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FAMILY BLOWUP FORMULA, ADMISSIBLE

GRAPHS AND THE ENUMERATION OF SINGULAR

CURVES, I

AI-KO LIU

Abstract

In this paper, we discuss the scheme of enumerating the singular holomor-
phic curves in a linear system on an algebraic surface. Our approach is
based on the usage of the family Seiberg-Witten invariant and tools from
differential topology and algebraic geometry.

In particular, one shows that the number of δ-nodes nodal curves in a
generic δ dimensional sub-linear system can be expressed as a universal de-
gree δ polynomial in terms of the four basic numerical invariants of the
linear system and the algebraic surface. The result enables us to study in
detail the structure of these enumerative invariants.

1. Introduction

Counting the numbers of nodal curves of a linear system on an al-
gebraic surface is a well-recognized problem in enumerative geometry.
Counting nodal curves in CP2, classically known as the Severi degree,
attracts the attention from a lot of algebraic geometers. Recently, re-
cursive formulas for the Severi degrees were derived by Z. Ran [Ran] and
later by Harris-Caporaso [7]. Both groups had used methods in alge-
braic geometry. Inspired by the work of several physicists, S.T. Yau and
E. Zaslow made the Yau-Zaslow conjecture regarding the modularity of
the generating function of nodal curves on an algebraic K3 surface [63].

Despite the diverse interest in this type of problem and approaches
from different perspectives, there still lacks systematic understanding of
the general phenomenon on a general algebraic surface.
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In this paper, I would like to develop an unified theory for count-
ing nodal curves on a general algebraic surface. More specifically, I
would extend my discussion to include counting singular curves of a
fixed topological type (for the precise definition, see Section 5). As
will be demonstrated in the process of discussion, the counting of nodal
curves becomes a rather special case of the main machinery. In antici-
pation of a sequel to the present paper, I will discuss the generalizations
and extensions of the results to higher dimensions.

For the counting of nodal curves, the following two main theorems
will be presented:

Main Theorem 1.1. Let M be an algebraic surface. Let L be a
sufficiently very ample line bundle on M . Let the number nL(δ) denote
the number of δ-nodes nodal curves in the linear system |L|, then the
number can be expressed as an universal polynomial in terms of L · L,
L · c1(M), c1(M)2 and c2(M).

By combining the perturbation argument with Göttsche’s argument,
Main Theorem 1.1 has an effective version, that is, by taking L to be
(3δ − 1)-very ample, the nL can be understood in the classical sense.

If one does not adopt the technique from differential topology, it is
sufficient to take L to be (3δ − 1)-very ample and the main theorem
holds for algebraic closed fields of characteristic zero.

The (3δ−1)-very ampleness result may not be the strongest effective
version when one applies to the particular algebraic surface. Later, in
my solution of the Di Francesco-Itzykson conjecture of CP2, it shows
that the optimal L is

([
δ+2
2

]
+ 1
)
-very ample.

In this paper, I would like to focus upon Kähler surfaces from both
angles of differential topology and algebraic geometry. The correspond-
ing theory of symplectic four-manifolds will be attempted in a separate
article.

In my nomenclature, the number nL will be interpreted as the nodal
curve invariant (or modified family invariant) discussed below. The
phrase, “number of curves” can be better understood as virtual numbers
or “equivalence.” As will be briefly addressed, it also represents the
actual number of pseudo-holomorphic curves when L is a high power of
an ample line bundle.

Subsequently, a second main theorem will be devoted to singular
curves of a fixed topological type:
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Main Theorem 1.2. Let M be a Kähler surface and L be a suf-
ficiently very ample divisor on M . Let nL(Γ, L −∑miEi) denote the

“number of singular curves” in a generic
∑ m2

i +mi−4
2 dimensional linear

subsystem of |L| with a fixed topological type of plane curve singularities
specified by Γ and mi, etc.

Then the virtual number can be expressed as an universal polynomial
in L ·L, L · c1(M), c2

1(M) and c2(M). The universal polynomial depends
explicitly on Γ, the admissible graph, and mi, the multiplicities of the
singularities.

For the definition of “admissible graph” and “topological type of a
singular curve”, please refer to Section 4.2 and Section 5.

In an earlier communication, the main theorem of counting nodal
curve was formulated for pg = 0 Kähler surfaces. Later the author
devised a way of defining the algebraic family Seiberg-Witten “invari-
ants,” which coincide with the usual family Seiberg-Witten invariants
[29] when the geometric genus pg vanishes. This object has the benefit
of counting directly from algebraic geometry, yet it is an actual topolog-
ical invariant only when pg = 0. Nevertheless, it enjoys the same family
blowup formula and family switching formula as were discussed in [38],
[39] in detail.

The key insight of the previous paper [36] was that there exists a
correspondence between pg = 0 Kähler surfaces and b+

2 = 1 symplectic
four-manifolds. Likewise, the pg > 0 Kähler surfaces are related to
b+
2 > 1 symplectic four-manifolds. For the purpose of discussion here, I

will adopt two versions of family Seiberg-Witten invariants. The first is
the topological family Seiberg-Witten invariants defined in [29], using
the technique of differential topology. Secondly, there is another version
of “invariant” namely the “algebraic family Seiberg-Witten invariants,”
which can be defined for algebraic closed fields with char(k) = 0 as well.
These two versions of “invariants” are equal to each other only when
pg is equal to zero. By adopting the second version of invariants, the
proof of the main theorems can be extended to the category of algebraic
surfaces over an algebraic closed field k with char(k) = 0.

