invalidation-based cache coherence 
protocol into two well-behaved and intuitive components. 
Then. we describe an experiment to quantify each of these 
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Fig. 2. Cache miss rates on shared data as a function of the block size for 
the ideal architecture. For a given application, the same problem size is used 
in the 16- and 32-processor executions. 
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Fig. 3. Factors that determine the data misses in an infinite cache. 

components. For simplicity, all the analysis in Section 111 
assumes an infinite cache. 

A. A Model of Sharing 

Fig. 3 shows the factors that determine the number of data 
misses in an infinite cache. For private data in single-word 
cache blocks, misses are solely caused by first-time references 
to the data. This effect we call cold start in Fig. 3. If the 
cache has multi-word blocks, the prefetching provided by the 
multiple words of the block reduces the number of misses, 
as one miss is enough to bring all the words of a block into 
the cache. There are several more factors involved with the 
the misses on shared data. If single-word blocks are used, 
frue sharing as well as cold start dictate the misses. True 
sharing is the sharing of the same memory word by different 
processors. True sharing is intrinsic to a particular memory 
reference stream of a program and is not dependent on the 
block size. The presence of multi-word blocks further adds 
false shuring to true sharing, cold start, and prefetching effects. 
False sharing occurs when different processors access different 
words of the same block and the coherence protocol forces 
the block to bounce among caches as if its words were truly 
being shared. A result of the collocation of different data in the 
same cache block, false sharing depends on the block size and 
the particular placement of data in memory. In the following 
paragraphs, we show how each individual cache miss can be 
traced back to these factors. 

True and false sharing are illustrated in Fig. 4(a), where 
words a and h are in the same memory block and an asterisk 
marks a cache miss. In Examples I, 11, and 111, processor P 
owns that block at the beginning of the reference stream, since 
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Fig. 4. Example of memory reference streams. For simplicity, the streams 
contain only writes. An asterisk marks a cache miss. The streams in part (a) 
are expanded in part (b) showing true (T) and false (F) sharing transitions, 
and misses saved by successful prefetches (X). Words zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb share the same 
cache block. Pa means processor P writes word a.  

P previously wrote words a and b a s  denoted by Pa and Pb 
under "Initial State." In Example I, processor Q writes to word 
b and processor P writes to word a. In this classical case .of 
false sharing, this pattem of access produces a miss for every 
access. Except for the first Qb reference however, no true data 
sharing is involved. In Examples I1 and 111, processor P and 
Q need, and therefore truly share, word a. Word b is used 
only by P in both cases. However, because of the prefetch 
provided by the cache block, this common sharing pattern 
produces misses on different words in the two examples. A 

more complex sharing pattem can interact with the cache block 
in a variety of ways, resulting in different number of misses. 
The model we present now analyzes how data sharing and 
prefecting interact to result in the observed number of misses. 

We assume a multiprocessor with infinite caches and an 
validation-based cache coherence protocol where a cached 
memory word may be owned by one cache or read shared 
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among several. We define the state of the word as the pair 
(mode, processors), where mode may be owned or shared, 
and processors is the set of processors that cache the word. 
An uncached word is a degenerate case where processors is 0. 
A read miss loads the word in a shared mode. If the word is in 
a shared mode, a processor that caches it must issue a request 
for ownership before it can write the word. We count this 
request as a miss. A change in the state of the word is called a 
state transition. In the following, we focus on conditions after 
the cold start for the word, when no processors will access the 
word for the processor's first time. 

To quantify the degree of intrinsic sharing of a memory 
word, we define the concept of true sharing transition. 

Defnition I) True Sharing Transition: Consider the stream 
. S of references to a given memory word only and ignore any 
effects caused by references (not in S) to the other words 
in the same cache block, as if the block were single-worded. 
We call true sharing transition any state transition that occurs 
between two references that are contiguous in S, after cold 
start. Further, we say that the second reference causes a true 
sharing transition. 

Example I1 in Fig. 4(a) shows two true sharing transitions 
for word a. One occurs between the initial state and reference 
&a; the second between &a and the last reference. 

True sharing transitions and cache misses are strongly 
related: in caches with single-word blocks, every true sharing 
transition causes a cache miss, and every miss after cold start 
is due to a true sharing transition. In caches with multi-word 
blocks, however, a true sharing transition does not necessarily 
lead to a miss. This is shown in the second true sharing 
transition for word a in the same example. Between the two 
references involved in the transition, namely &a and Pa, 
a third reference Pb to another word of the same block 
prefetches the original word to the desired state, owned by 
processor P. As a result, the second reference Pa hits. On 
the other hand, the first true sharing transition for word a in 
the same example, which occurs between the initial state and 
&a produces a miss. We can now define the concept of true 
sharing miss. 

Definition 2) True Sharing Miss: A miss that occurs in a 
true sharing transition. 

The previous discussion shows that prefetching can elimi- 
nate a miss in the second reference of a true sharing transition. 
Prefetching can also generate a miss in a reference that does 
not cause a true sharing transition. To formalize this situation, 
we first define the concept of false sharing transition. 

Defnition 3) False Sharing Transition: Consider two con- 
secutive references to the same word where the second refer- 
ence does not cause a true sharing transition. If, between the 
two references, there is at least one intervening reference to a 
different word of the same block that induces a transition on 
the second reference, we say that the second reference causes 
a false sharing transition. 

