Family-Based Association Studies
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for diseases like cancer, for which population-based registries
We review case—control designs for studying gene associaare available, provided one can identify cases rapidly enough to
tions in which relatives of case patients are used as control enroll them and obtain blood samples. For effect estimates and
subjects. These designs have the advantage that they avoichypothesis tests to be valid, control subjects should be selected
the problem of population stratification that can lead to spu- from the same source population as the cases. In the situation of
rious associations with noncausal genes. We focus on designsglisorders with a genetic basis, this implies that cases and con-
that use sibling, cousin, or pseudosibling controls, the latter trols should derive from a similar genetic background.

formed as the set of genotypes not transmitted to the case One approach used to satisfy this requirement is to match
from his or her parents. We describe a common conditional cases and controls on their race or ethnicity. However, even
likelihood framework for use in analyzing data from any of ~ within subgroups, strong variation can be found in allele fre-o
these designs and review what is known about the validity of quencies at many genetic loci (e.g., the gradient in human leus
the various design and analysis combinations for estimating kocyte antigen allele frequencies from northern to southern Eug
the genetic relative risk. We also present comparisons of fopeans). An additional complication is that, in many places, a3
efficiency for each of the family-based designs relative to the given subject may represent a mixture of genetic backgrounds as
standard population-control design in which unrelated con- @ result of intermarriage between ancestors of varied ethnicities}r
trols are selected from the source population of cases. Be-and, as a practical issue, many subjects will not know with=
cause of overmatching on genotype, the use of sibling con-certainty their complete ancestral background. This uncertainty’.
trols leads to estimates of genetic relative risk that are makes finding a suitable population-based control for such subg
approximately half as efficient as those obtained with the use jects very difficult. If the allele frequency at a particular genetic &
of population controls, while relative efficiency for cousin locus varies across ethnic groups and if ethnicity (or some un2
controls is approximately 90%. However, we find that, for a observed factor that varies by ethnicity) is a risk factor for dis-2
rare gene, the sibling-control design can lead to improved €ase independent of that locus, then failure to adequately contr@
efficiency for estimating aG x E interaction effect. We also for ethnicity can result in false associations between the gene
review some restricted designs that can substantially im- and the diseasg-5). This phenomenon is often referred to as 3
prove efficiency, e.g., restriction of the sample to case-sibling population stratification by geneticists and as confounding by3
pairs with an affected parent. We conclude that family-based €epidemiologists. The unobserved ethnic factor associated witl
case—control studies are an attractive alternative to popula- disease can be either another gene or an environmental factdt.
tion-based case—control designs using unrelated control sub-An example of such confounding is the reported associatiori
jects. [Monogr Natl Cancer Inst 1999;26:31-7] between the Gm locus and non-insulin-dependent diabetes me§
litus (NIDDM) in American Indians that disappeared when the ©

. . , ) ) ___analysis was restricted to full-heritage Pima-Papago Ind@hs
Association studies are routinely used by epidemiologists {§,o likely explanation for this finding was that the Gm locus

(o]

)

investigate the relationship between an exposure and a diseggRyeq as a surrogate for Caucasian heritage and that the risk gf
With the recent increase in the availability of genetic informaqppm varied with this level of ancestry. N

tion, these exposures may now include genotypes at one or MOr§ecently, much interest has been focused on the use of fangw

susceptibility, candidate, or marker loci. The goals of genetic yased controls to avoid the problem of ethnic confounding.2
association studu_as W|Illd|ffer, depending on the state of kno,"\ﬂ),ne approach is to match each case with one or more unaffectet!
edge about the given disease. For example, once a susceptibififyings (7,8) or cousins(8) and to use analytic techniques for S
locus has been cloned (e.g., BRCAL for breast cancer), the 99glgched case—control studiedy to estimate effects and to test
include estimating the relative risk (RR) and penetrance assqginstheses. A second approach is to match each case to a set®f
ated with specific mutations and testing for interaction W'thbseudosiblings ” formed as the set of genotypes that was no‘g
environmental exposures or other ge(Bs|f a candidate locus yansmitted from the parents to the case. Several methods have
has been identified (e.g., the androgen receptor for prostate o3an proposed for testing candidate gene associations and for
cer), the primary goal is testing the null hypothesis of N0 ass9stimating genetic RRs, including the transmission disequilib-
ciation between the locus and the disease. Finally, if little |§,m test (TDT), conditional logistic regression, and haplotype-

