
Family-Based Association Studies

W. James Gauderman, John S. Witte, Duncan C. Thomas

We review case–control designs for studying gene associa-
tions in which relatives of case patients are used as control
subjects. These designs have the advantage that they avoid
the problem of population stratification that can lead to spu-
rious associations with noncausal genes. We focus on designs
that use sibling, cousin, or pseudosibling controls, the latter
formed as the set of genotypes not transmitted to the case
from his or her parents. We describe a common conditional
likelihood framework for use in analyzing data from any of
these designs and review what is known about the validity of
the various design and analysis combinations for estimating
the genetic relative risk. We also present comparisons of
efficiency for each of the family-based designs relative to the
standard population-control design in which unrelated con-
trols are selected from the source population of cases. Be-
cause of overmatching on genotype, the use of sibling con-
trols leads to estimates of genetic relative risk that are
approximately half as efficient as those obtained with the use
of population controls, while relative efficiency for cousin
controls is approximately 90%. However, we find that, for a
rare gene, the sibling-control design can lead to improved
efficiency for estimating a G × E interaction effect. We also
review some restricted designs that can substantially im-
prove efficiency, e.g., restriction of the sample to case-sibling
pairs with an affected parent. We conclude that family-based
case–control studies are an attractive alternative to popula-
tion-based case–control designs using unrelated control sub-
jects. [Monogr Natl Cancer Inst 1999;26:31–7]

Association studies are routinely used by epidemiologists to
investigate the relationship between an exposure and a disease.
With the recent increase in the availability of genetic informa-
tion, these exposures may now include genotypes at one or more
susceptibility, candidate, or marker loci. The goals of genetic
association studies will differ, depending on the state of knowl-
edge about the given disease. For example, once a susceptibility
locus has been cloned (e.g., BRCA1 for breast cancer), the goals
include estimating the relative risk (RR) and penetrance associ-
ated with specific mutations and testing for interaction with
environmental exposures or other genes(1). If a candidate locus
has been identified (e.g., the androgen receptor for prostate can-
cer), the primary goal is testing the null hypothesis of no asso-
ciation between the locus and the disease. Finally, if little is
known about specific loci for the disease (e.g., multiple sclero-
sis), multiple tests of association with finely spaced markers may
be used to screen the genome for candidate regions in the hopes
of detecting linkage disequilibrium with markers close to one or
more disease loci.

The case–control design is generally considered the design of
choice for studying rare diseases, although suitably designed
cohort studies, particularly family-based cohort studies(2), are
also useful in some circumstances. For results to be generaliz-
able, the selection of case patients in a case–control study should
be population based. This process is relatively straightforward

for diseases like cancer, for which population-based registries
are available, provided one can identify cases rapidly enough to
enroll them and obtain blood samples. For effect estimates and
hypothesis tests to be valid, control subjects should be selected
from the same source population as the cases. In the situation of
disorders with a genetic basis, this implies that cases and con-
trols should derive from a similar genetic background.

One approach used to satisfy this requirement is to match
cases and controls on their race or ethnicity. However, even
within subgroups, strong variation can be found in allele fre-
quencies at many genetic loci (e.g., the gradient in human leu-
kocyte antigen allele frequencies from northern to southern Eu-
ropeans). An additional complication is that, in many places, a
given subject may represent a mixture of genetic backgrounds as
a result of intermarriage between ancestors of varied ethnicities,
and, as a practical issue, many subjects will not know with
certainty their complete ancestral background. This uncertainty
makes finding a suitable population-based control for such sub-
jects very difficult. If the allele frequency at a particular genetic
locus varies across ethnic groups and if ethnicity (or some un-
observed factor that varies by ethnicity) is a risk factor for dis-
ease independent of that locus, then failure to adequately control
for ethnicity can result in false associations between the gene
and the disease(3–5). This phenomenon is often referred to as
population stratification by geneticists and as confounding by
epidemiologists. The unobserved ethnic factor associated with
disease can be either another gene or an environmental factor.
An example of such confounding is the reported association
between the Gm locus and non-insulin-dependent diabetes mel-
litus (NIDDM) in American Indians that disappeared when the
analysis was restricted to full-heritage Pima-Papago Indians(6).
The likely explanation for this finding was that the Gm locus
served as a surrogate for Caucasian heritage and that the risk of
NIDDM varied with this level of ancestry.