Given an integral second cohomology class on a Kähler (symplec-
tic) surface, it is interesting to ask whether it can be represented by
(pseudo)-holomorphic curves. One can calculate its expected genus
through the usual adjunction equality. The special role of the nodal
curves in Gromov-Ruan-Tian theory is that the curves counted by
Gromov-Ruan-Tian theory [21], [48] are nodal under a generic pertur-
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bation of almost complex structures. My result can be also interpreted
as the counting of Gromov-Ruan-Tian invariants.

Be aware that even though statements of the main theorems have
been phrased completely in terms of algebraic geometry, the founda-
tion of the main theorems lie in using the novel concept of the family
Seiberg-Witten invariants (and the family Gromov-Taubes invariants)
previously discussed and studied in a different paper [29].

As recent as the past decade, serious attempts have been directed at
the universal solution for counting nodal curves on a general algebraic
surface.

The first progress was made by Vainsencher [59], [24], who deter-
mined and computed the universal formula for n ≤ 6 (the number n
stands for the number of nodes).

Recently, a further attempt was made by S. Kleiman and R. Piene
[24] to generalize to n ≤ 7, 8 cases. Given the general belief that the
above theorem should be true [24], Göttsche [19] formulated it as a
conjecture and gave a precise conjecture on what the universal formula
should look like. The author has also conjectured the existence of the
universal formula independently.

On the other hand, following several physicists’ work, S. T. Yau and
Zaslow [63] formulated the conjecture regarding the number of nodal
curves in a linear system of K3. It gave the present author and T. J. Li
a strong motivation (1995–1997) to study this problem along the line of
Seiberg-Witten theory and Gromov theory. The relationship between
nodal curves on K3 and families was discussed extensively by Yau-
Zaslow [63]. The concept of family Gromov Invariants was discussed in
Ruan’s paper [46] to define the equivariant Gromov Invariants.

The Yau-Zaslow question was one of the motivations for T. J. Li and
the present author [29] to develop the theory of family Seiberg-Witten
invariants. The concept of family Seiberg-Witten invariants was first
introduced by Professor S. T. Yau soon after the formulation of Seiberg-
Witten theory.

Later the concept was also addressed by S. K. Donaldson [9] and G.
Tian [58] et al. The author also appreciates their inspiration.

In the aforementioned paper [29], this author derived a version of
the family wall crossing formula to discuss the nodal curve counting.
Without knowing Vainsencher’s work [59], [24] during that time, it was
proposed that one could use the Fulton-McPherson spaces [17] to con-
struct a sequence of fiber bundles in handling the counting of nodal
curves.
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In retrospect, philosophically the family invariants [29] could be rel-
evant to the nodal curve counting, it was not very clear how to produce
the precise argument due to various conceptual difficulties during spring
1997 [29].

The purpose of the present paper is to address these points and
to address the possible applications of the new technique. The key
progress was made in January–February, 1998, after a detailed study
of the scheme generalizing McDuff’s proposal of the ordinary Seiberg-
Witten-Gromov-Taubes theory [37]. A number of ideas and significant
insights were gained when the author was a member of the Institute for
Advanced Study (1996–1997) and at Park city (IAS) in the summer of
1997. The author would like to express special thanks for the possible
inspiration that T. J. Li had provided during the preparation of the
earlier work [29].

The author wants to thank Prof. Shing-Tung Yau for his unreserved
support and advice. His joint work with E. Zaslow and B. Lian have
been the central inspiration for this piece of work.

The author also would like to make note of assistance from Prof.
Taubes, who kindly listened to the author’s reports and also for his
long-time encouragement. Without being inspired by his machinery
[51], [52], [53], it would have been impossible to finish this work.

The author thanks S. Kleiman and Piene for informing him their
explicit formulas for n ≤ 8.

The author thanks Prof. B. Siebert for his warm encouragement
during 1997.

Finally, this author has to express his personal gratitude to his teach-
ers Prof. Yau and Prof. Taubes and those friends who supported him
during a difficult time. Mr. Yu-Sheng Lin, Dr. Mu-Tao Wang, Mr.
Tseu-Hsiu Lin and Ms. Chia-Ling Wang had given their support during
the preparation of this paper. The author also thanks Mr. David Bolick
who read the draft version of the paper and corrected the typos in it.
The author thanks Dr. Mu-Tao Wang for his enthusiasm in streaming
the format of the entire paper. He also thanks both referees for the
various suggestions and criticisms in improving the paper.

Even though the Fulton-MacPherson space [17] will not be explicitly
used in the present paper, I still want to point out the indirect influ-
ence of Fulton-MacPhersons’ paper [17] upon the scheme I adopt. The
observation between the symmetry group GΓ ⊂ Sn and the strata was
borrowed from an old idea of the author when the Fulton-McPherson
spaces were chosen to be the base manifolds [29].



386 ai-ko liu

The organization of the paper is as the following: in §2, I survey the
main tools used in the paper briefly. For details of the family Seiberg-
Witten theory, one can consult the paper [29]. The concept of algebraic
family Seiberg-Witten “invariant” will be only briefly addressed here.
The details can be found in the paper [38]. In the same section, I state
(without proof) the family blowup formula and the family switching
formula [38], [39]. As these two formulas have other geometric applica-
tions beyond the scope of the present paper, they are discussed in two
individual papers [38], [39]. In §3, I study the sequence of manifolds Mn,
which will be the base spaces of the fiber bundles. Their cohomology
rings and several useful structures will be reviewed. The cohomology
rings of Mn are well known to algebraic geometers. I survey it merely
for the sake of completeness. The sequence of manifolds will be called
the “Universal spaces” informally.