known about specific loci for the disease (e.g., multiple sclergharing techniqueg,10-19).Both the sib-control and pseudo-
sis), multiple tests of association with finely spaced markers may

be used to screen the genome for candidate regions in the hopes

of detecting linkage disequilibrium with markers close to one orAffiliations of authors:W. J. Gauderman, D. C. Thomas, Department of
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sib-control approaches have the advantage that they provaddject from the general population. In addition to reducing cost,
perfect matching on ethnicity. this willingness may result in the control being more careful in
We review the basic family-based case—control designs, diling out a risk-factor questionnaire. Because the case and sib-
scribe a general approach to examine their validity and effing will share many exposures, researchers will be able to cross-
ciency, and summarize what is known about their relative effialidate questionnaire information that has been obtained from
ciency for estimating the genetic RR. We also descrilibe case and control, such as the types of cancer in their ances-
variations on currently proposed designs that may be usefultars, or to ask comparative questions, such as which of the two
some circumstances. was more exposed to particular environmental factors. Many
groups have, or are in the process of collecting, family-based
cancer data resources. For example, the Cancer Surveillance

For a disease like cancer with variable age of onset, we cdiject for Orange and San Diego Counties routinely abstracts

sider the genetic RR parameter of interest to be the ratio f@fnily history i_nformation on first- 'and second—_degree relgtives
age-specific incidence rates (i.e., the hazard rate ratio). With tfd first cousins of all cases; this resource is the basis of a

choice, the odds ratio from any matched case—control desigiPfPulation-based family study of breast and ovarian cancers

a consistent estimator of the RR, provided controls are randonffiy©!Ving a family-history stratified sample of casg). Once

selected from the “risk set” comprising those members of tiresource such as this project has been established, selectionf

. . . - 2
population at risk who were disease free at the age at which fH{Bling controls can be much less expensive than finding cons
case was affected. Indeed, exclusion of subjects who later #&!S from the general population. Conversely, not all cases willg
veloped the disease of interest will bias odds ratio estimaf®ve an eligible and willing sibling available; in addition to the &
away from the nul{20). There is then no need for a rare diseasaPvious l0ss of sample size, it is possible that selection biag
assumption(21). Control subjects should also be matched t69“|d arise if availability of a sib control were related both to =
case patients on any potential confounders and generally shdiifase risk and to allele frequency.
be matched on sex (particularly for sex-specific diseases). cousin Controls

. Q.
Sib Controls Instead of a sibling, one could obtain another relative of the3

Instead of defining the source population as the entire pogkse as a cont'rol. If one is a[so studying risk factors of whichg
lation, one could consider only the immediate or more distafiStribution varies by generation, controls should probably bes
family members of the case as potential controls, leading to th@wn from the same generation, such as first cousins. Comg
various designs considered here. For example, in the spred with a sibling qontrol,the adva_mtage of a cousin is that pn%
matched case—control design, the investigator matches each 83y be able to obtain closer matching on age and year of birthg:
patient to one or more unaffected sibling controls. The principl®4th less loss in efficiency because the case and cousin are nét
of risk-set sampling require that controls have attained the agedgclosely matched on genotype. The trade-off is that there is n§
the case and still be disease free. If only recently incident cad@ager the absolute protection from ethnic confounding becausg:
are included, this criteria essentially restricts control selectionf3e case and cousin have only one side of their families in%
older siblings. Of course, a sibling who is younger than the ca&@Mmmon and there is no guarantee that the two unrelated parens
may achieve the case’s age of diagnosis during the study perfidhe case and cousin derive from the same ethnic backgroun<§
and then become eligible as a control. Use of siblings who halfthis circumstance, one might want to select two cousin con<
not yet attained the age of the case may lead to effect estimdf@ts: one from each side of the family, but it remains to be g
that are biased away from the null, but this bias could theor&fown that this will provide adequate protection from bias. Froms
ically be corrected with the use of knowledge of the populatich Practical standpoint, cousin controls have many of the same
rates. Inclusion of such siblings would also pose problemsaflvantages as sibling controls, including increased willingness
time-dependent covariates are involved. to participate and pos&b[e pre-ujenhﬁcaﬂqn through a famlly-'g