Recently, much interest has been focused on the use of fam-
ily-based controls to avoid the problem of ethnic confounding.
One approach is to match each case with one or more unaffected
siblings (7,8) or cousins(8) and to use analytic techniques for
matched case–control studies(9) to estimate effects and to test
hypotheses. A second approach is to match each case to a set of
“pseudosiblings,” formed as the set of genotypes that was not
transmitted from the parents to the case. Several methods have
been proposed for testing candidate gene associations and for
estimating genetic RRs, including the transmission disequilib-
rium test (TDT), conditional logistic regression, and haplotype-
sharing techniques(4,10–19).Both the sib-control and pseudo-
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sib-control approaches have the advantage that they provide
perfect matching on ethnicity.

We review the basic family-based case–control designs, de-
scribe a general approach to examine their validity and effi-
ciency, and summarize what is known about their relative effi-
ciency for estimating the genetic RR. We also describe
variations on currently proposed designs that may be useful in
some circumstances.

DESIGNS

For a disease like cancer with variable age of onset, we con-
sider the genetic RR parameter of interest to be the ratio of
age-specific incidence rates (i.e., the hazard rate ratio). With this
choice, the odds ratio from any matched case–control design is
a consistent estimator of the RR, provided controls are randomly
selected from the “risk set” comprising those members of the
population at risk who were disease free at the age at which the
case was affected. Indeed, exclusion of subjects who later de-
veloped the disease of interest will bias odds ratio estimates
away from the null(20).There is then no need for a rare disease
assumption(21). Control subjects should also be matched to
case patients on any potential confounders and generally should
be matched on sex (particularly for sex-specific diseases).

Sib Controls

Instead of defining the source population as the entire popu-
lation, one could consider only the immediate or more distant
family members of the case as potential controls, leading to the
various designs considered here. For example, in the sib-
matched case–control design, the investigator matches each case
patient to one or more unaffected sibling controls. The principles
of risk-set sampling require that controls have attained the age of
the case and still be disease free. If only recently incident cases
are included, this criteria essentially restricts control selection to
older siblings. Of course, a sibling who is younger than the case
may achieve the case’s age of diagnosis during the study period
and then become eligible as a control. Use of siblings who have
not yet attained the age of the case may lead to effect estimates
that are biased away from the null, but this bias could theoret-
ically be corrected with the use of knowledge of the population
rates. Inclusion of such siblings would also pose problems if
time-dependent covariates are involved.

Although genotypes do not change with age, a restriction to
younger sibs could lead to confounding of the effects of envi-
ronmental exposures that have secular trends (e.g., oral contra-
ceptive use) and conceivably confounding of the effects of any
genotypes with which such risk factors were associated. As in
any case–control study of time-dependent factors, the exposure
status of cases and controls should be compared at a common
“reference age,” such as the case’s age at diagnosis (or some
common interval prior to it to allow for latency). In addition to
being perfectly matched on ethnicity, siblings will also be
matched on many other potential confounding variables. Al-
though this match offers protection from bias, siblings are likely
to be overmatched on many factors (including genotype) that
will result in less efficient parameter estimation. This situation
will be explored quantitatively below.

From a practical standpoint, the use of sibling controls may
offer several nonstatistical advantages over population controls.
The occurrence of disease in the case may make his or her
relatives much more willing to participate than an unrelated

subject from the general population. In addition to reducing cost,
this willingness may result in the control being more careful in
filling out a risk-factor questionnaire. Because the case and sib-
ling will share many exposures, researchers will be able to cross-
validate questionnaire information that has been obtained from
the case and control, such as the types of cancer in their ances-
tors, or to ask comparative questions, such as which of the two
was more exposed to particular environmental factors. Many
groups have, or are in the process of collecting, family-based
cancer data resources. For example, the Cancer Surveillance
Project for Orange and San Diego Counties routinely abstracts
family history information on first- and second-degree relatives
and first cousins of all cases; this resource is the basis of a
population-based family study of breast and ovarian cancers
involving a family-history stratified sample of cases(22). Once
a resource such as this project has been established, selection of
sibling controls can be much less expensive than finding con-
trols from the general population. Conversely, not all cases will
have an eligible and willing sibling available; in addition to the
obvious loss of sample size, it is possible that selection bias
could arise if availability of a sib control were related both to
disease risk and to allele frequency.