In §4, I survey the algebraic family scheme regarding curve counting
in details. The concept of admissible decomposition classes of a coho-
mology class will be introduced briefly. The admissible decompositions
pick up the possible contribution to the total algebraic family invariants
other than the smooth curve representatives expected from Taubes’ the-
ory [51], [52], [53]. Instead of giving a fully abstract formulation, I will
specify to the admissible decomposition classes involved in the family
over Mn from time to time.

In §4, I introduce the concept of admissible decomposition classes.
Then I specify to the so called type I exceptional curves. As a founda-
tion of the theory of type I exceptional curves, I introduce the concept
of admissible graphs and use them in parameterizing the special strati-
fication of Mn. It turns out that the geometric properties regarding Mn

can be translated into the combinatorial properties of the graphs in a
neat way. Because the stratification, along with the admissible graphs,
will play a crucial role in the enumeration problem discussed later, I
spend a greater amount of time going through the combinatorial the-
ory. I also study the relationship between the stratifications of Mn and
the automorphism group GΓ ⊂ Sn, which acts on the various strata.
Even though the material in this section is not particularly difficult, it
provides a conceptual link between the various notions developed in this
paper which was probably missed elsewhere.

In short, this paper gives the Mn structures similar to Schubert cy-
cles in the flag manifolds; where the strata bijectively correspond to
Schubert cells, while the admissible graphs correspond to the Young
diagrams. One of my discoveries is that, deeper meaning of the adjec-
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tive “universal,” used ubiquitously in Theorems 1.1 and 1.2 takes root
in the fact that the spaces Mn are actually universal objects with an
intersection theory parallel to a “Schubert”-like calculus on them.

In §5, I introduce the concept of “topological type” of a singular
(pseudo)-holomorphic curve. Using this concept, the topological data
can be extracted from the curve singularities. The word “topological
type” of a plane curve singularity is not typically used in the standard
text. However, it is possible to show that the different definitions coin-
cide [3].

Another concept—“the core of a topological type” will be intro-
duced. This combinatorial concept relates implicitly to the standard
resolutions in singular curve resolution theory [3]. It certainly plays an
important role in the explicit enumerations of the invariants, as will be
shown explicitly near the end of the paper.

Nevertheless, I will not address the full scope of enumerations in a
direct manner, as limited by our computation power. A new form of
modified invariant FSW ∗ will therefore be introduced in the section by
using the concept of admissible decomposition classes. The reason for
introducing the modified invariants will be clarified only after the proof
of the main theorem is given in the succeeding sections.

The residual relative obstruction bundle κ will be introduced. I will
address its properties in certain detail.

In §7, I combine the various tools introduced in the previous sec-
tions to study the relationship between the modified invariants and the
counting of singular curves. Then I prove the main theorem in the same
section, based on the tools developed in the previous sections, along
with the family blowup formula and family switching formula [38], [39].
I remark here that the current proof is simplified because of the implicit
usage of SW = Gr in the Kähler category. I also discuss the algebraic
set up of the family obstruction bundle associated with ASW∗. It plays
an important role in the algebraic proof of Theorems 1.1 and 1.2 as well
as their extension to higher dimensions.

In §8, I address the question of the structure of the universal formula,
following an idea of Göttsche [19]. However, my formulation allows
me to extend his idea to a more general context, which leads to new
insights to the cases of nonnodal singularities as well. As a result, the
generating functions of the universal polynomials of fixed topological
types (which are required to be self-repeated) factorize and are governed
by four different power series. In my current formulation, it works
for counting duplicated singularities of arbitrary kind. The orders of
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the automorphism groups GΓ and G(Γ) will play essential roles in my
discussion.

Firstly, we restrict ourselves to the enumeration of the nodal curves
invariants. I prove that these not-yet-identified power series constructed
in §7 can be identified using the result on the calculation of genus g
curves in the primitive classes of K3, Göttsche’s result on genus 2 curves
in the primitive classes of T 4 (see also [6]) and Harris-Caporaso’s [7]
result on the recursive formulas of the Severi degrees, which calculate the
numbers of nodal curves in CP2. The identification of the power series
with the Harris-Caporaso calculation was first proposed by Göttsche
[19], based on some conjecture of Di Francesco-Itzykson [8]. I show the
validity of the conjecture by using almost complex perturbations and
Taubes’ gluing argument [53].

The significance of the theorem presented here is in that it not only
implies the Yau-Zaslow conjecture in its full generality, it also intro-
duces a brand new point of view on calculating the number of nodal
curves for general algebraic surfaces, without the full knowledge of their
diffeomorphism types. I also indicate at the end that the power series
differs by the actual nodal curves counting up to some correction terms.
These unknown correction terms involve the contribution from type II
exceptional curves.

Even though the nodal curve power series can be completely identi-
fied, my machinery proves that a similar pattern holds for a much more
general situation. Specifically, if one replaces the nodal singularity with
the other curve singularities and “count the curves” with δ identical sin-
gularities, then a similar argument also produces some different power
series. The possible conjecture regarding these unknown power series
will be the subject of further investigation. I hope to return to this
topic later. The quotation marks here indicate that the counting is not
interpreted in the most naive way.

