
I F M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON COMPUTERS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 43, NO. 6. JUNE 1994 65 1

False Sharing and Spatial Locality
in Multiprocessor Caches

Josep Torrellas, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, IEEE, Mbnica S . Lam, Member, IEEE, and John L. Hennessy, Fellow, IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract- The performance of the data cache in shared-

memory multiprocessors has been shown to be different
from that in uniprocessors. In particular, cache miss rates
in multiprocessors do not show the sharp drop typical of
uniprocessors when the size of the cache block increases. The
resulting high cache miss rate is a cause of concern, since
it can significantly limit the performance of multiprocessors.
Some researchers have speculated that this effect is due to false
sharing, the coherence transactions that result when different
processors update different words of the same cache block in
an interleaved fashion. While the analysis of six applications in
this paper confirms that false sharing has a significant impact
on the miss rate, the measurements also show that poor spatial
locality among accesses to shared data has an even larger
impact. To mitigate false sharing and to enhance spatial locality,
we optimize the layout of shared data in cache blocks in a
programmer-transparent manner. We show that this approach
can reduce the number of misses on shared data by about
10% on average.

Index Terms- Multiprocessing, shared-memory multiproces-
sor, cache memory, sharing, false sharing, optimizing compiler,
placement of data.

I. INTRODUCTION

CALABLE machines that support a shared-memory par- s adigm are a promising way of attaining the benefits of
large-scale multiprocessing without surrendering programma-
bility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I]-(61. An interesting subclass of these machines is the
class that provides hardware cache coherence, which makes
programming easier, while reducing storage access latencies
by caching shared data. While these machines can do well on
problems with low levels of data sharing, it is unclear how
well caches will perform when accesses to shared data occur
frequently.

The cache performance of shared data is the subject of
intense ongoing research. Agarwal and Gupta [7] studied
locality issues in traces of memory references from a four-
processor machine and reported a high degree of processor
interleaving in the accesses to a given shared-memory location.
This suggests that shared data can be the source of frequent
misses. Indeed, Eggers and Katz [8], in a simulation of 5 to 12

Manuscript received June 1990; revised June 1991 and October 1992. This
work was supported in part by DARPA Contract N00014-87-K-0828 and by
financial support from La Caixa d' Estalvis per a la Vellesa i de Pensions and
the Ministerio de Education y Ciencia, both of Spain.

J . Torrellas is with the Center for Supercomputing Research and Devel-
opment and Computer Science Department, University of Illinois at Urbana-
Champaign, Urbana, IL 61801 USA

M. S . Lam and J . L. Hennessy are with the Computer Systems Laboratory,
Stanford University, CA 94305 USA.

IEEE Log Number 9400784.

processors in a bus, showed that shared data is responsible for
the majority of cache misses and bus cycles. In addition, they
show that the miss rate of the data cache in multiprocessors
changes less predictably than in uniprocessors with increasing
cache block size. While the miss rate in uniprocessors tends
to go down with increasing cache block size, the miss rate in
multiprocessors can go down or up with larger block sizes.
A further understanding of the patterns of data sharing was
provided by Weber and Gupta [9], who showed that write-
shared variables are usually invalidated from caches before
being replicated in more than a few different caches. Finally,
in another example of unusual behavior, Lee et al. [101 found
that the optimal cache block size for data is one or two words
long, in contrast to the larger sizes used in uniprocessors [1 I] .
Clearly, given the performance impact of the cache behavior
of shared data, a deeper understanding of it is necessary.

In this paper, we focus on one parameter that has a major
effect on the cache performance of shared data, namely the
size of the cache blocks. A second issue that motivates the
interest in this topic is that the measurements obtained so far
on the impact of the block size on the miss rate of shared
data show such wide variation [SI that they are difficult to
generalize. In this paper, we explain the effect of the cache
block size on the miss rate as a combination of two well-
behaved components: false sharing and spatial locality. False
sharing, in its simplest form, occurs when two processors
repeatedly write to two different words of the same cache
block in an interleaved fashion. This causes the cache block
to bounce back and forth between the two caches as if the
contents of the block were truly being shared. False sharing
usually increases with the block size and tends to drive miss
rates up with increasing block size. The second component,
spatial locality in the data [12], is the property that indicates
that the probability of an access to a given memory word is
high if neighboring words have been recently accessed. This
well-known property produces the opposite effect from false
sharing-a reduction in the miss rate as the block size increase.

We assess the contribution of each component by using a
model of sharing where individual misses are classified as
false sharing misses or as true sharing misses. The latter
are due to the interprocessor communication intrinsic to the
application. False sharing misses measure false sharing. The
effectiveness of increasing the cache block size in eliminating
true sharing misses measures the degree of spatial locality
present. Experimental measurements show that poor spatial
locality in shared data has a larger effect than false sharing in
determining the overall miss rate.

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
652 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAON COMWTERS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA43, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, JUNE 1994 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TABLE I
APPLICATION SET CHARA~~ERISTICS

16 and 32 processor runs of the applications. They contain only
application virtual address references and range in size from 8
to over 32 million data references. Synchronization variables
do not use spin-locking and, to minimize the possibility of hot
spots, each synchronization variable is allocated to its own
cache block.

~~

The third column lists the size of the data structures declared shared. h o simulated architectures are used in this paper, the
ideal and the detailed architecture. In the ideal architecture,
caches are infinite; all memory references, read or writes,
hits or misses, take a single cycle; and every instruction
executes in one cycle. We use the ideal architecture to remove

To reduce the number of cache misses due to poor spatial
locality and false sharing* we pmpse optimizations that

by the compiler. Further, we do not consider techniques *
require no P r o m e r and can be dependencies on specific architechre characteristics from our

that require changes to the assignment of computation to
processors, as in loop intemhange or loop tiling 1131, [14],
since they are only feasible in highly regular codes. Instead,
we propose simple, local techniques that optimize the layout
of shared data at the cache block level. These techniques are
effective enough to eliminate, on average, about 10% of the
misses on shared data in the applications.

This paper is organized as follows. Section 11 discusses the
methodology and characteristics of the application set used
throughout the study. Section I11 presents a model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof data
sharing. This model is used in Section IV to analyze experi-
mental data on cache miss rates and processor-memory traffic.
Based on-this analysis, we propose and evaluate optimizations
to improve data caching in Section V. Finally, in Section
VI, detailed simulations on an existing architecture examine
the performance impact of the issues raised in the previous
sections.

11. METHODOLOGY AND APPLICATION SET CHARACTERISTICS

The results reported in this paper are based on simulations
driven by traces of parallel applications. The applications
are compiled with a conventional optimizing compiler. This
section describes the characteristics of the applications used,
presents the simulator models, and evaluates the effect of
conventional code optimizations on the frequency of data
sharing.

A. Application Set and Trace Characteristics

The parallel applications studied represent a variety of
engineering algorithms [15]-[20] (Table I). Csim, Mp34 and
LOCusRoute are research tools with between loo0 and 60oO
lines of code. The other three applications, namely DWF,
Maxflow, and Mincut implement several commonly used par-
allel algorithms and are less than loo0 lines of code each. Each
application uses the synchronization and sharing primitives
provided by the Argonne National Laboratory macro package
[21]. The synchronization primitives are locks, barriers, and
distributed loop control variables. The applications are in C
and written so that they can run on any number of processors.
We use code compiled with standard code optimization.

We trace the applications using Tango [22], a tracing pro-
gram that simulates a multiprocessor. The traces correspond to

1

!
I

I

study of shared data.
The detailed architecture, used to determine the practical

implications of the ideal study, resembles the Silicon Graphics
POWER Station 4D/240 [23] in memory system bandwidth
and latency. Unlike the 4D/240 system, however, the detailed
architecture has 16 processors, each of which has one 256
Kbyte direct-mapped data cache. In addition, synchronization
accesses use the same bus as regular transactions. The memory
access times without contention for 4- and l6-word blocks are
22 and 31 cycles respectively, during which the bus is locked
for 6 and 15 cycles respectively. To simulate a steady state,
the applications are executed twice; the first run warms up
the cache, and the measurements are taken in the second run.
Because bus contention would be too high with 32 processors,
the detailed architecture is used for 16 processor runs only.

