
‘If you cannot get rid of the family skeleton, you may as 
well make it dance’ (G.B. Shaw)

For a long time, family studies were the sine qua non in 
genetics. In recent years, with the progress of the Human 
Genome Project, genetic markers that span the entire 
human genome have enabled widespread mapping 
efforts based on linkage analysis using families with 
multiple affected individuals, leading to the discovery of 
many genes for Mendelian diseases and traits. However, 
linkage studies have had only limited success in iden-
tifying genes for more complex diseases, such as heart 
disease, asthma, diabetes and psychiatric disorders. 
Along with improvements in genotyping technology, 
this has shifted the focus of gene mapping in humans 
to association studies, which use large numbers of SNPs 
or other markers that are genotyped in known linkage 
regions or candidate genes. Genetic association studies 
provide greater power and resolution of location than 
linkage studies1, offering renewed hope for mapping 
complex diseases and traits.

Although association studies have increasingly 
reported positive results, the number of replications 
of these findings is disappointingly low2. This can be 
attributed to a number of reasons: low statistical power, 
multiple-hypothesis testing, variability in study designs, 
phenotype definition and/or statistical modelling and 
population substructure3. Given that genome-wide association 
studies, which are now becoming possible, involve 
hundreds of thousands of markers, these issues become 
even more important.

Two fundamentally different designs are used in 
genetic association studies: those that use families 
and population designs that use unrelated individuals 
(case–control and case–cohort studies). We believe that 
the population and family designs, which have dif-
ferent strengths and weaknesses, should be viewed as 
complementary and not as competitive in the effort to 
overcome the challenges of association studies for com-
plex diseases.

In terms of statistical power, the differences between 
the two approaches are generally small (when the use 
of trios in family designs is compared to case–control 
studies)4,5 (FIG. 1). The recruitment of probands and 
their relatives in family-based association studies 
usually requires more resources in terms of time and 
money than that of unrelated subjects in population-
based studies. Furthermore, more genotyping might 
be required for family-based studies, and together 
these factors have increased the popularity of popula-
tion designs over family-based studies. An important 
exception is studies of childhood diseases/disorders, in 
which it might be easier to recruit parents than suitable 
controls. However, unlike population-based studies, 
family-based designs are robust against population 
substructure, and significant findings always imply 
both linkage and association. Furthermore, studies 
that use families offer a solution to the problems of 
model building and multiple-hypothesis testing, which 
are important issues in tests of association, and will 
become more pressing with the advent of genome-wide 
association studies.
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Linkage analysis
A method for localizing genes 
that is based on the 
co-inheritance of genetic 
markers and phenotypes in 
families over several 
generations.

Association studies
A gene-discovery strategy that 
compares allele frequencies in 
cases and controls to assess 
the contribution of genetic 
variants to phenotypes in 
specific populations.

Candidate gene
A gene for which there is 
evidence, usually functional, for 
a possible role in a disease or 
trait of interest.

Power
The ability of a study to obtain 
a significant result if this result 
is true in the underlying 
population from which the 
study subjects were sampled.

Family-based designs in the age of 
large-scale gene-association studies
Nan M. Laird and Christoph Lange

Abstract | Both population-based and family-based designs are commonly used in genetic 
association studies to locate genes that underlie complex diseases. The simplest version of 
the family-based design — the transmission disequilibrium test — is well known, but the 
numerous extensions that broaden its scope and power are less widely appreciated. 
Family-based designs have unique advantages over population-based designs, as they are 
robust against population admixture and stratification, allow both linkage and association 
to be tested for and offer a solution to the problem of model building. Furthermore, the 
fact that family-based designs contain both within- and between-family information has 
substantial benefits in terms of multiple-hypothesis testing, especially in the context of 
whole-genome association studies.
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Multiple-hypothesis testing
Many different statistical tests 
are used on the same sample; 
for example, many genetic 
markers might be tested 
against many different 
phenotypes. Failure to account 
for multiple testing inflates the 
study-wide type-1 error rate.

Population substructure
Characteristics of a population, 
such as admixture, population 
stratification and/or inbreeding, 
which might distort the 
distribution of the standard 
association statistics, leading 
to increased type-1 error and/
or decreased power.

Genome-wide association 
studies
Studies designed to look for 
association between disease 
and a dense set of markers 
covering the entire genome.

Case–control study
An epidemiological study 
design in which cases with a 
defined condition and controls 
without this condition are 
sampled from the same 
population. Risk-factor 
information is compared 
between the two groups to 
investigate the potential role of 
these in the aetiology of the 
condition.

Here, we review the basics of family-based designs, 
starting with the transmission disequilibrium test (TDT), 
and then emphasize numerous recent advances which 
make these designs increasingly desirable. Various exten-
sions have increased the power and generalizability of 
these designs to take into account factors such as missing 
parents because of late-onset disease, quantitative traits 
and the use of additional siblings (sibs). We focus on non-
parametric extensions of the original TDT approach, the 
so-called ‘family-based association tests’ (FBATs), for 
several reasons. The FBAT approach readily incorporates 
additional features such as general pedigrees, missing 
founders and so on, without compromising robustness; 
it is easy to generalize to more complex phenotypes that 
characterize complex diseases and it has distinct advan-
tages in handling the multiple-comparisons problem. We 
will also outline likelihood-based approaches to extending 
the TDT. Finally, we discuss issues that are specific to 
genome-wide association studies.

