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Abstract

Combined modelling of pixel intensities and shape has proven to be a very robust and widely applicable approach to
interpret images. As such the Active Appearance Model (AAM) framework has been applied to a wide variety of problems
within medical image analysis. This paper summarises AAM applications within medicine and describes a public domain
implementation, namely the Flexible Appearance Modelling Environment (FAME). We give guidelines for the use of this
research platform, and show that the optimisation techniques used renders it applicable to interactive medical applications.
To increase performance and make models generalise better, we apply parallel analysis to obtain automatic and objective
model truncation. Further, two different AAM training methods are compared along with a reference case study carried
out on cross-sectional short-axis cardiac magnetic resonance images and face images. Source code and annotated data sets

needed to reproduce the results are put in the public domain for further investigation.
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I. INTRODUCTION

Modelling biological variation present in medical images has been a challenge for a long time. The
variation is often very complex and each image modality has its own set of characteristic artefacts. While
the amount of biological complexity is either fixed or very slowly changing, new imaging modalities emerge
and existing are improved, often very rapidly. This accentuates the need for general methods capable of
adapting to both issues above. In addition, we would prefer these to be reasonably fast, specific to the
current problem and finally, robust to noise and acquisition artefacts.

During the past few years, the generative modelling framework: Active Appearance Models (AAM) [1],
[2] have aimed at meeting all of the above requirements. By being capable of synthesising near photo-
realistic images of objects, AAMs are taking the analysis-through-synthesis approach to the extreme. This
approach has proven its worth in numerous different applications, both medical and non-medical.

We sincerely believe that progress is most easily obtained through transparency. By this we mean that
algorithms and reference data set should be made available along with corresponding reference performance
measures. In that way new and existing methods can be compared on a fair and transparent basis by
eliminating, or at least significantly alleviate, the tedious process of re-implementing competing methods
and re-generating similar training data, et cetera.

This paper represents a small step towards transparent research by presenting a public domain AAM
implementation along with reference measures carried out on likewise public domain data. Focus is put
on the different design choices an AAM designer must make prior to model building. In particular, we
evaluate two different variations on the AAM formulation and treat the bias/variance problem occurring
when selecting the number of principal components.

The paper is organised as follows: Section IT summarises medical applications of AAMs. Section III
serves as an introduction to the inner workings of AAMs. Section IV describes the two prevalent methods

for calculating model parameter updates. Section V treats the problem of selecting the number model
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parameters. Section VI describes our AAM framework, The Flexible Appearance Modelling Environment
(FAME). Section VII describes two sets of training data and gives segmentation results on these using

FAME. Finally, Section VIII serves a discussion and conclusion.

II. BACKGROUND

At the introduction of Active Appearance Models [1], [2] focus was put on segmentation and interpre-
tation of face images. However, being a generic approach to build models from an annotated training set,
medical applications were soon to follow. This section summarises the use of AAMs in medical imaging,
but the list is by no means exhaustive. For example, the vast amount of literature on AAM-related
variations and precursors has been omitted.

Both [3], [4], [5], [6] showed AAMs modelling ventricles, the caudate nucleus and the lentiform nucleus
in single-slice magnetic resonance images (MRI) of the brain. This case was also treated in [7] and [8]
where the latter also demonstrated an AAM of single-slice MRI of cartilage and bone in the knee. Up
to this point medical AAM work was done by the inventors, primarily Cootes, Taylor and Edwards of
Manchester University.

Mitchell et al. [9], [10] demonstrated the applicability of AAMs on single-slice cardiac MRI and later
on time series of cardiac MRI [11], [12], [13]. Bosch et al. [14], [15] used a similar approach on time
series of echocardiograms. A direct continuation of this work is the 3D AAMs built on volumetric cardiac
MRI by Mitchell et al. [16], [17] and Lelieveldt et al. [18]. Two variations of 3D AAMs were applied to
diaphragm dome CT by Beichel et al. [19], [20] and to echocardiogram time series by Bosch et al. [21].
Duchesne et al. [22] have used a variation of the traditional AAM, with a shape model similar to that of
the Morphable Models of Jones and Poggio [23], for 3D segmentation of the hippocampus in brain MRI.
Stegmann et al. [24], [25], [26], [27] used AAMs for segmentation of metacarpal radiographs and cardiac
MRI. Later Thodberg [28] used a Shape AAM for segmentation of metacarpal radiographs. A modified
AAM, using multiple texture models, was used for segmenting myocardial perfusion MRI sequences by
Stegmann and Larsson [29], [30]. Hilger et al. [31] explored a noise robust texture representation on
ventricular cardiac MRI. Finally, Stegmann et al. [32], [33] used sequential AAMs based on MDL-defined

landmarks for corpus callosum analysis in brain MRI.

III. AcTIVE APPEARANCE MODELS

Active Appearance Models establish a compact parameterisation of object variability, as learned from a
training set by estimating a set of latent variables. The modelled object properties are usually shape and
pixel intensities. The latter is henceforward denoted texture. From these quantities new images similar to
the training set can be synthesised.

Objects are defined by marking up each example with points of correspondence (i.e. landmarks) over

the set either by hand, or by semi- to completely automated methods. From these landmarks a shape
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model [34] is built. Further, given a suitable warp function a dense (i.e. per-pixel) correspondence is
established between training objects, thereby enabling a proper modelling of texture variability. By
exploiting prior knowledge of the nature of the optimisation space, these models of shape and texture can
be rapidly fitted to unseen images, thus providing image interpretation through synthesis.