Although genotypes do not change with age, a restriction B§sed data resource. As in the sibling design, not all cases wiff
younger sibs could lead to confounding of the effects of enJiave an eligible and willing cousin control, but there is generally,
ronmental exposures that have secular trends (e.g., oral con4arger pool from which to choose.
ceptive use) _and cqnceivably_ confounding of the eff_ects of a¥eudosibling Controls
genotypes with which such risk factors were associated. As in
any case—control study of time-dependent factors, the exposurén this design, no actual controls are selected. Instead, gends
status of cases and controls should be compared at a comnygic data are obtained on the parents of the case, and the g'é’—
“reference age,” such as the case’s age at diagnosis (or sorag/pe transmitted to the case is then compared with the three
common interval prior to it to allow for latency). In addition togenotypes (pseudosiblings) that were not transmitted to the case.
being perfectly matched on ethnicity, siblings will also b&uppose we label the alleles of the two pareats)(and €,d)
matched on many other potential confounding variables. Adnd the case’s alleles ag,) (recognizing that some of these
though this match offers protection from bias, siblings are likebileles may be identical by state). Then the three pseudosibling
to be overmatched on many factors (including genotype) thggnotypes area(d), (b,c), and p,d) and the question that this
will result in less efficient parameter estimation. This situatiodesign seeks to address is whether a specific allele or genotype
will be explored quantitatively below. occurs more commonly in cases than in their pseudosibs. Con-

From a practical standpoint, the use of sibling controls maijtional logistic regression for 1:3 matched case—control studies
offer several nonstatistical advantages over population contratsthe appropriate analysis for such déid). The TDT, which
The occurrence of disease in the case may make his or bBenply compares the case with his or her “antisib)dj, has
relatives much more willing to participate than an unrelatdaeen shown to be the score test from the conditional logistic
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likelihood under a multiplicative model for dominance, in whictio each other or if neither parent was a relative of the other pair
the homozygote RR is the square of the heterozygote Rfember. Such case—cousin pairs with two affected relatives
(4,16,19). would generally be quite uncommon.

Both the sib-matched case—control and the pseudosib (or
TDT) designs test the same null hypothesis, i.e., that there is ®®MPARISON OF DESIGNS

association or no linkage between the candidate gene (or, . . . .
marker) and the underlying trait gene. Thus, neither design V\ﬂ” We now describe our basic approach to comparing the valid

detect association with a gene that is in disequilibrium with and relative efficiency for estimating the genetic RR for
9 ) -quitt Ygarious family-control and population-control designs.
causal gene (e.g., because of population stratification) but that i

oL e 1o et e ene Cosental. b contof o2 one or more matched conrols (el or peudosbings) o
g 9 yp each case. Letl; denote the disease status of subjgeh

ical distribution of pseudosib genotypes, with the only fund natched sei, and letg, denote the genotype at some locus of

\r/r;\?g(tjatlod'l[;fzrgnceeo?%r;gCtgsaé rﬁ_%les:gikagi trrfigurléi?rigigﬁ\i/r? tShHértérest. For simplicity, we assume that the alleles at the locus
9 ' can be classified as either mutant (denotedAyor normal

pseudosib design produces an estimator of the genetic RR thz}j'esnoted bya), with population frequencyy of the A allele
I ) i)

blaseq tOW.afd the nyll by an amount th?t. disappears with ithough the methods are easily extended to genes with more
creasing disease rarity, although the validity of the hypothe%san two alleles. Le6G(g) denote a genetic covariate with values =
test is not affecteds). :

As with the sibling- and cousin-control designs, parents arGe(g) = Owheng = aa, g) = 1wheng = AA,andG(g) =

more likely to be willing to participate than a population controlA wheng — Aa_.The para_lmetem is coded to reflect an ass_umed
and the design will take advantage of existing information avaﬁr—mde. of inheritance, with - ! .corre.spondlng to dominant
able in a family-based data resource. In practice, the utility ' herltqncg,A ~0to recessive mhgntance, _arzkj = 0510
this design is limited to disorders that occur at y,oung enou hultlpl|cat|\{e (or qu—addmve) mhentapce; this parameter can
50 be estimated in a general codominant model.