In the final section of the paper, I offer a comparison between our
scheme and that of Vainsencher [59], [24]. I indicate briefly how to use
the concept of the core and the family blowup (switching) formula to
re-derive the formula of Vainsencher [59] in low nodes cases. I also indi-
cate in the same section how to deal with the n = 8 case and compare
it with the scheme by the excess intersection formula [16]. I also point
out briefly the main difficulty in directly applying Vainsencher-Kleiman-
Piene’s scheme to higher nodes cases. At the end I also compare the
n = 8 case with the result from the “ideal answer” of residual intersec-
tion theory. Details on how to give an algebraic proof based on excess
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intersection theory will be given in part II of the paper.

Last, I list the direct applications of my general theorem, before the
detailed discussion.

Theorem-Corollary 1.1 (Yau-Zaslow Conjecture). Let M be
an algebraic K3 surface. Suppose that C is an integral cohomology class
in Pic(M) ⊂ H2(M, Z) of square C2 ≥ 0 with the additional primitive
assumption when C2 = 0. Let Nn(C2) be the number of n-nodes nodal
curves in class C. Consider the generating function

Fk(q)
K3 =

∑

r≥2k−2

N r
2
−k+1(r)q

r,

then it is a quasi modular form, given by (DG2)
k · q/∆(q), where

∆(q) = q
∏

s>0

(1 − qs)24 = η(q)24

is the classical modular form of weight 12 with respect to SL2(Z) and
G2(q) denotes the q expansion of the quasi-modular form

−1

24
+
∑

s>0

σ1(s)q
s.

In the above formula, D denotes the differential operator q d
dq .

And similarly, for T 4, we have:

Theorem-Corollary 1.2. Let M = T 4 be an abelian surface.
Suppose C is an integral cohomology class representing an element of
Pic(T 4) ⊂ H2(M, Z) of square C2 ≥ 0 with the additional primitive
assumption when C2 = 0. Let Nn(C2) be the number of n-nodal curves
in class C and consider the generating function

Fk(q)
T 4

=
∑

r≥2k−2

N r
2
−k+1(r)q

r
2 ,

then it is a quasi modular form, given by (DG2)
k · D2G2(q).

The reader might have noticed that it is not clear for the holo-
morphic genus g curves in a K3 or T 4 ample linear system to be always
nodal. Otherwise, the original approach of Yau-Zaslow would have been
confirmed directly. In terms of Gromov-Witten invariants, the special
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cases of these two theorems were finished by C. Leung-J. Bryan [5], [6]
and later by Parker-Ionel [23] under the assumption that the class is a
primitive cohomology class; as a continuation of the author’s joint ap-
proach with T. J. Li (cf. [4]). It was during a discussion between T. J.
Li and the author that they initiated (December 1995) the study of this
subject using Gromov-Witten invariants [35]. In these special cases, the
arithmetic of the enumerations were based on Nakajima’s calculation of
the Euler numbers of Hilbert schemes while the algebraic surface had
an elliptic surface structure—following the main theme of Yau-Zaslow
correspondence between nodal curves and the Euler numbers of Hilbert
schemes.

The next theorem is about the identification of the full power series
conjectured by Göttsche and Göttsche-Yau-Zaslow, respectively. The
symbol F for (q) in the following statement denotes the generating func-
tion of the normalized modified family invariant.

Theorem 1.1 (Göttsche-Yau-Zaslow Conjecture). By substituting
DG2(q) for q, F for (DG2(q)) can be identified with

(DG2(q)/q)χ(L)B1(q)
K2

M B2(q)
L·KM

(∆(q)D2G2(q)/q2)
χ(OM )

2

,

where B1 and B2 are the two power series derived by Göttsche starting
as

B1(q) = 1 − q − 5q2 + 30q3 − 345q4 + 2961q5 . . . ,

and
B2(q) = 1 + 5q + 2q2 + 35q3 − 140q4 + 986q5 + . . . .

An important consequence of the theorem is the following blowup
formula of nodal curves invariants:

Theorem 1.2 (Blowup Formula of The Nodal Invariants). The
blowup formula relates the generating function in the following way

F for

M̃
(DG2) = F for

M (DG2) ·
(

B2(q)

B1(q)

)
·
(

DG2

q

)−1

.

The first 26 terms of the power series B1 and B2 appearing in The-
orems 1.1 and 1.2 are determined by Göttsche, assuming the validity
of Di Francesco-Itzykson’s conjecture. The higher order terms can be
determined similarly as the hypothesis of Göttsche will be justified in
the paper. For simplicity, I identify the answers through perturbing the
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family theory to the almost complex category. In part II of this paper,
I introduce the concept of type II exceptional curves and use it to give
an intrinsic determination of the full power series without referring to
the results in Gromov-Witten theory.

The appropriate definitions and proofs will be given in the following
sections. I list here the key ingredients of my proof to give the reader
an overview.

A. The explicit form of the family blowup formula [38] (and the family
Wall Crossing Formula [29]) without imposing any transversality
condition on the appropriate moduli space.

B. The existence of the family curve counting scheme, which com-
pares the expected dimensions of different curves. The key notion
of the admissible decomposition classes follows from the scheme.

C. The new structure of the universal spaces Mn and the concept of
admissible graphs, which parameterize a special stratification of
Mn.