As an example, the second Pb reference in Example I1 
causes the only false sharing transition for word b in the 
stream: between the two Pb references, the intervening &a 
reference changes the state of word b to be owned by Q, 
thereby inducing a transition on the second Pb reference. 
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Like a true sharing transition, a false sharing transition may 

or may not incur a miss. An example where a miss occurs is 
the false sharing transition for word zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb in Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11: between 
the two Pb references, reference &a leaves the block in state 
owned by Q, causing the second Pb reference to miss. An 
example where the miss is avoided is shown-in Example 111, 
which is equal to Example I1 with the last two references 
flipped. In Example 111, the second Pb reference causes a false 
sharing transition because reference &a between the two Pb 
references induces a transition on the second Pb. Between &a 
and Pb, however, reference Pa brings the lock back to P's 
ownership, thus successfully eliminating a cache miss in the 
Pb reference. We can now define the concept of false sharing 
miss. 

DeJnition 4)  False Sharing Miss: A miss that occurs in a 
false sharing transition. 

Finaly, based on the above definitions, the total number 
of cache misses, not counting the cold start effect, is the 
total number of true and false sharing transitions minus the 
number of successful prefetches. This equality is illustrated 
in Fig. 4(b), which expands the streams in Fig. 4(a). We 
analyze Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 carefully here; the reader is encouraged 
to go over the other examples. We consider the first reference 
after the initial state &a and ask whether it causes a false 
sharing transition (FST), a true sharing transition (TST), or 
no transition at all. To answer this question, we look at the 
previous reference to the same word, namely Pa. We note 
that the two references are involved in a TST. We then check 
whether the accesses between the two references leave word n 
in the state that &a requires, namely owned by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&. If that were 
the case, a successful prefetch would be recorded. Otherwise, 
the actual situation in the example, a true sharing miss (TSM) 
occurs. We now consider the next reference Pb. As before, we 
look for the previous reference to the same word, namely the 
Pb under Initial State. This pair of references are not involved 
in a TST. To check whether a FST occurs, we search the 
intervening references for at least one that induces a transition 
on the second Pb. Since Qn induces such a transition, Pb 
causes a FST. To determine whether a false sharing miss 
(FSM) or a successful prefetch occurs, we check whether the 
stream between &a and Pb leaves b in the state required by Pb. 
Since this is not the case, a FSM occurs. The final reference 
causes a TST but a successful prefetch eliminates the miss: 
reference Pb sets the block to the desired state, namely owned 
by P. To summarize, the net result of three transitions and one 
successful prefetch is two misses, as postulated by our equality 
that relates misses, transitions, and successful prefetches. 

B. Effect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Data Prefetching Through Increased Block Size 

The previous analysis showed that the prefetching provided 
by multiword blocks can eliminate or create misses. Unlike in 
uniprocessors, where prefetching always has a positive effect 
in infinite caches, prefetching in multiprocessors can have both 
a positive and a negative effect. Prefetching exploits spatial 
locality in data as in uniprocessors. It also, however, creates 
false sharing transitions, which may change what used to be 
cache hits without prefetching into false sharing misses. 

Processor P Processor Q 

store a store b 
store a 

"P lOOP 
lock lock 

m 
store a store a 
store b store b 

unlock unlock 
Fig. 5. The data prefetching provided by multi-word cache blocks can be 
beneficial, as in the loop shown, or may create false sharing misses, as in the 
statements before the loop. 

We expect the positive effect, namely exploitation of spatial 
locality, to be lower in multiprocessors than in uniprocessors 
for three reasons. First, a processor may never reference the 
prefetched data: since computation is partitioned in a multi- 
processor, this is more likely than in a uniprocessor. Second, 
even if the processor will eventually access the prefetched 
data, another processor may access it first and remove the data 
from the first processor's cache. Third, prefetched data may 
be removed by another processor accessing a different word 
in the same block. Because of the last reason, the benefits of 
spatial locality do not necessarily increase monotonically with 
the cache block size. Larger blocks may introduce transitions 
that reduce the spatial locality benefits present in a smaller 
block size. 

False sharing transitions, the second effect of prefetching, 
increase monotonically with block size. As false sharing 
transitions increase, false sharing misses are likely to increase. 
However, since not every false sharing transition will cause a 
false sharing miss, the number of false sharing misses may not 
increase monotonically with increasing block size either. 

Unfortunately, both the positive and negative effects of 
prefetching are determined by the particular placement of data 
in memory and cannot, in general, be changed independently. 
Fig. 5 illustrates the interdependence of the two effects. In the 
figure, words IL and b share the same block. In the beginning 
of the program, a potential instance of false sharing occurs 
because processor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ may write b while processor P writes 
a. During the rest of the program, the two processors access 
words a and b in sequence within a critical section. If we 
eliminated the false sharing by, for example, placing a in a 
different block, the benefits of prefetching within the loop 
would also disappear. We could be saving one false sharing 
miss at the cost of doubling the number of misses within the 
loop. This example suggests that it may not be desirable to 
eliminate false sharing misses at any cost. 