Variability is modelled by means of a Principal Component Analysis (PCA), i.e. an eigen analysis of
the dispersions of shape and texture. Let there be given P training examples for an object class, and
let each example be represented by a set of N landmark points and M texture samples. The shape
examples are aligned to a common mean using a Generalised Procrustes Analysis (GPA) [35] where all
effects of translation, rotation and scaling are removed. The obtained Procrustes shape coordinates are
subsequently projected into the tangent plane to the shape manifold, at the pole given by the mean shape.
The texture examples are warped into correspondence using a piece-wise affine warp and subsequently
sampled from this shape-free reference. Typically, this geometrical reference frame is the Procrustes mean
shape. Let s and t denote a synthesized shape and texture and let § and t denote the corresponding

sample means. New instances are now generated by adjusting the PC scores, by and by in
s=5+®b, , t=t+ &b, (1)

where ®, and ®,; are matrices of column eigenvectors of the shape and texture dispersions estimated from
the training set. To obtain a combined shape and texture parameterisation, c, the values of by and b,

over the training set are combined into

b | Webe | W, (s —53) . @)
b, ol (t—1t)
A suitable weighting between pixel distances and pixel intensities is carried out through the diagonal
matrix Wy. To make the normalised measures of pixel distance and pixel intensities commensurate, the
shape PC scores are typically weighted by the square root of the ratio between the sums of the texture
and shape eigenvalues.

To recover any correlation between shape and texture the two eigenspaces are usually coupled through

a third PC transform

s
b=®&.c= “* e (3)
(I)c,t

obtaining the combined appearance model parameters, ¢, that generates new object instances by
s=5+®W,'®, .c, t=t+®,P.,c. (4)

To regularise the model and improve speed and compactness, ®,, ®; and ®. are truncated, usually such
that a certain amount of variance in the training set is preserved. This eventually results in k (k < P)

combined modes, i.e. k dynamic parameters encoded in the vector c.
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The object instance, (s,t), is synthesised into an image by warping the pixel intensities of t into the
geometry of the shape s. Given a suitable similarity measure the model is matched to an unseen image
using an iterative updating scheme based on a fixed Jacobian estimate [36], [8] or a principal component
regression [2]. Typically the Lo-norm is used as similarity measure, which is sensible if the errors between
the model and the image are (approximately) normally distributed.

This sums up the basic theory of AAMs. For further details refer to [2], [36], [8] (and [24] as a

supplement).

IV. AAM TRAINING

Traditionally, AAMs have been trained to update model and pose parameters using one of two schemes
described in the following. These parameter updates are carried out using difference images between
the current model image and the corresponding part of the unseen image that it covers. Applying such
parameter corrections in an iterative scheme should drive the model towards the ground truth shape in

the image.

Multivariate Regression

The original AAM formulation [1], [2] uses a regression approach where difference vectors, 6t = t;mage —
timodel, are regressed onto corresponding parameter perturbation/displacement vectors, dp. Here p is
model and/or pose parameters, having the length . The goal is thus to obtain an optimal — in a

least-squares sense — prediction matrix, R, satisfying the linear relationship:
ip = Rdt. (5)

Our formulation uses separate prediction matrices for model and pose parameters, denoted R, and R,

respectively. Let there be conducted S perturbation experiments and let

P=| 6p, ... dpg and T=| 6t; ... ftg |- (6)

During these perturbation experiments dt; is short for dt;(p* + dp;), where p* denotes the optimal
parameter configuration. Since @@ < S < M typically, R is estimated using principal component re-
gression [8]. From the large matrix T, an s-dimensional subspace (s < S) is extracted. This makes R
well-determined in P = RT’, where T/ contains s-dimensional projected versions of T. Consequently, an
eigen-decomposition of an S x S matrix is involved. To keep this matrix down to a feasible size, typically
only a subset of the training set is used for training. This is especially important when estimating R,
as the number of model modes grows with the number of examples, P. For models with a small number
of training examples the growth in S becomes close to quadratic. In the experiments below the same

training subset has been used to estimate both R. and R;.
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In the subsequent sections, this learning approach is denoted Regression.

The Fixzed Jacobian Matriz Estimate

In later AAM publications [36], [7], [37] the multivariate regression is superseded by a simpler approach.
It is easier to implement, faster to calculate and requires far less memory to execute. First we introduce

the residual vector r, parameterised by p:

I‘(p) = 6t(p) = timage(p) - tmodel(p)' (7)

A first order Taylor expansion of r at p* is

. o, Or(p”
r(p + p) ~ x(p?) + P 5 0
P
where p* is in the proximity of p* and
Ory Ory
op1 IpQ
op ap : e : .
aT’ju 6’1“1\/[
op1 pQ

The goal of the parameter update is to drive the residual vector to zero, i.e. finding p™. Using the Lo-norm
the optimal p is: argminsp |[r(p* + 6p)||>. Hence, the least-squares solution of (8) becomes:
-1
or T or or’
op=—|— — — r(p*) = —Rr(p"). 10
P (ap 8p> op (p") (p") (10)
To obtain optimal numerical stability, a singular value decomposition (SVD) of the Jacobian matrix, g—lg
is preferred in order to obtain its pseudo-inverse, R. However due to the size this is not feasible, which is
why a normal matrix inversion must be carried out.
Normally, the Jacobian matrix must be recalculated at each p*, which is a very expensive task due
to its size. However, since AAMs operate in a standardised domain, i.e. the shape-free reference frame,