D. The vanishing result on the family Seiberg-Witten invariants which
guarantees the vanishing of a certain type of mixed or pure invari-
ants.

E. The family switching formula, which relates the multiple cover-
ings with different multiplicities which are compatible with the
family curve counting scheme in B. The possibility of changing
the multiplicities of exceptional rational curves between different
decompositions was formulated in the announcement version by
the name of “cluster decomposition property.” As in the algebraic
case, we do not really need a version of Gromov invariants; the
role of cluster decomposition property is replaced and simplified
by the usage of the family switching formula [39].

F. The explicit construction of the SW (&Gr) obstruction bundle for
the multiple coverings of type I exceptional (negative square) ra-
tional curves.

G. The nested Kuranishi model and the parallel theory of excess in-
tersection theory in algebraic geometry.
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The usage of the concept “family invariant” helps to relax the trans-
versality conditions on the moduli space of curves. Even though the sit-
uation may not satisfy the transversality conditions necessary for curve
counting in algebraic geometric terms, one is able to identify the invari-
ant contributions by the obstruction bundle technique [38], [39]. This is
one of the major differences from previous approaches where regularity
problem needs to be dealt with. The possibility of bypassing this issue
was the driving force for our approach. A simple comparison between
my method (by the switching formula) and the residual intersection
theory will be outlined in a special case at the end of the paper.

Another major difference in strategy is that we focused on resolved
smooth curves instead of singular curves, as was adopted by Vainsencher
(cf. [59], [24]). It turns out that the former format fits more naturally
with the family blowup formula. Otherwise, the appearance of numer-
ous different types of singular curves in the counting of nodal curves
couples with the problem of transversality seriously which easily blocks
out forming any clean geometric picture. The first evidence that my ap-
proach might shed light on this problem dated back to the proof of the
wall crossing formula for four-manifolds with b+

2 = 1; see for example
[29] or [35].

In principle, one can derive the explicit formula using the scheme
we adopt. However, it is beyond finite calculation to determine the
whole universal formula in this way. Before I can have more geometric
understanding about the meaning of Yau-Zaslow-Göttsche conjecture,
the direct approach of enumerating the modified invariants seem to be
rather difficult. Instead, I prove the existence of the universal formula
using an abstract induction method. In this sense my proof does not
give as much direct numerical information in the flavor similar to [59],
[24], unless one is willing to struggle with endless calculation. As my
interest is rather theoretical than numerical, I hope that the reader will
not view this as a serious defect.

I cannot help but emphasizing at this point that the proof of the
main theorem was not done in a way to generalize the work of
Vainsencher. In fact, it surprised us to learn that Vainsencher’s ap-
proach turned out to have a natural extension—by adopting our theo-
retical scheme under specific setting. Conceptually, the author followed
the lead of Taubes’ [51], [52], [53], which identified the Seiberg-Witten
invariants and Gromov invariants beautifully. This line of thinking was
already apparent in [29].
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2. A survey of principal tools

Let me review the principal tools used later in this paper:
Recall that, on any smooth four-manifold with b+

2 > 0, one is able
to define the Seiberg-Witten invariants in terms of the datum of the
appropriate moduli spaces. Given a smooth Riemannian metric g on
the four-manifold M , let L be a spinc structure on M . The Seiberg-
Witten equations consist of a pair of equations,

+FA = σ(Ψ, Ψ) + iµ

DAΨ = 0.

The operator DA is the spinc Dirac operator and σ(Ψ, Ψ) is given
by the quadratic map SL ⊗ SL �→ Λ2

+.
Then all the pairs A ∈ Conn(L) and Ψ ∈ Γ(M,SL) constitute a

solution space which forms a smooth manifold of dimension

c1(L)2 − 2χ − 3σ

4
,

(after the gauge group quotient) under the generic perturbation of the
self dual two form µ.

If one replaces the generic two form µ by a fixed two form +FA0

and a multiple of self dual symplectic two form rω (assuming M to
be symplectic), then the solution space (as r �→ ∞) is closely related
to the Gromov moduli space of curves in the cohomology class C with
K−1

M ⊗ C2 = det(SL) [51], [52], [53].

Remark 2.1. In the paper, the symbol C denotes the cohomology
class dual to a (pseudo)-holomorphic curve in M . On the other hand,
I also use the same symbol to denote the divisor class associated to
the holomorphic curve. In particular, OM (C) would denote the invert-
ible sheaf associated to such a divisor class. In general, a class C in
H2(M,Z) determines a smooth complex line bundle on M . If the irreg-
ularity q(M) 	= 0, the line bundle can be given more than one holomor-
phic structure. The holomorphic structures on the underlying smooth
complex line bundle is parameterized by the dual Albanese torus, which
appears in the wall crossing formula [30] explicitly. By inserting a b1(M)
dimensional class on T b1 , one fixes a holomorphic structure on the line
bundle implicitly. In the algebraic geometric setting of our paper, the
choice has been made implicitly and I use the same symbol C to denote
the corresponding Weil divisor class.
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Given the moduli space ML which collects the solutions (A, Ψ) mod-
ulo gauge transformations, one constructs the tautological S1 bundle on
ML by replacing the abelian gauge group by the corresponding based
gauge group. Suppose that the Euler class of the S1 bundle is denoted
by eL, then one takes

SW (L) =

∫

ML

e
d
2
L, d =

c1(L)2 − 2χ − 3σ

4
.