C. Measurements 

Although the positive and the negative effects of prefetching 
on the miss rate are closely related, we have been able to 
devise an experiment that allows us to measure each of the two 
effects. The experiment is based on our model of sharing. In 
the experiment, we use the ideal architecture, which assumes 
infinite caches and no cache miss penalties. We compare two 
simulations driven by the same interleaving of references and 
running in lockstep. One simulation uses caches with single- 



656 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOMPUTERS, VOL. 43, NO. 6, JUNE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1994 

180 180 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 160 16 processors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg 160 - 140 E 140 
5 120 f 120 

; loo 2 100 

Single-word blab:  

Cold References 

True Shdng Transitions 80 80 

False zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASharing Transitions 3 - 60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 60 

40 E 40 

0 0 

MulU-word blocks: b 20 ; 20 

1 2 4  
Cold References 

True Sharing Transitions WordrlBlock Words/Block 

False Sharing Transitions --o- Csim -t LccusRoute 

4 

- LNVF - Maxflow 

-p- Mp3d .-O- ’ Mmcul 

Fig. 6. Relation between the simulation of the ideal architecture using 
single-word and multiword cache blocks. The figure is not drawn to scale. 
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Fig. 7. Cache misses on shared data as function of the block size. Misses 
are shown as a fraction of the misses on single-word blocks for the same 
application and 16 processors. 

A. Analysis of the Cache Miss Rates on Shared Data 
word blocks, while the other uses caches with multiword 
blocks. In the simulations, we include the cold start period 
of the programs. Hence, in addition to false and true sharing 
misses, we capture misses on memory words referenced by 

call cold misses. The relationships among cold, true sharing, 
and false sharing misses in the single-word and the multiword 
simulations are as follows. 

If a cold miss is incurred for a reference in the multiword 
block simulation, the same reference causes a cold miss 
in the single-word block simulation. 
True sharing transitions are intrinsic to a reference stream 
of a program and thus identical for both simulations. Since 

misses) in the single-word case, if a true sharing transition 
in the multiword block simulation causes a miss, it also 
causes a miss in the single-word block simulation. 
Therefore, the remaining misses, those that occur in the 
multiword block simulation but not in the single-word 
case, must be all false sharing misses. 

In summary, comparing the two simulations, a miss in the 
multiword simulation is a false sharing miss if there is no 
equivalent miss in the single-word case: otherwise it is a cold 
or true sharing miss. 

Fig. 6 (not drawn to scale) depicts the relationships de- 
scribed- The number of cold references and true sharing 
transitions are the Same in both SimUlatiOnS. Prefetching mu]- 
tiple words in a cache block has two effects: first, some of the 
cold references and true sharing transitions now result in hits: 
second, false sharing transitions appear, Some of which result 
in hits and some in misses. 

Fig. shows the miss rates on shared data as a function of 
the block size for the applications studied. we observe a wide 
variation among applications, both in absolute values and in 
the way the block size affects them. For example, whereas miss 

low values and decrease with increasing block s i x ,  Maxflow’s 
miss rate starts with a higher value, decreases at first, and then 
increases. Mp3d’s miss rate is high and not very sensitive to 

in the block size. Finally, Mincut shows an upward 
trend. 

To understand the variation observed with changes in the 
block size, we plot the miss in relative values ( ~ i ~ .  
7) and then decompose them into the miss components as 

processors decomposed into two groups: cold and me sharing 
misses, and false sharing misses. In addition, to show the 
degree of true sharing in each program, we mark with an 
arrow the number of sharing misses on single-word 
blocks-which is also the number of me sharing transitions. 
The rest of the misses on single-word blocks are cold misses. 
In the following sections, we first analyze each component 
of the misses separately, relating the shape of the curves to 
the data structures in the program that cause them. Then, we 
summarize the general observations. 

Analyzing False sharing Misses: Recall that, while false 
sharing transitions always increase monotonically with the 
block size, this is not necessarily so for false sharing misses. 
F~~~ ~ i ~ .  8, however, we observe that false sharing misses 

increase with block size and that, except in two cases, 
this increase is slow. This slow increase is produced by several 
program characteristics. Distributing the computation such that 
each iteration of a loop is executed on a different processor 
produces false sharing misses when data from different iter- 
ations falls in the same cache block. Graph problems with 
irregular node interconnection where cache blocks frequently 
contain pieces of nodes belonging to different processors also 
exhibit false sharing misses (Maxflow and Mincut). 

The two cases where false sharing misses increase quickly 
are when the blocks are small in Mincut and when the blocks 
are large in Maxflow. The sharp rise in these two cases is 
due to the presence of blocks containing multiple frequently- 

a pmessor for the processor’s first time* These misses we rates for Csim, D W ,  and LocusRoute start from relatively 

true sharing hnsitions in misses (true sharing described by our model. Fig. 8 shows the misses for 16 

IV. ANALYZING THE CACHE MISS RATE 
AND TRAFFIC BEHAVIOR OF SHARED DATA 

In this section, we use the experiment just described to 
analyze the cache miss rates and traffic generated by shared 
data in real applications. To eliminate dependencies on spe- 
cific architecture characteristics, we use the ideal architecture 
’throughout the section. We start with an analysis of the miss 
rates; then we consider the traffic behavior. 
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Fig. 8. Decomposition of the cache misses on shared data as a function of 
the block size for 16 processors. Misses are shown as a fraction of the misses 
on single-word blocks for the same application. The arrow shows the number 
of true sharing transitions in the program. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
accessed scalar variables, where at least one of the scalars 
is written frequently. This effect can also happen with small 
arrays where each array entry is repeatedly updated by one 
processor. 

As opposed to the previous applications, programs with little 
reuse of data by the same process (Mp3d), or where each 
processor is assigned a geographic domain where processor 
interaction is infrequent (LocusRoute, DWF and Csim) are 
unlikely to exhibit a large amount of false sharing misses. 