The transmission disequilibrium test
The simplest family-based design for testing association 
uses genotype data from trios, which consist of an 

affected offspring and his or her two parents (BOX 1). 
The idea behind the TDT is intuitive: under the null 
hypothesis, Mendel’s laws determine which marker 
alleles are transmitted to the affected offspring. The 
TDT compares the observed number of alleles that are 
transmitted with those expected in Mendelian transmis-
sions. The assumption of Mendelian transmissions is all 
that is needed to ensure valid results of the TDT and the 
FBAT approach6. An excess of alleles of one type among 
the affected indicates that a disease-susceptibility locus 
(DSL) for a trait of interest is linked and associated with 
the marker locus.

Originally, the TDT was used to test for linkage in the 
presence of association. However, because both linkage 
and association between the trait and the marker have 
to be present for the TDT to reject the null-hypothesis7 
(BOX 1), the TDT is now typically used as a test for 
association8. This dual-alternative hypothesis also 
means that the TDT avoids false positives that arise 
when association is present but linkage is not, as might 
happen in the presence of admixture and/or population 
stratification. Moreover, the attractiveness of a rejection 
of the null hypothesis for a particular marker is that it 

Figure 1 | Power comparison between case–control studies and family-based designs. The estimated power 
levels for a case–control study with 200 cases and 200 controls are compared with those for various family-based 
designs: 200 trios (of an affected offspring plus parents); 200 discordant sibling (sib) pairs (DSPs; one affected and 
one unaffected) without parents; 200 ‘3 discordant offspring (at least 1 affected, at least 1 unaffected) and no 
parents’. Discordant-sib pair designs have 50% less power than case–control designs, as has been previously 
noted75. For the rare diseases (a), trio designs are more powerful than case–control designs. For common diseases 
(b), case–control designs are slightly more powerful than trio designs and designs with 3 discordant sibs. Although 
it is not shown here, for larger-effect sizes (for example, odd ratios greater than 2), unaffected probands contain 
more information, and the DSP design can achieve power levels that are similar to those of trios designs14. The 
power calculations for both the family designs and the case–control designs were done in PBAT (v3.3) using 
Monte-Carlo simulations. 
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p(AA)=½ p(AB)=½

AB AA

Case–cohort study
Similar to a case–control study, 
except both cases and controls 
are drawn from an existing 
cohort of subjects who are 
being followed to study a 
broad spectrum of diseases 
and risk factors.

Proband
In a family study, this is the 
individual who is first identified 
in the family as having the 
disease under study.

Odds ratio
The odds of exposure to the 
susceptible genetic variant in 
cases compared with controls. 
If the odds ratio is significantly 
greater than one, then the 
genetic variant is associated 
with the disease.

implies linkage disequilibrium (LD) between the marker 
and a DSL; that is, the association is due to lack of 
recombination between the two loci rather than popu-
lation stratification. Because LD declines rapidly as the 
distance between two loci increases, the presence of 
LD indicates that the marker is tightly linked to a DSL. 
This makes association studies more valuable than 
linkage studies in pinpointing a narrow region where 
a DSL might lie.

The TDT is completely non-parametric — its valid-
ity does not require the proper specification of a disease 
model or assumptions about the distribution of the 
disease in the population. It is therefore also robust to 
potential misspecification of any features of the disease 
model or trait distribution. However, there are numer-
ous cases in which the original TDT cannot be applied 
without extension: missing parents, general pedigrees, 
complex phenotypes and haplotypes with missing phase, 
for example. We argue here that extensions to the TDT 
should maintain these key features, namely robustness 
to population stratification and robustness to potential 
misspecification of the phenotype distribution. This is 

the basis for the FBAT approach9,10, which is a widely 
used extension of the TDT. In the remainder of the 
review, we use the term FBAT to denote this particular 
approach.

Generalizing the trio design: the FBAT approach
The key to generalizing the TDT test to the FBAT 
approach is putting it into a general framework that both 
exposes the features that make it so robust and allows its 
easy extension to more general situations. First, a general 
formula is specified that shows how the FBAT statistic 
is computed from the available data. The distribution of 
the test statistic when the null hypothesis is true must 
then be described so that valid p-values can be com-
puted. A natural basis for a test statistic of association is 
the covariance between genotype and phenotype. In the 
family-based setting, however, both the trait and geno-
type variables are centred in an unconventional way to 
provide flexibility for different sampling designs and 
to adjust for potential admixture and/or stratification.

Defining the FBAT statistic. Let X denote a variable that 
translates an offspring’s genotype to a numeric value 
— the coded offspring genotype. For example, X might 
count the number of A alleles in an offspring genotype. 
Let P denote the genotype of the offspring’s parents, 
and T denote the coded offspring trait. We define T as 
Y - µ, where Y is the phenotypic variable and µ is a fixed, 
pre-specified value that depends on the nature of the 
sample and phenotype. Y can be a measured variable, 
such as body-mass index, or a zero-one (all-or-nothing) 
indicator of disease, for example, obesity. The covariance 
statistic we use in the FBAT test is:

U = Σ T * (X-E(X|P)) (1)

where U is the covariance, E(X|P) is the expected value of 
X computed under the null hypothesis, and summation 
is over all offspring in the sample. Mendel’s laws underlie 
the calculation of E(X|P) for any null hypothesis given in 
BOX 1. Centreing X by its expected value conditional on 
parental genotypes has the effect of removing contribu-
tions from homozygous parents and protecting against 
population stratification11.

