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0. Summary.

In this paper, we present several doubly infinite families of linear projective
codes with two-, three- and four distinct non-zero Hamming weights together with the
frequency distributions of their weights.

The codes have been defined as linear spaces of coordinate vectors of points on
certain projective sets described in terms of Hermitian and quadratic forms -
non-degenerate and singular - in projective spaces. The weight-distributions have
been derived by considering the geometry of intersections of projective sets by
hyperplanes in relevant projective spaces. Results from Bose and Chakravarti (1966)
and Chakravarti (1971) on the Hermitian geometry and Bose (1964), Primrose (1951) and
Ray-Chaudhuri (1959,1962) have been used in the enumeration of weights and their
frequencies.

The paper has been organized as follows. Preliminary definitions, concepts and
results on Hermitian geometry [from Bose and Chakravarti (1966) and Chakravarti
(1971)] are given in Section 1.

Two families of two-weight codes @(VN_I) and %(VN_I) over GF(s2) and associated
families @'(VN_I) and %'(VN_I) over GF(s) together with their weight-distributions are
given in Section 2. Here VN_1 denotes a non-degenerate Hermitian variety in PG(N,s2)
and vN—l is its complement and a code €(S) is defined as the linear space of the

coordinate vectors of the points in the projective set S.
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The eigenvalues of the adjacency matrix A = B2

the ith associates i=1,2) of the strongly regular graph (two-class association scheme)
2(N+1) i

on s jk)

vertices defined by the two-weight code %'(VN_I) over GF(s) and the (p
parameters of the two-class association scheme are given in Section 3.
In Section 4, we show that for s=2, B2 (the association matrix of the second

associates) of the two-class association scheme of Section 3, is the incidence matrix

a symmetric BIB design with parameters v = 22(N+1), k=22N+l + (—2)N. A= 22N

and 282—J is a Hadamard matrix of order 22(N+1).

+ (2N

Similarly, I+B1 is the incidence

matrix of a symmetric BIB design with parameters v = 22(N+1), k=22N+l - (—2)N.

A = 22N - (-2)N and 2(I+B1) - J 1is a Hadamard matrix of order 22N+2.

is shown that the 22N+1 + (—2)N codewords each of weight (22N - (—2)N), which are

Further, it

non-adjacent to the null codeword form a Hadamard difference set (Menon 1960, Mann

1965) with parameters v = 222, k = 2201 4 ()N A 2 o 4 (=2)Y and the
(22N+1 - (—2)N -1) codewords each of weight 22N together with the null codeword form
a Hadamard difference set with parameters v = 22N+2, k = 22N+1 - (—2)N,

A= 22N - (—2)N, for integer N.

In Section 5, a family of four-weight linear codes and the associated weight-
distributions are derived. A code here is defined as the linear span of a projective
set which is the intersection of a non-degenerate Hermitian variety and the complement
of one of the secant hyperplanes.

In Section 6 and 7, we consider codes which are linear spans of projective sets
defined in terms of degenerate Hermitian and quadratic forms in projective spaces.
The motivation here is to explore how the code parameters behave when the basic
projective set is not purely a subspace nor a non-degenerate Hermitian or quadric
variety but an analgam of the two, which still admits a geometric description (and

algebraic equations).

—B1 (Bi is the incidence matrix of .
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In section 6, the basic projective set is a degenerate Hermitian variety V§_2

which is the intersection of a non-degenerate Hermitian variety VN__1 in PG(N.sz) with
one of its tangent hyperplanes. The code %(V;_z) which is the linear space generated

by the coordinate vectors of the points of V§ is shown to be a tri-weight code.

-2
Its weight-distribution as a code over GF(52) as well as that of its sister code over
GF(s) are given.

In section 7, a degenerate quadric Qg_l which is the intersection of a non-
degenerate quadric QN in PG(N,s) with one of its tangent hyperplanes, is taken as the
basic projective set. The code @(Qﬁ_l) which is the linear space of the coordinate
vectors of the points of Q;—l’ is shown to be a tri-weight code both for odd and even
N. The frequency distributions of the weights are given for both odd and even N. For

odd N, both the cases elliptic and hyperbolic have been considered. These families

supplement those obtained by Wolfmann (1975) from non-degenerate quadrics.

1. Introduction

The geometry of Hermitian varieties in finite dimensional projective spaces have
been studied by Jordan (1870), Dickson (1901), Dieudonn€ (1971), and recently, among
others by Bose (1963, 1971), Segre (1965, 1967)., Bose and Chakravarti (1966) and
Chakravarti (1971). In this paper, however, we have used results given in the last
two articles.

If h is any element of a Galois field GF(s2), where s is a prime or a power of a

prime, then h=h is defined to be conjugate to h. Since h2=h. h is conjugate to h. A

square matrix H = (hij)’ i,j = 0,1,...,N, with elements from GF(s2) is called
Hermitian if hij = Eji for all 1i,j. The set of all points in PG(N.sz) whose
row-vectors §T = (xo.xl.....xN) satisfy the equation §T H §(S) = 0 are said to form a
Hermitian variety V if H is Hermitian and 5(5)' is the column vector whose

N-1’
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transpose is (xs, xi. e xﬁ). The variety VN_1 is said to be non-degenerate if H
has rank N+1. The Hermitian form §T H 5(5) where H is of order N+1 and rank r can be
reduced to the canonical form yoio + ... + yrir by a suitable non-singular linear

transformation x = Ay. The equation of a non-degenerate Hermitian variety Vﬁ_l in

PG(N.sz) can then be taken in the canonical form x8+1 + xi+1 + ...+ x;+1 = 0.
Consider a Hermitian variety VN—I in PC(N.sz) with equation §T H 5(5) =0. A
point C in PG(N.sz) with row-vector gT = (co.cl....,cN) is called a singular point of
VN_1 if gT H = QT or equivalently, H g(s) = 0. A point of VN_1 which is not singular
is called a regular point of vN—l' Thus a non-singular point is either a regular
point of VN_1 or a point not on vN—l' in which case it is called an external point of

PG(N,sz), with respect to VN—l' It is clear that a non-degenerate VN_1 cannot possess
a singular point. On the other hand, if VN_1 is degenerate and rank H = r < N+1, the
singular points of VN_1 constitute a (N-r)-flat called the singular space of VN—l'

Let C be a point with row vector gT. Then the polar space of C with respect to
the Hermitian variety VN_1 with equation gT H g(s) = O, is defined to be the set of
points of PG(N,sz) which satisfy KT H g(s) = 0.