The slow de- 
crease in cold and true sharing misses with increasing block 
size seen in Fig. 8 shows that shared data has low spatial 
locality. A second observation is that, except for Maxflow, 
which shows a slight trend reversal for large blocks, the 
decrease in misses is monotonic. 

Poor locality particularly affects programs with unstructured 
accesses, as is the case in fine-grained global task queues 
where processors continually process new tasks (Mp3d) or 
algorithms like simulated annealing that involve calls to ran- 
dom number generators to decide what memory area to access 
(Mincut). On the other side, programs with large data struc- 
tures that are accessed sequentially and at different times by 

Analyzing Cold and True Sharing Misses: 

LG=Z 1 2 4 8 1 6  3 2  6 4  

WordslBloc k 

M p 3 d - 3 2  

1 2 4 8 1 6  3 2  6 4  

WordsIBlock 

200, 

M a x t l o w - 3 2  

a 80 

40 

0 z 

1 2 4 8 1 6  3 2  6 4  

WordsIBlock 

651 

1 2 4 E ' 6  3 2  6 4  

Words B lock  

200 -I 

1 2 4 8 ' 6  3 2  F L  

Words iB loc  k 

. .  
1 2 4 8 16  3 2  6 4  

Words!Block 

-t- Total Misses - 
--t False Sharing Misses 

Cold + True Sharing Misses 

-b True Sharing Transitions 

Fig. 9. Decomposition of the cache misses on shared data as a function of 
the block size for 32 processors. Misses are shown as a fraction of the misses 
on single-word blocks for the same application and 16 processors. The arrow 
shows the number of the true sharing transitions in the program. 

different processors (LocusRoute and Maxflow) show larger 
decreases in cold and true sharing misses. 

Increasing the Number of Processors: The curves with the 
misses for 32 processors shown in Fig. 7 are decomposed in 
Fig. 9. The misses are shown as a fraction of the 16-processor, 
single-word block misses for the same application. From the 
figure, we see that the two components, false sharing and 
coldtrue sharing misses, maintain the same trends for the 
larger number of processors. 

Despite the widely varying shape 
of the overall curve, the two component curves behave con- 
sistently across all applications. First, cold and true sharing 
misses tend to decrease with increasing block size but, unlike 
in uniprocessors, the rate of decrease in misses is much less 
than the rate of increase in block size. Second, false sharing 
misses increase with block size and eventually neutralize or 
even overcome the small decreases in the cold and true sharing 
misses. The net effect is that the total number of misses either 
decreases slowly or does not decrease at all. As we will see, 
the result is a dramatic increase in processor-memory traffic 
with any increase in block size. 

The plots show that cold and true sharing misses usually out- 
number false sharing misses. Further, for the two applications 

Overall Observations: 
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with a significant number of false sharing misses, we show 
in Section V that simple data placement optimizations can 
eliminate an important fraction of these false sharing misses. 

The two component curves in each plot may not be inde- 
pendent of each other. Fig. 5 showed that a reduction in the 
number of false sharing misses may cause an increase in the 
number of cold and true sharing misses. The opposite case, 
namely a reduction in the number of false sharing misses 
causing a decrease in the amount of cold and true sharing 
misses, is also possible. Such scenario occurs if false sharing 
misses induce more misses by interfering with the successful 
prefetches for true sharing or cold accesses. In the worst case, a 
false sharing miss on a word by one processor could eliminate 
a successful prefetch in all the other processors that cache the 
word, thereby forcing cold or true sharing misses. Fortunately, 
the experiments performed while studying the optimization of 
Section V show that such interaction is rare. The curves of 
false sharing misses, therefore, are a good approximation of 
the worst effects of false sharing. 

The magnitude of the two component curves and the pre- 
vious discussion suggest that the poor spatial locality of 
multiprocessor data-responsible for the slow decrease in cold 
and true sharing misses--contributes to the cache miss rates 
even more than false sharing does. For this reason, we believe 
that, to improve the performance of caches, trying to enhance 
the spatial locality of multiprocessor data is an approach at 
least as, or even more promising, than trying to remove false 
sharing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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B. Analysis of the Traffic Generated by Shared Data 

Not only do misses increase the latency of memory accesses, 
they also generate traffic between processors and memory. As 
the block size increases, a miss produces a higher volume 
of traffic. If we estimate the traffic caused by shared data 
as SharedMisses*BlockSize, we produce the plots in Fig. 10. 
The figure includes a curve for uniprocessor data with aBrzire 
cache (32 Kbytes) from [ 111 for comparison proposes. From 
the figure, we see that the block size that minimizes the traffic 
of shared data in this class of applications is one word, both 
for 16 and 32 processors. The highest performance block size, 
however, is larger than that. Indeed, to determine the highest 
performance block size for a data cache, we need to take into 
account the start up overhead associated with a cache miss 
for the particular machine and know what fraction of the data 
misses are on shared data. Section VI shows that this fraction 
is over 95% for a large cache. 

The traffic increase with larger blocks occurs because many 
of the words transferred are not used. Between two consecutive 
misses on a given block, a processor usually references a very 
small number of distinct words in that block, as shown in 
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Recall that misses include requests for ownership on 
a block. The low values in Table I1 show that, on average, 
the prefetching effect of cache blocks is not very effective. 
These numbers correlate with the trends in the miss rates 
shown in Fig. 2. Mp3d has the lowest numbers in Table I1 
because it has a high miss rate, which does not decrease with 
larger block sizes. LocusRoute shows the highest numbers 
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Fig. 10. Processor-memory traffic caused by shared data. The plot shows the 
ratio between the traffic at a given block size and the traffic for single-word 

'blocks and 16 processors. We include a curve for uniprocessor data with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
finite cache (32 Kbytes) for comparison purposes. 