Specifying the distribution under the null hypothesis. 
To complete the specification of the test statistic, 
we derive its distribution under the null hypothesis. 
Following the TDT approach, we treat the offspring 
genotypes, X, as random, but the trait, T, and the 
parental genotypes are fixed9,10. Holding the trait fixed 
means we do not need to make distributional assump-
tions about the trait, and holding the parental geno-
types fixed means we do not need to make assumptions 
about allele distributions in the population. Because X 
is centred around E(X|P), U has an expected value of 
zero under the conditional distribution. When there is 
more than one offspring, the computation of the vari-
ance of U depends on the null hypothesis (see below), 
but for any null hypothesis, the FBAT is defined by 
dividing U2 by its variance, which is again computed 

Box 1 | Trio designs — the TDT

Family trios are the basis of the 
transmission disequilibrium test 
(TDT)60. This test compares the 
observed number of alleles of type A 
that are transmitted to the affected 
offspring with those expected from 
Mendelian transmissions. An excess of 
A (or B) alleles among the affected 
indicates that a disease-susceptibility 
locus (DSL) for the trait is in linkage 
and in linkage disequilibrium (LD) with the marker locus.

For the example in the figure, the mother can only transmit the A allele because she is 
homozygous for A. Such a parent is not informative about transmissions to affected 
offspring. However, the father transmits A and B with equal frequency, yielding offspring 
with AA or AB genotypes with equal frequency. With AB,BB parents, we expect to see 
genotypes AB and BB with equal frequency, and with AB,AB parents, we expect to see 
genotypes AA,AB,BB with frequencies of ¼,½,¼. The TDT discards all homozygous 
parents and just looks at transmissions from a heterozygous parent to an offspring. 
Assuming the null hypothesis is correct, each transmission of A occurs with a probability 
of ½, and when there are n

het heterozygous parents, the distribution of the number of A 
alleles that are transmitted to affected offspring is binomial (nhet,½).

There are three possible null-hypotheses for the TDT:
H0: No linkage in the presence of association (used in the follow up of case–control 

association studies)

H0: No linkage and no association (used for candidate-gene studies without having 
obtained a previous linkage signal, or for genome-wide association studies)

H0: No association in the presence of linkage (used for the follow up of linkage signals)

There is only one testable hypothesis:
HA: The marker is both linked and associated with a DSL affecting the trait

If there is linkage but no association, the marker and the DSL will tend to be 
transmitted together, but different marker alleles will be transmitted with the DSL in 
different families. This results in no overall association of a particular allele that is 
transmitted with the trait. If there is association between the marker and a DSL but no 
linkage there is no tendency for the marker and the DSL to be transmitted together to 
offspring. In this case, one would not expect to see an excess of a particular allele 
transmitted in affected offspring.
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Monte Carlo
A method for obtaining a 
p-value for a test statistic by 
drawing repeated samples 
from the null distribution of the 
data, computing the p-value for 
the same statistic for each 
sample, and comparing the 
observed p-value to the 
distribution of p-values 
obtained from the samples.

Likelihood
A statistical model for 
analysing data that requires 
specifying a particular form for 
the distribution of the data.

Admixture
This occurs when two or more 
subpopulations inbreed, so 
that two randomly chosen 
individuals in the population 
might have different degrees of 
genetic heritage from the 
original subpopulations.

under the appropriate null hypothesis by condition-
ing on T and P for each offspring. Given a sufficiently 
large sample, that is, at least 10 informative families, the 
FBAT statistic has a χ2–distribution with 1 degree of 
freedom.

The FBAT statistic is exactly the same as the TDT 
statistic under the following conditions: both parents 
are genotyped; T = 1 for affected offspring and zero 
otherwise; X counts the number of a specific allele; and 
the null hypothesis specifies no linkage. By changing 
how the trait T is defined, either via Y or µ or both, we 
can include unaffected offspring, fit alternative traits 
and multiple traits. Changing how X is defined allows 
us to test alternative genetic models (for example, 
recessive or dominant) and to incorporate multiple 
alleles at a marker.

The general FBAT statistic. This simple description for 
the FBAT statistic can be readily generalized using the 
conditioning approach to situations that involve arbi-
trary pedigrees, missing parents/founders, haplotypes, 
different null hypotheses, and so on. These situations are 

outlined in BOX 2 along with extensions to handle multial-
lelic markers, arbitrary genetic models and more complex 
phenotypes, and these generalizations and extensions are 
discussed in detail in the following sections.

Likelihood extensions. There are numerous extensions to 
the basic TDT that are based on likelihood models; some 
of the most popular are outlined in BOX 3.

Pedigrees, missing founders and haplotypes
There are several extensions to the basic TDT in which 
the simple binomial model that is described in BOX 1 
does not apply. Many of these extensions can be charac-
terized as situations in which the complete distribution 
of offspring genotypes under the null hypothesis of inter-
est depends on unknown factors (for example, missing 
parents, missing phase or recombination fraction) that 
are not of direct interest. Such factors are often referred 
to as ‘nuisance’ parameters.

A standard statistical approach to handling nuisance 
parameters is to find sufficient statistics for them; the dis-
tribution of the full data, conditioning on the sufficient 
statistics, does not depend on the nuisance parameters12. 
This conditional distribution can then be used in test-
ing the null hypothesis, without the need to estimate or 
specify the nuisance parameters. This forms the basis 
of the FBAT approach. This strategy is in contrast to 
likelihood approaches (BOX 3), which generally estimate 
the nuisance parameters from observed data; this can 
make them susceptible to confounding by population 
sub-structures13.

General nuclear families and pedigrees. Families come in 
many shapes and sizes and it might be desirable to include 
additional family members for various reasons. With a 
rare disease, it is most efficient to sample affected offspring 
and their parents, but with more common disorders, 
such as obesity, unaffected offspring can also contribute 
information14. Many family studies are based on pre-
existing cohorts of families with more complex structures, 
which could have been ascertained for linkage studies, and 
some designs that include parents and grandparents have 
been suggested15. Genotyping additional family members 
is useful if founder genotypes are missing (see below).