Both architectures use the invalidation-based Illinois cache
coherence protocol [24]. Because in the 4D/240 a request for
ownership on a shared block has the same timing and traffic
requirements as a cache miss, we do not distinguish between
the two in this paper.

C. Effect of an Optimizing Compiler on
the Frequency of Sharing

While code optimizations are known to speed up unipro-
cessor applications [25], they have an important second ef-
fect in multiprocessor code: they increase the frequency of
shared data references. This results from the different ways in
which optimizations affect data. While some private references
are eliminated by register allocation and other optimizations,
shared data consistency prevents existing compilers from
optimizing data declared shared, even if not used as such.
Consequently, since some cycles are saved while the number
of shared references remains the same, data sharing has a larger
impact on the speed of the application.

To study the effect of an optimizing compiler, we measure,
before and after compiler optimization, the fraction of ref-
erences to data declared shared. The target architecture is the
MIPS R2000 processor [26], which has 32 integer registers and
16 double-precision floating point registers. The optimizations
applied include global register allocation and other conven-
tional global optimizations. All data in the shared space is
declared volatile, and therefore are not register-allocated or
optimized. Because optimizations affect the different types of

-
. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TORRELLXS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/. : FALSE SHARING AND SPATIAL LOCALITY IN MULTIPROCESSOR CACHES

Csim

DWF

Mp3d

LocusR

Maxflow

Mincut

Unopt.

Unopt.

Unopt.

Unopt.

Unopt.

Unopt.

opt.

opt.

opt.

opt.

opt.

opt.

Millions of Data Refs. Millions of Data Refs
0 20 40 60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Private Local

Private Global

Sharcd

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 . Decomposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the optimized and unoptimized data reference
htreams for 16 and 32 processes.

private data differently, we consider local and global private
data separately. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALocal data are the variables declared within
procedures. Global data is mostly static data set up by the
master process for the slave processes.

Fig. 1 shows the decomposition of the data reference streams
for the optimized and unoptimized applications running with
16 and 32 processes. Due to limited disk space, the unopti-
mized versions of some traces were not run to completion (bars
with a star). In those cases, the total number of references is
calculated assuming the same relative ratios of private local,
global, and shared references that existed when the trace
was interrupted and the same number of shared references
as the optimized trace. From the figure, we see that, for all
applications, a large number of private references are elim-
inated, particularly among those directed to local variables.
References to private global variables show a smaller change,
almost solely due to the register allocation of the global pointer
to the shared data space. shared data references, therefore,
account for a larger fraction of references. We also see that the
number of processes has little effect on the results. Appendix
A shows tables with the actual numbers obtained in the
experiments. The large difference in the ratio of shared to total
references between optimized and unoptimized code suggests
that performance studies of multiprocessor programs must be
based on optimized code.

111. ANALYZING SHARING

Data miss rates in large uniprocessor caches tend to vary
predictably as cache blocks increase in size [I l l , [27], [28].
Initially, the miss rate drops quickly as the block size increases;
for large blocks, around 32 words, the curve flattens out;
eventually, there is a slight reversal of the curve because
of misses resulting from conflicts. In contrast, how miss
rates on shared data change with block size is much less
predictable; experimental data shows a significant variation
across programs (Fig. 2). In this section, we first present a
model of sharing that decomposes the widely varying miss
rates on shared data in an invalidation-based cache coherence
protocol into two well-behaved and intuitive components.
Then. we describe an experiment to quantify each of these

1 6 processors
40

30

20

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

1 2 4 8 1 6 3 2 6 4

Words /B lock

653

70

60

50

40

30

20

10

0

32 processors

1 2 4 8 1 6 3 2 6 4

Words /B lock

-0- cslm - LocusRoute

P D\IVF - Maxflow - Mp3d - Mincut

Fig. 2. Cache miss rates on shared data as a function of the block size for
the ideal architecture. For a given application, the same problem size is used
in the 16- and 32-processor executions.

Shared Data Private Data

Single-Word Multi-Word Single-Word Multi-Word
Cache Blocks Cache Blocks Cache Blocks Cache Blocks

Cold Start Cold Start Cold Start Cold Start
Prefetching True Sharing Refetching

True Sharing
False Sharing

Fig. 3. Factors that determine the data misses in an infinite cache.

components. For simplicity, all the analysis in Section 111
assumes an infinite cache.

A. A Model of Sharing

Fig. 3 shows the factors that determine the number of data
misses in an infinite cache. For private data in single-word
cache blocks, misses are solely caused by first-time references
to the data. This effect we call cold start in Fig. 3. If the
cache has multi-word blocks, the prefetching provided by the
multiple words of the block reduces the number of misses,
as one miss is enough to bring all the words of a block into
the cache. There are several more factors involved with the
the misses on shared data. If single-word blocks are used,
frue sharing as well as cold start dictate the misses. True
sharing is the sharing of the same memory word by different
processors. True sharing is intrinsic to a particular memory
reference stream of a program and is not dependent on the
block size. The presence of multi-word blocks further adds
false shuring to true sharing, cold start, and prefetching effects.
False sharing occurs when different processors access different
words of the same block and the coherence protocol forces
the block to bounce among caches as if its words were truly
being shared. A result of the collocation of different data in the
same cache block, false sharing depends on the block size and
the particular placement of data in memory. In the following
paragraphs, we show how each individual cache miss can be
traced back to these factors.

True and false sharing are illustrated in Fig. 4(a), where
words a and h are in the same memory block and an asterisk
marks a cache miss. In Examples I, 11, and 111, processor P
owns that block at the beginning of the reference stream, since

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
654

EXAMPLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

EXAMPLE II

EXAMPLE 111

Initial State References

Pa Pb Qb* Pa' Ob'

Pa Pb Qa' Pb' Pa

Pa Pb Qa' Pa' Pb

EXAMPLE I
Block owned by
a : Reference stream

Sharing transitions
Successful Prefetches

Sharing transitions

Successful Prefetches

b : Reference stream P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a)

Initial State

Pa Pb

P P
P

EXAMPLE I I Pa Pb

a : Reference stream p

Sharing transitions

Successful Prefetches

Sharing transitions
Successful Prefetches

Block owned zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby P P

b : Reference stream P

EXAMPLE 111 Pa Pb

a : Referencestream p
Sharing transitions
Successful Prefetches

Sharing transitions

Successful Prefetches

Bl-mk owned by P P

b : Reference stream P

References

ob* Pa' Qb'

Q P Q
P
F +I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q Q
T F +2

- 0

misses= 3
-

Qa' Pb Pa

Q P P
Q P

T T + 2

x - 1
P
F +I

- 0

misses= 2

Qa' Pa' ~b

Q P P
Q P
T T +2

- 0

P

F +I
x - 1

misses = 2

-

Fig. 4. Example of memory reference streams. For simplicity, the streams
contain only writes. An asterisk marks a cache miss. The streams in part (a)
are expanded in part (b) showing true (T) and false (F) sharing transitions,
and misses saved by successful prefetches (X). Words zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb share the same
cache block. Pa means processor P writes word a.

P previously wrote words a and b a s denoted by Pa and Pb
under "Initial State." In Example I, processor Q writes to word
b and processor P writes to word a. In this classical case .of
false sharing, this pattem of access produces a miss for every
access. Except for the first Qb reference however, no true data
sharing is involved. In Examples I1 and 111, processor P and
Q need, and therefore truly share, word a. Word b is used
only by P in both cases. However, because of the prefetch
provided by the cache block, this common sharing pattern
produces misses on different words in the two examples. A

more complex sharing pattem can interact with the cache block
in a variety of ways, resulting in different number of misses.
The model we present now analyzes how data sharing and
prefecting interact to result in the observed number of misses.

