Families of weighing matrices

Anthony V. Geramita, Norman J. Pullman, and Jennifer S. Wallis

```
A weighing matrix is an n\timesn matrix W=W(n,k) with
entries from {0, l, -1}, satisfying }W\mp@subsup{W}{}{t}=k\mp@subsup{I}{n}{}\mathrm{ . We shall
call }k\mathrm{ the degree of W. It has been conjectured that if
n\equiv0(mod 4) then there exict }n\timesn\mathrm{ weighing matrices of
every degree k\leqn.
We prove the conjecture when n is a power of 2. If n is
not a power of two we find an integer t<n for which there
are weighing matrices of every degree st.
```

Taussky [1] suggested the following generalization of Hadamard matrices:

A weighing matrix is an $n \times n$ matrix $W=W(n ; k)$ with entries from $\{0,1,-1\}$, satisfying $W W^{t}=k I_{n}$. We shall call k the degree of W. In [3, p. 433], it was conjectured that
(*) If $n \equiv 0(\bmod 4)$ then there exist $n \times n$ weighing matrices of every degree $k \leq n$.
(Note that an $n \times n$ weighing matrix of degree n is an Hadamard matrix and so (*) is a generalization of the conjecture on the existence of Hadamard matrices of order n for every $n \equiv 0(\bmod 4)$.)

In [2] the validity of (*) was established for $n \in\{4,8,12,16,20,24,28,32,40\}$ and partial results were obtained

[^0]119
for $n \in\{36,44,52,56\}$ in that sets of values of k were obtained for which $W(n, k)$ exists.

For all n let $g(n)$ be the maximum degree q for which there exist weighing matrices $W(n, k)$ for all degrees $k \leq q$. Thus, conjecture (*) is equivalent to:

$$
\begin{equation*}
g(n)=n \text { for all } n \equiv 0(\bmod 4) . \tag{*}
\end{equation*}
$$

The methods of [2] can be used to show that $g\left(2^{n}\right) \geq 34$ for all $n>5$. We show [Corollary 2 to our theorem] that in fact $g\left(2^{n}\right)=2^{n}$ for all n and hence establish (*) for all powers of 2 . As another corollary to the theorem we show that $g\left(2^{k} n\right) \geq 2^{k}$ for all odd n and all $k \geq 1$. This is better, asymptotically, than results obtained by the methods of [2].

Call $\left\{M_{1}, M_{2}, \ldots, M_{m}\right\}$ an M-family of order n if for each i, $1 \leq i \leq m:$
(1) M_{i} is a weighing matrix of order n and degree i, and
(2) $M_{i} M_{m}^{t}=M_{m} M_{i}^{t}$.

Let $\mu(n)$ be the largest m for which an M-family of order n exists. Evidently $g(n) \geq \mu(n)$.

THEOREM. If $\mu(n) \geq m$ then $\mu(2 n) \geq 2 m$.
Proof. Suppose $\left\{M_{1}, M_{2}, \ldots, M_{m}\right\}$ is an M-family of order n, $A=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right], H=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ and I_{p} is the $p \times p$ identity matrix.

Define
(a) $\bar{M}_{i}=I_{2} \otimes M_{i}$ for each $i, 1 \leq i \leq m$,
(b) $\bar{M}_{m+i}=\bar{M}_{i}+A \otimes M_{m}$ for each $i, 1 \leq i \leq m-1$, and
(c) $\bar{M}_{2 m}=H \otimes M_{m}$.

It is easily verified that $\left\{\bar{M}_{1}, \bar{M}_{2}, \ldots, \bar{M}_{2 m}\right\}$ is on M-family of order $2 n$. The matrices defined in (a) and (c) satisfy (1) and (2) because the
M_{i} do. The matrices defined in (b) satisfy (1) because the Hadamard product of A and I_{2} being the zero matrix implies they are $(1,-1,0)$-matrices, and $\bar{M}_{m+i} \bar{M}_{m+i}^{t}=(m+i) I_{2 n}$ because A is skew symmetric; they satisfy (2) because $H A^{t}=A H$. COROLLARY 1. $\mu\left(2^{k}\right)=2^{k}$ for all integers $k \geq 1$.
Proof. $\left\{I_{2}, H\right\}$ is an M-family of order 2 .
COROLLARY 2. $g\left(2^{k}\right)=2^{k}$ for all integers $k \geq 1$.
COROLLARY 3. (*) is true for all powers of 2 .
COROLLARY 4. $g\left(2^{k} n\right) \geq 2^{k}$ for all integers n and $k \geq 1$.
Proof. Each matrix $I_{n} \otimes M_{i}$ is a weighing matrix of order $n m$ and degree i if M_{i} is a weighing matrix of order n and degree i.

Lemma (i), 2 (i) and (iii) of [2] imply immediately that
(\dagger) If (*) holds for n then $g\left(2^{t} n\right) \geq n+2 t$ for all integers $t \geq 0$. But Corollary 4 gives far better estimates of $g\left(2^{t} n\right)$ than does (t) for all sufficiently large t. For example, the results of [2] and (\dagger) give us $g\left(2^{t} 24\right) \geq 24+2 t$ but Corollary 4 gives us $g\left(2^{t} 24\right) \geq 2^{t+3}$ which is a better estimate for all $t \geq 2$.

References

[1] Olga Taussky, "(1, 2, 4, 8)-sums of squaresa and Hadamard matrices", Combinatorics, 229-233 (Proc. Symposia Pure Math., 19. Amer. Math. Soc., Providence, Rhode Island, -1971).
[2] Jennifer Wallis, "Orthogonal (0, 1, -1)-matrices", Proc. First Austral. Conf. Combinatorial Math., Newcastle, 1972, 61-84 (TUNRA, Newcastle, 1972).

122 Anthony V. Geramita, Norman J. Pullman, and Jennifer S. Wallis
[3] W.D. Wallis, Anne Penfold Street, Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices (Lecture Notes in Mathematics, 292. Springer-Verlag, Berlin, Heidelberg, New York, 1972).

Department of Mathematics,
Queen's University,
Kingston,
Ontario,
Canada.

[^0]: Received 9 October 1973. The work of the first two authors was supported in part by the National Research Council of Canada.