Whether or not founders are known, the distribution 
of multiple offspring genotypes in pedigrees depends 
on which null hypothesis is tested. In testing the null 
hypothesis of no linkage, with or without association, 
there is no difficulty in incorporating multiple offspring; 
transmissions from all parents to all offspring are inde-
pendent and families with multiple affected members 
can be treated as multiple trios. Pedigrees with founders 
of known genotype are a simple extension of nuclear 
families: one simply uses Mendel’s first law (assuming 
a null hypothesis of no linkage and no association) to 
compute the joint genotype distribution of all offspring 
in the pedigree. For example, in the pedigree in BOX 4, 
the two related trios can be treated as two independ-
ent trios, but there is potentially a gain of 100% in the 
number of informative transmissions by treating the two 
offspring as arising in a pedigree.

Box 2 | The general FBAT statistic

The general family-based association test (FBAT) statistic61 is defined by:

U = Σ Tij (Xij-E(Xij|Si )) (1)

where i indexes pedigree, j indexes non-founders in the pedigree, and summation is over 
all i and j; Tij is a coding function for the trait of interest, and Xij is a coding function for the 
genotype. The coded genotype is chosen to reflect the selected mode of inheritance; for 
example, additive, dominant and recessive. Under the null hypothesis, the expected 
marker score, E(Xij|Si), is computed conditional on the sufficient statistic10, which is 
denoted by S.

Typically, a phenotypic residual is used for the coded trait — that is, Tij = (Yij - μ), 
where Yij is the original phenotype and µ a user-defined offset parameter. For 
example, with quantitative traits, µ should typically be the phenotypic sample mean. 
For complex phenotypes, for example, time-to-onset, longitudinal measurements or 
multivariate traits, more complex coding functions for Tij can be derived43,45,46. The 
expected value of the coded genotype, Xij, is computed conditional on the sufficient 
statistic Si for any genetic information about the founders of the family, as described 
in REF. 10. For trios, the sufficient statistic is equivalent to the parental genotypes. The 
distribution of the FBAT statistic under the null hypothesis is obtained by treating the 
Xij as random, but conditioning on the trait, Tij, and the sufficient statistic. Because 
E(U) = 0 by construction under H0, U can be normalized by its standard deviation (Z), 
which can again be computed under the conditional distribution of offspring 
genotype, given offspring trait and Si as follows:

Z = U/ √(var (U)), or equivalently, χ2
FBAT = U2/var(U) (2)

where

Var(U) = Σi Σj,j, Tij Tij, • cov(Xij, Xij, |S i, Tij Tij,) (3)

and cov(Xij, Xij’ |S I, Tij Tij’) is computed conditional on the traits and the sufficient statistics, 
assuming the null hypothesis is true. Note that this covariance only depends on Si and not 
the traits when no linkage is part of the null hypothesis. For testing no association in the 
presence of linkage, an empirical variance can be used to estimate var(U)19.

For large samples, Z is approximately distributed as N (0,1), and χ2
FBAT is distributed as 

approximately χ2
 on one degree of freedom. With multiallelic markers or haplotypes, a 

multiallelic version of the FBAT statistic is obtained by taking X to be a vector; each 
element of X codes for a specific allele or haplotype. Then U will be a vector, var(U|S) a 
variance/covariance matrix, and the test statistic is the quadratic form UTvar(U|S)–U, 
which is distributed as χ2 with degrees of freedom equal to the rank of var(U|S)61. If the 
haplotype phase is unknown, the coding function and the computation of the expected 
value of Xij and its variance are modified by weighting the possible phases.
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Population stratification
The presence in a population 
of distinct strata or groups that 
show limited inbreeding; they 
might have different disease 
rates and distinct allele-
frequency distributions. Failure 
to control for the stratification 
can invalidate tests of 
association.

Linkage disequilibrium
(LD). This occurs when alleles 
at two different loci are 
associated in a population 
because of tight linkage.

Haplotype
A set of alleles at different loci 
that are present together on 
the same chromosome.

Phase
The arrangement of alleles at 
multiple loci on homologous 
chromosomes. For example, in 
a diploid individual with 
genotype Aa at one locus and 
genotype Bb at another locus, 
possible linkage phases are BA/
ba or Ba/bA, where ‘/’ 
separates the two homologous 
chromosomes.

Covariance
A measure of association 
between two variables that 
characterizes the tendency for 
the two variables to co-vary 
around their mean in a 
systematic way.

Informative families
Families that make a 
contribution to the FBAT test; 
that is, those with at least one 
heterozygote parent, or 
sibships with at least two 
distinct genotypes.

Nuisance parameters
Parameters that are not the 
primary focus of a statistical 
analysis, but for which 
misspecficiation might lead to 
biased results, for example, 
allele frequency in association 
tests.

Sufficient statistics
A data reduction function that 
retains all information about an 
unknown parameter; they are 
used to remove the 
dependence of a test on 
nuisance parameters that are 
unknown or difficult to model.

Testing for association with multiple offspring in the 
presence of linkage. It is common to use FBATs for 
fine mapping under a linkage peak. In some cases, it 
might be feasible to use the same data set first for test-
ing linkage and then for association, using additional 
markers in the linked region. In this context, the null 
hypothesis of no association in the presence of linkage 
is appropriate. If only families with a single offspring are 
used, the TDT remains a valid test. However, transmis-
sions from the same parent to multiple offspring will 
be correlated because of patterns of identity-by-descent 
(IBD). Therefore, tests of association that treat multiple 
offspring as independent are not valid16.