We assume a multiprocessor with infinite caches and an
validation-based cache coherence protocol where a cached
memory word may be owned by one cache or read shared

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 6. JUNE 1994

among several. We define the state of the word as the pair
(mode, processors), where mode may be owned or shared,
and processors is the set of processors that cache the word.
An uncached word is a degenerate case where processors is 0.
A read miss loads the word in a shared mode. If the word is in
a shared mode, a processor that caches it must issue a request
for ownership before it can write the word. We count this
request as a miss. A change in the state of the word is called a
state transition. In the following, we focus on conditions after
the cold start for the word, when no processors will access the
word for the processor's first time.

To quantify the degree of intrinsic sharing of a memory
word, we define the concept of true sharing transition.

Defnition I) True Sharing Transition: Consider the stream
. S of references to a given memory word only and ignore any
effects caused by references (not in S) to the other words
in the same cache block, as if the block were single-worded.
We call true sharing transition any state transition that occurs
between two references that are contiguous in S, after cold
start. Further, we say that the second reference causes a true
sharing transition.

Example I1 in Fig. 4(a) shows two true sharing transitions
for word a. One occurs between the initial state and reference
&a; the second between &a and the last reference.

True sharing transitions and cache misses are strongly
related: in caches with single-word blocks, every true sharing
transition causes a cache miss, and every miss after cold start
is due to a true sharing transition. In caches with multi-word
blocks, however, a true sharing transition does not necessarily
lead to a miss. This is shown in the second true sharing
transition for word a in the same example. Between the two
references involved in the transition, namely &a and Pa,
a third reference Pb to another word of the same block
prefetches the original word to the desired state, owned by
processor P. As a result, the second reference Pa hits. On
the other hand, the first true sharing transition for word a in
the same example, which occurs between the initial state and
&a produces a miss. We can now define the concept of true
sharing miss.

Definition 2) True Sharing Miss: A miss that occurs in a
true sharing transition.

The previous discussion shows that prefetching can elimi-
nate a miss in the second reference of a true sharing transition.
Prefetching can also generate a miss in a reference that does
not cause a true sharing transition. To formalize this situation,
we first define the concept of false sharing transition.

Defnition 3) False Sharing Transition: Consider two con-
secutive references to the same word where the second refer-
ence does not cause a true sharing transition. If, between the
two references, there is at least one intervening reference to a
different word of the same block that induces a transition on
the second reference, we say that the second reference causes
a false sharing transition.

As an example, the second Pb reference in Example I1
causes the only false sharing transition for word b in the
stream: between the two Pb references, the intervening &a
reference changes the state of word b to be owned by Q,
thereby inducing a transition on the second Pb reference.

TORRELLAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a/. : FALSE SHARING AND SPATIAL LOCALITY IN MULTIPROCESSOR CACHES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA655 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Like a true sharing transition, a false sharing transition may

or may not incur a miss. An example where a miss occurs is
the false sharing transition for word zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb in Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11: between
the two Pb references, reference &a leaves the block in state
owned by Q, causing the second Pb reference to miss. An
example where the miss is avoided is shown-in Example 111,
which is equal to Example I1 with the last two references
flipped. In Example 111, the second Pb reference causes a false
sharing transition because reference &a between the two Pb
references induces a transition on the second Pb. Between &a
and Pb, however, reference Pa brings the lock back to P's
ownership, thus successfully eliminating a cache miss in the
Pb reference. We can now define the concept of false sharing
miss.

DeJnition 4) False Sharing Miss: A miss that occurs in a
false sharing transition.

Finaly, based on the above definitions, the total number
of cache misses, not counting the cold start effect, is the
total number of true and false sharing transitions minus the
number of successful prefetches. This equality is illustrated
in Fig. 4(b), which expands the streams in Fig. 4(a). We
analyze Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 carefully here; the reader is encouraged
to go over the other examples. We consider the first reference
after the initial state &a and ask whether it causes a false
sharing transition (FST), a true sharing transition (TST), or
no transition at all. To answer this question, we look at the
previous reference to the same word, namely Pa. We note
that the two references are involved in a TST. We then check
whether the accesses between the two references leave word n
in the state that &a requires, namely owned by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&. If that were
the case, a successful prefetch would be recorded. Otherwise,
the actual situation in the example, a true sharing miss (TSM)
occurs. We now consider the next reference Pb. As before, we
look for the previous reference to the same word, namely the
Pb under Initial State. This pair of references are not involved
in a TST. To check whether a FST occurs, we search the
intervening references for at least one that induces a transition
on the second Pb. Since Qn induces such a transition, Pb
causes a FST. To determine whether a false sharing miss
(FSM) or a successful prefetch occurs, we check whether the
stream between &a and Pb leaves b in the state required by Pb.
Since this is not the case, a FSM occurs. The final reference
causes a TST but a successful prefetch eliminates the miss:
reference Pb sets the block to the desired state, namely owned
by P. To summarize, the net result of three transitions and one
successful prefetch is two misses, as postulated by our equality
that relates misses, transitions, and successful prefetches.

B. Effect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Data Prefetching Through Increased Block Size

The previous analysis showed that the prefetching provided
by multiword blocks can eliminate or create misses. Unlike in
uniprocessors, where prefetching always has a positive effect
in infinite caches, prefetching in multiprocessors can have both
a positive and a negative effect. Prefetching exploits spatial
locality in data as in uniprocessors. It also, however, creates
false sharing transitions, which may change what used to be
cache hits without prefetching into false sharing misses.

Processor P Processor Q

store a store b
store a

"P lOOP
lock lock

m
store a store a
store b store b

unlock unlock
Fig. 5. The data prefetching provided by multi-word cache blocks can be
beneficial, as in the loop shown, or may create false sharing misses, as in the
statements before the loop.

We expect the positive effect, namely exploitation of spatial
locality, to be lower in multiprocessors than in uniprocessors
for three reasons. First, a processor may never reference the
prefetched data: since computation is partitioned in a multi-
processor, this is more likely than in a uniprocessor. Second,
even if the processor will eventually access the prefetched
data, another processor may access it first and remove the data
from the first processor's cache. Third, prefetched data may
be removed by another processor accessing a different word
in the same block. Because of the last reason, the benefits of
spatial locality do not necessarily increase monotonically with
the cache block size. Larger blocks may introduce transitions
that reduce the spatial locality benefits present in a smaller
block size.

False sharing transitions, the second effect of prefetching,
increase monotonically with block size. As false sharing
transitions increase, false sharing misses are likely to increase.
However, since not every false sharing transition will cause a
false sharing miss, the number of false sharing misses may not
increase monotonically with increasing block size either.

Unfortunately, both the positive and negative effects of
prefetching are determined by the particular placement of data
in memory and cannot, in general, be changed independently.
Fig. 5 illustrates the interdependence of the two effects. In the
figure, words IL and b share the same block. In the beginning
of the program, a potential instance of false sharing occurs
because processor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ may write b while processor P writes
a. During the rest of the program, the two processors access
words a and b in sequence within a critical section. If we
eliminated the false sharing by, for example, placing a in a
different block, the benefits of prefetching within the loop
would also disappear. We could be saving one false sharing
miss at the cost of doubling the number of misses within the
loop. This example suggests that it may not be desirable to
eliminate false sharing misses at any cost.

C. Measurements

Although the positive and the negative effects of prefetching
on the miss rate are closely related, we have been able to
devise an experiment that allows us to measure each of the two
effects. The experiment is based on our model of sharing. In
the experiment, we use the ideal architecture, which assumes
infinite caches and no cache miss penalties. We compare two
simulations driven by the same interleaving of references and
running in lockstep. One simulation uses caches with single-

656 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOMPUTERS, VOL. 43, NO. 6, JUNE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1994

180 180 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 160 16 processors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg 160 - 140 E 140
5 120 f 120

; loo 2 100

Single-word blab:

Cold References

True Shdng Transitions 80 80

False zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASharing Transitions 3 - 60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 60

40 E 40

0 0

MulU-word blocks: b 20 ; 20

1 2 4
Cold References

True Sharing Transitions WordrlBlock Words/Block

False Sharing Transitions --o- Csim -t LccusRoute

4

- LNVF - Maxflow

-p- Mp3d .-O- ’ Mmcul

Fig. 6. Relation between the simulation of the ideal architecture using
single-word and multiword cache blocks. The figure is not drawn to scale.
In the figure, the number of cold references and m e sharing transitions are
the same in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAboth simulations.