Cousin Controls

Instead of a sibling, one could obtain another relative of the
case as a control. If one is also studying risk factors of which
distribution varies by generation, controls should probably be
drawn from the same generation, such as first cousins. Com-
pared with a sibling control, the advantage of a cousin is that one
may be able to obtain closer matching on age and year of birth,
with less loss in efficiency because the case and cousin are not
as closely matched on genotype. The trade-off is that there is no
longer the absolute protection from ethnic confounding because
the case and cousin have only one side of their families in
common and there is no guarantee that the two unrelated parents
of the case and cousin derive from the same ethnic background.
In this circumstance, one might want to select two cousin con-
trols, one from each side of the family, but it remains to be
shown that this will provide adequate protection from bias. From
a practical standpoint, cousin controls have many of the same
advantages as sibling controls, including increased willingness
to participate and possible pre-identification through a family-
based data resource. As in the sibling design, not all cases will
have an eligible and willing cousin control, but there is generally
a larger pool from which to choose.

Pseudosibling Controls

In this design, no actual controls are selected. Instead, geno-
typic data are obtained on the parents of the case, and the ge-
notype transmitted to the case is then compared with the three
genotypes (pseudosiblings) that were not transmitted to the case.
Suppose we label the alleles of the two parents (a,b) and (c,d)
and the case’s alleles as (a,c) (recognizing that some of these
alleles may be identical by state). Then the three pseudosibling
genotypes are (a,d), (b,c), and (b,d) and the question that this
design seeks to address is whether a specific allele or genotype
occurs more commonly in cases than in their pseudosibs. Con-
ditional logistic regression for 1:3 matched case–control studies
is the appropriate analysis for such data(11). The TDT, which
simply compares the case with his or her “antisib” (b,d), has
been shown to be the score test from the conditional logistic
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likelihood under a multiplicative model for dominance, in which
the homozygote RR is the square of the heterozygote RR
(4,16,19).

Both the sib-matched case–control and the pseudosib (or
TDT) designs test the same null hypothesis, i.e., that there is no
association or no linkage between the candidate gene (or
marker) and the underlying trait gene. Thus, neither design will
detect association with a gene that is in disequilibrium with a
causal gene (e.g., because of population stratification) but that is
not linked to that causal gene. Essentially, sib controls can be
thought of as a finite realization of genotypes from the theoret-
ical distribution of pseudosib genotypes, with the only funda-
mental difference being that real sibs are required to have sur-
vived to the age of the case. The lack of this restriction in the
pseudosib design produces an estimator of the genetic RR that is
biased toward the null by an amount that disappears with in-
creasing disease rarity, although the validity of the hypothesis
test is not affected(8).

As with the sibling- and cousin-control designs, parents are
more likely to be willing to participate than a population control,
and the design will take advantage of existing information avail-
able in a family-based data resource. In practice, the utility of
this design is limited to disorders that occur at young enough
ages that parents of the case are still likely to be alive. This
limitation excludes many cancers, unless the focus is on younger
onset cases. It has been shown that, if the genotype is missing on
one parent, there can be bias in the TDT(23). An alternative
approach when parental data are missing is to use the sib-TDT
(24),which involves a comparison of the genotype of an affected
sibling to that in an unaffected sibling, and is similar to the
sibling-control approach described above. One can also combine
the TDT and sib-TDT, using parental genotypes if they are avail-
able and siblings if they are not(24). However, if there are
multiple affected subjects (or multiple unaffected siblings for the
sib-TDT), the TDT and sib-TDT provide only a valid test of
linkage; the test of association will have an inflated type I error
rate.

Restricted Designs

For diseases that are not too rare, one might consider any of
the above designs with an additional restriction to subjects with
a positive family history. The rationale would be to increase the
allele frequency in the sample, thereby improving the statistical
efficiency for detecting associations with rare genes. However,
care must be taken that any restriction applied to cases is applied
equally to controls. For example, if one required the case to have
an affected first-degree relative, one would have to make the
same requirement for controls. For a design with population
controls, this requirement might entail some form of multistage
sampling(25,26),in which one obtains family history informa-
tion on an unrestricted series of potential cases and controls and
then selects a subsample of those with a positive history. Sib
controls are automatically matched on family history (among
sibs, parents, and more distant relatives, but not their offspring),
and such sibships might be easily identified from registries that
contain family history data. Cousin controls with comparable
family histories are not as easily identified, although case–
cousin pairs that share an affected grandparent would be a valid
comparison, as would those that each have an affected sibling.
However, case–cousin pairs that each have an affected parent
would be a valid comparison only if the two parents were related

to each other or if neither parent was a relative of the other pair
member. Such case–cousin pairs with two affected relatives
would generally be quite uncommon.