The full distribution of transmission to multiple off-
spring depends on the unknown recombination fraction 
between the marker and the proposed DSL17, as well as 
observed traits. However, IBD status among sibs forms 
the sufficient statistics for estimating the recombination 
fraction, so conditioning on observed patterns of IBD 
will result in a distribution for transmissions to multiple 
offspring that does not depend on the recombination 
parameter. When the parents are genotyped, such a dis-
tribution can be constructed using permutation: for each 
heterozygous parent, the values of their two alleles can 
be permuted independently, while fixing the allele that 

is transmitted to each child. Therefore, A and B will be 
transmitted equally often, but the observed patterns of 
IBD will remain fixed. This approach can also be extended 
to situations in which parents are missing. Although the 
resulting distributions are simple to obtain18, a simpler 
approach of estimating the variance of the correlated 
transmissions empirically is more commonly used16,19.

The effect of recombination on correlation between 
transmissions to sibs is often modest, and conditioning 
on IBD reduces the size of the possible outcome space, 
resulting in a loss of information. In practice, however, 
the loss is usually small, except in cases of large nuclear 
families without parental genotypes. Therefore, our 
recommendation is to test the null hypothesis of no 
association and no linkage, unless the same sample that 
was used to test association has previously been used to 
demonstrate linkage in the region.

Missing parents. Missing parents present an obvious 
difficulty for the TDT and can be common in study-
ing disorders that occur in later life. There have been 
numerous proposals for extending the TDT to handle 
this problem; several likelihood approaches are dis-
cussed in BOX 3. Other approaches16,20–22 compensate 
for missing parents by comparing genotypes in affected 

Box 3 | Likelihood methods

The likelihood method specifies a probability density for the observed data as a function of genotype; either likelihood-
ratio or score tests are used to test the hypothesis of no association.

One type of likelihood method for case–parent trios creates ‘pseudo-controls’ using the non-transmitted alleles62, and 
constructs a conditional logistic regression likelihood; under a log-additive relative-risk model, the likelihood-ratio test of 
this approach is equivalent to the transmission disequilibrium test (TDT). The approach has been extended to haplotypes25, 
gene–environment interactions and gene–gene interactions26,63. 

A second approach uses multinomial likelihoods. The likelihood for a case–parent trio is factored as:

L = LcLp (1)

Lc is the probability density of the child’s genotype conditional on the parents’ genotype and the child’s disease status, 
and Lp is the probability density of the parental genotypes, given the child’s disease status. With parental data, all 
information on association is contained in Lc and likelihood-ratio tests based on Lc are optimal64–66.

Score tests are generally more popular than likelihood-ratio tests. They can easily be extended to accommodate multiple 
offspring, including unaffected, without the need for distributional assumptions under the alternative47. Score tests based 
on the multinomial model have been generalized to encompass complex phenotypes47.

The family-based association test (FBAT) statistic is also a score test under general assumptions about the distribution of 
the offspring phenotypes61,67. For trios, the score test based on Lc and the FBAT are identical. The approaches diverge in the 
treatment of missing parental data. Here, the FBAT approach replaces conditioning on parents by conditioning on the 
sufficient statistics S, which maintains the independence of the test from allele frequencies estimates. The likelihood 
approach estimates the probabilities of parental genotypes from the likelihood, Lp, and averages E(X|P) over the estimated 
distribution of parental genotypes for probands whose parents are missing. Likelihood approaches are more efficient, but 
the efficiency gain relies on the assumption that their parents’ genotypes can be estimated unbiasedly. Using Poisson 
likelihoods, extensions of the multinomial-model approach also incorporate parental imprinting, gene–environment 
interaction and quantitative phenotypes68–74.

A popular likelihood approach for the quantitative transmission disequilibrium test assumes the trait follows a normal 
distribution, with the mean depending linearly on X11,32,33. Inferences are based on the normal likelihood for phenotype 
given genotype, rather than genotype given phenotype. A correction for population substructure is made by 
incorporating E(X|P) into the mean model (equation 2). Because the approach requires the correctness of the likelihood 
function, the likelihood ratio test can be sensitive to distributional assumptions and ascertainment conditions; the 
model does not incorporate excess variation, which can arise in the presence of population admixture and can lead to 
anti-conservative tests13.

Likelihood-based approaches offer the possibility of more sophisticated tests, for example, nested models, and can 
be more efficient because they incorporate the between-family information. However, model-based validation and 
screening is much more easily carried out in the FBAT approach, using the between-family information for screening, 
and the within-family component for testing.
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AB AB

AA

Trio 1

Trio 2

Confounding
A measure of the association 
between a disease and a risk 
factor is distorted because 
other variables, associated with 
both the disease and the risk 
factor, are not controlled for in 
the calculation of the measure 
of association.

Likelihood-ratio tests
A class of statistical tests 
obtained by comparing the 
likelihood statistic under the 
alternative hypothesis to the 
likelihood under the null 
hypothesis.

Score tests
A class of statistical tests that 
are derived from a likelihood 
model and are generally easier 
to compute than likelihood-
ratio tests.

Identity-by-descent
(IBD). An allele shared by two 
related individuals is said to be 
identical-by-descent if the 
allele is inherited from the 
same common ancestor.

offspring and unaffected sibs. Conditioning approaches 
for missing parents are described in two studies10,23: the 
first study conditions on being able to reconstruct both 
parental genotypes, and the second conditions on the 
sufficient statistic for missing parents. Missing-parent 
designs are generally less efficient than trios when dis-
ease prevalence is low, but discordant-sib trios compensate 
well for missing parents when disease prevalence is high 
(FIG. 1). Discordant-sib pairs (DSPs) can also be more 
efficient than parents with high prevalence and larger-
effect sizes14. Note that DSPs only require genotyping 
two individuals as opposed to three, and can therefore 
be cost effective as well as powerful.