ages '_[hat parents of the case are siill likely to b_e alive. This For a binary trait, we assume a logistic model for penetrance
limitation excludes many cancers, unless the focus is on younger

onset cases. It has been shown that, if the genotype is missing oi

one parent, there can be bias in the T[ZB). An alternative logit[Pr(d = 1]g)] = o; + BG(Q), [1]
approach when parental data are missing is to use the sib-TDT

(24),which involves a comparison of the genotype of an affectaiherec; denotes the logit of the baseline risk for noncarriers in
sibling to that in an unaffected sibling, and is similar to th&1atched seit andp is the log-RR for carriers of a mutation. For
sibling-control approach described above. One can also combipatched pairs data, the conditional likelihood is a function of
the TDT and sib-TDT, using parental genotypes if they are ava@inly B, which we assume is common across matched paifs. If
able and siblings if they are ndgR4). However, if there are Were variable across the population, then a study would estima

e assume that the data consist of diseased subjects (cases)

sdny wouy papeo

[/ woo dno-olwapeose);

owiou

ife/ou

efficiency for detecting associations with rare genes. However,

care must be taken that any restriction applied to cases is appliétereM; denotes the set of subjects in tifecase—control set.
equally to controls. For example, if one required the case to hdver the case—pseudosib desigmanges over the case and the
an affected first-degree relative, one would have to make ttiwee pseudosibs.

same requirement for controls. For a design with population For a disease of variable age at onset, essentially the sange
controls, this requirement might entail some form of multistagikelihood can be derived from Cox’s proportional hazards ™
sampling(25,26),in which one obtains family history informa- model,

tion on an unrestricted series of potential cases and controls and

then selects a subsample of those with a positive history. Sib Mt.g) = Ao(t) expBG(9)),

controls are automatically matched on family history (amongherex(t,g) denotes the genotype-specific incidence rate at age
sibs, parents, and more distant relatives, but not their offspringhhq \o(t) denotes an unspecified set of baseline rates in non-
and such sibships might be easily identified from registries thadriers. Equation 2 then results when the controls are drawn at
contain family history data. Cousin controls with comparablg,nqom from the risk set for th&" case.

family histories are not as easily identified, although case- The models above can be expanded to include one or more

cousin pairs that share an affected grandparent would be a vaiflironmental covariates)(and gene—environment interaction
comparison, as would those that each have an affected siblipgms. In this case. the logistic model becomes

However, case—cousin pairs that each have an affected parent
would be a valid comparison only if the two parents were related logit[Pr(d = 1|g,2)] = «; + BG(g) + vz + 1G(g)z,

multiple affected subjects (or multiple unaffected siblings for thgome form of weighted average of the distributiongotalues, &

sib-TDT), the TDT and sib-TDT provide only a valid test ofthe particular weighting being somewhat different for popula- o

linkage; the test of association will have an inflated type | erréion-control versus family-control designs. In the family-control ©
rate. designs, we assume that the disease outcomes among relati\@s

are conditionally independent, given their genotypes. Letlipg 3

Restricted Designs denote the genotype of the case in tfematched pair, the &

) . . conditional logistic likelihood is §

For diseases that are not too rare, one might consider any of >

the above designs with an additional restriction to subjects with _ exp(BG(gq)) ©

a positive family history. The rationale would be to increase the L(B) = Hze—xp(BG( )): (2] §

allele frequency in the sample, thereby improving the statistical _—— 9i o
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with an analogous extension to Cox’s proportional hazar@s(glRel,q) = g o Pr(9:/9:9:)Pr(9219:9m)Pr(9do)Pr(9mldo)

model. For either model, the conditional likelihood is and the weight is a function of both the allele frequency and the
genetic relationship between the pair. Note that, although com-
L.y, ) H exfdBG(gi1) + vz1 + nG(Gi1)Z4] putation of the expected information for the sib-matched design
2 exdBG(g;) +vz; + nG(g; )Zu] involves a summation over parental genotygeg)(), the actual
IEY information depends only on the joint distribution of the geno-