COMPARISON OF DESIGNS

We now describe our basic approach to comparing the valid-
ity and relative efficiency for estimating the genetic RR for
various family-control and population-control designs.

We assume that the data consist of diseased subjects (cases)
and one or more matched controls (real or pseudosiblings) for
each case. Letdij denote the disease status of subjectj in
matched seti, and letgij denote the genotype at some locus of
interest. For simplicity, we assume that the alleles at the locus
can be classified as either mutant (denoted byA) or normal
(denoted bya), with population frequencyq of the A allele,
although the methods are easily extended to genes with more
than two alleles. LetG(g) denote a genetic covariate with values
G(g) 4 0 wheng 4 aa, G(g) 4 1 wheng 4 AA, andG(g) 4
D wheng 4 Aa.The parameterD is coded to reflect an assumed
mode of inheritance, withD 4 1 corresponding to dominant
inheritance,D 4 0 to recessive inheritance, andD 4 0.5 to
multiplicative (or log-additive) inheritance; this parameter can
also be estimated in a general codominant model.

For a binary trait, we assume a logistic model for penetrance,
i.e.,

logit@Pr~d = 1|g!# = ai + bG~g!, [1]

whereai denotes the logit of the baseline risk for noncarriers in
matched seti, andb is the log-RR for carriers of a mutation. For
matched pairs data, the conditional likelihood is a function of
only b, which we assume is common across matched pairs. Ifb
were variable across the population, then a study would estimate
some form of weighted average of the distribution ofb values,
the particular weighting being somewhat different for popula-
tion-control versus family-control designs. In the family-control
designs, we assume that the disease outcomes among relatives
are conditionally independent, given their genotypes. Lettinggi1

denote the genotype of the case in theith matched pair, the
conditional logistic likelihood is

L~b! = )
i

exp~bG~gi1!!

(
j∈Mi

exp~bG~gij !!
, [2]

whereMi denotes the set of subjects in theith case–control set.
For the case–pseudosib design,j ranges over the case and the
three pseudosibs.

For a disease of variable age at onset, essentially the same
likelihood can be derived from Cox’s proportional hazards
model,

l~t,g! = l0~t! exp~bG~g!!,

wherel(t,g) denotes the genotype-specific incidence rate at age
t andl0(t) denotes an unspecified set of baseline rates in non-
carriers. Equation 2 then results when the controls are drawn at
random from the risk set for theith case.

The models above can be expanded to include one or more
environmental covariates (z) and gene–environment interaction
terms. In this case, the logistic model becomes

logit@Pr~d = 1|g,z!# = ai + bG~g! + gz + hG~g!z,
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with an analogous extension to Cox’s proportional hazards
model. For either model, the conditional likelihood is

L~b, g, h! = )
i

exp@bG~gi1! + gzi1 + hG~gi1!zi1#

(
j∈Mi

exp@bG~gij ! + gzij + hG~gij !zij#
.

In the pseudosibling design,zij is set equal tozi1 for all j, pre-
cluding estimation of the environmental main effect parameter
(g) and requiring an assumption of independence of the genetic
and environmental factors conditional on parental genotypes for
valid estimation ofh.

To assess the validity of a design or analysis combination for
estimation ofb, we computed the expectation of the score sta-
tistic (the first derivative with respect tob of the log likelihood)
under the true model. If this expectation is zero, then the esti-
mator is said to be Fisher consistent, meaning that the maximum
likelihood estimate will converge to the true value with increas-
ing sample size. In this case, the asymptotic relative efficiency
(ARE) for estimatingb for one design compared with another is
defined as the inverse of the ratio of their expected variances of
b̂under the alternative hypothesis or equivalently as the ratio of
the sample size required to attain the same precision and power.
We compute the expected variance ofb̂ as the inverse of the
Fisher information, evaluated at the true value of the parameters
(a0, b0, q0). For comparability across several parameter values,
we fixed the population prevalence of the disease (Kp) and the
attributable risk (AR) and then, for given values of the log-RR
(b0), solved the following two equations fora0 andq0:

AR=
(

g

~eb0G~g! − 1! Pr~g|q0!

(
g

~eb0G~g!! Pr~g|q0!

and

Kp = (
g

Pr~d = 1|G~g!, a0, b0! Pr~g|q0!.

