FAMILIES OF NEGATIVELY CURVED HERMITIAN MANIFOLDS

MICHAEL J. COWEN

ABSTRACT. A complex analytic family of compact hermitian manifolds has negative holomorphic sectional curvature in a neighborhood of any fibre having negative holomorphic sectional curvature.

1. Introduction. In [1, Hilfssatz 4, p. 120], Grauert and Reckziegel state:

If (Y, π, X) is an analytic family of compact Riemann surfaces of genus ≥ 2 , over a Riemann surface X, then for each point x_0 in X there is a neighborhood $V \subset X$ of x_0 and a differential metric on Y | V such that Y | V is strongly negatively curved.

Their construction of the metric is clear, but the proof of strong negative curvature involves a computation which is not altogether complete. (The proof, however, can be completed easily using the formula for the Gaussian curvature of the sum of two hermitian metrics [1, Aussage 1, p. 111].) The purpose of this note is to give a simpler computation which shows that the metric actually has holomorphic sectional curvature $\leq c < 0$ and hence a fortiori is strongly negatively curved [2, p. 39]. Indeed we will show that if the fibres of Y are n-dimensional compact manifolds each having holomorphic sectional curvature.

2. Definitions and statement of results. Let ds^2 be a hermitian metric on an *n*-dimensional complex manifold M, with $ds^2 = \sum g_{ij} dz_i d\bar{z}_j$ in local coordinates. Define the curvature tensor by

$$K_{ijkm} = \frac{\partial^2 g_{ij}}{\partial z_k \partial \bar{z}_m} - \sum_{p,q} \frac{\partial g_{ip}}{\partial z_k} g^{pq} \frac{\partial g_{qj}}{\partial \bar{z}_m} \quad \text{for } 1 \leq i, j, k, m \leq n.$$

M has holomorphic sectional curvature (which will be denoted by h.s.c.) less than a constant *c* if $-\sum k_{ijkm}s_i\bar{s}_js_k\bar{s}_m < c$ for all holomorphic unit tangent vectors $s = \sum s_i \partial/\partial z_i$.

Received by the editors June 5, 1972.

AMS (MOS) subject classifications (1970). Primary 53C55; Secondary 32G05, 32H20. Key words and phrases. Holomorphic sectional curvature, hyperbolic manifold, analytic family, differential metric.

[©] American Mathematical Society 1973

THEOREM. Let (Y, π, X) be an analytic family of compact complex n-dimensional manifolds over a Riemann surface X, such that for each $x_0 \in X$, the fibre $Y_{x_0} = \pi^{-1}(x_0)$ has a hermitian metric of h.s.c. $\langle c \langle 0 \rangle$, then there exists a neighborhood V of x_0 in X such that Y|V has a hermitian metric of h.s.c. $\langle c' \langle 0 \rangle$, with c, c' constants.

REMARK. This generalizes Grauert and Reckziegel's result since a compact Riemann surface of genus ≥ 2 has a hermitian metric of Gaussian curvature (equals h.s.c. on a Riemann surface) less than a negative constant [2, Theorem 5.1, p. 12].

COROLLARY. If σ is a holomorphic section of Y with isolated singularities in X, then σ extends as a holomorphic section to all of X.

3. Construction of the metric. The construction is the obvious generalization of that in [1].

Since (Y, π, X) is locally trivial we can find a neighborhood V with coordinate z_{n+1} centered at x_0 , and neighborhoods U_1, \dots, U_r in Y such that $Y|V=\bigcup U_m$, each U_m has coordinates z_1, \dots, z_{n+1} with