When C is a singular point of VN—I' the polar space of C is the whole space
PG(N,sz). When, however, C is either a regular point of VN_1 or an external point,

KT H g(s) = 0 is the equation of a hyperplane which is called the polar hyperplane of
C with respect to Vﬁ—l' Let C and D be two points of PC(N.s2). If the polar
hyperplane of C passes through D, then the polar hyperplane of D passes through C.
Two such points C and D are said to be conjugates to each other with respect to vN—l'
Thus the points lying in the polar hyperplane of C are all the points which are
conjugates to C. If C is a regular point of vN—l' the polar hyperplane of C passes

through C; C is thus self-conjugate. In this case, the polar hyperplane is called the

tangent hyperplane to VN_1 at C.
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When VN_1 is non-degenerate, there is no singular point. To every point, there

corresponds a unique polar hyperplane, and at every point of V,

N-1° there is a unique

tangent hyperplane. If C is an external point, its polar hyperplane will be called a

secant hyperplane.

The number of points in a non-degenerate Hermitian variety VN_1 in PG(N.sz) is
oN.s?) = (" - MY - (MR,

A polar hyperplane gN—l of an external point 9 (also called a secant hyperplane)

in PG(N,sz) intersects a non-degenerate Hermitian variety vN—l' in a non-degenerate

Hermitian variety V. of rank N. It has (sN - (—I)N)(SN—I - (—l)N_l)/(sz—l) points.

N-2

A tangent hyperplane 9N_1 to a non-degenerate VN—I at a point C, intersects VN—I

in a degenerate VN_2 of rank N-1. The singular space of VN_2 consists of the single
point C.

The number of points in a degenerate Hermitian variety VN—I of rank r < N+1 in
PG(N.s%) 1s (s-1) f(N-r,s2) ®(r-1.s2) + f(N-r.s?) + Q(r-1.s2), where f(k.s2) =

(52(k+1)—1/(52—1). Thus the number of points in a degenerate VN— of rank N-1, is

2
(s2-1) £(0.5%) P(N-2.52) + £(0.52) + P(N-2.52)

N-1,, N-2

=1+ (8N - )Ny N2 1 )26 62,

2. Two-weight codes from non-degenerate Hermitian varieties in projective spaces.
Consider the code ?(VN_I) over GF(sz). which is the linear space generated by the

coordinate vectors of the points on a non-degenerate Hermitian variety VN__1 in

PC(N.sz). This variety has (sN+1) - (—1)N+1)(sN - (—I)N)/(sz—l) = n (say) points.
Thus a matrix G = (gij) i=0,1,...,N, j=1,...,n, whose columns are the coordinate

vectors of the n points on vN—l’ is a generator matrix of the code %(VN_I) which is a

projective linear code (n, k=N+1). Now, a tangent hyperplane meets VN_1 at
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1 + (sN_1 - (-I)N_l)(sN_2 - (—l)N_z)sz/(sz-l) points and a secant hyperplane meets ‘
VN__1 at (sN - (—I)N)(SN_I - (—I)N_l)/(sz—l) points; hence this code %(VN_I) has only

two distinct non-zero weights v, and Wy (say)., where

N CE G0 M TCAIRN G D V7€)
- (N o )My - V22 (s201)1 = s
wy = (80 - (MY - oMyt

2N-

(N = (NN - )My e2e = T, (L)L

The frequency fw of the code-words with weight v, is equal to the number of
1

tangent hyperplanes (same as the number of points on vN—l) multiplied by (52—1). The

frequency fw of codewords of weight wy is the number of secant hyperplanes (same as
2

the number of external points in PG(N,SZ)) multiplied by (52—1). Thus

R R A TEAR ST
1

fwz - (52(N+1)_1) _ (SN+1 _ (_1)N+1)(SN _ (—l)N)

2N+1 N, %
(s-1)(s + (-s)) .
Let vN—l denote the set of external points of PG(N,s2) with respect to VN—I'

Thus vN—l is the complement of vN—l' Considering the intersections of vN—l by tangent

and secant hyperplanes, we get another sequence %(VN_I) of two-weight linear

projective codes in 52 symbols, with parameters

2N+ 2N 2N-1

1, (—s)N)/(s+1), k = N+1, ;1 =s -s , ;2 = 52N - szN_1 - (—S)N—l,

n=(s

R CAREN GV s TEARN G ) W Sy ST SN
1 2

*While presenting this result at 32me Colloque International sur la Th€orie des
Graphes et Combinatoire, Marseille-Luminy, June 1986, the author learnt that
Calderbank and Kantor (1986) have also obtained this family using the rank three
representation of unitary groups.
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Now a projective linear (n,k) code over GF(sr) with weights w, i=1,...,¢t,

determines a projective linear (n',k') code over GF(s) with weights

w;, i=1,...,t, n' = n(sr—l)/(s-l), k' = kr, wi = sr—lw

i , i=1,...,t, (Delsarte, 1972).