Fig. 7. Cache misses on shared data as function of the block size. Misses
are shown as a fraction of the misses on single-word blocks for the same
application and 16 processors.

A. Analysis of the Cache Miss Rates on Shared Data
word blocks, while the other uses caches with multiword
blocks. In the simulations, we include the cold start period
of the programs. Hence, in addition to false and true sharing
misses, we capture misses on memory words referenced by

call cold misses. The relationships among cold, true sharing,
and false sharing misses in the single-word and the multiword
simulations are as follows.

If a cold miss is incurred for a reference in the multiword
block simulation, the same reference causes a cold miss
in the single-word block simulation.
True sharing transitions are intrinsic to a reference stream
of a program and thus identical for both simulations. Since

misses) in the single-word case, if a true sharing transition
in the multiword block simulation causes a miss, it also
causes a miss in the single-word block simulation.
Therefore, the remaining misses, those that occur in the
multiword block simulation but not in the single-word
case, must be all false sharing misses.

In summary, comparing the two simulations, a miss in the
multiword simulation is a false sharing miss if there is no
equivalent miss in the single-word case: otherwise it is a cold
or true sharing miss.

Fig. 6 (not drawn to scale) depicts the relationships de-
scribed- The number of cold references and true sharing
transitions are the Same in both SimUlatiOnS. Prefetching mu]-
tiple words in a cache block has two effects: first, some of the
cold references and true sharing transitions now result in hits:
second, false sharing transitions appear, Some of which result
in hits and some in misses.

Fig. shows the miss rates on shared data as a function of
the block size for the applications studied. we observe a wide
variation among applications, both in absolute values and in
the way the block size affects them. For example, whereas miss

low values and decrease with increasing block s i x , Maxflow’s
miss rate starts with a higher value, decreases at first, and then
increases. Mp3d’s miss rate is high and not very sensitive to

in the block size. Finally, Mincut shows an upward
trend.

To understand the variation observed with changes in the
block size, we plot the miss in relative values (~ i ~ .
7) and then decompose them into the miss components as

processors decomposed into two groups: cold and me sharing
misses, and false sharing misses. In addition, to show the
degree of true sharing in each program, we mark with an
arrow the number of sharing misses on single-word
blocks-which is also the number of me sharing transitions.
The rest of the misses on single-word blocks are cold misses.
In the following sections, we first analyze each component
of the misses separately, relating the shape of the curves to
the data structures in the program that cause them. Then, we
summarize the general observations.

Analyzing False sharing Misses: Recall that, while false
sharing transitions always increase monotonically with the
block size, this is not necessarily so for false sharing misses.
F~~~ ~ i ~ . 8, however, we observe that false sharing misses

increase with block size and that, except in two cases,
this increase is slow. This slow increase is produced by several
program characteristics. Distributing the computation such that
each iteration of a loop is executed on a different processor
produces false sharing misses when data from different iter-
ations falls in the same cache block. Graph problems with
irregular node interconnection where cache blocks frequently
contain pieces of nodes belonging to different processors also
exhibit false sharing misses (Maxflow and Mincut).

The two cases where false sharing misses increase quickly
are when the blocks are small in Mincut and when the blocks
are large in Maxflow. The sharp rise in these two cases is
due to the presence of blocks containing multiple frequently-

a pmessor for the processor’s first time* These misses we rates for Csim, D W , and LocusRoute start from relatively

true sharing hnsitions in misses (true sharing described by our model. Fig. 8 shows the misses for 16

IV. ANALYZING THE CACHE MISS RATE
AND TRAFFIC BEHAVIOR OF SHARED DATA

In this section, we use the experiment just described to
analyze the cache miss rates and traffic generated by shared
data in real applications. To eliminate dependencies on spe-
cific architecture characteristics, we use the ideal architecture
’throughout the section. We start with an analysis of the miss
rates; then we consider the traffic behavior.

TORRELLAS er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai.: FALSE SHARING AND SPATIAL LOCALITY IN MULTIPROCESSOR CACHES

C s l m - 1 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA160

1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 8 1 6 3 2 6 4
WordsIBlock

M L 3 d - 1 6

1 2 4 8 16 3 2 6 4
WordsIBlock

200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7

1 2 4 8 1 6 3 2 6 4
WordSlBfock

D W F - 1 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 160

: 120 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 1

1 2 4 8 1 6 3 2 6 4

Words IB lock

200,

. .
1 2 4 8 1 6 3 2 6 4

Words IB lock

M l n c u t - 1 6

1 2 4 8 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 6 4

Words lB lock

--t Total Misses --
--t- False Sharing Misses

Cold + True Sharing Misses

-+ True Sharing Transitions

Fig. 8. Decomposition of the cache misses on shared data as a function of
the block size for 16 processors. Misses are shown as a fraction of the misses
on single-word blocks for the same application. The arrow shows the number
of true sharing transitions in the program. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
accessed scalar variables, where at least one of the scalars
is written frequently. This effect can also happen with small
arrays where each array entry is repeatedly updated by one
processor.

As opposed to the previous applications, programs with little
reuse of data by the same process (Mp3d), or where each
processor is assigned a geographic domain where processor
interaction is infrequent (LocusRoute, DWF and Csim) are
unlikely to exhibit a large amount of false sharing misses.

The slow de-
crease in cold and true sharing misses with increasing block
size seen in Fig. 8 shows that shared data has low spatial
locality. A second observation is that, except for Maxflow,
which shows a slight trend reversal for large blocks, the
decrease in misses is monotonic.

Poor locality particularly affects programs with unstructured
accesses, as is the case in fine-grained global task queues
where processors continually process new tasks (Mp3d) or
algorithms like simulated annealing that involve calls to ran-
dom number generators to decide what memory area to access
(Mincut). On the other side, programs with large data struc-
tures that are accessed sequentially and at different times by

Analyzing Cold and True Sharing Misses:

LG=Z 1 2 4 8 1 6 3 2 6 4

WordslBloc k

M p 3 d - 3 2

1 2 4 8 1 6 3 2 6 4

WordsIBlock

200,

M a x t l o w - 3 2

a 80

40

0 z

1 2 4 8 1 6 3 2 6 4

WordsIBlock

651

1 2 4 E ' 6 3 2 6 4

Words B lock

200 -I

1 2 4 8 ' 6 3 2 F L

Words iB loc k

. .
1 2 4 8 16 3 2 6 4

Words!Block

-t- Total Misses -
--t False Sharing Misses

Cold + True Sharing Misses

-b True Sharing Transitions

Fig. 9. Decomposition of the cache misses on shared data as a function of
the block size for 32 processors. Misses are shown as a fraction of the misses
on single-word blocks for the same application and 16 processors. The arrow
shows the number of the true sharing transitions in the program.

different processors (LocusRoute and Maxflow) show larger
decreases in cold and true sharing misses.

Increasing the Number of Processors: The curves with the
misses for 32 processors shown in Fig. 7 are decomposed in
Fig. 9. The misses are shown as a fraction of the 16-processor,
single-word block misses for the same application. From the
figure, we see that the two components, false sharing and
coldtrue sharing misses, maintain the same trends for the
larger number of processors.

Despite the widely varying shape
of the overall curve, the two component curves behave con-
sistently across all applications. First, cold and true sharing
misses tend to decrease with increasing block size but, unlike
in uniprocessors, the rate of decrease in misses is much less
than the rate of increase in block size. Second, false sharing
misses increase with block size and eventually neutralize or
even overcome the small decreases in the cold and true sharing
misses. The net effect is that the total number of misses either
decreases slowly or does not decrease at all. As we will see,
the result is a dramatic increase in processor-memory traffic
with any increase in block size.