Haplotypes. When testing for association with candi-
date genes, it is common to genotype multiple SNPs 
within the gene. Testing each SNP separately leads 
to multiple testing issues, and will not be efficient 
when the SNPs are in high LD. One alternative is to 
test for over- or under-transmission of haplotypes, 
rather than individual SNPs. However, phase cannot 
always be determined from the available marker-
genotype data. Conditioning on the sufficient statistics 
for parental phase can be used to form a distribution for 
haplotype transmissions that does not rely on estimat-
ing phase24,25. Likelihood approaches26 for haplotype 
analysis allow exploration of marker interactions 

using nested models. However, in general, extensions 
for unknown-phase haplotypes are more difficult in the 
likelihood approach27.

Extensions of the TDT involving phenotypes
Extension to samples of affected and unaffected offspring. 
With common diseases or disorders, incorporating 
unaffected sibs can provide additional information28,29. 
Using a multiplicative genetic model for a common disease, 
Whitaker and Lewis30 showed that the power of a test 
that is equivalent to the FBAT can be maximized by 
setting the offset µ to the population prevalence of the 
disease. With Y defined as 1 or 0 for affected/unaffected, 
this yields coded traits of (1 - µ) and (-µ). In the absence 
of an ascertainment condition (meaning offspring are 
not selected into the study on the basis of their trait) this 
optimality holds under any genetic model31.

Extension to quantitative traits. The most commonly 
used complex phenotypes in genetic association studies 
are quantitative traits. In generalizing the TDT to handle 
these traits, it is important to note that offspring now 
provide both phenotypic and genotypic variation. This 
offers the possibility of reversing the role of phenotype 
and genotype — that is, treating the phenotype as the 
random response and the genotype as the fixed predictor. 
Ordinary linear regression of Y on X can then be used to 
test for association, giving equal weight to trios with the 
same X, no matter if there are 0, 1 or 2 heterozygote par-
ents. This can introduce bias in the presence of population 
substructure, so to circumvent this the linear-regression 
model of Y on X11 can be modified to fit:

E(Y) = m+aw*(X-E(X|P))  + ab*E(X|P) (2)

Here, aw measures within-family correlation between 
phenotype and genotype, and is therefore similar to the 
FBAT statistic; ab measures the between-family — or 
between-population — correlation. With random popu-
lation samples and in the absence of any population sub-
structure, the two coefficients should be approximately the 
same. Several popular approaches, such as the quantitative 
TDT (QTDT) likelihood approach32, are based on model 
equation 2 or extensions of it27,33, sometimes making the 
additional assumption of normality for the phenotypic 
distribution. We refer to such approaches as model-
based, as the validity of the inference generally requires 
that the model holds; otherwise levels of type-1 error 
are not maintained below a suitable threshold in the pres-
ence of population substructures13.

In contrast, the FBAT approach continues to condi-
tion on the trait and parental genotypes, and is non-
parametric in the sense that no model or distributional 
assumptions for the trait are required. The power is 
optimized with unselected subjects by setting µ to the 
population mean. When this is unknown, the observed 
phenotype data can be used to determine the offset µ 34.

With quantitative traits, the power of any test will 
depend on the size of the genetic effect as well as the 
variation in the trait. Therefore, it is useful to minimize 
the degree of extraneous variation in the data (owing to 

Box 4 | The use of pedigrees in family-based designs

By conditioning on all 
founders, the family-
based association test 
(FBAT) can be extended 
readily to incorporate 
pedigrees. In relation to 
the pedigree shown 
to the right, the table 
shows the informativeness 
of conditioning on 
founder genotypes, as 
opposed to conditioning 
only on parents, 
separately for each trio, when computing transmissions to the two offspring. When the 
genotype probability is 1, the family is non-informative by itself. The informativeness 
ratio is the ratio of the number of informative transmissions when the extended 
pedigree is analysed versus that when the trios are analysed independently. With two 
heterozygote parents (see figure), the top trio in the pedigree above gives maximal 
information, but the bottom trio is only informative when the mother is AB. Computing 
the distribution of the 2 offspring based on the founders’ genotypes only (that is, the 
genotypes of the two grandparents), we can increase the number of informative 
transmissions by 100%, relative to treating them as independent trios.

Offspring 
genotypes

Probability of genotype Informativeness 
ratio

Trio 1 Trio 2 Based on 
both trios

Based on 
trio 1 only

Based on 
trio 2 only

AA AA ¼ ¼ 1 2

AB AB ¼ ½ ½ 1

AB AA ¼ ½ ½ 1

BB AB ¼ ¼ 1 2

R E V I E W S

390 | MAY 2006 | VOLUME 7  www.nature.com/reviews/genetics

© 2006 Nature Publishing Group 

 



Permutation
An approach in which the 
actual data are randomized 
many times to generate a 
distribution of outcomes, so 
that the fraction of 
observations with values that 
are more extreme than the 
outcome that is observed with 
the real data reflects the 
statistical significance.

Outcome space
Set of all possible genotype 
configurations for a specific 
pedigree that are plausible 
under Mendelian 
transmissions, and consistent 
with the sufficient statistics for 
parental genotype.

Discordant sibs
A family design for testing 
association that uses a case 
and his/her unaffected sib.

Nested models
A sequence of statistical 
models, each specifying a 
different hypothesis, such that 
each model in the sequence 
contains one more factor than 
the preceeding model. Nested 
models are often used to test 
for the presence of interactions 
between two or more risk 
factors.

Multiplicative genetic model
A genetic model for penetrance 
functions that assumes the 
relative risk for disease given 
two alleles is the square of the 
relative risk for disease given 
only one allele.

Linear regression
A statistical method used to 
test and to describe the linear 
relationship between two or 
more variables.

Type-1 error
The probability that the null 
hypothesis is falsely rejected.

Intermediate phenotypes or 
endophenotypes
Measured biological variables 
intermediate between 
genotype and external 
phenotype that can indicate 
susceptibility to, or manifest as 
early signs of, a wide range of 
diseases or disorders.