AAMs perform the following approximation

or(pr) _ or(p")
Op op

Further — and this is a somewhat crude assumption — the right-hand side of (11) is considered constant for

(11)

all training examples. Thus, R is considered fixed and estimated once during the model building process
using numeric differentiation on the training set [36]. Let dp;ji denote the k-th perturbation of the j-th
parameter, e;, a unit-vector for the j-th dimension and w(-), a weighting kernel, e.g. Gaussian [36]. Using

a central estimator on all P training examples, the j-th column of the Jacobian is estimated as

o 1L r(p; + opjre;) — r(p; — dp;re;)
2 :2 :w 0. 7 JR™J ) JR™=J . 12
dp; P —~ (9p;x) 20pjk (12)

In our experiments, the Jacobian matrix is estimated without weighting, i.e. using a uniform kernel, w(-).

In the subsequent sections, this learning approach is denoted the Jacobian.
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Perturbation Scheme

The remaining design choice in both learning methods is the perturbation scheme. Although being a
rather important step in crafting a good AAM, this topic is often not described in AAM literature.

For all experiments shown in this paper we used the perturbation scheme shown in Table I. This has
earlier been used over a wide range of cases with good results, see e.g. [29], [30], [31], [33]. However, the
perturbation scheme remains a free parameter and could be subject for a thorough study on a per case
basis to obtain optimal segmentation accuracy. To compare the two AAM training methods, given one
perturbation scheme, each parameter is displaced separately, while the remaining parameters are kept at
zero. Alternatively, as mentioned in [38], one could seek the optimal perturbation scheme given a specific
training method. See the recent work in [38] for a variation of the AAM training, which allows simultaneous
perturbation of all model parameters using both the regression and Jacobian training method.

TABLE 1

PERTURBATION SCHEME USED IN BOTH LEARNING METHODS

Variable Perturbations
T,y +5%, £10% of the width and height, respectively
0 +5, £15 degrees
scale +5%, £15%
c1...ck +0.25, £0.50 standard deviations

V. MODEL TRUNCATION

Typically, the eigenspaces of shape, texture and combined variation are truncated so that each explains
a fixed amount of variance. Since the variance along the i*" principal axis is equal to the corresponding
eigenvalue, \;, this is easily carried out. To retain p percent of the variation, ¢ modes can be chosen

satisfying:

t
; A > % RY (13)
How to estimate p is a classic bias/variance problem. Choosing a high value for p could result in a
model too flexible, in the sense that it will be able to fit to noise present in the training set (high variance)
and thus not generalise very well. Conversely, low p values would produce very restrictive models, not
matching the training set very well (high bias towards the model). A common heuristic is to consider the
remaining 5% of the signal to be noise.
An alternative method for choosing p is cross-validation, i.e. partitioning of the data set into a training
and an independent test set. By adding modes the reconstruction error will initially decrease. But at some

p the model will start to over-fit the training set and the reconstruction error on the test set will start to
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increase. To make this procedure less negatively biased and more robust several partitions can be used
going towards a leave-one-out analysis in the extreme. More elaborate methods such as the bootstrap [39]
could also be applied.

A convenient alternative to cross-validation is parallel analysis introduced by Horn [40], where the
data is compared to either i) independent normally distributed synthetic samples, or ii) a randomised
version of the data matrix.! We will concentrate on the latter since it is imposing less strict distributional
assumptions on the data. Further, it is simpler to implement and calculate.

In short, parallel analysis seeks the amount of inflation in the eigenvalues due to sampling errors (also
known as chance capitalisation or chance correlation). In the perturbation version of parallel analysis
this is estimated by breaking the correlation between variables, i.e. for each variable the order of the
observations is randomised. In the case of a shape model, this would be a randomisation of each landmark
over all shapes. From a scree plot of the eigenvalues of the original data and the scrambled data, modes
that have higher eigenvalues for the randomised data than the original data, can thus be considered noise.
The rationale is that these modes are only stemming from chance capitalisation and not actual population
correlation.

This data permutation version of Horn’s parallel analysis is typically embedded in a Monte Carlo
simulation scheme, where mean eigenvalues of several scrambling experiments are used to reduce sampling
errors. Experiments are done with replacement due to the massive effort involved in keeping track of the

permutations.

VI. FAME

The Flexible Appearance Modelling Environment (FAME) is a software framework containing an open
source implementation of the Active Appearance Models. This core part of FAME is called the AAM-API.
In addition, the FAME package provide AAMLab a GUI tool for image annotation, model exploration
and model fitting, i/o scripts for communication with Matlab, test data sets etc. The complete package
including data material, source code, documentation, scripts etc. needed to reproduce the results below

are placed in the public domain and can be downloaded from:
http://www.imm.dtu.dk/~aam/

FAME is implemented in C4++ and runs under Microsoft Windows. Two third-party libraries, VisSDK [41]
and LAPACK [42] are required for image handling and eigen decompositions. Both of these are also placed
in the public domain.

Emphasis has been put on high performance and on providing a cornucopia of documentation features.
This paper will present several examples of the latter. Due to the unsupervised analyses in AAMs, we
believe that a partly exploratory approach to AAM building is required to craft good models.