TABLE I1 
AVERAGE NUMBER OF DISTINCT WORDS IN A CACHE 

BLOCK REFERENCED BY ONE PROCESSOR BETWEEN TWO 

CONSECUTIVE MISSES ON THAT BLOCK BY THE SAME PROCESSOR 

32 Rocessors 

Block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Words) 

Applicuion 16 Rocessors 

Block S i z e  Words) 

2 1 4  8 16 32 2 4 8 1 1 6 1 3 2  

because it has a low miss rate that decreases significantly with 
increases in block size. We also see that increasing the number 
of processors always decreases the number of words used in a 
block. The poor use of the cache blocks revealed by this data 
motivates the next section, where we try to optimize the use 
of the blocks based on our model of sharing. 

v. OPTIMIZING THE PLACEMENT 

OF SHARED DATA IN CACHE BLOCKS 

This section addresses the problem of reducing the cache 
misses on shared data by enhancing the spatial locality of 
shared data and mitigating false sharing. We optimize the 
placement of data structures in cache blocks using local 
changes that are programmer-transparent and have general 
applicability. Our approach is partly motivated by the fact that 
cache misses on shared data are often concentrated in small 
sections of the shared data address space. Therefore, local 
actions involving relatively few bytes may yield most of the 
desired effects. An example of this skewed miss distribution 
is shown in Fig. 11, which plots the average number of misses 
per byte in each shared data structure of Csim. 

To guide the study of possible optimization, we use address 
traces to generate the following profiling information for each 
shared-memory word: 1) degree of true sharing, measured as 
the number of misses beyond the cold start in the single-word 
block simulation, 2) false sharing misses, 3) cold and true 
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sharing misses eliminated by prefetching, and 4) number of 
writes. The latter is needed since, in addition to words that 
have a high degree of true sharing, non-shared words that are 
frequently written can also be the cause of false sharing in a 
block. For example, false sharing may occur in a block with 
one word that is heavily read by only one processor and one 
word that is heavily written by only one other processor. We 
call a word zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAactive if its degree of true sharing or number of 
writes exceeds 0.1 % of the program misses. 

In the following, we first present the optimizations, then 
evaluate them using the ideal architecture. In the evaluation, 
we consider both the aggregate effect of all optimizations and 
the individual effect of each. Since it is rare to have this tracing 
information in practice, the final subsection examines the case 
where we have no dynamic information on the application at 
all. 

A. Placement Optimizations 

We propose five optimizations of the data layout. Because 
synchronization variables are a well-known source of con- 
tention in some programs, we use as a baseline a data layout 
where each of them is allocated to an empty cache block. 

SplitScalar: Place scalar variables that cause false shar- 
ing in different blocks. Given a cache block with scalar 
variables where the increase in misses due to prefetching 
exceeds 0.5% of the program misses, we remove the 
active variables and allocate each of them to an empty 
cache block. 

8 HeapAllocate: Allocate shared space from different heap 
regions according to which processor requests the space. 
It is common for a slave process to access the shared 
space that it requests itself. If no action is taken, the space 
allocated by different processes may share the same cache 
block and lead to false sharing. The policy we propose 
is more space-efficient than allocating only block-aligned 
space, particularly when very small chunks of space are 
repeatedly requested. 
Expand Record: Expand records in an array (padding with 
dummy words) to reduce the sharing of a cache block by 
different records. While successful prefetching may occur 
within a record or across records, false sharing usually 
occurs across records, when more than one of them 
share the same cache block. If the multi-word simulation 
indicates that there is much false sharing and little gain in 
prefetching, then consider expansion. If the reverse is true, 
do not apply the optimization. When both false sharing 
misses and prefetching savings are of the same order 

of magnitude, we assume that the prefetching succeeds 
within a record and we apply the optimization. 
Align Record: Choose a layout for arrays of records that 
minimizes the number of blocks the average record spans. 
This optimization maximizes prefetching of the rest of the 
record when one word of a record is accessed, and may 
also reduce false sharing. This optimization is possible 
when the number of words in the record and in the cache 
block have a greater common divisor (GCD) larger than 1. 
The array is laid out at a distance from a block boundary 
equal to 0 or a multiple of the GCD, whichever wastes 
less space. 
Lockscalar: Place active scalars that are protected by a 
lock in the same block as the lock variable. As a result, 
the scalar is prefetched when the lock is accessed. 

All optimizations except Lockscalar try to minimize false 
sharing. Lockscalar and AlignRecord try to increase the spatial 
locality of the data. In our optimization, we must avoid other 
effects that could offset the intended ones. First, false sharing 
and effective exploitation of spatial locality are not indepen- 
dent; changing one usually affects the other. In particular, 
strategies that increase the size of the data like SplitScalar and 
ExpandRecord may also reduce the effectiveness of prefetch- 
ing in eliminating cold and true sharing misses. Second, large 
data expansions may increase the working set of a program 
and increase capacity misses in a finite cache. To guard against 
these effects, we restrict the optimizations to those that cause 
little data size increases. 