The plots show that cold and true sharing misses usually out-
number false sharing misses. Further, for the two applications

Overall Observations:

658 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 43, NO. 6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJUNE 1994

with a significant number of false sharing misses, we show
in Section V that simple data placement optimizations can
eliminate an important fraction of these false sharing misses.

The two component curves in each plot may not be inde-
pendent of each other. Fig. 5 showed that a reduction in the
number of false sharing misses may cause an increase in the
number of cold and true sharing misses. The opposite case,
namely a reduction in the number of false sharing misses
causing a decrease in the amount of cold and true sharing
misses, is also possible. Such scenario occurs if false sharing
misses induce more misses by interfering with the successful
prefetches for true sharing or cold accesses. In the worst case, a
false sharing miss on a word by one processor could eliminate
a successful prefetch in all the other processors that cache the
word, thereby forcing cold or true sharing misses. Fortunately,
the experiments performed while studying the optimization of
Section V show that such interaction is rare. The curves of
false sharing misses, therefore, are a good approximation of
the worst effects of false sharing.

The magnitude of the two component curves and the pre-
vious discussion suggest that the poor spatial locality of
multiprocessor data-responsible for the slow decrease in cold
and true sharing misses--contributes to the cache miss rates
even more than false sharing does. For this reason, we believe
that, to improve the performance of caches, trying to enhance
the spatial locality of multiprocessor data is an approach at
least as, or even more promising, than trying to remove false
sharing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I

B. Analysis of the Traffic Generated by Shared Data

Not only do misses increase the latency of memory accesses,
they also generate traffic between processors and memory. As
the block size increases, a miss produces a higher volume
of traffic. If we estimate the traffic caused by shared data
as SharedMisses*BlockSize, we produce the plots in Fig. 10.
The figure includes a curve for uniprocessor data with aBrzire
cache (32 Kbytes) from [111 for comparison proposes. From
the figure, we see that the block size that minimizes the traffic
of shared data in this class of applications is one word, both
for 16 and 32 processors. The highest performance block size,
however, is larger than that. Indeed, to determine the highest
performance block size for a data cache, we need to take into
account the start up overhead associated with a cache miss
for the particular machine and know what fraction of the data
misses are on shared data. Section VI shows that this fraction
is over 95% for a large cache.

The traffic increase with larger blocks occurs because many
of the words transferred are not used. Between two consecutive
misses on a given block, a processor usually references a very
small number of distinct words in that block, as shown in
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Recall that misses include requests for ownership on
a block. The low values in Table I1 show that, on average,
the prefetching effect of cache blocks is not very effective.
These numbers correlate with the trends in the miss rates
shown in Fig. 2. Mp3d has the lowest numbers in Table I1
because it has a high miss rate, which does not decrease with
larger block sizes. LocusRoute shows the highest numbers

I

16 processors 32 processors
loo0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3

100 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q 0 - L

c B
U f 10 E 10

c

1 1

1 2 4 8 1 6 3 2 6 4 1 2 4 8 1 6 3 2 M . _ . ~ .

Wwds/Block Words/Block - Csim - LocusRoute - DWF -. Maxllow - Mp3d - Mincut - Uniprocessor

Fig. 10. Processor-memory traffic caused by shared data. The plot shows the
ratio between the traffic at a given block size and the traffic for single-word

'blocks and 16 processors. We include a curve for uniprocessor data with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
finite cache (32 Kbytes) for comparison purposes.

TABLE I1
AVERAGE NUMBER OF DISTINCT WORDS IN A CACHE

BLOCK REFERENCED BY ONE PROCESSOR BETWEEN TWO

CONSECUTIVE MISSES ON THAT BLOCK BY THE SAME PROCESSOR

32 Rocessors

Block zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Words)

Applicuion 16 Rocessors

Block S i z e Words)

2 1 4 8 16 32 2 4 8 1 1 6 1 3 2

because it has a low miss rate that decreases significantly with
increases in block size. We also see that increasing the number
of processors always decreases the number of words used in a
block. The poor use of the cache blocks revealed by this data
motivates the next section, where we try to optimize the use
of the blocks based on our model of sharing.

v. OPTIMIZING THE PLACEMENT

OF SHARED DATA IN CACHE BLOCKS

This section addresses the problem of reducing the cache
misses on shared data by enhancing the spatial locality of
shared data and mitigating false sharing. We optimize the
placement of data structures in cache blocks using local
changes that are programmer-transparent and have general
applicability. Our approach is partly motivated by the fact that
cache misses on shared data are often concentrated in small
sections of the shared data address space. Therefore, local
actions involving relatively few bytes may yield most of the
desired effects. An example of this skewed miss distribution
is shown in Fig. 11, which plots the average number of misses
per byte in each shared data structure of Csim.

To guide the study of possible optimization, we use address
traces to generate the following profiling information for each
shared-memory word: 1) degree of true sharing, measured as
the number of misses beyond the cold start in the single-word
block simulation, 2) false sharing misses, 3) cold and true

TORRELLAS et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul.: FALSE SHARING AND SPATIAL LOCALITY IN MULTIPROCESSOR CACHES 659 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 le+6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2e+6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Shared Memory Space (Bytes)

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I . Distribution of the cache misses along the shared address space for
the Csim application. For each data structure, we plot the average number of
misses per byte. This plot corresponds to 16 processors, 4-word cache blocks,
and the ideal architecture. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sharing misses eliminated by prefetching, and 4) number of
writes. The latter is needed since, in addition to words that
have a high degree of true sharing, non-shared words that are
frequently written can also be the cause of false sharing in a
block. For example, false sharing may occur in a block with
one word that is heavily read by only one processor and one
word that is heavily written by only one other processor. We
call a word zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAactive if its degree of true sharing or number of
writes exceeds 0.1 % of the program misses.

In the following, we first present the optimizations, then
evaluate them using the ideal architecture. In the evaluation,
we consider both the aggregate effect of all optimizations and
the individual effect of each. Since it is rare to have this tracing
information in practice, the final subsection examines the case
where we have no dynamic information on the application at
all.

A. Placement Optimizations

We propose five optimizations of the data layout. Because
synchronization variables are a well-known source of con-
tention in some programs, we use as a baseline a data layout
where each of them is allocated to an empty cache block.

SplitScalar: Place scalar variables that cause false shar-
ing in different blocks. Given a cache block with scalar
variables where the increase in misses due to prefetching
exceeds 0.5% of the program misses, we remove the
active variables and allocate each of them to an empty
cache block.

8 HeapAllocate: Allocate shared space from different heap
regions according to which processor requests the space.
It is common for a slave process to access the shared
space that it requests itself. If no action is taken, the space
allocated by different processes may share the same cache
block and lead to false sharing. The policy we propose
is more space-efficient than allocating only block-aligned
space, particularly when very small chunks of space are
repeatedly requested.
Expand Record: Expand records in an array (padding with
dummy words) to reduce the sharing of a cache block by
different records. While successful prefetching may occur
within a record or across records, false sharing usually
occurs across records, when more than one of them
share the same cache block. If the multi-word simulation
indicates that there is much false sharing and little gain in
prefetching, then consider expansion. If the reverse is true,
do not apply the optimization. When both false sharing
misses and prefetching savings are of the same order

of magnitude, we assume that the prefetching succeeds
within a record and we apply the optimization.
Align Record: Choose a layout for arrays of records that
minimizes the number of blocks the average record spans.
This optimization maximizes prefetching of the rest of the
record when one word of a record is accessed, and may
also reduce false sharing. This optimization is possible
when the number of words in the record and in the cache
block have a greater common divisor (GCD) larger than 1.
The array is laid out at a distance from a block boundary
equal to 0 or a multiple of the GCD, whichever wastes
less space.
Lockscalar: Place active scalars that are protected by a
lock in the same block as the lock variable. As a result,
the scalar is prefetched when the lock is accessed.