IThe original work of John L. Horn used the former method.
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Details of the implementation are placed in the appendix to provide a quick overview. Appendix A
provides observations on and changes from the original AAM formulation. Appendix B enumerates the
different design choices prior to model building using FAME.

AAMs rely heavily on image warps. It is often believed that image sampling and warping constitute
the major part of an optimisation iteration. We have found that this is not the case. In the current
implementation, warps can be carried out in optimised software code or by exploiting available OpenGL
compliant graphics hardware. The latter is described in Appendix C. To assess performance and the
general applicability of the framework details on machinery and timings are given in Appendix D.

Where the results below are not obtained directly from FAME, simple Matlab scripts were used. All of

these had no parameters. Hence, this should not limit the reader from reproducing the results.

A. FEztending FAME

FAME includes a command line interface called aamc that demonstrates basic usage. All experiments
in this article were carried out using this. However, FAME users are encouraged to modify, extend or
embed the framework in any way supporting education or research. We use FAME in two ways, i) from
the ”outside” by calling methods etc. and ii) from the ”inside” by deriving new versions of the concepts

using C++ inheritance.

VII. CASE STUDIES

This section comprises two cross-sectional case studies, where the first is an example of very complex
biological variation in both shape and appearance. Moreover, it has the advantage that all readers have
a visual system fine-tuned towards this case study. It consists of a cohort of face images. Examples of
medical use of statistical face models include the work of Hutton et al. [43], which is aiming at a better
understanding of syndromic facial dysmorphologies, here studying the Noonan syndrome.

The second case study addresses an invariable prerequisite for quantitative functional analysis of the
human heart [44], namely segmentation of cardiac chambers. In this study the left and right ventricles

are segmented in a set of single-slice cardiac MRI.

A. Face Images

The data set consists of 37 still images of 37 different frontal human faces, all without glasses and with
a neutral expression. The gender distribution is 7 females and 30 males. Images were acquired in 640x480
JPEG colour format using a DV video camera. The following facial structures were manually annotated
using 58 landmarks in total: eyebrows, eyes, nose, mouth and jaw. A total of seven point paths were

used; three closed and four open. Refer to Figure 1 for an example annotation.
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Fig. 1. Example annotation of a face using 58 landmarks.

A.1 Shape Model

The foundation of the shape model is the 58 facial landmarks shown in Figure 2 (left). To establish a
reference coordinate system relative to these landmarks within their convex hull a Delaunay triangulation

is calculated and shown in Figure 2 (right). This constitutes the coordinate system of the texture model.

S
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Fig. 2. Facial landmarks (left). Triangular model mesh (right).

Plotting the scatter of all 37 face annotations yields the rather confusing plot in Figure 3 (left). To
obtain only shape variation all Euclidean transformations have been filtered out in Figure 3 (right) by
means of a Generalised Procrustes Analysis (GPA). Further, the Procrustes mean shape is fully drawn.

A better impression of landmark variation is given in Figure 4 (left), where the principal directions
of each point are plotted. This reveals that the point variation of the aligned set of faces is often het-
eroscedastic, especially for landmarks at the upper jaw and on the lips.

To obtain an impression of landmark correlation, refer to Figure 4 (right) showing the canonical cor-
relation? between each landmark. The five major block diagonals are jaw, eyes, eyebrows, mouth and
nose.

Showing the three major modes of shape variation, Figure 5 displays the three directions with the
highest variance in the subspace spanned by the 37 face annotations, which is embedded in a 2x58
dimensional space. The most dominant deformation is the upward movement of the upper jaw together

2The maximal correlation between two sets of variables when general linear mappings on both are allowed.
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Fig. 4. Principal point directions (left). The canonical correlation of landmarks (right).

with a downward movement of nose and mouth, and vice versa. When visualising this deformation as a
movie sequence, it is clear that a major part of the variation picked up in this direction in the hyperspace
does not correspond to inter-subject variation in head anatomy. It is merely due to changes in the

projection of the 3D landmarks into the 2D image plane, stemming from the head posture.

= Q&g\ = s
mode 1 & &
T\
S5 SE 55

-3 std. dev.  mean shape +3 std. dev.
Fig. 5. Shape deformation using the three largest principal modes (row-wise, top-down).

The amount of variance explained by the ten largest eigenvalues is shown in Table II. While the three

modes of Figure 5 covered 58% variation, it requires 20 modes to retain 95% of the total shape variation

present in the training set.
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TABLE II

TEN LARGEST EIGENVALUES OF THE SHAPE MODEL

12

Mode Variance Acc. variance
1 37.34% 37.34%
2 12.66% 50.00%
3 8.22% 58.22%
4 5.92% 64.14%
5 4.64% 68.77%
6 4.32% 73.10%
7 3.45% 76.55%
8 2.69% 79.24%
9 2.43% 81.67%
10 2.18% 83.85%
- 28
0.1
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0.06}
 0.04f
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. 3_46_ 30 24. 4 s, .12 _=1§§5
-0.021 19 32 - - 20 ‘T 1014
-0.04f

-0.1 -0.08-0.06-0.04-0.02 0 0.2 0.04 0.06 0.08
PC1

Fig. 6. PC1 (bs,1) versus PC2 (bs,2) in the shape PCA.

To examine if any outliers are included into the shape model, all 37 faces are projected onto the first
and second shape mode in Figure 6. In this face study, observation number 28 is revealed as an outlier in
principal component two. However in this case, this underlines the limited training set size rather than
indicating an abnormal jaw growth.