i
Hence the code %(VN_I) over GF(sz) determines a sister code %'(VN_I) over GF(s) with

parameters
n' = (s - ™Y - 1)M)ss-1). k=284, wio= s w =2 o (o),
N+1 N+1,, N N 2N+1 N
fer = (s - (1) )(s" - (1)), £,. = (s-1)(s + (-s)).
1 2
Similarly, the code %(VN_I) over GF(s2) determines a code @'(VN_I) over GF(s) with
parameters n' = 52N+1 + (—s)N, k' = 2(N+1), ;i = 52N+1 - 52N, Gé = s2N+1 —s2N + (—s)N,
N+1 N+1, N N 2N+1 N
fgr = (877 = (=1) " (s7=(-1)7). £ . = (s-1)(s™ +(-s)").
1 2

The family @'(VN_I) of two-weight codes over GF(s) is a subfamily of the one
derived by Wolfmann (1978) from non-degenerate quadrics. This 1is because a
non-degenerate Hermitian form over PG(N,sz) becomes a non-degenerate quadric over
PG(2N+1,s) (Dickson, 1958, p. 144). It is elliptic if N is even and hyperbolic if N

is odd (see, for instance, Heft, 1971).

3. Strongly regular graphs of Latin square and negative Latin square types, from
two-weight codes.

Delsarte (1972) has shown that a two-weight projective (n,k) code over GF(s)
determines a strongly regular graph on v = sk vertices (a two-class association
scheme) and that the eigenvalues Py of the adjacency matrix A = B2—B1 of the graph (Bi
is the association matrix of the ith associates, i=1,2,: see, for instance, Bose and
Mesner 1959) are given by

(w2-w1)po =2m v/s - (w1+w2)(v—1).
(w2—w1)p1 = WitW, - (1+(—1)i)v/s, i=1,2,
with v = sk. m = n(s-1), v, and w, are the two distinct non-zero weights of codewords.

One can calculate the parameters p}k. i,j.k = 1,2, of the two—class association scheme
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N is the number of codewords of weight W i=1,2. .
Writing (p1+p2)/2 = -, (Pl—p)/2 = vA and A2 = 72+ 2p+1, one can show that

2 1 1 _ .1 1 _ 1 2 _ .2
(B+v)/2 = Pio and (B—)/2 = Pio- Then P =1y 1 Pio+ Py = Dy~Pi5. Py = 1y Pio:

2 2 .
Poo = 112—1—p12 (see, for instance, Bose and Mesner 1959).
2(N+1)

from P+ Pg: My and n,. where n

Thus the graph on s vertices corresponding to the code ‘e'(VN__l) over GF(s)

is strongly regular and the eigenvalues of its adjacency matrix A = B2—B1, are

e oM - M- MY - M) = ngny b = 12098

po = (s
and Py = 1+2(s—1)(-—s)N. As a two-class association scheme its parameters are

np= (s - COMHEY - COY)ng = (EP 9D, Bl = (s

Prp = (s-1)s7 = (s-2)(-s)" - 1, p}; = P -(s-1)(-9)"2. P2, = P9V,
Py = 52 (s-1)% + (=s)N(s-1). b2, = sDV(s-1)2 + (-s)N(25-3).

For N=2, this family gives the two-class negative Latin square association scheme

NLg(s3) with g = sz—l, given by Mesner (1967, pp. 579-580). Mesner considered two

points on an EG(3.52) to be first associates if the line joining the two points, .
shared a point with a non-degenerate Hermitian curve in the ideal plane of the
PG(B.SZ) in which EG(3,52) is embedded. Thus at first sight our construction
generalizes Mesner's family based on the Hermitian curve. However, it is to be noted
that for every odd N, our family is the same as the hyperbolic family which is called

N+1), g = sN+1 and for every even N, our family is the same as

1

pseudo-Latin square Lg(s

the elliptic family which Mesner called the negative Latin square NLg(sN+ ). g =85 -1,

(Mesner 1967, p. 578). See also Hubaut (1975, pp. 374-379, C. 12i).

Similarly. one can verify that the eigenvalues of the adjacency matrix A = B_,-B

s2(N+1)

of the strongly regular graph on v = vertices corresponding to the two-weight

projective code €'(V, ,) over GF(s) are p, = A , - A ., p, = 1+2(s—1)(—s)N and
N-1 0 wo LA} 1
Py = 1-—2(—s)N. Thus it is clear that the sequence of two-weights codes ‘E’(\_/N) over

GF(s) gives rise to essentially the same two sequences of (Latin square type Lg(n) and .
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negative Latin square type NLg(n)) two-class association schemes, as derived from the

sequence of codes @'(VN_I).

4. Hadamard difference sets, Hadamard matrices and symmetric BIB designs from the
association schemes.

For s=2, the parameters of the two-class association scheme corresponding to the

two-weight binary projective code @'(VN_I) are n; (2N+1 - (—1)N+1)(2N—(-1)N),

2N+1 N 1 2N 2 2N 1 2N N 2 2N N

n, = 2 + (-2), Pig = 27, Pip = 27 -1, Pj; = 27 -(-2) -2, Pi; = 27 -(-2) ",
1 2N N 2 _ 2N  _\N
p22 =2 +(—2) s P22 =2 +( 2) -

The equality péz = p§2 = 22N+(—2)N implies that the matrix B2— the association

matrix of the second associates (non-adjacent vertices) is the incidence matrix of a

symmetric BIB design with parameters v = 22(N+1), k = 22N+1+(-2)N. A= 22N+(--2)N and
2B2—J is a Hadamard matrix of order 22(N+1) which corresponds to the Hadamard
difference set v = 22N+2. k=22N+l+(—2)N, A= 22N+(-2)N.