On the other hand, let C be the cohomology class which is related to
the spinc structure by c1(det(SL)) = c1(K

−1
M )+2C. The Gromov moduli

space M(C) has an expected real dimension dR(C) = C2−C ·KM . One

considers the pseudo-holomorphic curves passing through generic dR(C)
2

points. This number can be proved to be a symplectic invariant and is
defined to be Gr(C).

Theorem 2.1 (Taubes). Let M be a symplectic four-manifold
with b+

2 > 1. Let SW denote the Seiberg-Witten invariants and Gr
denote the Gromov-Taubes invariants. Given a spinc structure L on

M , one can associate a cohomology class C = (c1(L)+c1(K))
2 . Then one

has SW (L) = Gr(C).

Taubes’ fundamental theorem in [51], [52], [53], [54], [55], [56] relates
the smooth topological invariant to the curve counting explicitly. If one
considers b+

2 = 1 symplectic four-manifolds, the theorem holds with
some additional assumption on the class C.

In the general cases, the curves counted by Taubes’ scheme are dis-
joint unions of embedded smooth pseudo-holomorphic curves, while tori
are allowed to form multiple coverings. The picture will be totally dif-
ferent in the family case. The author’s main motivation here is to intro-
duce the concept of admissible decompositions classes [37] in studying
the new behavior.

In the special case that M is Kähler, the equivalence of the invariants
becomes manifestly clear, [51], [52], [53], [54], [13], [14]. It is because
(A, Ψ) can be shown to be equivalent to the information of a holomor-
phic connection on the line bundle C along with a holomorphic section
Ψ of the holomorphic line bundle C. Under this identification, Ψ−1(0)
gives a holomorphic curve on M Poincare dual to C.

An earlier joint work of T. J. Li and the present author that I gen-
eralized (spring 1997) [29] Seiberg-Witten theory to the family version.
Let X �→ B be a fiber bundle of smooth four-manifolds over the base
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manifold B, where B and the fibers are both oriented. Given a fam-
ily of Riemannian metrics along the fibers, one considers the family
Seiberg-Witten equations

+FA = σ(Ψ, Ψ) + µ

DAΨ = 0.

Similar to the ordinary case, one can consider the family moduli space
whose expected family dimension is equal to

(
c1(L)2 − 2χ − 3σ

4

)
+ dimB

The definition of the invariant can be generalized in a straightforward
manner [29]. Let us recall the following definitions:

Given a homotopical class of sections σ : B �→ X , one considers the
principal G bundle of gauge transformations which acts on the space of
connections. There is a short exact sequence of principal bundles by
considering the subgroup Gσ ⊂ G. The group Gσ consists of group ele-
ments trivial along the chosen section. The quotient G/Gσ is isomorphic
to a principal S1 bundle over B.

Let us consider the space of solutions of the family Seiberg-Witten
equations. Instead of making quotient by G, one quotients the solution
space of the Seiberg-Witten equations by Gσ. The resulting manifold is
the based family Seiberg-Witten moduli space. Similar to the ordinary
SW theory, the based moduli space has a circle bundle structure over the
family moduli space. Let e denote the Euler class of the circle bundle.
It depends on the homotopic type of the section σ.

There are two types of topological invariants I will consider in this
paper: the so-called pure invariant and the mixed invariants defined in
[29].

The pure invariant, denoted by FSWB〈1,L〉, consists of raising e to
the highest power and integrating over M �→ B. On the other hand,
one can pull back nontrivial classes c from B and consider

FSWB〈c,L〉 =

∫

M
π∗c · e

dimM−deg(c)
2 ,

an integer. As defined in [29], the mixed invariant involves the insertion
by some cohomology class from the base. I will use the terminology
“base class insertion” frequently. A simple but important ramification
is that when c is equal to [B], the fundamental class of B; the mixed
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invariant reduces to the ordinary Seiberg-Witten invariants. Functori-
ally, one can view the family invariant as a sequence of morphisms in
Hom(H ·(B,Z),Z) parameterized by L.

In this paper, the language of differential topology and differen-
tial geometry will be used most frequently. Let us explain briefly the
link between my machinery and the terminology of algebraic geometry.
Exactly as in the ordinary Seiberg-Witten theory, the family Seiberg-
Witten moduli spaces are manifestly linked to the moduli spaces of
curves. There is a nice correspondence between the language I use
and the language used by the algebraic geometers. A certain version
of (SW or Gromov) moduli space should be associated with the linear
system (projective space) of curves, while the Euler class e of the S1

bundle should correspond to the tautological line bundle on the projec-
tive spaces. Keeping this in mind, my discussion can be translated in a
straightforward manner to the language of algebraic geometry.

Another key insight is the observation made in [36] that the complex
dimension of the Gromov moduli space was given by [51], [52], [53], [54]

dC(C) =
C2 − C · KM

2
,

while surface Riemann-Roch theorem gives

χ(OC) = pg + 1 +
C2 − C · KM

2
,

for simply connected surfaces.
Assuming pg = 0 and the vanishing of the higher ∂ cohomology,

the linear system P(H0(M,OC)) is exactly of real dimension 2dC(C).
The link between the Gromov moduli space dimension and the surface
Riemann-Roch formula was the key motivation for the present author
to generalize the Enriques Criterion to the b+

2 = 1 symplectic four-
manifolds [36]. It turns out that it also plays a crucial role in this
paper.