The factorPr(g|q0) was computed assuming Hardy–Weinberg
equilibrium, and the penetrance factor in the equation forKp was
computed as the anti-logit of the expression in equation 1. Let-
ting Reldenote the relationship between the case and the control
and assuming a 1 : 1 matched design, the Fisher information was
computed as

E@I~b|Rel!# = (
g

I~b|g! Pr~g|d1 = 1, d2 = 0, a0, b0, q0, Rel!

=
(

g

I~b|g! Pr~d1 = 1|g1! Pr~d2 = 0|g2! Pr~g|Rel,q0!

(
g

Pr~d1 = 1|g1! Pr~d2 = 0|g2! Pr~g|Rel,q0!
,

[3]

where g 4 (g1,g2) and I(b) is the observed information, i.e.
the negative of the matrix of second partial derivatives of the
conditional log-likelihood. One can see from equation 3 that
the joint distribution of the case and control genotypes is the
factor that differentiates the informativeness of the various de-
signs. If the case and control are unrelated,Pr(g|Rel,q0) 4
Pr(g1|q0)Pr(g2|q0), and the weight is determined solely by the
allele frequency. However, if the case and control are siblings,

Pr(g|Rel,q0) 4 ∑gf,gm
Pr(g1|gf,gm)Pr(g2|gf,gm)Pr(gf|q0)Pr(gm|q0)

and the weight is a function of both the allele frequency and the
genetic relationship between the pair. Note that, although com-
putation of the expected information for the sib-matched design
involves a summation over parental genotypes (gf,gm), the actual
information depends only on the joint distribution of the geno-
types of the case and sibling control.

RESULTS

In the presence of population stratification, the amount of
bias in the estimate of genetic RR when using the population-
based case–control design depends on the true RR and the ratio
of allele frequencies in the strata(8). The sib-control design is
always consistent, the pseudosib design is approximately con-
sistent for a rare disease but inconsistent for a common disease,
and the consistency of the cousin design will depend on whether
the unrelated parents of the cousins come from the same or
different population strata. The bias in the pseudosib design for
a common disease occurs even in the absence of population
stratification, although a method has been proposed for correct-
ing this bias(8).

Fig. 1 provides a summary of the ARE of the three basic
family designs for estimatingb, relative to case–control studies
using unrelated controls. The results are based on a disease with
population prevalenceKp 4 1% and AR4 5%, although the
relative efficiencies are not substantially affected by these two
parameters. Under a dominant model, the ARE is approximately
50% using sib controls, 88% using cousin controls, and 100%
using pseudosib controls, regardless of the true underlying value
of the genetic RR. Under a multiplicative model, these three
AREs are nearly identical to those for the dominant model (data
not shown). For the recessive model, the relative efficiencies are
higher than for the dominant model in all three designs. As the
genetic RR ranges from 2 to 20, the AREs range from 66% to
72% using sib controls, from 95% to 99% using cousin controls,
and from 150% to 260% using pseudosib controls. Although on
a per-case basis the pseudosib design is statistically more effi-
cient than unrelated controls for a recessive gene, this design
requires three genotypes per case rather than two and so may be
less cost efficient if the cost of genotyping is high in relation to
the cost of subject enrollment.

To provide some intuition to account for these efficiency
comparisons, Table 1 provides the expected number of case–
control pairs in the unrelated-control and sib-control designs for
a dominant and a recessive gene and a particular choice of
parameter values. No population stratification is assumed, and,
in all the designs shown, the McNemar odds ratio (c/b) provides
a good approximation to the assumed RR of 20. Compared with
the unrelated-control design, use of the sibling-control design
results in a larger proportion of genotype-concordant pairs (cells
a andd) because of overmatching, and thus a smaller number of
discordant pairs (b andc) on which the variance ofb̂ is deter-
mined. For relatively rare genes, it is evident that the primary
determinant of this variance is the numberb of case–noncarrier
and control–carrier pairs.