In the pseudosibling desigg; is set equal ta, for all j, pre- types of the case and sibling control.

cluding estimation of the environmental main effect parametResy, s
(y) and requiring an assumption of independence of the genetic
and environmental factors conditional on parental genotypes forln the presence of population stratification, the amount of
valid estimation ofy. bias in the estimate of genetic RR when using the population-
To assess the validity of a design or analysis combination foased case—control design depends on the true RR and the ratio
estimation off3, we computed the expectation of the score staf allele frequencies in the stra(8). The sib-control design is
tistic (the first derivative with respect { of the log likelihood) always consistent, the pseudosib design is approximately con-
under the true model. If this expectation is zero, then the estistent for a rare disease but inconsistent for a common diseasg,
mator is said to be Fisher consistent, meaning that the maximamd the consistency of the cousin design will depend on whetheg
likelihood estimate will converge to the true value with increashe unrelated parents of the cousins come from the same (ﬁ‘
ing sample size. In this case, the asymptotic relative efficiendjfferent population strata. The bias in the pseudosib design fog
(ARE) for estimatingg for one design compared with another i common disease occurs even in the absence of populatidn
defined as the inverse of the ratio of their expected variancesstfatification, although a method has been proposed for correc@
Bunder the alternative hypothesis or equivalently as the ratioiofy this bias(8).
the sample size required to attain the same precision and powerFig. 1 provides a summary of the ARE of the three basic:
We compute the expected varlanceB)as the inverse of the family designs for estimatin@, relative to case—control studies
Fisher information, evaluated at the true value of the parametasing unrelated controls. The results are based on a disease with
(a0, Bo» Go)- For comparability across several parameter valugsmpulation prevalenc&, = 1% and AR = 5%, although the
we fixed the population prevalence of the disedsg) @nd the relative efficiencies are not substantially affected by these twcb
attributable risk (AR) and then, for given values of the log-RRarameters. Under a dominant model, the ARE is approxmately;lJ

oe//: sdu

DIWe

(Bo), solved the following two equations fer, and gy 50% using sib controls, 88% using cousin controls, and 100°/§
using pseudosib controls, regardless of the true underlying valu§

> (€999 - 1) Pr(glqp) of the genetic RR. Under a multiplicative model, these threeS

AR= -2 AREs are nearly identical to those for the dominant model (datag

E (€09 Pr(g|q,) not shown). For the recessive model, the relative efficiencies are

g higher than for the dominant model in all three designs. As theg

genetic RR ranges from 2 to 20, the AREs range from 66% to-\
72% using sib controls, from 95% to 99% using cousin controls
_ _ and from 150% to 260% using pseudosib controls. Although orlg
Ko 2 Pr(d=1IG(g), eo, Bo) Pr(aldo)- a per-case basis the pseudosib design is statistically more effi2
. _ cient than unrelated controls for a recessive gene, this desig8
The factorPr(glqy) was computed assuming Hardy—Weinbergequires three genotypes per case rather than two and so may @e

equilibrium, and the penetrance factor in the equatiorfowvas |ess cost efficient if the cost of genotyping is high in relation to & S
computed as the anti-logit of the expression in equation 1. Lefe cost of subject enrollment.

ting Reldenote the relationship between the case and the controlro provide some intuition to account for these eff|c|ency 3
and assuming a 1:1 matched design, the Fisher information w@gnparisons, Table 1 provides the expected number of case-

and

computed as control pairs in the unrelated-control and sib-control designs fOI’r\)

a dominant and a recessive gene and a particular choice of

E[I(BIReb] = E|(B|9) Pr(gld, =1,d, =0, ag, Bo, G0, ReD parameter values. No population stratification is assumed, aneg
g