Suppose that the class c is dual to the compact oriented submani-
fold B′ ⊂ B, then the mixed invariant can be identified with the pure
invariants of the new fiber bundle constructed by pulling back X �→ B
by B′ ⊂ B.

Interesting to note that if one chooses a family of Kähler metrics,
the family Seiberg-Witten invariants are manifestly linked to the curve
counting in algebraic geometry. The corresponding Gromov moduli
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space has the expected dimension

2dC(C) + dimR B = C2 − C · KM + dimR B.

In the paper [38], a different version of “invariant” was introduced.
The algebraic family Seiberg-Witten “invariants” coincide with the usual
family Seiberg-Witten invariants in the algebraic families under the
pg = 0 condition. The construction was carried out in detail there. In
this paper, I will use interchangeably between these two set ups. While
the first version [29] is manifestly topological invariant, and the second
version [38] is defined over characteristic zero. By using the algebraic
version, which is based on intersection theory [16], the similar state-
ment can also be proved for the characteristic zero case. I only address
those arguments which are significantly different from the differential
topological argument in C∞ category.

Main Theorem 2.1. Let M be an algebraic surface over an alge-
braically closed field of characteristic zero. Given an ample cohomology
class C ′, then the “virtual number of singular curves” of a fixed topo-
logical type in L = kC ′, with k sufficiently large is given by a universal
polynomial expression in L2, L · c1(KM ), c2(M), c1(M)2, multiplied by
ASW(L).

The symbol ASW denotes the algebraic family Seiberg-Witten in-
variants, which virtually corresponds to the usual FSW in a b+

2 −1 = 2pg

dimensional family [38]. In the general situation, one expects that the
virtual numbers to count the pseudo-holomorphic curves with prescribed
singularities. As the corresponding theory of pseudo-holomorphic curves
is yet to be developed, I leave it as a conjecture.

The formulation of the algebraic “invariant” is rather important to
us. Framing in terms of topological Seiberg-Witten invariants, I need
to add the pg = 0 condition to the main theorems. For pg > 0 algebraic
surfaces, the usual invariants are all zero, while the ASW are not.

Next I spend some effort in introducing the family blowup formula
and family switching formula [38], [39]. These two formulas turn out to
be the key ingredients to our proof. With the magical usage of these
two formulas, the main obstacle in algebraic geometry is bypassed in a
systematic way. This makes proof of Göttsche’s conjecture accessible.

The first principal tool for the curve counting is the family blowup
formula of a fiber bundle. The usual blowup formula for the SW invari-
ant was derived by essentially all the experts right after its birth [25],
[51], [12], [13].
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Let X �→ B be a smooth fiber bundle whose fibers are diffeomorphic
to the symplectic four-manifold M with b+

2 > 0. Let s : B �→ X be a
cross section of the fiber bundle whose tubular neighborhood (identi-
fied with a real rank four bundle through a diffeomorphism) is almost
complex. Let N denote the associated complex rank two bundle. Let

X ♯CPB
2
(C ⊕N ∗) be the family fiber sum to a new fiber bundle X ′.

Let FSW 〈c,L〉 be the family Seiberg-Witten invariant with base

class insertion c. Let E be the tautological exceptional class in CPB
2
.

Given L ∈ spinc(X ), one can associate L′ = L + (2k + 1)E ∈ spinc(X ′)
such that d(L′) + dimB ≥ 0.

Theorem 2.2 (A. Liu, 1997). (Family Blowup Formula). Under
the previous assumption, it follows that

FSW 〈c,L′〉 =
∑

i

FSW 〈c ∪ ci(V),L〉,

over B. The bundle V is a complex rank k(k+1)
2 vector bundle. Letting

C be the fiberwise cohomology class which corresponds to L, one can
pull back C to B by the section B �→ X , denoted by s∗C. Then the
obstruction bundle V is given by

s∗C ⊗ Sk(C ⊕N ∗) = ⊕i≤kS
i(N ∗) ⊗ s∗C,

where Si represents the i-th complex symmetric power of vector bundles.

It is important that one derives the formula without using any
transversality condition on the moduli spaces. The family blowup for-
mula was initially considered by the author to discuss McDuff’s proposal
[32]. It turned out to be a big surprise to me that my study of the mul-
tiple covering exceptional curves has strong implications to enumerative
problems as well. The family blowup formula will be the key tool to
enumerate family invariants. An analogue of the formula was discussed
in the paper [29]. Over there a wall crossing formula was derived by the
author. It was shown to be compatible with the family blowup formula
in the special cases B = Mn or M [n].

Next I review briefly the family switching formula. It is slightly
different from the family blowup formula that the switching formula
does not involve any surgical operation on the fiber bundle, but merely
on the spinc structures.



family blowup formula 399

Theorem 2.3. Let X �→ B be a smooth fiber bundle of oriented
four-manifolds such that the fibers are of b+

2 > 0. Let C �→ B be a relative
S2 fiber bundle embedded into X �→ B as a sub-fiber bundle such that
the Poincare dual of C is nontorsion, and the fiberwise class is denoted
by C again. Assume additionally that the relative tubular neighborhood
of C carries fiberwise almost complex structures such that C �→ X gives
C a CP1 bundle structure over B. When the self intersection number
C2 is negative, then the fibers of C �→ B are negative self-intersecting
spheres in X . Suppose given two spinc structures L and L + 2kC such
that their family dimensions are both nonnegative.