Consider the (22N+1+(—2)N) codewords each of weight (22N—(—2)N) which are
non-adjacent to (second associates of) the null codeword. The null codeword and a
codeword of weight 22N are adjacent to (first associates of) each other and among the
non-adjacent vertices of the null codeword, there are péz = 22N+(—2)N codewords which
are also non-adjacent to the given codeword of weight 22N. This implies that the
given code vector can be expressed as the differences of 22N+(—2)"N pairs of code

vectors each of weight (22N—(—2)N). Similarly, since p§2 = 22N+(—2)N if follows that

every codeword of weight 22N—(—2)N can be expressed as the differences of 22N+(—2)N
pairs of codevectors each of weight (22N—(—2)N).
Thus the codewords of weight 22N—(—2)N form a difference set with v = 22N+2,
k = 22 o ()N A 2 A4 ()N,
Again, p}1+2 = p?l = 22N—(-2)N. Thus the (22N+1—(—2)N—1) codewords each of
2N+2

weight 22N together with the null codeword form a difference set with v = 2 ,

g2N+1__o\N N N

k = , A= 27 -(-2) .
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5. A family of four weight codes. Code defined as a linear span of a projective set
which is the intersection of a non-degenerate Hermitian variety and the complement
of one of the secant hyperplanes.

Let 9;_1 be a hyperplane in PC(N.sz) which is not one of the tangent hyperplanes

of the non-degenerate Hermitian variety vN—l' Then 9;_1 intersects VN_1 in a
non-degenerate Hermitian variety V§_2. Let X denote the set of points on VN_1 which

o . . .
are not on VN—2‘ that is, X = VN—I\V§—2' Then the number points in X is

| = (M- M-y - (MM NN s

- SR )

Let €(X) be the code over GF(sz), which is the linear space generated by the
coordinate vectors of the points in X. Then €(X) has n = szN_1+(—s)N—1, k = N+1.
Let 9N-1 be another hyperplane (distinct from 9;_1) which is not a tangent to

vN—l' Then SN_1 intersects VN—I in a non-degenerate Hermitian variety VN—2 and meets

9;_1 in a (N-2)-flat 9;_2. 9;_2 intersects V§_2 in a non-degenerate V;_B. Thus every
non-tangent yN—l distinct from 9;_1 meets X in szN_3 + (—s)N“2 points. Let
2N-2 2N-3 N-2
W, = IX] - |xXn SN—II = (s+1)[s -s -(-s) “].

Now the number of hyperplanes in PG(N.s2), which are not tangent to VN__1 is

2MN42_1) 02 1) - (ML c1)™1) (521 = (22 2L (Nel Ny 2 s

(s
= (s )Ny /(s41).

Thus it follows that in €(X), there are fw = (szN+
1

each of weight w, and fw = 52—1 codewords each of weight Wy = SZN—1+(-S)N_1.
4

1+(—S)N)(S—l) -(52—1) codewords

Let C be a point of V§_2 and let 3N_1(C) be the hyperplane tangent to VN_1 at C.

Then the intersection of yN—l(C) and VN_1 is a degenerate Hermitian variety VN_2

1 + (sN-l—(—l)N-l)(sN—2—(—1)N—2)(52—1) points. But 7N_1(C) meets 9;_1 in an

with

_oV_ o . o o o .
(N-2)-flat HN_2(C) wvhich is tangent to VN__2 at C. Thus gN—Z meets VN—2 in a
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degenerate V;_B consisting of

1+ (8N 2--1)"2y (M 3. (-1)¥3)s2/(s2-1) points. Thus

(2N-3 N-1
X n 9N_1(C)| = IVN_ nJy 1(C)I [ve N-g N y _o(C) = + (-s)
Let
wo = X - [Xng_(©] = &1 2 A2,
and let fw = (52—1). (no. of points on V§_2)

= (M- (M-,

Then in €(X) there are fw codewords each of weight
2

Let 7 (P) be the tangent hyperplane to VN—I at a point P which is not on VN 5 -

W2 .

Then 9 1(P) meets VN in a degenerate VN consisting of

1+ (SN (- (N2 -1V 262 (21

points. But 7 1(P) intersects ;_1 in an (N-2)-flat 9N 2 vwvhich is not a tangent to
o

VN_2. Thus 9N 2 meets VN

(sN_l—(—l)N )(s 2--(—I)N )/(s2—1) points. Hence

Ty (P = Vg NSy, |

2 in a non-degenerate VN 3 consisting of
-2
XN, (P = [vy_

Let Wy = X| - IXng (P) - szN_:')'--(—s)N_2

and fw = (52—1). (No. of points in X)
3

= (s2-1) (s Y (-5)¥ 1.

Thus in €(X) there are fw codewords each of weight wa. Thus the linear projective
3

code €(X) over GF(sz) has four distinct non-zero weights LA with corresponding

frequencies fw i=1,2,3,4. It follows that €(X) determines a linear projective code
i

€'(X) over GF(s) with parameters n' = n(s+l1) = (s+1)(52N_1+(—s)N—1), k' = 2k = 2(N+1),

.o _ 2N-1__2N-2 . |N-1 .o _ 2N+2, 2 — _
W = sw; = (s+1)(s ] +(-s) ), Wy = SW, = s (s™-1), Wy = sWy =
szN—szN_2+(—s) - and wé = sw, = szN—(—s)N and the associated frequencies
f 1i=1,...,4 remain unchanged.

w.
1
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6. A family of three-weight codes from degenerate Hermitian varieties in projective
spaces.

Consider the section of a non-degenerate Hermitian variety VN 1 in PG(N,sz) with

the tangent space FN_I(C) at a point C on VN 1 This section is a degenerate V§_2(C)

of rank N-1 and its singular space consists of the single point C.