Finally, the principal scores of the five largest shape modes are inspected for non-linearities in the scatter
plot in Figure 7 to ensure a proper (i.e. specific) shape representation. Figure axes are scaled accordingly
to the variance of each parameter, thus depicting Gaussian distributions as circular symmetric densities.
From this figure, the basis is accepted as not being over-complete, i.e. a generative multivariate Gaussian

model will cover the face space sufficiently well and not generate implausible face shapes.

A.2 Texture Model

The face texture model for all 37 faces is built from 31221 sample positions in the reference frame,

which is the Procrustes mean shape sized to mean size. The sample positions are obtained by sampling
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Fig. 7. Scatter plot of the five largest shape principal components (PC1 is top-left). Axes are set to +4.50 for each

parameter.

the reference frame in a grid aligned with the x and y axis and with one-pixel spacing between grid points.

At each position a red, green and blue sample was obtained, resulting in a colour texture vector of 93663

samples.

Table IIT shows the ten largest eigenvalues of the texture PCA model.

The three largest of these,

accounting for 37% variation, are visualised as deformations of the mean texture in Figure 9, & three

standard deviations. Retaining 95% of the texture variation in the training set requires 29 modes.

To inspect the training set for texture outliers all 37 faces are projected onto the first and second

principal axes in Figure 8. From the first mode in Figure 9 we see that Figure 8 can be used to determine

the degree of "beardedness” in faces in this case.

TABLE III

TEN LARGEST EIGENVALUES OF THE TEXTURE MODEL

Mode Variance

Acc. variance

1 19.80%
2 9.58%
3 7.61%
4 6.52%
5 5.69%
6 4.71%
7 4.15%
8 3.50%
9 3.29%
10 2.96%

19.80%
29.38%
36.99%
43.51%
49.20%
53.91%
58.06%
61.56%
64.84%
67.81%
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Fig. 9. Texture deformation using the three largest principal modes (row-wise, top-down).

A.3 Appearance Model

Traditional AAMs use coupled eigenspaces of shape and texture by combining the PC scores in a
third PC analysis. The ten largest eigenvalues are shown in Table IV. The corresponding three largest
deformation modes of shape and texture are shown in Figure 10. Refer to FAME tool AAMLab for

real-time exploration of the modes of the combined appearance model.

A.4 Model Training

In Section IV two methods for model training were summarised. This section aims at assessing the

quality of each of these methods for predicting AAM parameters. Both hypothesised a simple linear
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TABLE IV

TEN LARGEST EIGENVALUES OF THE COMBINED MODEL

Mode Variance Acc. variance

1 22.74% 22.74%
2 12.59% 35.33%
3 7.82% 43.16%
4 5.81% 48.96%
5 5.17% 54.13%
6 4.29% 58.42%
7 4.00% 62.42%
8 3.42% 65.84%
9 3.14% 68.98%
10 2.94% 71.91%

-3 std. dev. mean +3 std. dev.

Fig. 10. Combined deformation using the three largest principal modes (row-wise, top-down).

relationship between a residual vector and needed parameter updates. Desirable properties of such a
prediction matrix include i) ability to predict the displacements learned, ii) ability to inter- and extrapolate
the displacements learned, and most importantly iii) high prediction accuracy around zero.

To assess the pose prediction abilities, all 37 training shapes were systematically displaced in all pose
parameters, one by one. Results for both learning methods are shown in Figure 11. Error bars are one
std. dev. In all cases only four images was used to train the models (the first image and then every tenth).

These plots provide no significant evidence for choosing one learning method over the other. Consequently,
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we suggest the Jacobian due to its substantial lower computational complexity.
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Fig. 11. Prediction of pose parameter updates for large models.

Due to the subsampling scheme, Figure 11 is a mixture of predictions upon known, %, and unknown

data % The next section will investigate how well these training methods generalise to unseen images

with a mixture of displaced parameters.

A.5 Segmentation Accuracy

Though the generative properties of AAMs enable very sophisticated image interpretation directly from

the model parameters, the most common application remains to be segmentation.
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To assess the segmentation accuracy the model was initialised using the mean configuration displaced
+10% in x and y, relative to its width and height, i.e. four experiments per training example.

Due to the limited size of the training set, cross-validation was applied in a leave-one-out analysis
leading to 37 models built from 36 examples for each evaluation. Double-mean landmark errors were
calculated as the mean of all landmark points and mean of all leave-one-out experiments. Pt.pt. measures
the Euclidean distance between corresponding landmarks of the model and the ground truth. Pt.crv.
measures the shortest distance to the curve in a neighbourhood of the corresponding landmark. Thus,
4 x 58 x 37 = 8584 pt.pt. and pt.crv. distances were calculated in each evaluation.

Results for colour and grey-scale face AAMs in two resolutions are shown in Table V and VI. AAMs in
Table VI were built in 1:2 decimated versions of the training images, i.e. 320x240 pixels. These models
had on average 7799 and 23398 texture samples (grey-scale and colour, respectively). All shape, texture
and combined PCA models were truncated to explain 95% of the variation present in the training set,
resulting in 24 combined model parameters on average. From both tables we observe that the Jacobian
training scheme does not differ significantly in performance. Actually it is slightly better, which is of
utmost interest due to the far smaller computational and memory demands of the Jacobian training
scheme.