Imputed
A statistical method for 
handling missing data which 
replaces the missing values by 
estimated values.

random error, environmental factors or measurement 
error). Offspring characteristics, such as age, sex, race and 
smoking, can be used as covariates in a regression analy-
sis to reduce extraneous variation and improve power35. 
Adjustment in the model-based setting by inclusion of 
covariates in model equation 2 is straightforward. In the 
FBAT approach, the quantitative traits are first regressed 
on the covariates and the offset µ is then set to the pheno-
type that is predicted by the regression model, Ŷ, for each 
offspring. The coded trait T is therefore given by the 
residual (Y - Ŷ).

Extensive power considerations indicate that both the 
non-parametric quantitative FBAT approach and 
the QTDT have optimal power for a quantitative phe-
notype for which no ascertainment condition has been 
imposed32,36. However, with highly ascertained samples, 
such as discordant-sib designs, quantitative traits 
should be converted to dichotomous variables and 
analysed as such36.

Extension to complex phenotypes
The challenge of complex phenotypes. Appropriate model-
ling of phenotypic information is important, particularly 
for complex diseases. For example, in asthma37,38, chronic 
obstructive pulmonary disease39,40,41 and attention-deficit 
hyperactivity disorder42, the definition of the affection 
status is a binary phenotype that aggregates information 
from a variety of complex phenotypes. The definition 
can vary between studies, which should be taken into 
account when unaffected probands are incorporated 
in the test statistic. In addition to such dichotomous 
phenotypes, we might have multiple and/or repeated 
measures that characterize disease, as well as multiple 
covariates that might influence the phenotype. Assuming 
small genetic-effect sizes for complex diseases, the use of 
intermediate phenotypes or endophenotypes in the association 
analysis can enhance the statistical power.

The FBAT approach has been extended in several ways 
to handle more complex modelling issues. For exam-
ple, REF. 43 describes an approach for multiple traits in 
which T is a vector. Time-to-onset versions of the FBAT 
test have been described, using various codings for the 
trait44–46. Likelihood approaches have also been developed 
for time-to-onset47. In principle, it is straightforward to 
handle multiple or repeated measures that use likeli-
hood models that are based on an appropriate extension 
of model equation 2 to adjust for population substructure. 
In practice, however, the analysis of complex traits has 
to deal with two major statistical obstacles. The first is 
the appropriate modelling of the complex phenotypes. 
In addition to incorporation of covariates, this requires 
attention to various other modelling factors, including 
which aspects of the phenotypes are optimal for analysis 
(for example, average or change over time; early versus late 
time-to-onset; combinations or clusters of multiple traits), 
the need to account for environmental correlation and the 
need to handle missing phenotypes. Methods that are akin 
to model validation that allow hypothesis generation and 
model selection to be carried out independently of model 
testing offer one solution to this problem. The second 
problem relates to multiple-hypothesis testing: regardless 

of model complexity, it is usually desirable to consider a 
variety of different combinations of phenotypes, genetic 
models and markers.

A general approach to complex phenotypes. In view of 
the multiple-comparison and model-selection issues that 
arise in modelling complex traits, it is useful to have a 
mechanism for exploratory model development and/or 
screening, followed by an independent confirmatory 
step. Here, we consider a general approach to screen-
ing, model selection and/or hypothesis generation that 
is based on separating family data into two independent 
partitions that correspond to the population information 
and the within-family information. This allows one part 
of the data to be used for model building and selection, 
and the other part for confirmatory testing.

The full distribution for family data consists of a joint 
distribution for all offspring phenotypes, Y, all offspring 
genotypes, X, and all parental genotypes, P (or more 
generally, the sufficient statistics for parental or founder 
genotypes, S). The joint distribution is partitioned into 
two independent parts:

P(Y, X, S) = P(X|Y, S)P(S, Y) (3)

Model building, hypothesis generation and screen-
ing can be based solely on S and Y, so that subsequent 
hypothesis testing using any test statistic with a distribu-
tion that is based on P(X|S,Y) will be independent of the 
selected model. Note that equation 3 simplifies further 
if it is assumed that there is no linkage, as P(X|Y,S) can 
then be replaced by P(X|S).

To illustrate this approach, consider testing a 
quantitative phenotype with a single marker. To use 
a population-based approach, two studies48,49 proposed a 
‘conditional-mean model’ that was obtained by setting 
the aw to zero in model equation 2:

E(Y) = m+ab*E(X|S) (4)

Note that for doubly homozygous parents, X = E(X|S); 
otherwise, we can think of X as missing if parents are 
informative, and E(X|S) replaces the missing X. In effect, 
equation 4 defines a population regression in which 
some values of X are imputed using parental informa-
tion (or the sufficient statistics for parental information 
if parents are missing); generalization to pedigrees and 
haplotypes is immediate. Because the regression uses 
only Y and S, all the statistics are statistically independent 
of any FBAT statistic that is subsequently computed by 
equation 1. Model equation 4 can be used for any choice 
of coded genotype, any number of phenotypes and any 
number of markers. Model selection for confirmatory 
testing using FBAT can be based on p-values for testing 
the null hypothesis that the between-family or between-
population correlation (ab) is zero48,49. Alternatively, the 
estimated ab can be used to compute the conditional 
power of the FBAT statistic. The conditional power cal-
culation depends on the effect size, as well as the observed 
parental genotypes and traits48,49. In general, selection that 
is based on the conditional power is preferable50.
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Trait

E(X)1|P) E(X)2|P) E(X)3|P)

X1 X2 X3

E(X)M|P)

XM

21% 89% 23% 15%
Predicted power of 
the FBAT statistic

Bonferroni or Hochberg 
corrections
Statistical methods, proposed 
by Bonferroni and Hochberg, 
for controlling type-1 error 
(false positives) in the presence 
of multiple testing.