A (N-2)-space 9N 2 contained in HN_z(C) but not containing C, intersects V§_2(C)
in a non-degenerate Hermitian variety VN_3 of rank N-1. Every point of V§_2(C) lies

on some line joining C to a point of V . Thus the number of points on V§_2(C)
N-1 N-1,, N-2 N-2, 2
=1+ (s -1V -1V )P (s )-
Let @(Vﬁ_z) be the code over GF(s ) which is the linear space of the coordinates

of the points on V§_2(C). This is a linear projective code with

1 Ny (M2 (-1)¥2)62/(s2-1)  and keN.

There are [(sz)N—l] - [(sz)N—l—l]/(s -1) = (S2)N_1 (N-2)-spaces SN—2 in SN—I(C)

n=1+ (s

o] .
which do not pass through C. Each such SN__2 meets VN_2(C) in a non-degenerate VN_3

with ((s)N_l—(—l)N_l)((s)N_z—(—l)N_z)/(s2—1) points. Thus in %(V;_z) there are
o= (21)(s2)V1 o N 2N-2
w
1
codewords each of weight

w

1+ s2(sN—1_(_1)N—1)(SN—2_(_1)N—2)/(S2_1)
(" (- M2 )2y (521
e IR o SN

Let QN 5 be a fixed (N-2)-flat contained in 9 (C), not passing through C and

1

let VN 32 non-degenerate variety of rank N-1, denote the intersection of Sh 9 and
V§_2(C). Let 9 (D) be the tangent space to VN 3 at D which is a regular point of

V§_2(C). Then the (N-2)-space HN_2(C.D) which is the join of the point C and ﬂN_B(D),

is the tangent space to V§_2(C) at D and to every point on the line joining D to C. ‘
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The tangent space 3N_2(C,D) intersects V§_2(C) in a degenerate variety V§_3(C.D) of
rank N-3 and its singular space is the line joining C and D.
Number of points on such V§_3(C,D) (degenerate of order 2) is
(s> (%) ("= s
r 82+ 1+ (80 -3y M (-1) Yy (241
=1+s2+ s4(52N—7 + (-s)N_3 + (—s)N_4—1)/(sz—1)

=1+ Sz(SN—l

2 2
-s

) A TCARE ) L VI )
s2N—5

Thus vy
+ (_S)N—l + (_S)N—z_l)/(sz_l) = s2N—3

-1-s (
is the weight of a codeword which corresponds to the tangent space ﬂN_z(C,D) in
3N_1(C). The number of such 3N_2(C,D) is equal to the number of regular points D on
V§_2(C). that is the number of points on V;_z a non—-degenerate Hermitian variety.

Thus the frequency f
Y2

£, = (VL <)M (N2 )2y,

of the codewords in @(V§_2) of weight W, is

% %

Let 9N_2 be a (N-3)-flat in SN-2' vhich is not a tangent to V;_B. Let QN_2 be

the join of C and 9N—3 . Since YN_3 meets V;_B in a non-degenerate Hermitian variety
] ol . .

VN—4+ the section of VN_2(C) with 9N—2 is a degenerate VN_3 which consists of all the

points on the lines joining C to the points of VN—4'
Let wy = [Vo (@) = [Vy 5l = 1+ 2" (1) 1y (2o (1)) /(s21)
-1 - s2 _ S2(SN—2 _(_I)N—2)(SN—3_(_1)N—3)/(52_1)

- R

Thus vy is the weight of a codeword which corresponds to an (N-2)-flat 9N—2 which
passes through C, but is not a tangent to V§_2(C). Number of such (N-2)-flats

VN_2 Number of 9N—3 in 9;_2 — Number yN—B in 9;_2, which are tangents to V*

N-3
(5N /sy - (V-

(s34 (-s)V2)/(s+1)

N N2 ()2 /(5241

Thus the frequency f3 of codewords of weight L&Y
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(s2-1) (s34 (-s)2) /(s+1)

(s-1) (s34 (-5)2).

It follows that %(V;_z) determines a linear projective code @'(V;_z) over GF(s)

with parameters n' = n(s+1) = (s+1) + {s2(s" '—(-1)V 1) sV 2-(-1)¥"2)}/(s-1). k' = 2k,
wi = sw, = s2N.2—(-s)N - (—s)N_l. Wé = sW, = S2N—2' wé = SWy = s2N_2—(~—s)N and the
frequencies fw i=1,2.3 remain unchanged.

i

7. Families of three-weight codes from degenerate quadrics (cones) in projective
spaces.

Let QN be a non-degenerate quadric in PG(N,s) and let 9N_1(P) be the hyperplane
tangent to QN at P. Then the intersection of 7N_1(P) and QN is a cone Q;_I(P) of rank
N and order 1 and its vertex consists of the single point P.

A (N-2)-flat 9N—2 contained in 9N_1(P) but not passing through P, intersects QN
in a non-degenerate quadric QN-2' The points of °§_1(P) = VN_I(P) n QN’ are then all
the points in the lines joining P to the points of Q§_2. QN—I(P) has then
1 + s y(N-2,0) points where Y(N-2,0) is the number of points on QN—2'

Let 9;_3 be a (N-3)-flat contained in-a 9;_2 which is one of the (N-2)-flats of
3N_1(P). not passing through P. Suppose that 9;_3 is not a tangent to
Q;_z = 9;_2 n Q§-1(P)' Then 9;_3 intersects Q;_z (a non-degenerate quadric) in a
non-degenerate Q;_3. Then the join of P and 9;_3
yN_z(P) =PU 9;_3 passing through P, intersects Q;_I(P), in a cone Q§_2 of order 1

which is a (N-2)-flat

with its vertex a single point P.