$$\pi(z_1,\cdots,z_{n+1})=z_{n+1},$$

and z_1, \dots, z_n give coordinates in $U_m \cap Y_{z_{n+1}}$ for all z_{n+1} in V. The hermitian metric on $Y_0 = Y_{x_0}$ is of the form $\sum_{j=1}^{n} g_{ij}(z_1, \dots, z_n) dz_i d\bar{z}_j$ on $U_m \cap Y_0$ and thus can be extended to a pseudo-hermitian metric $\sum h_{ij} dz_i d\bar{z}_j$ on U_m , $1 \leq i, j \leq n$, by setting $h_{ij}(z_1, \dots, z_{n+1}) = g_{ij}(z_1, \dots, z_n)$. These pseudo-hermitian metrics can then be patched together by a partition of unity to give a pseudo-hermitian metric α on Y|V, such that $\alpha|Y_0$ is the original hermitian metric on Y₀. That is, $\alpha = \sum k_{ij} dz_i d\bar{z}_j (1 \le i, j \le n+1)$ on U_m and $k_{ij}(z_1, \dots, z_n, 0) = g_{ij}(z_1, \dots, z_n)$ for $1 \leq i, j \leq n$. Since $\alpha \mid Y_0$ has h.s.c. $\langle c \langle 0, it is clear that for z_{n+1} close enough to 0, \alpha | Y_{z_{n+1}}$ will have h.s.c. $\langle c \langle 0 \rangle$. By shrinking V we can assume (1) $V = \{|z_{n+1}| < t\}, (2)$ $\alpha | Y_{z_{n+1}} \in V$, and (3) k_{ij} , its first, and second partial derivatives are bounded on each U_m for $1 \le i, j \le n+1$. Since a disc in C has a hermitian metric of Gaussian curvature -1, we can put V in a larger disc and obtain a metric $h(z_{n+1}) dz_{n+1} d\overline{z}_{n+1}$ on V of Gaussian curvature = -1 such that h, its first, and second partials are bounded on V. Define a metric ds^2 on Y | V for each $\lambda > 0$ by $ds^2 = \alpha + \lambda h(z_{n+1}) dz_{n+1} d\bar{z}_{n+1}$, i.e. on U_m , $ds^2 = \sum k_{ij} dz_i d\bar{z}_j + \lambda h(z_{n+1}) dz_{n+1} d\bar{z}_{n+1}$. Note that for large λ , ds^2 has negative h.s.c. in both the fibre and base directions. We wish to choose λ_0 so that for all $\lambda \ge \lambda_0$, ds^2 will have h.s.c. $\le c'' < 0$. Clearly it suffices to do this on each U_m and then take the maximum of the λ_0 's so obtained.

4. **Proof of negative sectional curvature.** Assume we have shown the following:

(i) $K_{ijkm} \rightarrow \tilde{K}_{ijkm}$ for $1 \leq i, j, k, m \leq n$, uniformly on U_m as $\lambda \rightarrow \infty$, where $\tilde{K}_{ijkm}(z_1, \dots, z_{n+1})$ is the curvature of ds^2 restricted to $Y_{z_{n+1}} \cap U_m$.

(ii) $|K_{ijkm}| \leq M$ on U_m for all $1 \leq i, j, k, m \leq n+1$ except when i=j=k=m=n+1, and M is a constant.

(iii)
$$K_{ijkm} = \lambda \left(\frac{\partial^2 h}{\partial z_{n+1} \partial \bar{z}_{n+1}} - \frac{1}{h} \frac{\partial h}{\partial z_{n+1}} \frac{\partial h}{\partial \bar{z}_{n+1}} \right) + O(1),$$

when i=j=k=m=n+1, where O(1) means a term which is uniformly bounded on U_m .

Since the Gaussian curvature of h is

$$\frac{1}{h} \Big(\frac{\partial^2 h}{\partial z_{n+1} \, \partial \bar{z}_{n+1}} - \frac{1}{h} \frac{\partial h}{\partial z_{n+1}} \frac{\partial h}{\partial \bar{z}_{n+1}} \Big) \leq -1$$

and h is bounded on U_m , we have:

(iii)' $K_{ijkm} \leq \lambda c'$ when i=j=k=m=n+1, where c'<0 is a constant, for $\lambda \geq \lambda_0$.