Similar comparisons of relative efficiency for estimating the
gene–environment interaction parameterh have also been car-
ried out (8). The efficiency for a particular design in this case
depends on the distribution of the three types of discordant pairs:
1) genotype concordant and exposure discordant, 2) genotype
discordant and exposure concordant, and 3) jointly discordant.
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For a rare gene, the use of sib controls can be substantially more
efficient than the use of population controls for estimating aG ×
E effect. The reason is that, when the gene is rare, efficiency is
determined primarily by the number of genotype concordant,
exposure discordant pairs, although the other two types of dis-
cordant pairs also contribute (Table 2). Because of the partial
matching on genotype, genotype concordant pairs are more com-
mon within sibships than within a case and unrelated control

pair, leading to the improved efficiency. However, if sibs are
also highly concordant for environmental exposure, this situa-
tion will tend to reduce their efficiency relative to unrelated
controls.

In contrast to the basic designs, the relative efficiency of the
restricted designs for estimatingb depends strongly on the ge-
netic RR and the AR but depends only weakly on the population
prevalence of disease. Table 3 compares several restricted de-

Fig. 1. Asymptotic relative efficiency versus genetic relative risk for the case–sibling (circle), case–cousin (triangle), and pseudosibling (square) designs, relative
to the unrelated-control design, assuming disease prevalence of 1%, attributable risk of 5%, and either dominant (a) or recessive (b) inheritance.

Table 1. Illustrative example of the expected case–control genotype distributions for the unrelated-control and sib-control designs,
under dominant and recessive models*

Model Control type Control genotype

Case genotype

Var (b̂) 4 1/b + 1/c ARE 4 V1/V2, %Carrier Noncarrier

Dominant 1) Unrelated Carrier a 4 46 b 4 129
Noncarrier c 4 2576 d 4 7249 0.00814

2) Sibling Carrier a 4 1188 b 4 66
Noncarrier c 4 1311 d 4 7435 0.01591 51

Recessive 1) Unrelated Carrier a 4 45 b 4 127
Noncarrier c 4 2546 d 4 7282 0.00826

2) Sibling Carrier a 4 745 b 4 88
Noncarrier c 4 1770 d 4 7397 0.01193 69

*Expected distributions were computed assuming the population disease prevalence4 1%, relative risk4 20, allele frequency4 0.14 (recessive) or 0.01
(dominant), and 10 000 case–control pairs in each design. ARE4 asymptomatic relative efficiency.
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signs forKp 4 1%, several modes of inheritance, and a range of
relative and ARs. Generally, the efficiency gains are greatest for
genes with low AR and large RR, i.e., for rare major suscepti-
bility genes. Across inheritance modes, efficiency gains in the
restricted designs are greatest for a dominant gene. In the sib-
ling-control design, restriction to pairs with an affected parent
(design SAP) substantially improves efficiency for a dominant
gene, whereas, if the restriction is to pairs with an additional
affected sibling (design SAS), one can expect substantial effi-
ciency gains for either a recessive or a dominant gene.

Absolute power can be computed with the use of standard
methods once the expected distribution of case–control genotype
probabilities has been computed. For example, using the data in
Table 1, for a recessive gene withq 4 0.14 and RR4 20, we
would expectc 4 17.7% andb 4 0.88% of sib-matched case–
control pairs to be informative, leading to a McNemar test ofx2

4 (c − b)2/(c + b) 4 0.152N. To obtain 90% power at a two-
sided 5% significance level, one would therefore requireN 4
(1.96 + 1.28)2/0.1524 69 matched pairs. Of course, for smaller
RRs, the required sample size would be larger. One can also use
a standard software program to compute sample size for a case
and unrelated-control design and then use the values plotted in
Fig. 1 to adjust the sample size to a family-controlled design. For
example, if one assumed a dominant model and the required
number of pairs for a study with unrelated controls was 100, the

necessary number of pairs would be 200 (100/0.5) for a case–sib
study, or 114 (100/0.88) for a case–cousin study.

DISCUSSION

We have argued that family-based case–control studies offer
an attractive alternative to population-based case–control de-
signs using unrelated controls. Their primary advantage is that
they overcome the problem of population stratification that can
lead to spurious associations with noncausal genes that are not
even linked with any causal genes. The sibling and pseudosib
designs completely avoid this problem, whereas the cousin-
control design avoids it only approximately to the extent that
families tend to marry within ethnic groups. This protection
from bias is arguably worth the penalty of reduced statistical
efficiency resulting from overmatching on genotype. We have
also shown that on a per-case basis, the pseudosib design can be
more efficient than the unrelated-control design and that restric-
tion to multiple case families can lead to even more efficient
designs, if done appropriately. Finally, we have argued that fam-
ily-based designs offer certain nonstatistical advantages, such as
improved cooperation and reduced cost, that must be weighed
against the potential loss in sample size from cases who do have
a suitable family control and the potential selection bias if such
losses are nondifferential.