Now suppose that 3;_3(R) an (N-3)-flat contained in S;_z. is a tangent to Q;_z at
R. Then 9;_3(R) intersects Q;—Z in a cone Q§_3 of order 1 with R as its vertex.
Hence the join of P and ﬂ:_3(R) which is an (N-2)-flat 9:_2(P,R) (say) intersects

Qg_l(P) in a cone Q§_2(P.R) of order 2 and the line joining P and R is its vertex.
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Let @(Q;_I(P)) be the code over GF(s). which is the linear space generated by the
coordinate vectors of the points on the cone Q;_I(P). The weight-distributions of the
linear projective codes are next derived treating the two cases (i) N=2t and
(ii) N = 2t-1 separately.

(i) N =2t. In this case, Q2t is a non-degenerate quadric in PG(2t,s) and Qgt_l(P)
is the intersection of Q2t with its tangent hyperplane 32t_1(P) at a point P of ta.

Thus Q2 P) is a cone of order 1 with P as its vertex. Thus
t-1

o3, _; ()]

number of points on Qgt—l(P)
1+ s ¢(2t-2.0) = 1 + s(s2° 2-1)/(s-1)
= (2 1)/(s-1).

The code @(Qgt_l(P)) which is the linear space generated by the coordinate vectors of
2t-1

Qgt—l(P) has then the parameters n = (s )/(s-1), k=2t.

A (2t-2) flat ¢ contained in J (P) but not passing through P intersects
2t-2 2t-1
Qgt_l(P) in a non-degenerate quadric Q2t—2' Thus
w, = (s2t_1—1)/(s—1) - (szt_2—1)/(s—1) = s2t_2

is the number of points of Qgt-l(P) which are not on such a (2t-2)-flat. The number

fwl of such (2t-2)-flats in ﬂzt_l(P) is given by

F = (s2t 2t-1 s2t—1.

"1

Let ta_B be a (2t-3)-flat contained in 92t -

92t_1(P), not passing through P and assume further 92t 3 1s not a tangent to

-1)/(s-1) - (s -1)/(s-1) =

which is one of the (2t-2)-flats of

2%
Q2t—2 2t 2 n ta I(P) Then the join of P and 92t 3

. o .
52t_1(P). passing through P. 92t_2(P) meets Q2t—1(P) in a cone Qgt—2(P) of order 1

is a (2t-2)-flat S2t—2(P) of

with P as its vertex and Qgt_z(P) consists of all the points on the lines joining P to
. € . . . . tad *
the points of a non-degenerate Q2t—3 which is the intersection of 92t—3 and ta_2.
. (] o
Number of points on Q2t—2(P) = IQ2t—2(P)I =1+ s y(2t-3,0),

where y(2t-3,0) is the number of points on Q;t—S' Thus



- 16 -

t-1 t-2 . 3
IQgt—z(P)I =1+ s(s” "+1)(s “-1)/(s-1), if Q2t—3 is elliptic,

1+ s(st_l—l)(st_2+l)/(s—1) if Q;t—B is hyperbolic.
Then Wy = (szt_l—l)/(s—l) -1- s(st—1+l)(st-2)/(s—1) =22, 1

is the number of points of Qgt_l(P) which are not on S;t_2(P). if Q;t—B is elliptic.

Let f_ denote the number of such S, (P) flats.
vy 2t-2
3¢
If Q2t-3 is hyperbolic, then
Wy = (s2¥ 1) /(s-1) - 1 - s(st 1) (s 241)/(s-1) = s2672 - b1

is the number of points on Qgt_l(P) which are not an Q;t_2(P). Let fw denote the
3

number of such (2t-2)-flats Q;t_z(P).
. € . . € .
Let 32t_3(R) be a (2t-3)-flat in 92t—2 vhich is a tangent to Q2t—2 at a point R
in Q;t_z. Hence ﬂ2t_3(R) meets Q;t_z in a cone Qgt_3(R) of order 1 and its vertex is
the point R. The join of P and 32t_3(R) which is a (2t-2)-flat 92t_2(P.R) intersects

Qgt__l(P) in a cone Q;t_z(P,R) of order 2 and its vertex is the line joining P and R. .

Then  [Q5, ,(P.R)| = (s*-1)/(s-1) + % ¥(2t-4,0) = (s+1) + s2(s2041)/(s-1) =

(s2 2t-1

of points of Qgt_l(P) which are not on 32t_2(P.R). Then the number fw of such flats,
4

which is equal to the number of points on Q;t—2' is given by fw = (s

t_2—1)/(5—1). Thus Wy = (s -1)/(s-1) - (52t—2—1)/(s—1) = s2t-2 is the number

22 1y/(s-1).

Now, f + f = (number of (2t-2)-flats in J (P). passing through P) - (number of
LORLSY 2t-1

(2t-3)-flats in a (2t-2)-flat S;t—2 of 72t_1(P), not passing through P and tangents to
2% 2t-1 2t-2 2t-2
Uia) = (s s ).

Now Qgt—l(P) has (szt—l-l)/(s—l) points and each point is on (szt—l-l)/(s—l)

-1)/(s-1) - ( -1)/(s-1) = s

(2t-2)~-flats contained in ﬂzt_l(P). Hence counting (point, (2t-2)-flat) pairs in two

ways, one gets

£o= (82520 /(s-1) + £ (828 2on)/(sm1) + £ (825 2ostes b1y (so1)
w W, W,

1 2 2
s2t—2 + st - st—l—l)/(s—l)

+ fw3(
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= (2P 1o1)/(s-1) x (s2¥-1)/(s-1),

f +f = s2t_2. fw = szt—l, fw = (szt_2—1)/(s—1).