B. Evaluation of the Optimizations: Aggregate Effect 

To evaluate the effectiveness of these optimizations, we 
use as a metric the fraction of shared data misses that they 
eliminate. Table I11 shows this fraction together with the 
resulting increase in the size of the data structures for 16 and 
32 processors with 4- and 16-word blocks. The table shows 
a large variation in the fraction of misses eliminated in the 
different applications: the results for individual programs range 
from 0% to over 40%, with an average close to 10%. 

On average, our techniques tend to eliminate a higher 
percentage of misses for the larger block sizes. This effect 
is, however, the result of two opposing trends. On one hand, 
a larger cache block size increases the possibility of false 
sharing among scalars and small data structures, thus possibly 
increasing the effectiveness of the optimizations. On the other 
hand, a larger block also increases the cost of expanding 
records, making some data expansion optimizations infeasi- 
ble. Further, a larger block may already benefit more from 
prefetching, rendering optimizations to increase spatial locality 
less effective. 

The effect of the number of processors is also clear. When 
the number of processors increases, there are more cache 
misses. The data placement optimization, however, also elim- 
inate more misses. The result, for nearly all the applications 
studied, is that the relative miss reductions are higher for 32 
processors than for 16 processors. 

Finally, we see that the space requirements of the opti- 
mization are small, usually in the 2 Kbyte neighborhood. This 



- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Applicppn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cliln zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

660 

Number Reduction in Shared zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn- in Shued 

of Dau Mbws D.u Spvr 

Roarran &word Bbslrr 16-Word Blocks +word Blocks l b W d  Blocks 

Rclm. Abrol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARclu. Abral. Relu. A h l .  RclU. Abrol. 

('W (Ihaw.1 (5) F h o W  (5) ( K W W  (W ( K b W  
16 7.9 60.6 6.6 39.3 0.0 0.4 0.1 1.9 

b 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, JUNE 1994 

DWF I 16 0.6 1 3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1.0 

MPM I 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 0.4 I 20.6 I 0.1 

LaasRmWI 16 11 10.2 I 45.3 128.7 

4.6 1 0 . 0  oa 0.0 o.2 

5.5 I 0.3 4.8 0.0 0.5 

57.5 I 0.0 0.5 0.1 1.6 

I I , I  U 

Mirrtll 16 19.7 229.6 8.9 153.1 1 2 3  4.0 0.0 0.0 

AVBRAOE I 16 11 8.0 I 9.9 1.9 0.1 1.0 

DWF I 32 1 0.6 I 5.5 I 1.1 I 9.0 I 0.0 1 0.0 I 0.0 I 0.2 

MDM I 32 n 0.4 I 24.3 I o.z I 13.3 I 0.3 I 4.8 I o.o I 05 

Muflow 

M i m r  

AVERAGE 

~ o a u l l 0 ~ 1  32 n 15.5 I 92.5 I 41.6 I 138.5 I 0.0 I 05 I 0.2 I 3.1 II 
32 " 10.7 397.0 14.7 455.6 0.6 1.6 0.6 1.6 

32 220 394.1 8.8 190.9 1 2 3  4.0 0.0 0.0 

32 10.8 13.0 2.0 0.2 1.5 

Csim 1%-16w 11 2.2 I 

causes an insignificant relative increase in shared data space 
unless the size of the shared data space is very small originally. 
While it is possible to reduce the m i s s  rate further by larger 
data expansions, their possibly detrimental effect on cache 
performance makes them undesirable. 

Fig. 12 shows how the optimizations affect the two types 
of misses: cold and true sharing, and false sharing misses. 
For each application, the figure considers the four processor 
and block size settings used in the previous table. For each 
setting, we show three bars. The leftmost bar shows the miss 
rate of shared data in the original program, where the compiler 
did not necessarily allocate each synchronization variable to 
a different cache block. The central bar shows the miss rate 
after each synchronization variable is allocated to a different 
cache block. This is the miss rate taken as a baseline. From the 
difference between the two bars, we can see the importance 
of the synchronization variable layout, especially considering 
that spin-locking is not used in the synchronization variables. 
Finally, the rightmost bar shows the miss rate after further 
applying the five placement optimizations. 

We observe that the optimizations are more successful 
in eliminating false sharing misses than in eliminating cold 
and true sharing misses. For all applications, the maximum 
reduction in cold and true sharing misses is approximately 
10%. In contrast, almost all false sharing is removed in 
LocusRoute and in Mincut for 4-word cache blocks, and 20 to 
40% in Csim and Maxflow. The reduction of false sharing in 
Mincut is accompanied by an increase in cold and true sharing 
misses. This observation illustrates that, in general, the positive 
and negative effects of prefetching discussed in Section 111-B 
cannot be totally separated. 