All optimizations except Lockscalar try to minimize false
sharing. Lockscalar and AlignRecord try to increase the spatial
locality of the data. In our optimization, we must avoid other
effects that could offset the intended ones. First, false sharing
and effective exploitation of spatial locality are not indepen-
dent; changing one usually affects the other. In particular,
strategies that increase the size of the data like SplitScalar and
ExpandRecord may also reduce the effectiveness of prefetch-
ing in eliminating cold and true sharing misses. Second, large
data expansions may increase the working set of a program
and increase capacity misses in a finite cache. To guard against
these effects, we restrict the optimizations to those that cause
little data size increases.

B. Evaluation of the Optimizations: Aggregate Effect

To evaluate the effectiveness of these optimizations, we
use as a metric the fraction of shared data misses that they
eliminate. Table I11 shows this fraction together with the
resulting increase in the size of the data structures for 16 and
32 processors with 4- and 16-word blocks. The table shows
a large variation in the fraction of misses eliminated in the
different applications: the results for individual programs range
from 0% to over 40%, with an average close to 10%.

On average, our techniques tend to eliminate a higher
percentage of misses for the larger block sizes. This effect
is, however, the result of two opposing trends. On one hand,
a larger cache block size increases the possibility of false
sharing among scalars and small data structures, thus possibly
increasing the effectiveness of the optimizations. On the other
hand, a larger block also increases the cost of expanding
records, making some data expansion optimizations infeasi-
ble. Further, a larger block may already benefit more from
prefetching, rendering optimizations to increase spatial locality
less effective.

The effect of the number of processors is also clear. When
the number of processors increases, there are more cache
misses. The data placement optimization, however, also elim-
inate more misses. The result, for nearly all the applications
studied, is that the relative miss reductions are higher for 32
processors than for 16 processors.

Finally, we see that the space requirements of the opti-
mization are small, usually in the 2 Kbyte neighborhood. This

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Applicppn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cliln zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

660

Number Reduction in Shared zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn- in Shued

of Dau Mbws D.u Spvr

Roarran &word Bbslrr 16-Word Blocks +word Blocks l b W d Blocks

Rclm. Abrol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARclu. Abral. Relu. A h l . RclU. Abrol.

('W (Ihaw.1 (5) F h o W (5) (K W W (W (K b W
16 7.9 60.6 6.6 39.3 0.0 0.4 0.1 1.9

b

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, JUNE 1994

DWF I 16 0.6 1 3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1.0

MPM I 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 0.4 I 20.6 I 0.1

LaasRmWI 16 11 10.2 I 45.3 128.7

4.6 1 0 . 0 oa 0.0 o.2

5.5 I 0.3 4.8 0.0 0.5

57.5 I 0.0 0.5 0.1 1.6

I I , I U

Mirrtll 16 19.7 229.6 8.9 153.1 1 2 3 4.0 0.0 0.0

AVBRAOE I 16 11 8.0 I 9.9 1.9 0.1 1.0

DWF I 32 1 0.6 I 5.5 I 1.1 I 9.0 I 0.0 1 0.0 I 0.0 I 0.2

MDM I 32 n 0.4 I 24.3 I o.z I 13.3 I 0.3 I 4.8 I o.o I 05

Muflow

M i m r

AVERAGE

~ o a u l l 0 ~ 1 32 n 15.5 I 92.5 I 41.6 I 138.5 I 0.0 I 05 I 0.2 I 3.1 II
32 " 10.7 397.0 14.7 455.6 0.6 1.6 0.6 1.6

32 220 394.1 8.8 190.9 1 2 3 4.0 0.0 0.0

32 10.8 13.0 2.0 0.2 1.5

Csim 1%-16w 11 2.2 I

causes an insignificant relative increase in shared data space
unless the size of the shared data space is very small originally.
While it is possible to reduce the m i s s rate further by larger
data expansions, their possibly detrimental effect on cache
performance makes them undesirable.

Fig. 12 shows how the optimizations affect the two types
of misses: cold and true sharing, and false sharing misses.
For each application, the figure considers the four processor
and block size settings used in the previous table. For each
setting, we show three bars. The leftmost bar shows the miss
rate of shared data in the original program, where the compiler
did not necessarily allocate each synchronization variable to
a different cache block. The central bar shows the miss rate
after each synchronization variable is allocated to a different
cache block. This is the miss rate taken as a baseline. From the
difference between the two bars, we can see the importance
of the synchronization variable layout, especially considering
that spin-locking is not used in the synchronization variables.
Finally, the rightmost bar shows the miss rate after further
applying the five placement optimizations.

We observe that the optimizations are more successful
in eliminating false sharing misses than in eliminating cold
and true sharing misses. For all applications, the maximum
reduction in cold and true sharing misses is approximately
10%. In contrast, almost all false sharing is removed in
LocusRoute and in Mincut for 4-word cache blocks, and 20 to
40% in Csim and Maxflow. The reduction of false sharing in
Mincut is accompanied by an increase in cold and true sharing
misses. This observation illustrates that, in general, the positive
and negative effects of prefetching discussed in Section 111-B
cannot be totally separated.

1 0.6 6.6 2.8 1 .o

C. Evaluation of the Optimizations: Individual Effect

Table IV shows the contribution of each optimization to
the reduction in shared data misses shown in Table 111.
From Table IV, we see the Splitscalar is effective for all
applications amenable to these optimizations. Most of the

Csim 3Zp-16w

DWP 16p4w

DWP 16p16w

DWF 3 2 a ~ ~

0.1 0.1

nn 0.0

0.7 11.5 5.0 2.8 3 .O

0.4 0.2 0.6

1 .o I .o
os n i n6

16p4w 16p16w 32p4w 32p16w 16p4w 16p16w 3 W w 3 2 p 1 6 ~

DWF 31p16w

MpM 16p16w

MpM 3-w

MpM 32pl6w

Lncu$R~u16p4w

MpM 16p4w

Lrrwllmv16p16w

LomsRmv 3-w

LoarRmv32p16w

Mullow M p d w

Muflow I@-16w

MuRow 32p4w

M d o w 32p-16w

LOCllrRouc 0.3
0.6

0.4

0.2

0.0 0.0

0.2

0.1

I I) 0.1 1.1

0.1 0.3 0.4

0.1 0.1

0.1 0.3 0.4

0. I 0.1 0.2

1.5 6 1 0.7 0.5 0.8 10.2

8.0 16.1 2.5 0.4 1.7 28.7

1.4 11.3 1.4 0.8 0.6 15.5

8.4 27.5 4.7 0.4 0.6 41.6

1.5 5.3 2.1 8.9

2.0 9.3 2.9 14.2

I .l 4.8 4.2 10.7

2.0 1.7 5.0 14.7

16p4w 16p16w 32p4w 3Zp16w 16p4w 16pl6w 32p4w 32p16w

0.3 1 Maxflow 0.3 f

0.2 0.2

0.1 0.1

0.0 0.0
16p4w l6p16w 32p4w 32p16w 16p4w 1 6 ~ 1 6 ~ 3 2 ~ 4 ~ 3 W 6 w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 False Sharing Miss Rate

Original Miss Rate

P=Nmhr Of Processors

16p4w means 16 processors and
4 words per block

&ld+Tme Sharing Miss Rate w=words per cache Block

Fig. 12. Miss rates on shared data. For each set of three bars, the leftmost
one shows the miss rate of the original program; the central one the miss
rate after allocating synchronization variables to different cache blocks; and
the rightmost one the miss rate after further applying the five placement
optimizations.

TABLE IV
FRACTION OF SHARED DATA MISSES ELIMINATED BY EACH OFTIMIZATION

Applicppn 11 SpliLScdw 1 HcqAUocmr I WpadReeord I Alig.Record 1 l.,m&&v I Toul

n c- 16a4w n 1.7 I I 2.3 I 3.4 I 0.5 I n

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ApplLyiMl S h a d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADIU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMiser Eliminated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(90)

16Roc. 1 6 h . 32Roc. 32Roc.