Y2 Y2 1 Y4

Solving these equations, one gets
£o= (22 - st e 1 o (8282t .
) "3

Thus the weight-distribution of the @(Qgt_l(P)) is

weight frequency
0] 1
(2t-2 (s=1){s25 L + (2521) -1} = s2t-g2071, 202
s2t-2 + St—l (S_l)(s2t—2_st:--1)/2 - (s2t—1_52t—2_st+st—1)/2
s2t—2 _ gttt (S_l)(szt—2_st—1)/2 - (s2t_1—52t_2—st+st-1)/2
Szc

Thus this is a tri-weight linear projective code over GF(s) with n = (s2t—1—1)/(s-1)
and k = 2t.
(ii) N = 2t-1. In this case Q2t—1 is a non-degenerate quadric in PG(2t-1,s) and

o : .
Q2t—2(P) is the intersection of Q2t—1 and its tangent hyperplane 32t_2

P. Thus Qgt_z(P) is a cone of order 1 and P is its vertex. Then the number of points
on Qgt;2(P) is

05, (P ]

(P) at a point

1 + s y(2t-3,0)

szt_2 - st s st-l—l)/(s—l),

1+ s(sT 1) (s 2-1)/(s-1) = (

if ta__1 is elliptic;

s282 4 st = s lgy/(s-1),

1+ s(s 1) (s 241)/(s-1) = (
if Q2t-1 is hyperbolic.
Thus the code ‘G(Qgt_2(P)) which is the linear space generated by the coordinate

vectors of the points of Qgt_2(P) is a linear projective code over GF(s) with

n = IQgt_2(P)| and k = 2t-1.
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A (2t-3)-flat y2t—3 contained in 52t_2(P) but not passing through P, intersects .
Q2t—1 in a non-degenerate quadric Q2t—3 which is elliptic (hyperbolic) if Q2t—1 is

. ; o
elliptic (hyperbolic). Thus the intersection of such a 92t—3 and Q2t—2(P) is a

non-degenerate Q2t—3'

Hence if Q2t—3 is elliptic, the number of points on Qgt—Z(P) which are not

92t_3 is
w, (ellip.) = (252 - 5% + s 1)/(s-1) - (557 L1y (55 2-1)/(s-1)

o g2t73 _ -1, t-2

On the other hand if Q2t-3 is hyperbolic, the number of points on Qgt—z(P) which are

not on S2t—3 is

v (hyperbol.) (szt—2 ¢ ¢

+ st - sy s-1) - (8515521 /(s-1)

o263, t-1 2

The number fw of such flats is s2t—2.

1
Let 9;t—3 be one of the (2t-3)-flats of 92t_2(P), not passing through P and let

¢ . € 0 %
the non-degenerate Q2t~3 denote the intersection of 92t—3 and Q2t—2(P)' Let 92t_4

ol . o s s
be a (2t-4)-flat of 92t_3. which is not a tangent to Q2t—3' Let 92t_3(P) be the join

3 (] . o .
. of P and 92t—3' Then 92t_3(P) intersects Q2t—2(P) in a cone Q2t—3(P) of order 1 with

.3
P as its vertex and it is the join of P and a non-degenerate quadric Q2t—4 where

.3 .3
Qg = Fog N QG5

Now, the number of points on Qgt_B(P) is

IQgt_3(P)| =1+ s y(2t-4,0)

2

=1+ s(s2 L1y /(s-1) = (5253 - 1)/(s-1).

Thus if Q2t—1 is elliptic, the number of points on Qgt_z(P) which are not on such a
y2t—3(P) flat is

wy (ellip.) = (s°2 - 5% + s L1)/(s-1) - (s2573-1)/(s-1)

2t-3 t-1
S - s
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If, however, Q2t—1 is hyperbolic, the number of points on Qgt_2(P) which are not on

such a 92t_3(P) flat is

(272 + st - ¥ lgy/(s-1) - (s

s2t—3 + st_l.

2

w, (hyperbol.) 31y /(s-1)

The number fw2 of such 92t_3(P) flats if Q2t—1 is elliptic is given by

f 11ip.) =
v, (ellip.) = (s

22 1)/(s-1) - (s* 1) (s¥2-1)/(s-1)

_ 23, 2

If Q2t—1 is hyperbolic, the number fw2 of such 92t_3(P) flats is
£ (hyperbol.) = (s2*72-1)/(s-1) - (s*71-1)(s*"2+1)/(s-1)

2

2t-3 t-2
s -s “.

. tad € .
Let ﬂét_4(R) be a (2t-4)-flat in yét~3 and a tangent to Q2t—3 at the point R.
€ . 0 . . .

Then J, _,(R) meets Q.3 in a cone Qy;._4(R) of order 1 with the point R as its
vertex. The join of P and ﬂét_4(R) is a (2t-3)-flat ﬂét_B(P,R) which intersects
Q2t—2(P) in a cone Qgt_3(P.R) of order 2 and its vertex is the line joining the points
P and R. It is clear that Qgt_B(P,R) is the join of the line PR and a non-degenerate
quadric Q2t—5'

Number of points on Qgt_B(P.R)
(s+1) + s2 ¥(2t-5,0)

(s2t73 _ gt 4 gt

-1)/(s-1) if Q2t—1 is elliptic
_ (szc—s + st - gt

- 1)/(s-1) if Q2t—1 is hyperbolic.

Thus the number of points on Qgt_z(P) which are not on such flats ﬂ2t_3(P,R) is

2t-2 t. t-1
=S +Ss

Wy = (s + -1)/(s-1) - (s2t—3—st+st—1—l)/(s—1)

= 23 if Q2t—1 is elliptic.

It is easy to check that Wy = s2t_3 also if Q2t—1 is hyperbolic. Number fw of such

3
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Hzt_B(P.R) (2t-3)-flats is equal to the number of points on a non degenerate quadric .

Qi3

Thus £, (ellip.) = (st 1) (sV2-1)/(s-1) if Qy,_, is elliptic,
and £, (hyperbol.) = (s*'-1)(s*2+1)/(s-1) 1f Q,,_, is hyperbolic.
w3 t-1

Thus the weight-distributions of the code @(Qgt_z(P)) for the two cases - Q2t—1

elliptic and Q2t—1 hyperbolic are given below.