A spin-off of these family-based designs, particularly those
involving cousin controls or restriction to multiple-case families,
is the availability of phenotype information on other family
members not involved themselves as cases or controls, whose
genotypes may not be known. We have considered here the
analysis of only the measured genotypes for the selected cases
and their matched controls. To take advantage of the entire vec-
tor d of phenotype data on family members, one could conduct
a “modified segregation analysis” in which one forms a likeli-
hood by summing over all possible genotypes of the untyped
individuals gu conditional on the observed genotypesgo. The
ascertainment process (Asc) (e.g., that each family contains at
least one case and at least one unaffected sibling) can be ad-
dressed either by forming a “retrospective” likelihood from
terms of the formPr(go|d) or by modeling the ascertainment
process explicitly in a “prospective” likelihoodPr(d|go,Asc) or
“joint” likelihood Pr(d,go|Asc). For example the joint likelihood
for a single family would be computed as

Table 3. Asymptotic relative efficiencies of various family-based case–control designs with restrictions on family history, relative to the unrestricted
population-control design, assuming the population disease rate is 1%*

Design Relative risk

Recessive Multiplicative Dominant

AR 4 0.05 AR4 0.20 AR4 0.05 AR4 0.20 AR4 0.05 AR4 0.20

ARE (%) ARE (%) ARE (%)
SAP 2 71 58 58 53 70 61

20 105 104 121 96 332 184
SAS 2 81 62 59 54 70 61

20 313 197 124 103 332 184
CAG 2 102 96 94 90 102 93

20 134 144 142 124 322 213
PAP 2 160 123 117 108 141 119

20 318 273 248 204 654 351

*Design codes: SAP4 siblings with affected parent; SAS4 siblings with affected sibling; CAG4 cousins with affected grandparent; PAP4 pseudosiblings
with affected parent; AR4 attributable risk.

Table 2. Illustrative example of the expected case–control genotype ×
environment distributions under a dominant model*

Genotype† Environment‡
Unrelated

control subjects
Sibling

control subjects

C–C E–U 155 418
C–C U–E 207 1578

C–N E–E 44 34
N–C E–E 883 688

C–N E–U 883 1124
N–C U–E 66 30

*Expected distributions were computed assuming genetic relative risk4 10,
environmental relative risk4 2, interaction relative risk4 2, allele frequency
4 0.1, exposure prevalence4 0.25, and sibling exposure concordance odds
ratio 4 2.

†Genotype of the case–genotype of the control (C4 carrier, N4 noncarrier).
‡Exposure status in the case–exposure status in the control (E4 exposed; U

4 unexposed).
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,

where the second sum in the denominator is taken over all pos-
sible vectors of disease status within the family. The likelihood
for a set of families would be computed as the product of family-
specific likelihood contributions.

An advantage of these segregation likelihoods is that they
need not be restricted to families with at least one case and one
unaffected relative. For example, if the initial ascertainment is
based on selection of affected case patients from a population
registry, all cases and their families can be included using the
above likelihoods, while only those cases with an eligible unaf-
fected sibling will be used in the conditional logistic likelihood
for the case–sib design. However, whereas the conditional lo-
gistic likelihood depends only on the genetic RR parameterb,
the segregation likelihoods also involve the baseline riska and
allele frequencyq as nuisance parameters. Nevertheless, pre-
liminary calculations indicate that incorporation of phenotypic
data on relatives can lead to substantial gains in information
compared with a case–control design, despite the need to esti-
mate these additional parameters. Another disadvantage of the
segregation likelihoods is the greater potential for bias if the
form of the model is misspecified, e.g., if one were to assume the
parameters were homogeneous across the population when in
fact they were variable or if there was additional dependency
within families that was not correctly modeled(27).

An additional benefit of these family-based designs is that
they can provide a resource for subsequent segregation and link-
age analyses to test for and to localize additional genes, after
accounting for any measured genes that may partially explain
the observed familial aggregation(28,29). To facilitate such
studies, it would be helpful to have population-based disease
registries with at least some family history data available, even
if imperfect. This type of resource would more easily allow the
ascertainment of cases with various types of family history, par-
ticularly the designs involving restriction to multiple-case fami-
lies. In summary, family-based case–control designs have a
number of attractive features that make them worth considering
when designing a gene-association study for cancer or some
other complex disease.
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