4-Word 16-Word 4-Word 16-Word

~ Bbck Bbck Block Block

TORRELLAS ef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01.: FALSE SHARING AND SPATIAL LOCALITY IN MULTIPROCESSOR CACHES

Shared DIU S p r c Imrc (Kbyles)

16Roc. 16Roc. 32Roc. 32Roc.

4-Word 16-Word 4-Word IbWard

B l a k Bbck Bbck Block

66 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

Mincut 10.1 (SI)

applied either to small, active arrays used mainly for process
communication or to the main data structures in the smaller
programs. Finally, the other optimizations are relevant to only
one or two of the applications.

A large fraction of the cache misses still remains after
optimization. While some of the false sharing misses can be
removed if the data caches are large enough to support more
instances of the expansion optimization, the remaining misses
are primarily cold and true sharing misses. This suggests that
further optimizations should concentrate on increasing the
spatial locality of the data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Effectiveness of the Optimizations
Without Program Profiling

The optimizations evaluated above were developed by using
detailed information obtained by tracing the program. While
some kind of profiling may be available in practice, it will
probably not be as complete as the one used so far. In this
section, we investigate the possibility of general and effective
optimizations that do not rely on any profiling information.
We consider how to apply each of the previous optimizations
in the absence of this information:

8.9 (100) 10.7 (49) 8.8 (100) 0.0 0.3 I 0.0 I 0.3

SplitScalar: If no information is provided, we place each
shared scalar variable in a different cache block. This
approach has almost the same effect as moving only
active scalar variables since, in relatively large caches,
the advantage of prefetching scalars is minor. Although
most programs have a small number of shared scalars (the
number in those studied ranged from 5 to 50), programs
with many scalars and large cache blocks may waste
much space. However, we expect little negative effect,
since only a fraction of the scalars is accessed frequently.
ExpandRecord: To expand all short arrays by placing, for
example, one entry per cache block is impractical, since
it wastes space and can have a positive or a negative net
effect on cache misses. We leave it up to the programmer
to pad the data structure if so desired.
HeapAllocate and AlignRecord: The optimizations of al-
locating shared data from a process' own heap space and
aligning arrays can be applied at all times, since the cost
is low.
LockScalar: If the machine allows lock variables and
general data to reside in the same cache block, this
optimization is feasible at a very low cost.

AVERAGE 4.8 (60) 7.4 (75) 7.4 (69) 10.4 (80)

From the previous discussion, we conclude that the com-
piler and run time system can incorporate Heap Allocate,
AlignRecord, LockScalar, and the modified SplitScalar with-
out any profile information. The cumulative effect of these
optimization is shown in Table V, together with a comparison
to the fully optimized case. These numbers indicate that a
significant part of the effect of the more costly optimizations
can be obtained without any profile information. Moreover,
the increase in data space, both absolute and relative, remains
small.

VI. PERFORMANCE OF A REAL ARCHITECTURE

After having studied data sharing in an ideal setting, we
now use the detailed architecture to illustrate the performance

0.3 1.4 0.3 1.4

Block

U I U

Block Block Block Block Block Block Bbck

impact of data sharing in practice. This section examines
three issues. We first study the effect of the conventional
code optimizations described in Section 11-C. Using optimized
code, we then measure the overall cache performance of the
applications. Finally, also using optimized code, we assess the
effectiveness of the placement optimizations for shared data.

A. Impact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Conventional Code Optimizations

To study the effect of the conventional code optimizations
on overall performance, we compare the execution times of
two applications, LocusRoute and Maxflow, using optimized
and unoptimized code. LocusRoute is about twice as fast
after optimization for both 4- and 16-words blocks. However,
Maxflow yields an improvement of only about 5% for both 4
and 16 word blocks. This small improvement in Maxflow is
due to increased bus contention, which offsets the advantages
gained by the elimination of unnecessary private data fetches
from the program. Thus, while there is a slight improvement in
the speed of Maxflow, the utilization of the processors actually
decreases by 25%. In conclusion, while some programs run
substantially faster with compiler optimizations, those where
shared data traffic saturates the interconnection cannot. In
either case, since uniprocessor programs run faster while the
amount of sharing remains unchanged, optimized code will
give lower speedup figures. Since we are ultimately inter-
ested in overall performance, measurements on multiprocessor
programs must be performed on optimized code.

B. Overall Cache Pegormance

In previous sections, we studied the cache miss rates result-
ing from data sharing in isolation. In this section we examine

662 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TABLE VI1

EFFECT OF THE SHARED DATA PLACEMENT OPrIMlZATlONS ON

THE DATA MISS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARATES OF THE DETAILED ARCHITECTURE

The
and inc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 M k u t 6.6 I 5.4 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.2 I 6.4 _ _ ,

numbers correspond to 16 processors and compiler-optimized
:lude both shared and private data.

code,

the data cache performance of the detailed architecture, which
has a finite cache and issues private data references too. As
indicated in Section 11-B, the measurements are taken during
the steady state execution of the programs. In this environment,
the contribution of private and shared data to the misses of
the finite caches is shown in Table VI. Because the caches
are reasonably large and the programs are measured in their
steady state, the miss rate on private data (columns 2 and 3) is
minuscule compared to that on shared data (columns 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5).
In fact, most of the misses correspond to shared data (columns
6 and 7). Consequently, as shown in the last two columns of
Table VI, the total miss rate is basically the shared data miss
rate weighted by the frequency of shared data accesses. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Impact of the Placement Optimizations

We have proposed two sets of data placement optimizations:
one when full tracing information is available; the other when
no profiling data is available. In practice, some information
will probably be available. We therefore choose to evaluate
the case that assumes full information and consider the results
optimistic.

Table VI1 shows the reduction in data miss rate achieved
by the placement optimizations for 16 processors. The data
in the table includes misses on both shared and private data.
From the table, we see that the optimizations reduce the overall
data miss rate of the applications by up to an absolute 1.5%
(or a relative 40%). These miss rate reductions speed up the
applications by about 10% on average. These speedups are
partially the result of the bus contention generated by sixteen
processors. However, while replacing the bus with another
interconnection network may reduce contention, it may also
increase overall memory access latencies.

VII. CONCLUSION AND FUTURE DIRECTIONS

There are two main contributions in this paper. First, we
show how poor spatial locality in the data and false sharing
explain the variation in the miss rate of shared data as the
cache block changes in size. Second, we show that data
layout optimizations that are programmer-transparent and not
restricted to regular codes can be used to reduce the miss rate.

Based on the analysis of six applications, we find that,
although false sharing sometimes plays a significant role, poor
sptial locality has a larger effect in determining the high miss

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 6, JUNE 1994

TABLE VI11
DECOMP~SITION OF THE DATA REFERENCE STREAM FOR 16 PROCESSES

Applicuion Shared Refs. / Privalc Global Refs. / Private h a l Refs. /

Told Data Refs. Tolal Data Reis. TOW D m Refs.

AVERAGE 28.2 62.6 15.7 15.1 56.1 22.3

TABLE IX
DECOMP~SITION OF THE DATA REFERENCE STREAM FOR 32 PRWESSES

Applicuion Shared Refs. / Private Global Refs. / R i v e b a l Refs. /

Told Data Refs. Told Data Reis. Told Dm Refs.

AVERAGE 28.3 61.7 15.9 15.4 55.8 22.9

rates for moderate-sized cache blocks. In addition, data layout
optimizations are more effective in eliminating false sharing
than in improving spatial locality. Overall, these optimizations
eliminated about 10% of the misses on shared data.

Our observations on where and how false sharing occurs
lead us to hypothesize that false sharing is not the major
source of the cache misses in compiler-parallelized code either.
For such code, the compiler can easily avoid the obvious
false sharing pitfalls. For example, in a DOALL loop, it
is well known that interleaving individual iterations across
different processors can cause false sharing. This effect can
be avoided by increasing the granularity of the slices assigned
to processors.

Optimizations that improve the performance of cache mem-
ories are likely to grow in importance as the latencies of cache
misses increase. Of these optimizations, those that specifically
optimize the performance of large cache blocks, like the
ones presented here, are particularly interesting, since large
blocks can be useful in amortizing the cost of a long-latency
memory access. More effort should be devoted to optimizing
the performance of large cache blocks. In this paper, we have
shown data that suggests that researchers should focus on
increasing the spatial locality of the data more than on reducing
false sharing.