From Tables V and VI we also observe that the addition of colour to the models only resulted in a modest
improvement of the final segmentation accuracy. However, most likely due to the gained specificity from
adding colour, we have experienced that it also adds significant stability to the parameter update process
(see [45]). Note the relatively small penalty in segmentation accuracy when working on 1:2 decimated
images.

TABLE V

SEGMENTATION RESULTS — LARGE MODELS

Model type Learning method  Mean pt.pt. Mean pt.crv.

Grey-scale Regression 6.314+1.31 3.101+0.87
Grey-scale Jacobian 6.13£1.39 2.98+0.95
Colour Regression 6.13£1.08 3.09+0.84
Colour Jacobian 5.93+1.15 2.86+0.86

Due to the excessive memory consumption of the regression approach, the subsampling scheme in
Section IV was rather crude. The memory usage of the Jacobian estimation does not depend on the
number of training shapes. Consequently, we have tested if the more robust Jacobian estimate provided by
using all training examples could result in higher segmentation accuracy. The results shown in Tables VII

and VIII support this by showing a subtle increase in accuracy.
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TABLE VI

SEGMENTATION RESULTS — SMALL MODELS

Model type Learning method Mean pt.pt. Mean pt.crv.

Grey-scale Regression 3.314+0.83 1.64+0.52

Grey-scale Jacobian 3.25+0.75 1.5640.50

Colour Regression 3.33+0.67 1.6540.46

Colour Jacobian 3.15£0.61 1.5040.45
TABLE VII

SEGMENTATION RESULTS — LARGE MODELS, NO SUBSAMPLING

Model type  Learning method Mean pt.pt. Mean pt.crv.

Grey-scale Jacobian 6.03£1.37 2.91+0.96
Colour Jacobian 5.92+1.11 2.88+0.83
TABLE VIII

SEGMENTATION RESULTS — SMALL MODELS, NO SUBSAMPLING

Model type  Learning method Mean pt.pt. Mean pt.crv.

Grey-scale Jacobian 3.144+0.69 1.51+0.46
Colour Jacobian 3.08+0.59 1.48+0.41

A.6 Model Truncation

Using parallel analysis (PA) as presented in Section V the shape and texture models can be truncated
according to the scree plots shown in Figure 12. In this experiment based on all 37 examples, the first 3
shape modes and the first 10 texture modes are selected. In contrast a 95% variance threshold would select
20 and 29 modes, respectively. As expected, we observe in the very dense and highly correlated texture
models that the eigenvalues stemming from parallel analysis are very different from the data eigenvalues.
And vice versa for the sparser and less correlated shape models. This is not a characteristic behaviour of
texture and shape models. But due to AAMs ability to recover dense correspondences with a sparse set
of landmarks, and the (often occurring) manual labour involved in placing landmarks, shape models are
typically much more sparse than texture models.

Having a computational perspective, the simpler model is always preferable. However w.r.t. segmenta-
tion accuracy, it could prove to be too crude, i.e. resulting in under-fitting. On the other hand the variance
threshold could be too liberal, resulting in over-fitting. We have tested this by means of a leave-one-out

analysis. The combined model was truncated at 95% variance as in the previous experiments.
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Fig. 12. Scree plots for raw (o) and randomised data (x). Shape (left), texture (right).

The results given in Tables IX and X show — in comparison with Tables VII and VIII — a modest increase
in performance w.r.t. pt.pt. distance. This encouraging result suggests that parallel analysis provides both
faster and more general AAMs in a non-parametric fashion. Consequently, simple variance thresholding
seems to over-fit the training data slightly by including too many modes of variation.

TABLE IX

PA SEGMENTATION RESULTS — LARGE MODELS, NO SUBSAMPLING

Model type  Learning method Mean pt.pt. Mean pt.crv.

Grey-scale Jacobian 5.70+1.18 3.02+0.76
Colour Jacobian 5.54+1.17 2.93+0.78
TABLE X

PA SEGMENTATION RESULTS — SMALL MODELS, NO SUBSAMPLING

Model type Learning method Mean pt.pt. Mean pt.crv.

Grey-scale Jacobian 2.87+0.62 1.5040.39
Colour Jacobian 2.79£0.60 1.4740.40

B. Cardiac Magnetic Resonance Images

For the second case study, short-axis, end-diastolic cardiac MRIs were selected from 14 subjects. MRIs
were acquired using a whole-body MR unit (Siemens Impact) operating at 1.0 Tesla. The chosen MRI slice
position represented low morphologic complexity, judged by the presence of papillary muscles. Images
were acquired using an ECG-triggered breath-hold fast low angle shot (FLASH) cinematographic pulse
sequence. Slice thickness=10 mm; field of view=263x350 mm; matrix 256x256. The endocardial and
epicardial contours of the left ventricle were annotated manually by placing 33 landmarks along each
contour, see Figure 13. To fix rotation around the left ventricular (LV) long-axis, the right ventricle (RV)

was annotated using 12 landmarks. Prior to further processing, subject 11 was removed due to a scanner
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calibration error.

Fig. 13. Example annotation of the left ventricle using 66 landmarks.

B.1 Shape, Texture and Combined Model

Figure 14 shows all cardiac shapes unaligned (left) and Procrustes aligned (right). Combining the
cardiac shape and texture model yields the first three modes of combined variation shown in Figure 15.