in all the designs shown, the McNemar odds ratit) provides %
- - a good approximation to the assumed RR of 20. Compared WltIfE
2L1(Blg) Prid: = 1ig,) Pr(d; = 0jgy) PrigRelgo) the unrelated-control design, use of the sibling-control design”
»  results in a larger proportion of genotype-concordant pairs (cells
> Pr(d, = 1jg,) Pr(d, = 0lg,) Pr(glRelg) aandd) because of overmatching, and thus a smaller number of
g 3] discordant pairsh{andc) on which the variance of is deter-
mined. For relatively rare genes, it is evident that the primary
whereg = (g,,0,) and I(B) is the observed information, i.e.determinant of this variance is the numlteof case—noncarrier
the negative of the matrix of second partial derivatives of thend control—carrier pairs.
conditional log-likelihood. One can see from equation 3 that Similar comparisons of relative efficiency for estimating the
the joint distribution of the case and control genotypes is tlyggne—environment interaction parameiehave also been car-
factor that differentiates the informativeness of the various deéed out(8). The efficiency for a particular design in this case
signs. If the case and control are unrelat@d(g|Rel,q) = depends on the distribution of the three types of discordant pairs:
Pr(g1l90)Pr(9,]do), and the weight is determined solely by thd) genotype concordant and exposure discordant, 2) genotype
allele frequency. However, if the case and control are siblingtiscordant and exposure concordant, and 3) jointly discordant.
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Fig. 1. Asymptotic relative efficiency versus genetic relative risk for the case-sibtingd), case—cousintifangle), and pseudosiblings@uare) designs, relative
to the unrelated-control design, assuming disease prevalence of 1%, attributable risk of 5%, and either d@nunaat€ssively) inheritance.

Table 1. lllustrative example of the expected case—control genotype distributions for the unrelated-control and sib-control designs,
under dominant and recessive models*

Case genotype

220z 1snbny |z uo 1senb Aq 602806/1£/92/666 | /8|91B/0UOWIOUl/W0D dNO"dlWepEIE//:Sd)y WOl papeojumoq

Model Control type Control genotype Carrier Noncarrier var(®) = 1b + 1fc ARE = V,/V,, %
Dominant 1) Unrelated Carrier a=46 b =129
Noncarrier c = 2576 d = 7249 0.00814
2) Sibling Carrier a= 1188 b = 66
Noncarrier c= 1311 d = 7435 0.01591 51
Recessive 1) Unrelated Carrier a=145 b =127
Noncarrier c = 2546 d = 7282 0.00826
2) Sibling Carrier a= 745 b =88
Noncarrier c = 1770 d = 7397 0.01193 69

*Expected distributions were computed assuming the population disease prevaleb%e relative risk= 20, allele frequency= 0.14 (recessive) or 0.01
(dominant), and 10 000 case—control pairs in each design. AR&Symptomatic relative efficiency.

For a rare gene, the use of sib controls can be substantially mpadr, leading to the improved efficiency. However, if sibs are
efficient than the use of population controls for estimatinga also highly concordant for environmental exposure, this situa-
E effect. The reason is that, when the gene is rare, efficiencytisn will tend to reduce their efficiency relative to unrelated
determined primarily by the number of genotype concordarmpntrols.

exposure discordant pairs, although the other two types of dis-In contrast to the basic designs, the relative efficiency of the
cordant pairs also contribute (Table 2). Because of the partiabtricted designs for estimatifgydepends strongly on the ge-
matching on genotype, genotype concordant pairs are more coratic RR and the AR but depends only weakly on the population
mon within sibships than within a case and unrelated contiqmlevalence of disease. Table 3 compares several restricted de-
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Table 2. lllustrative example of the expected case—control genotype x necessary nhumber of pairs would be 200 (100/0.5) for a case—sib

environment distributions under a dominant model* study, or 114 (100/0.88) for a case—cousin study.

Unrelated Sibling
Genotypet Environmentt control subjects control subjects D|SCUSSION
c-C E-U 155 418
c-C U-E 207 1578 We have argued that family-based case—control studies offer
C-N E-E 44 34 an attractive alternative to population-based case—control de-
N-C E-E 883 688 signs using unrelated controls. Their primary advantage is that
ﬁ-g 5_|sz 822 113?61 they overcome the problem of population stratification that can

lead to spurious associations with noncausal genes that are not
*Expected distributions were computed assuming genetic relativerigo, €Ven linked with any causal genes. The sibling and pseudosib

environmental relative riske 2, interaction relative risk= 2, allele frequency designs completely avoid this problem, whereas the cousin-