Fix $z = (z_1, \dots, z_{n+1})$. If $s = \sum_{i=1}^n s_i(\partial/\partial z_i)$ is a holomorphic unit tangent vector to the fibre $Y_{z_{n+1}}$ then by (i) we have

$$-\sum K_{ijkm}s_i\bar{s}_js_k\bar{s}_m \to -\sum \tilde{K}_{ijkm}s_i\bar{s}_js_k\bar{s}_m < c < 0 \quad \text{as } \lambda \to \infty.$$

Hence by compactness of the unit sphere, we can choose λ_0 large enough so that for $\lambda \ge \lambda_0$ we have $-\sum K_{ijkm} s_i \bar{s}_j s_k \bar{s}_m < c$ for s tangent to the fibre. But if $s = \sum_{i=1}^{n+1} s_i \partial/\partial z_i$ is any holomorphic unit tangent vector, then by (ii) and (iii)' we have:

(*)
$$-\sum_{i,j,k,m} K_{ijkm} s_i \bar{s}_j s_k \bar{s}_m \leq -\sum_{i,j,k,m=1}^n K_{ijkm} s_i \bar{s}_j s_k \bar{s}_m + M \sum_{i,j,k} |s_i| |s_j| |s_k| |s_m| + \lambda c' |s_{n+1}|^4,$$

where \sum' is the sum of the terms where at least one, but not all, of the i, j, k, m equals n+1. Thus if s is not tangent to the fibre, i.e., $s_{n+1} \neq 0$, then by taking λ_0 large enough we can insure that the h.s.c. is less than c_s in a neighborhood of s on the unit sphere, for all $\lambda \ge \lambda_0$. But from (*) it is also clear that if s is tangent to the fibre, then the h.s.c. is less than c_s in a neighborhood of s for all $\lambda \ge \lambda_0$. Therefore for each fixed z the h.s.c. at z is less than c_z for $\lambda > \lambda_0$ and hence by the relative compactness of U_m , the h.s.c. $\langle c < 0$ on U_m for $\lambda \ge \lambda_0$, which proves the Theorem.

Let $ds^2 | Y_{z_{n+1}} = \sum \tilde{k}_{ij} dz_i d\bar{z}_j$ be the metric restricted to the fibre, where $\tilde{k}_{ij} = k_{ij}$ for $1 \leq i, j \leq n$. Since

$$ds^2 = \sum k_{ij} dz_i d\bar{z}_j + \lambda h(z_{n+1}) dz_{n+1} d\bar{z}_{n+1} \equiv \sum g_{ij} dz_i d\bar{z}_j$$

where $1 \leq i, j \leq n+1$, it is easy to check that:

(a) $g^{ij} = \tilde{k}^{ij} + O(\lambda^{-1}), \quad \partial g_{ip} / \partial z_k = \partial \tilde{k}_{ip} / \partial z_k, \quad \partial^2 g_{ij} / \partial z_k \, \partial \bar{z}_m = \partial^2 \tilde{k}_{ij} / \partial z_k \, \partial \bar{z}_m$ for $1 \leq i, j, k, m, p \leq n$.

(b)
$$g^{ij} = \lambda^{-1} h(z_{n+1})^{-1} + O(\lambda^{-2}), \quad \frac{\partial g_{ip}}{\partial z_{n+1}} = O(1) + \frac{\partial h}{\partial z_{n+1}},$$
$$\frac{\partial^2 g_{ij}}{\partial z_{n+1} \partial \bar{z}_{n+1}} = O(1) + \lambda \frac{\partial^2 h}{\partial z_{n+1} \partial \bar{z}_{n+1}} \quad \text{for } i = j = p = n + 1.$$

(c) $g^{ij} = O(\lambda^{-1})$, $\partial g_{ip}/\partial z_k = O(1)$, $\partial^2 g_{ij}/\partial z_k \partial \bar{z}_m = O(1)$ otherwise. (Note. Since h is a function only of z_{n+1} , terms such as $\partial g_{ip}/\partial z_k$, for i=p=n+1 but $k \neq n+1$, do not involve λ or the derivatives of h.)