These three modes account for 22%, 20%, 14% of the total variance, respectively.

Fig. 14. Unaligned shapes (left). Aligned shapes (right).

B.2 Segmentation Accuracy

To assess segmentation accuracy an evaluation methodology similar to that of the face case was adopted.
The models stemming from the leave-one-out experiments contained 4192 texture samples on average.
Variance-based truncation at a 95% level, yielded 9 combined parameters, whereas parallel analysis settled
on 5 parameters on average. No subsampling was used during the training phase. The corresponding
results are summarised in Table XI and Table XII using both learning methods. Consistent with the face
case we observe that i) parallel analysis provided slightly better accuracy using fewer model modes and ii)
no significant difference between the two learning methods existed. The average segmentation time was
29 ms.

FAME also provides a generic method for unsupervised model initialisation. Basically, this is a semi-

brute force model-based search in selected model and pose parameters, which exploits the convergence
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-3 std. dev. mean +3 std. dev.

Fig. 15. Combined deformation using the three largest principal modes (row-wise, top-down).
TABLE XI

SEGMENTATION RESULTS — VARIANCE TRUNCATION

Learning method Mean pt.pt. Mean pt.crv.

Regression 3.27+1.06 1.38+0.34
Jacobian 3.204+0.91 1.284+0.25
TABLE XII

SEGMENTATION RESULTS — PARALLEL ANALYSIS

Learning method  Mean pt.pt. Mean pt.crv.

Regression 3.02+0.83 1.384+0.31
Jacobian 3.11£0.91 1.3640.26

radius of each parameter. To add robustness this is implemented in a candidate scheme, where several
initialisation candidates compete to become the initial configuration. For details see [46].

This method has been employed in leave-one-out experiments similar to the above. The results given
in Table XIIT show good correspondence with Table XI, suggesting that unsupervised segmentation is
plausible without employing a dedicated initialisation method.

Finally, the alleged robustness to image noise was tested by adding Gaussian noise at different levels,
o2 € [0;40?], to the training set. Image intensities were in the range [0;255]. For each level a leave-one-out
study similar to the above was conducted. To improve the robustness we have used the multi-scale feature

that FAME provides. Here optimisation is started at the smallest level of a pyramidal set of AAMs and
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TABLE XIII
SEGMENTATION USING AUTOMATIC MODEL INITIALISATION

(USING VARIANCE TRUNCATION)

Learning method  Mean pt.pt. Mean pt.crv.

Regression 3.20+1.18 1.314+0.30
Jacobian 3.214+1.02 1.28+0.24

then propagated down towards the original resolution. The results given in Figure 16 show a modest 15%
increase in pt.crv. accuracy when comparing the original images to the most noise contaminated. Further,
we observe that the accuracy degrades gracefully with increasing noise amplitude. Figure 17 shows an

average segmentation result with ¢ = 40.

16
* landmark accuracy
1.55 — 1st order polynomial fit

15

pt.crv. landmark error [pixels]

10 20 30 40
noise level, o

Fig. 16. AAM segmentation accuracy in the presence of noise.

Fig. 17. Cardiac MRI with added noise, o = 40 (left). Corresponding segmentation result.

This concludes the study of cross-sectional cardiac MRI. Here we have treated segmentation of both
LV and RV. We note that typically only the segmentation of LV is of interest in, e.g. an ejection fraction
study. In this case a hierarchical approach [47] should be used to increase segmentation accuracy. Here,
an LV model should be de-coupled from the converged RV-LV model and iterated further, thus relaxing

model constraints. See also [33] on this matter.
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VIII. DiscuSssiION AND CONCLUSION

In this paper we have described an appearance-based software environment for interpretation of images.
This is the Flexible Appearance Modelling Environment (FAME), which is based on the well-known Active
Appearance Model (AAM) framework. We have summarised the wide range of medical applications that
frameworks similar to ours have been applied to. In particular, we have treated two crucial parts in the
building process of an AAM. Namely, how to learn the update step used during model fitting, and how to
choose the number of model parameters. These issues along with several others have been evaluated in two
different case studies upon short-axis cardiac magnetic resonance images and face images. The proposed
unsupervised method for choosing the number of model modes proved preferable in all cases. Further,
it has been verified that the Jacobian learning scheme is preferable to the regression approach taken
in the original AAM formulation. In all studies the AAM variation implemented in FAME has proven
accurate, fast and very robust to image noise. An example of how a strong prior redeems an otherwise
ill-posed segmentation problem was given in the Cardiac MRI study. This showed a very modest penalty
in segmentation accuracy even for very noisy data when using a multi-scale approach.

The performance provided by the framework renders it feasible to interactive analysis of medical images.
Further, it allows the usage of general-purpose optimisers to ”fine-polish” the converged search results in
a reasonable amount of time [25], [33]. For completely unsupervised image analysis, FAME also provides
means of automatic model segmentation. Due to the modular structure of FAME, it is straightforward to
extend it to cope with other medical data than 2D images, e.g. time-series of 2D images, coupled images
(e.g. from different imaging modalities) etc.