APPENDIX

Tables VI11 and IX classify the data references for 16- and
32-process streams, respectively.

ACKNOWLEDGMENT

We thank the referees for their helpful comments. We also
thank S. Goldschmidt, B. Bray, H. Davis, S. Tjiang and the
authors of the applications for their contributions.

TORRELLAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef ai.: FALSE SHARING AND SPATIAL LOCALITY IN MULTIPROCESSOR CACHES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA663 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
REFERENCES

D. R. Cheriton, H. A. Goosen, and P. D. Boyle, “Multi-level shared
caching techniques for scalability in VMP-MC,” in Proc. 16th Annu. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Int. Symp. Comput. Architecture, June 1989, pp. 16-24.
J. Elder, A. Gottlieb, C. K. Kruskal, K. P. McAuliffe, L. Rudolph, M.
Snir, P. Teller, and J. Wilson, “Issues related to MIMD, shared-membry
computers: The NYU ultracomputer approach,” in Proc. 12th Annu. Int.
Symp. Comput. Architecture June 1985, pp. 126135.
J . R. Goodman and P. J. Woest, “The Wisconsin multicube: A new large-
scale cache-coherent multiprocessor,” in Proc. 15th Annu. Int. Symp. on
Comput. Architecture, June 1988, pp. 422431.
D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
“The directory-based cache coherence protocol for the DASH multi-
processor,” in Proc. 17th Annu. Int. Symp. Comput. Architecture, May
1990, pp. 148-159.
G. Pfister, W. Brantley, D. George, S. Harvey, W. Kleinfelder, K.
McAuliffe, E. Melton, A. Norton, and J. Weiss, “The IBM research
parallel processor prototype (RP3): Introduction and architecture,” in
Proc. 1985 Int. Con$ Parallel Processing, 1985, pp. 764-771.
A. W. Wilson, “Hierarchical cachebus architecture for shared memory
multiprocessors,” in Proc. 14th Annu. Int. Symp. Comput. Architecture,
June 1987, pp. 244-252.
A. Agarwal and A. Gupta, “Memory-reference characteristics of mul-
tiprocessor applications under MACH, in ACM SlCMETRlCS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACon$
Measurement and Modeling of Comput. Syst., May 1988, pp. 215-225.
S. J. Eggers and R. H. Katz, “The effect of sharing on the cache and bus
performance of parallel programs,” in Proc. 3rd Int. Con$ Architectural
Support fo r Programming Lung. and Operating Syst., Apr. 1989, pp.
257-270.
W. D. Weber and A. Gupta, “Analysis of cache invalidation patterns
in multiprocessors,’’ in Proc. 3rd Int. Con$ Architectural Support fo r
Programming Lang. and Operating Syst., Apr. 1989, pp. 243-256.
R. L. Lee, P. C. Yew, and D. H. Lawrie, “Multiprocessor cache design
considerations,” in Proc. 14th Annu. Int. Symp. Comput. Architecture,
June 1987, pp. 253-262.
A. J. Smith, “Line (block) size choice for CPU caches,” in IEEE Trans.
Comput., vol. C-36, pp. 1063-1075, Sept. 1987.
A. J. Smith, “Cache memories,” in Computing Surveys, vol. 14, pp.
473-530, Sept. 1982.
F. lrigoin and R. Triolet, “Supermode partitioning,” in Proc. 15th Annu.
ACM Symp. Principles of Programming Lang., Jan. 1988, pp. 3 19-329.
M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,”
in Proc. ACM SICPLAN 91 Con& Programming Lang. Design and
Implementation, June 199 I , pp. 30-44.
F. J. Carrasco, “A parallel maxflow implementation,” CS41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Project
Rep., Stanford Univ., Mar. 1988.
J. A. Dykstal and T. C. Mowry, “MINCUT: Graph partitioning using
parallel simulated annealing.” CS41 1 Project Rep., Stanford Univ., Mar.
1989.
A. Galper, “DWF,” CS41 I Project Rep., Stanford Univ., Mar. 1989.
J. D. McDonald and D. Baganoff, “Vectorization of a particle sim-
ulation method for hypersonic rarified flow,” presented at the AIM
Thermodynamics, Plasmadynamics and Lasers Cont zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, Seattle, WA, June
1988.
J. Rose, “LocusRoute: A parallel global router for standard cells,” in
Proc. 25th ACM/IE€€ Design Automation Con&, June 1988, pp. 189-
195.
L. Soule and A. Gupta, “Characterization of parallelism and deadlocks
in distributed digital logic simulation,” in Proc. 26th ACM/IEEE Design
Automat. Con&, June 1989, pp. 81-86.
E. Lusk, R. Stevens, and R. Overbeek, Portable Programs for Parallel
Processors.
H. Davis, S. Godschmidt, and J. Hennessy, “Multiprocessing simulation
and tracing using tango,” in Proc. 1991 Int. Con$ Parallel Processing.

New York: Holt, Rinehart, and Winston, Inc., 1987.

[23] F. Baskett, T. Jermoluk, and D. Solomon, “The 4D-MP graphics
superworkstation: Computing + graphics = 40 MIPS + 40 MFLOPS
and 100,OOO lighted polygons per second,” in Proc. 33rd IEEE Comput.
Soc. Int. Con$ - COMPCON vol. 88, Feb. 1988, pp. 468471.

1241 M. S. Papamarcos and J. H. Patel, “A low overhead coherence solution
for multiprocessors with private cache memories,” in Proc. 11th Annu.
Int. Symp. Comput. Architecture, June 1984, pp. 348-354.

1251 J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach.

1261 G. Kane, MIPS RISC Architecture. Englewood Cliffs, NJ: Prentice-
Hall, 1989.

1271 M. D. Hill, “Aspects of cache memory and instruction buffer perfor-
mance,” Tech. Rep. UCBKSD 87/381, Univ. of California, Berkeley,
Nov. 1987.

1281 S. Przybylski, M. Horowitz, and J. Hennessy, “Performance tradeoffs
in cache design,” in Proc. 15th Annu. Int. Symp. Comput. Architecture,
May 1988, pp. 290-298.

San Mateo, CA: Morgan Kaufmann, 1990.

Josep Torrellas (S’87-M’90-S’91-M’92) received
the B.S. degree from the Universitat Politecnica
de Catalunya in 1986, the M.S. degree from the
University of Wisconsin-Madison in 1987, and the
Ph.D. degree from Stanford University in 1992. all
in electrical engineering.

He is an Assistant Professor of Computer Science
at the University of Illinois at Urbana-Champaign
and the Center for Supercomputing Research and
Development. His research interests focus on hard-
ware and software techniques to improve the per-

formance of scalable shared-memory multiprocessors.

Monica S. Lam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S’84-M’85-S’85-M’86-S’86
M’87) received the B.S. degree in computer science
from University of British Columbia in 1980 and
the Ph.D. degree in computer science from Carnegie
Mellon University in 1987.

She is an Assistant Professor of Computer
Science at Stanford University. Her research
interests are in developing language, compiler,
and architecture technologies that cooperate in
exploiting parallelism.

Dr. Lam received an NSF Young Investigator
Award in 1992.

John Hennessy (S’72-M’77-SM’89-F’91) is a
Professor of Electrical Engineering and Computer
Science at Stanford University. His current research
interests are in exploiting parallelism at all levels
to build higher performance computer systems.

Prof. Hennessy was the recipient of a 1984
Presidential Young Investigator Award, and in
1987 was named the Williard and Inez K. Bell
Professor of Electrical Engineering and Computer
Science, He is a member of the National Academy
of Engineering. During a leave from Stanford in

198&85, he cofounded MIPS Computer Systems where he continues to
vol. 11, Aug. 1991, pp. 99-107. participate in industrializing the RISC concept as Chief Scientist.