1 0.6 6.6 2.8 1 .o 

C. Evaluation of the Optimizations: Individual Effect 

Table IV shows the contribution of each optimization to 
the reduction in shared data misses shown in Table 111. 
From Table IV, we see the Splitscalar is effective for all 
applications amenable to these optimizations. Most of the 

Csim 3Zp-16w 

DWP 16p4w 

DWP 16p16w 

DWF 3 2 a ~ ~  

0.1 0.1 

nn 0.0 

0.7 11.5 5.0 2.8 3 .O 

0.4 0.2 0.6 

1 .o I .o 
os n i  n6 

16p4w 16p16w 32p4w 32p16w 16p4w 16p16w 3 W w  3 2 p 1 6 ~  

DWF 31p16w 

MpM 16p16w 

MpM 3-w 

MpM 32pl6w 

Lncu$R~u16p4w 

MpM 16p4w 

Lrrwllmv16p16w 

LomsRmv 3-w 

LoarRmv32p16w 

Mullow M p d w  

Muflow I@-16w 

MuRow 32p4w 

M d o w  32p-16w 

LOCllrRouc 0.3 
0.6 

0.4 

0.2 

0.0 0.0 

0.2 

0.1 

I I) 0.1 1.1 

0.1 0.3 0.4 

0.1 0.1 

0.1 0.3 0.4 

0. I 0.1 0.2 

1.5 6 1  0.7 0.5 0.8 10.2 

8.0 16.1 2.5 0.4 1.7 28.7 

1.4 11.3 1.4 0.8 0.6 15.5 

8.4 27.5 4.7 0.4 0.6 41.6 

1.5 5.3 2.1 8.9 

2.0 9.3 2.9 14.2 

I .l 4.8 4.2 10.7 

2.0 1.7 5.0 14.7 

16p4w 16p16w 32p4w 3Zp16w 16p4w 16pl6w 32p4w 32p16w 

0.3 1 Maxflow 0.3 f 

0.2 0.2 

0.1 0.1 

0.0 0.0 
16p4w l6p16w 32p4w 32p16w 16p4w 1 6 ~ 1 6 ~  3 2 ~ 4 ~  3 W 6 w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 False Sharing Miss Rate 

Original Miss Rate 

P=Nmhr Of Processors 

16p4w means 16 processors and 
4 words per block 

&ld+Tme Sharing Miss Rate w=words per cache Block 

Fig. 12. Miss rates on shared data. For each set of three bars, the leftmost 
one shows the miss  rate of the original program; the central one the miss 
rate after allocating synchronization variables to different cache blocks; and 
the rightmost one the miss rate after further applying the five placement 
optimizations. 

TABLE IV 
FRACTION OF SHARED DATA MISSES ELIMINATED BY EACH OFTIMIZATION 

Applicppn 11 SpliLScdw 1 HcqAUocmr I WpadReeord I Alig.Record 1 l.,m&&v I Toul 

n c- 16a4w n 1.7 I I 2.3 I 3.4 I 0.5 I n 
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Mincut 10.1 (SI) 

applied either to small, active arrays used mainly for process 
communication or to the main data structures in the smaller 
programs. Finally, the other optimizations are relevant to only 
one or two of the applications. 

A large fraction of the cache misses still remains after 
optimization. While some of the false sharing misses can be 
removed if the data caches are large enough to support more 
instances of the expansion optimization, the remaining misses 
are primarily cold and true sharing misses. This suggests that 
further optimizations should concentrate on increasing the 
spatial locality of the data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Effectiveness of the Optimizations 
Without Program Profiling 

The optimizations evaluated above were developed by using 
detailed information obtained by tracing the program. While 
some kind of profiling may be available in practice, it will 
probably not be as complete as the one used so far. In this 
section, we investigate the possibility of general and effective 
optimizations that do not rely on any profiling information. 
We consider how to apply each of the previous optimizations 
in the absence of this information: 

8.9 (100) 10.7 (49) 8.8 (100) 0.0 0.3 I 0.0 I 0.3 

SplitScalar: If no information is provided, we place each 
shared scalar variable in a different cache block. This 
approach has almost the same effect as moving only 
active scalar variables since, in relatively large caches, 
the advantage of prefetching scalars is minor. Although 
most programs have a small number of shared scalars (the 
number in those studied ranged from 5 to 50), programs 
with many scalars and large cache blocks may waste 
much space. However, we expect little negative effect, 
since only a fraction of the scalars is accessed frequently. 
ExpandRecord: To expand all short arrays by placing, for 
example, one entry per cache block is impractical, since 
it wastes space and can have a positive or a negative net 
effect on cache misses. We leave it up to the programmer 
to pad the data structure if so desired. 
HeapAllocate and AlignRecord: The optimizations of al- 
locating shared data from a process' own heap space and 
aligning arrays can be applied at all times, since the cost 
is low. 
LockScalar: If the machine allows lock variables and 
general data to reside in the same cache block, this 
optimization is feasible at a very low cost. 

AVERAGE 4.8 (60) 7.4 (75) 7.4 (69) 10.4 (80) 

From the previous discussion, we conclude that the com- 
piler and run time system can incorporate Heap Allocate, 
AlignRecord, LockScalar, and the modified SplitScalar with- 
out any profile information. The cumulative effect of these 
optimization is shown in Table V, together with a comparison 
to the fully optimized case. These numbers indicate that a 
significant part of the effect of the more costly optimizations 
can be obtained without any profile information. Moreover, 
the increase in data space, both absolute and relative, remains 
small. 

VI. PERFORMANCE OF A REAL ARCHITECTURE 

After having studied data sharing in an ideal setting, we 
now use the detailed architecture to illustrate the performance 

0.3 1.4 0.3 1.4 

Block 

U I U 

Block Block Block Block Block Block Bbck 

impact of data sharing in practice. This section examines 
three issues. We first study the effect of the conventional 
code optimizations described in Section 11-C. Using optimized 
code, we then measure the overall cache performance of the 
applications. Finally, also using optimized code, we assess the 
effectiveness of the placement optimizations for shared data. 