This basic approach has been extended to handle 
longitudinal and repeated measures (FBAT PC)35 and 
multivariate data51 by using the screening stage to 
select optimal linear combinations of traits for sub-
sequent testing. Jiang et al.46 proposed a method to 
determine the genetically relevant age range for time 
to onset, which is particularly useful for diseases in 
which an early onset indicates a strong genetic com-
ponent, whereas a late onset might be attributable to 
environmental effects.

Genome-wide association studies
The main scientific obstacle in genome-wide associa-
tion studies is the hundreds of thousands of SNPs and 
potential statistical tests that can be computed, result-
ing in numerous hypothesis-testing issues. To avoid 
this problem, multi-stage designs have been proposed 
for case–control studies8,52; the number of genotyped 
SNPs is reduced in each stage of the design, so that 
genome-wide significance is achieved step by step. The 
screening approach for family studies that is described 

above extends readily to a genome-wide association 
study with quantitative traits50 (BOX 5). With family-
based designs, the screening procedure uses all families, 
even the ‘non-informative’ ones.

Assuming moderate- to low-effect sizes, simulation 
studies indicate that if a true DSL, or an SNP in LD with 
a DSL, is included in the data set, it is sufficient to select 
the highest 10 or 20 SNPs based on the power estimates 
for further testing, and retain high power for the overall 
procedure. By contrast, procedures that rank the SNPs 
based on p-values require the selection of many more 
SNPs to ensure that the true DSL is selected50,53. The 
advantage of family-based screening is that the same 
data set is used for the screening step and the testing 
step. This means only one sample needs to be recruited, 
and replication in other studies serves the purpose of 
generalizing a significant finding to other populations. 
Although the screening step relies on population-based 
analysis and is consequently susceptible to confound-
ing by undetected population substructures, simulation 
studies indicate that the ranking of the SNPs is relatively 
well maintained50. The strategy has been successfully 
applied to a 100k SNP scan for obesity in families from 
the Framingham Heart Study. A new candidate gene 
for body-mass index was discovered that would have 
been missed by standard approaches (for example, the 
Bonferroni or Hochberg corrections for multiple testing54,55). 
Using the same genetic model, the finding was replicated 
in four independent studies, including cohort, case–con-
trol and family-based samples56.

The promise of whole-genome association scans 
offers great expectations for genetic association studies. 
Most projections agree that large samples of individuals 
will be necessary to separate the wheat from the chaff in 
these large-genome scans2,8,50, no matter what the design. 
Although it is inescapable that large samples from exist-
ing cohort or case–control studies that do not include 
data on relatives are generally much easier to obtain than 
large numbers of suitable families, such approaches carry 
the risk of increased numbers of false results owing to 
heterogeneity between studies and undetected, subtle 
population substructures3. We believe that the innova-
tive use of the population information contained in fam-
ily data for screening and hypothesis generation, which 
allows the establishment of genome-wide significance 
in just one modestly sized study56, coupled with their 
robustness to population substructure make these fam-
ily studies competitive. In addition, with approaches for 
handling pedigrees with missing founders, family data 
that have already been collected for linkage studies can, 
in many cases, be recycled for association.

Outlook — the future of family designs
Although we have outlined several reasons why we 
feel that family-based designs are useful, there are 
features that can make them less attractive than their 
population-based counterparts. One feature is the 
sensitivity to genotyping errors57–59, which can lead 
to false inferences as the test distribution depends on 
the assumption that parental genotypes are correct. In the 
population-based setting, non-differential genotyping 

Box 5 | Using family-based designs in whole-genome association studies

The conditional-mean model35,48–50 can be used to minimize the multiple-testing problem. 
Here, we take the example of 1 quantitative trait and M SNPs. In the first step, which is 
shown in the figure, the conditional-mean model specifies a linear regression of the 
phenotype, Y, on the expected SNP marker scores, E(X|P) or E(X|S), conditional on the 
parental genotypes (P) or the sufficient statistic (S), respectively11. The true-offspring 
genotype is treated as missing. The observed phenotypes and expected marker scores 
are used to estimate the conditional-mean model. The power depends on the observed 
parental genotypes and the effect size that is estimated from this model.

In the second step, as illustrated in the table, the K SNPs with the highest power 
estimates are tested for association with the family-based association test (FBAT) statistic 
at a Bonferroni-adjusted significance level of α/K where α denotes the overall-
significance level. Because only K of the original M SNPs have been selected for testing, it 
is only necessary to adjust for K comparisons instead of M.

Power rank Estimated power 
of FBAT statistic

SNP p-value of FBAT 
statistic

1 0.92 3 0.90

2 0.89 100 0.20

3 0.85 25 0.00001

… … … …

K 0.70 53 0.20

R E V I E W S

392 | MAY 2006 | VOLUME 7  www.nature.com/reviews/genetics

© 2006 Nature Publishing Group 

 



errors will only make tests conservative under the 
null hypothesis, but with family based tests, random 
genotyping errors can inflate the false-positive rate, 
sometimes substantially8. This issue will become less 
important with time, given the constant improvements 
in genotyping technology.

Population-based samples also have the advantage 
in that their analysis can largely be implemented by 
standard commercial software packages, whereas with 

family-based designs, the development of software 
for most methods beyond the TDT has been home-
grown. As availability of commercial software with 
adequate support increases, this will greatly enhance the 
productivity of family designs.

These future advances will add to the attractiveness 
of family-based methods, which should prove particu-
larly valuable in light of their important advantages for 
genome-wide association studies.
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