The FAME package including source code and all data material used in this paper has been placed in the
public domain. Thus we encourage researchers to apply, extend and embed FAME in future studies both
medical and non-medical. Further, we advocate for a general trend between researchers to benchmark
their methods against reference data sets and reference implementations, thus providing a much more

clear view on the progress in the field of medical image analysis.
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APPENDIX
I. NoTEs oN THE FAME IMPLEMENTATION
Texture Synthesis

As shown above, texture synthesis is carried out by
t=t+®,®..c (14)
For clarity reasons this expression is often written in the AAM literature as
t=t+ Pc. (15)

Let,

ky = rank(®,) , k. =rank(®.;) (16)
Though it seems tempting to pre-calculate the constant matrix product in (14), this should only be done
when M (k. — k) < kike. Otherwise, synthesis should be carried out as

t = E + @t({)mc). (17)

To illustrate this, consider the AAM described in [48] having 66 shape parameters and 10 texture param-
eters and 5040 texture samples. If we assume that these are only moderately correlated, 74 combined
parameters would seem plausible. The extra cost of using (15) compared to (14) is M (k. — ki) — kike.
Consequently, this amounts to 321820 extra multiplications for each texture synthesis.

Texture Normalisation

Contrary to e.g. [37], [36], [7] FAME does not include a model for scaling and offset of textures. During
analysis texture vectors are standardised to zero mean and fixed variance. During synthesis, model

textures are fitted to image textures in a least squares sense.

Pose parameterisation

To estimate the Jacobian matrix, pose parameters need to be independent. To obtain equilibrium at

zero we use the following representation of pose
p=[(s-1)0t, t, 1" (18)
where s denotes scale, 0 orientation and ¢, t, in-plane translation.

II. FAME MODEL OPTIONS

This section enumerates the most important model design options offered by FAME.
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e Model reduction Determines the image reduction prior to model building, i.e. restricts the number of texture samples in
the model.

e Convez hull Determines whether i) all texture samples inside the convex hull of the mean shape should be modelled or
ii) only the texture samples inside closed contours.

e Tangent space projection Determines if a linearisation of the shape manifold around the mean pole should be carried out.
e Learning method Selects either Principal Component Regression or Jacobian Estimation to build parameter update ma-
trices.

o Training set subsampling Option that chooses every n-th example in the training set to build parameter update matrices
upon.

e Model truncation Controls the number of parameters in the shape, texture and combined models. Either i) by a variance
threshold, or ii) using parallel analysis to estimate the number of modes to retain.

o Warping method Selects i) software warping, ii) hardware warping, or iii) the benchmarking mode, where the model

building process is replaced by a performance test of the two warping methods.

III. HARDWARE-ASSISTED AAM WARPING

Contemporary graphics hardware is highly optimised for performing piece-wise affine warps. Below we
will demonstrate how to exploit this in an AAM framework.

In AAMs two types of warps are carried out. One during the analysis phase (i.e. model building and
model optimisation) and a one during synthesis. In the analysis phase many-to-one warps are carried out.
Different configurations of the shape model are all warped to same shape-free reference frame, which is
typically the mean shape sized to mean size. During synthesis shape-free textures are warped to specific
shape configurations.

We approach the graphics hardware through the industry standard for graphics programming: OpenGL.
Here a triangular mesh can be defined and images can be projected onto this surface by means of tex-
ture mapping. In addition, recent extensions such as hardware-accelerated off-screen buffers, non-dyadic
textures etc. can be utilised. For details on the implementation and a discussion of its bottlenecks, refer

to [45].

IV. DETAILS ON MACHINERY AND COMPUTATION TIME

To give an impression of the applicability of these models timings were acquired for the face model
building phase and the optimisation phase. These are given as reference numbers. For maximal speed a
multi-resolution model should be used. The build timings were calculated for both large and small models
in colour and grey-scale built on all 37 training examples using the subsampling scheme mentioned in
Section IV. All timings in Table XV were obtained on similar models but using Jacobian and leave-one-
out on the training examples.

All results shown above including the performance measures in Table XIV and XV were obtained on
an Athlon 1200 MHz equipped with 768 MB RAM using software warping. Except for the last row in
Table XIV that used a GeForce 2 MX for hardware warping. From Tables XIV and XV we can observe

that warping is not the bottleneck in the current implementation.
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In Table XVI we used a Pentium 4 mobile 1700 Mhz equipped with an NVidia GeForce 4 Go graphics

board. We have used high performance timers and several hundred repetitions in order to measure

accurately in the millisecond range. From this table we can observe that the specific graphics board (and

its driver) has a great impact on the performance. Further, since the hardware AAM warping is very

heavy on bus i/o the infrastructure between GPU and CPU is of utmost importance.

(1]

2]

(3]

(4]

(5]

TABLE XIV

MODEL BUILDING AND WARPING (SMALL/LARGE MODELS)

Gray-scale Colour

Model build, regression ~ 0:31 / 1:11 mins  1:03 / 2:51 mins
Model build, Jacobian 0:09 / 0:39 mins  0:27 / 1:54 mins

Software analysis warp 1/9ms 3/ 12 ms
Hardware analysis warp 2 /5 ms 2 /7 ms
TABLE XV

OPTIMISATION TIMINGS (SMALL/LARGE MODELS)

Gray-scale Colour

Mean number of iterations 114 / 11.3 8.7/ 8.2

Mean optimisation time 129 / 581 ms 281 / 1253 ms

1 optimisation iteration 11 / 51 ms 32 / 153 ms
TABLE XVI

WARP TIMINGS — GEFORCE 4 GO (LARGE MODEL)

Gray-scale  Colour

Software analysis warp 54ms 7.4 ms
Hardware analysis warp 1.5ms 2.4 ms
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