A. Impact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Conventional Code Optimizations 

To study the effect of the conventional code optimizations 
on overall performance, we compare the execution times of 
two applications, LocusRoute and Maxflow, using optimized 
and unoptimized code. LocusRoute is about twice as fast 
after optimization for both 4- and 16-words blocks. However, 
Maxflow yields an improvement of only about 5% for both 4 
and 16 word blocks. This small improvement in Maxflow is 
due to increased bus contention, which offsets the advantages 
gained by the elimination of unnecessary private data fetches 
from the program. Thus, while there is a slight improvement in 
the speed of Maxflow, the utilization of the processors actually 
decreases by 25%. In conclusion, while some programs run 
substantially faster with compiler optimizations, those where 
shared data traffic saturates the interconnection cannot. In 
either case, since uniprocessor programs run faster while the 
amount of sharing remains unchanged, optimized code will 
give lower speedup figures. Since we are ultimately inter- 
ested in overall performance, measurements on multiprocessor 
programs must be performed on optimized code. 

B. Overall Cache Pegormance 

In previous sections, we studied the cache miss rates result- 
ing from data sharing in isolation. In this section we examine 
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TABLE VI1 

EFFECT OF THE SHARED DATA PLACEMENT OPrIMlZATlONS ON 

THE DATA MISS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARATES OF THE DETAILED ARCHITECTURE 

The 
and inc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 M k u t  6.6 I 5.4 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.2 I 6.4 _ _  , 

numbers correspond to 16 processors and compiler-optimized 
:lude both shared and private data. 

code, 

the data cache performance of the detailed architecture, which 
has a finite cache and issues private data references too. As 
indicated in Section 11-B, the measurements are taken during 
the steady state execution of the programs. In this environment, 
the contribution of private and shared data to the misses of 
the finite caches is shown in Table VI. Because the caches 
are reasonably large and the programs are measured in their 
steady state, the miss rate on private data (columns 2 and 3) is 
minuscule compared to that on shared data (columns 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5).  
In fact, most of the misses correspond to shared data (columns 
6 and 7). Consequently, as shown in the last two columns of 
Table VI, the total miss rate is basically the shared data miss 
rate weighted by the frequency of shared data accesses. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Impact of the Placement Optimizations 

We have proposed two sets of data placement optimizations: 
one when full tracing information is available; the other when 
no profiling data is available. In practice, some information 
will probably be available. We therefore choose to evaluate 
the case that assumes full information and consider the results 
optimistic. 

Table VI1 shows the reduction in data miss rate achieved 
by the placement optimizations for 16 processors. The data 
in the table includes misses on both shared and private data. 
From the table, we see that the optimizations reduce the overall 
data miss rate of the applications by up to an absolute 1.5% 
(or a relative 40%). These miss rate reductions speed up the 
applications by about 10% on average. These speedups are 
partially the result of the bus contention generated by sixteen 
processors. However, while replacing the bus with another 
interconnection network may reduce contention, it may also 
increase overall memory access latencies. 

VII. CONCLUSION AND FUTURE DIRECTIONS 

There are two main contributions in this paper. First, we 
show how poor spatial locality in the data and false sharing 
explain the variation in the miss rate of shared data as the 
cache block changes in size. Second, we show that data 
layout optimizations that are programmer-transparent and not 
restricted to regular codes can be used to reduce the miss rate. 

Based on the analysis of six applications, we find that, 
although false sharing sometimes plays a significant role, poor 
sptial locality has a larger effect in determining the high miss 
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TABLE VI11 
DECOMP~SITION OF THE DATA REFERENCE STREAM FOR 16 PROCESSES 

Applicuion Shared Refs. / Privalc Global Refs. / Private h a l  Refs. / 

Told Data Refs. Tolal Data Reis. TOW D m  Refs. 

AVERAGE 28.2 62.6 15.7 15.1 56.1 22.3 

TABLE IX 
DECOMP~SITION OF THE DATA REFERENCE STREAM FOR 32 PRWESSES 

Applicuion Shared Refs. / Private Global Refs. / R i v e  b a l  Refs. / 

Told Data Refs. Told Data Reis. Told Dm Refs. 

AVERAGE 28.3 61.7 15.9 15.4 55.8 22.9 

rates for moderate-sized cache blocks. In addition, data layout 
optimizations are more effective in eliminating false sharing 
than in improving spatial locality. Overall, these optimizations 
eliminated about 10% of the misses on shared data. 

Our observations on where and how false sharing occurs 
lead us to hypothesize that false sharing is not the major 
source of the cache misses in compiler-parallelized code either. 
For such code, the compiler can easily avoid the obvious 
false sharing pitfalls. For example, in a DOALL loop, it 
is well known that interleaving individual iterations across 
different processors can cause false sharing. This effect can 
be avoided by increasing the granularity of the slices assigned 
to processors. 

Optimizations that improve the performance of cache mem- 
ories are likely to grow in importance as the latencies of cache 
misses increase. Of these optimizations, those that specifically 
optimize the performance of large cache blocks, like the 
ones presented here, are particularly interesting, since large 
blocks can be useful in amortizing the cost of a long-latency 
memory access. More effort should be devoted to optimizing 
the performance of large cache blocks. In this paper, we have 
shown data that suggests that researchers should focus on 
increasing the spatial locality of the data more than on reducing 
false sharing. 

APPENDIX 

Tables VI11 and IX classify the data references for 16- and 
32-process streams, respectively. 
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