Q2t—1 elliptic Q2t—1 hyperbolic
weight frequency : weight frequency
o) 1 0 1
s2t-3_st—1+st—2 (s—l)s2t—2 s2t—-3+st—1_st—2 (s—1)s2t_2
s2t—3_st—1 (s-1)(52t'3+st‘2) G2t-3, t-1 (s—l)(s2t—3-st—2)
S2t—3 s2t—3_st—1+st—2_1 s2t—3 s2t—3+st—1_st—2_1

$2t-1 2t-1 .

References
Bose, R.C. (1962). Lecture Notes on "Combinatorial Problems of Experimental Design",
Department of Statistics, University of North Carolina at Chapel Hill.
Bose, R.C. (1963). On the application of finite projective geometry for deriving a

certain series of balanced Kirkman arrangements, Calcutta Math. Soc. Golden

Jubilee Comm. vol. Part II (1958-59), 341-356.

Bose, R.C. (1971). Self-conjugate tetrahedra with respect to the Hermitian variety xg

+ x? + xg + xg = 0 in PG(3,22) and a representation of PG(3,3). Proc. Symp. on

Pure Math. 19 (Amer. Math. Soc. Providence R.I1.), 27-37.
Bose, R.C. and Chakravarti, I.M. (1966). Hermitian varieties in a finite projective

space PG(N.q2), Canad. J. Math 18, 1161-1182.




- 921 -

Jose, R.C. and Mesner, D.M. (1959). On linear associative algebras corresponding to
association schemes of partially balanced designs. Ann. Math. Statist., 30,
21-38.

Brouwer, A.E. (1985). Some new two-weight codes and strongly regular graphs.
Discrete Appl. Math., 10, 111-114.

Calderbank, R. and Kantor, W.M. (1986). The geometry of two-weight codes. Bull.
London Math. Soc., 18, 97-122.

Chakravarti, I.M. (1971). Some properties and applications of Hermitian varieties in
PG(N,q2) in the construction of strongly regular graphs (two-class association
schemes) and block designs. Journal of Comb. Theory, Series B, 11(3), 268-283.

Chakravarti, I.M. (1987). The generalized Goppa codes and related discrete designs
from hermitian varieties. Institute of Statistics Mimeo Series 1713. Department

of Statistics. University of North Carolina at Chapel Hill.

-elsarte, P. (1972). Weights of linear codes and strongly regular normed spaces.

Discrete Math. 3, 47-64.

Delsarte, P. (1973). An algebraic approach to the association schemes of coding
theory. Philips. Res. Rep. Suppl, 19.

Dembowski, P. (1968). Finite Geometries, Springer-Verlay 1968.

Dickson, L.E. (1901,1958). Linear Groups with an Exposition of the Galois Field

Theory. Teubner 1901, Dover Publications Inc., New York 1958.
Dieudonn€, J. (1971). La G€om€trie des Groupes Classiques, Springer-Verlag, Berin,
Troisieme Edition.

Dowling, T.A. (1969). A class of tri-weight codes. Institute of Statistics Mimeo

series No. 600.3. University of North Carolina at Chapel Hill, Department of

Statistics.



- 22 -

Games, R.A. (1986). The geometry of quadrics and correlations of sequences. IEEE .
Trans. Inf. Th. IT-32, 423-426.

Heft, S.M. (1971). Spreads in Projective Geometry and Associated Designs, Ph.D.

dissertation submitted to the University of North Carolina, Dept. of Statistics,

Chapel Hill.
Higman, D.J. and McLaughlin, J.E. (1965). Rank 3 subgroups of finite symplectic and
uni tary groups. J. Reine Angew. Math. 218, 174-189.

Hubaut, Xavier L., (1975). Strongly regular graphs. Discrete Mathematics 13,
357-381.

~

Jordan, C. (1870). Trait€ des Substitutions et des FEquations Algébriques,

Gauthier-Villans, Paris.

MacWilliams, F.J. and Sloane, N.J.A. (1977). The Theory of Error — Correcting Codes,

North Holland.

MacWilliams, F.J.. Odlyzko, A.M., Sloane, N.J.A. and Ward, H.N. (1978). Self-dual
codes over GF(4). J. Comb. Th. A25, 288-318.
Mann, H.B. (1965). Addition Theorems. John Wiley & Sons, Inc.

Menon, P.K. (1960). Difference sets in Abelian groups. Proc. Amer. Math. Soc. 11,

368-376.
Mesner, D.M. (1967). A new family of partially balanced incomplete block designs with
some latin square design properties. Ann. Math. Statist., 38, 571-581.

Primrose, E.J.F. (1951). Quadrics in finite geometries. Proc. Comb. Phil. Soc. 47,

299-304.

Ray-Chaudhuri, D.K. (1959). On_the application of the geometry of quadrics to the

construction of partially balanced incomplete block designs and error_ correcting

codes. Ph.D. dissertation submitted to the University of North Carolina at

Chapel Hill.




- 923 -

ay-Chaudhuri, D.K. (1962). Some results on quadrics in finite projective geometry
based on Galois fields. Canad. J. Math., 14, 129-138.
Segre, B. (1965). Forme e geometries hermitiane, con particolare riguardo al caso

finito. Ann. Math. Pure Appl., 70 1,202.
Segre, B. (1967). Introduction to Galois Geometries, Atti della Acc. Nazionale dei

Lincei, Roma, 8(5) 137-236.
VWolfman, J. (1975). Codes projectifs X deux ou trois poids associ€s aux
hyperquadriques d’une g€om€trie finie. Discrete Mathematics, 13, 185-211.
Wolfman, J. (1977). Codes projectifs X deux poids, "caps" complets et ensembles de
différences. J. Combin. Theory, 23A, 208-222.