If $1 \leq i, j, k, m \leq n$ then

$$\begin{split} K_{ijkm} &= \frac{\partial^2 \tilde{k}_{ij}}{\partial z_k \, \partial \bar{z}_m} - \sum_{p,q=1}^n \frac{\partial \tilde{k}_{ip}}{\partial z_k} (\tilde{k}^{pq} + O(\lambda^{-1})) \frac{\partial \tilde{k}_{qj}}{\partial \bar{z}_k} + O(\lambda^{-1}) \\ &= \tilde{K}_{ijkm} + O(\lambda^{-1}), \end{split}$$

which proves (i). If i=j=k=m=n+1, then

$$\begin{split} K_{ijkm} &= \lambda \frac{\partial^2 h}{\partial z_{n+1} \partial \bar{z}_{n+1}} + O(1) - \sum_{p,q=1}^n \frac{\partial g_{ip}}{\partial z_k} O(\lambda^{-1}) \frac{\partial g_{qj}}{\partial \bar{z}_m} \\ &- \sum_{p=1}^n \frac{\partial g_{ip}}{\partial z_k} O(\lambda^{-1}) O(1) - \sum_{q=1}^n O(1) O(\lambda^{-1}) \frac{\partial g_{qj}}{\partial \bar{z}_k} \\ &- (O(1) + \lambda \partial h/\partial z_{n+1}) (\lambda^{-1} h^{-1} + O(\lambda^{-2})) (O(1) + \lambda (\partial h/\partial \bar{z}_{n+1})) \\ &= \lambda (\partial^2 h/\partial z_{n+1} \partial \bar{z}_{n+1}) - h^{-1} (\partial h/\partial z_{n+1}) (\partial h/\partial \bar{z}_{n+1}) \\ &+ O(1) + O(\lambda^{-1}) + O(\lambda^{-2}) \end{split}$$

which proves (iii). The proof of (ii) is obvious, since the only terms which are not O(1) or $O(\lambda^{-1})$ are those appearing only when i=j=k=m=n+1.

5. **Proof of Corollary.** Assume σ has an isolated singularity at $x_0 \in H$. By the Theorem, there is a neighborhood $V = \{|z| < 1\}$ of x_0 such that Y | V has a metric of h.s.c. $\langle c < 0$. Thus by [2, Theorem 4.11, p. 61], Y | V is hyperbolic and, by a theorem of Mrs. Kwack [2, Theorem 3.1, p. 83], $\sigma: V - \{0\} \rightarrow Y | V$ has a holomorphic extension to $\sigma': V \rightarrow Y | V$ if there exists a suitable sequence of points $x_n \rightarrow x_0$ such that $\sigma(x_n) \rightarrow p_0 \in Y | V$. Since Y | V is relatively compact in Y, the result follows.

6. **Remarks.** That X is a Riemann surface was not crucial to the proof of the Theorem and the proof goes through with obvious modifications when X is an arbitrary complex manifold. Then in the Corollary, σ

need only have singularities contained in an analytic set of codimension ≥ 1 in X, for σ to extend to all of X. The proof of the Corollary then follows from a result of Mrs. Kwack [2, Theorem 4.1, p. 86].

References

1. H. Grauert and H. Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z. 89 (1965), 108-125. MR 33 #2827.

2. S. Kobayashi, *Hyperbolic manifolds and holomorphic mappings*, Pure and Appl. Math., no. 2, Marcel Dekker, New York, 1970. MR 43 #3503.

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118

Current address: Department of Mathematics, Princeton University, Princeton, New Jersey 08540