= 0.1, exposure prevalence 0.25, and sibling exposure concordance oddeontrol design avoids it only approximately to the extent that

ratio = 2. _ _ families tend to marry within ethnic groups. This protection
TGenotype of the case-genotype of the contro(Carrier, N = noncarrien). - from bias s arguably worth the penalty of reduced statisticalg
TExposure status in the case—exposure status in the contrelékposed; U

— unexposed) efficiency resulting from overmatching on genotype. We haveE

also shown that on a per-case basis, the pseudosib design can®e
more efficient than the unrelated-control design and that restricg

signs fork, = 1%, several modes of inheritance, and a range tien to multiple case families can lead to even more eff|C|ent-"
relative and ARs. Generally, the efficiency gains are greatest f4Signs. if done appropriately. Finally, we have argued that fam3
genes with low AR and large RR, i.e., for rare major susceptly-Pased designs offer certain nonstatistical advantages, such &
bility genes. Across inheritance modes, efficiency gains in th@Proved cooperation and reduced cost, that must be weighetl
restricted designs are greatest for a dominant gene. In the &gainst the potential loss in sample size from cases who do ha\@
||ng -control des|gn restriction to pa|rs with an affected pareﬁtsultable famlly control and the pOtentlal selection bias if SUChCD
(design SAP) substantially improves efficiency for a dominatfsses are nondifferential. '
gene, whereas, if the restriction is to pairs with an additional A spin-off of these family-based designs, particularly thosec
affected sibling (design SAS), one can expect substantial effivolving cousin controls or restriction to multiple-case families, 3
ciency gains for either a recessive or a dominant gene. is the availability of phenotype information on other family _3

Absolute power can be computed with the use of standarembers not involved themselves as cases or controls, whose
methods once the expected distribution of case—control genotgesmotypes may not be known. We have considered here th§
probabilities has been computed. For example, using the datairalysis of only the measured genotypes for the selected casgs
Table 1, for a recessive gene with= 0.14 and RR= 20, we and their matched controls. To take advantage of the entire veG
would expectt = 17.7% andb = 0.88% of sib-matched case—tor d of phenotype data on family members, one could conduct
control pairs to be informative, leading to a McNemar tesyof a “modified segregation analysis” in which one forms a likeli-
= (c - b)%(c + b) = 0.15N. To obtain 90% power at a two- hood by summing over all possible genotypes of the untype
sided 5% significance level, one would therefore reqiNre= individuals g, conditional on the observed genotypgs The
(1.96 + 1.283/0.152 = 69 matched pairs. Of course, for smallemscertainment proces&gd (e.g., that each family contains at
RRs, the required sample size would be larger. One can also lesest one case and at least one unaffected sibling) can be a
a standard software program to compute sample size for a cdsessed either by forming a “retrospective” likelihood from
and unrelated-control design and then use the values plottederms of the formPr(g.|d) or by modeling the ascertainment
Fig. 1 to adjust the sample size to a family-controlled design. Fprocess explicitly in a “prospective” likelihooBr(d|g,,Asg or
example, if one assumed a dominant model and the requifgant” likelihood Pr(d,g,|JAsg. For example the joint likelihood
number of pairs for a study with unrelated controls was 100, tf@r a single family would be computed as
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Table 3. Asymptotic relative efficiencies of various family-based case—control designs with restrictions on family history, relative to the unrestricted
population-control design, assuming the population disease rate is 1%*

220z isnbny Lz uoysenb Aq 60

Recessive Multiplicative Dominant
Design Relative risk AR = 0.05 AR = 0.20 AR = 0.05 AR = 0.20 AR = 0.05 AR = 0.20
ARE (%) ARE (%) ARE (%)
SAP 2 71 58 58 53 70 61
20 105 104 121 96 332 184
SAS 2 81 62 59 54 70 61
20 313 197 124 103 332 184
CAG 2 102 96 94 90 102 93
20 134 144 142 124 322 213
PAP 2 160 123 117 108 141 119
20 318 273 248 204 654 351

*Design codes: SAP= siblings with affected parent; SAS siblings with affected sibling; CAG= cousins with affected grandparent; PAPpseudosiblings
with affected parent; AR=attributable risk.
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