Then their family invariants are related by the formula

FSW 〈η,L〉 = FSW 〈η ∪ c,L + 2kC〉,

where η ∈ H∗(B,Z) and c = c∗(V) is the total chern class of the ob-
struction bundle constructed in [39].

The explicit form of the obstruction bundle does not play a key
role in proving the Göttsche-Yau-Zaslow conjecture. Nevertheless, the
family switching formula is relevant in defining the residual relative
obstruction bundle κ which is crucial in defining FSW ∗ or ASW∗.

For the current application, it is important for us to notice that it
depends on L and C and the multiplicity 2k in a functorial way. The
obstruction bundle can be decomposed in the K group as two pieces,
V ≡ V1 ⊕ V2. The first piece involves the obstruction bundle of the
−l curve with κ being a direct factor. The second piece involves the
obstruction bundle derived from its multiple coverings. The V1 will show
up in the family Kuranishi model, and V2 will affect the enumeration
of the invariants. The switching formula will be applied to the multiple
covering of type I exceptional rational curves inductively. The existence
of such a formula plays an essential role in proving the universality of the
conjectured formula. Again, the nonnegativity condition on the family
dimensions of the spinc structures is necessary.

If one replaces the FSW by ASW, the above theorems of family
blowup formulas and the family switching formulas are still valid. How-
ever, it is crucial to notice that in the algebraic context, one needs to
impose the extra “simpleness” condition on the cohomology classes L to
validate the formulas. As a side remark, one notices that the simpleness
condition is automatically satisfied if the algebraic surface is of pg = 0.
In the pg > 0 case, one needs to fulfill the simpleness condition in order
to apply the family blowup and switching formula.
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3. The universal space Mn

I would like to recall a sequence of fiber bundles which were first
introduced by Vainsencher [59]. Since the spaces are constructed by
successive blowups from Mn = M × M × · · · × M , the family blowup
formula will be used repeatedly in these situations. A different family
of spaces M [n], the Fulton-MacPherson spaces, were introduced to the
family Seiberg-Witten theory in the paper [29] to discuss the family
invariants of nodal curves. The wall crossing formula for this particular
family was studied in great detail in the previous paper. Although
the family blowup formula is conceptually more suitable in the current
context, the reader should also notice the importance of the impact of
the wall crossing version [29] to my current theory.

Let M be an almost complex four-manifold (or smooth algebraic
surface). I would like to define a sequence of spaces Ml of complex
dimensions 2l such that the fibers of the fiber bundle Ml+1 �→ Ml are

diffeomorphic to M♯lCP
2

(or isomorphic to M with l (may be nondis-
tinct) points blown up). The current set up works either in the almost
complex or in the algebraic category. As the discussions are parallel, I
will concentrate on the differential topological aspect while keeping in
mind that a parallel theory can easily be built up for algebraically closed
fields with characteristic zero. Occasionally, I remind the reader of the
difference between the two different foundations and address the issues
if necessary. I apologize to the more algebraic geometric background
reader for this mild inconvenience.

Inductively, one takes M0 = pt and M1 = M . Then M1 �→ M0 in
a natural way. Suppose fl : Ml �→ Ml−1 has been defined and forms a
nice fiber bundle as described, I consider the fiber product of the map,
Pl = Ml ×fl

Ml �→ Ml−1. The relative diagonal ∆l : Ml �→ Pl defines
a complex codimension two submanifold in Pl. One defines Ml+1 to be
the new manifold formed by blowing up ∆l(Ml) ⊂ Pl. By composing
the blowing down map and the second projection map I construct the
projection map fl+1 : Ml+1 �→ Ml. Inductively, define the Ml for all
l ≥ 0. Notice that Ml+1 can be constructed alternatively from M×Ml by
blowing up l times consecutively from the fiber bundle M ×Ml −→ Ml,
each blowup center is a section of the intermediate fiber bundles.

First observe that Ml can be projected onto M l = M ×M ×· · ·×M
by induction. Let πi denote the projection from Ml to the i-th factor
of M l. Given a point p ∈ Ml, πi(p) defines a point in M , its “i”-th
coordinate. Therefore, it defines canonically a section Ml −→ M × Ml



family blowup formula 401

that we call the i-th tautological section in the following. Blowing up
consecutively the proper transformations of the i-th (i ≤ l) tautological
sections results in the fiber bundle Ml+1 �→ Ml. It can be checked
by viewing the relative diagonal ∆l as a section and by applying the
induction hypothesis. I give a brief argument as follows:

Lemma 3.1. The fiber bundle Ml+1 �→ Ml can be constructed
from the product bundle M × Ml by l consecutive complex codimension
2 blowing ups. The blowing up center of the i-th blowing up is the proper
transformation of the i-th tautological section under the previous i − 1
blowing ups.

Proof. For l = 0 the statement is trivial. The second universal space
M2 can be viewed as the blowing up of M×M along the diagonal, which
can be viewed as the tautological section.

By induction hypothesis, suppose Ml �→ Ml−1 is the result of l − 1
blowing ups from M ×Ml−1. Then prove that it also holds for Ml+1 �→
Ml.

First, consider the fiber product Ml ×Ml−1
Ml �→ Ml−1 and the

associated commutative diagram,

Ml ×Ml−1
Ml −→ Ml


Ml −→ Ml−1.

As Ml �→ Ml−1 has been assumed to be constructed by l−1 blowing
ups from M × Ml−1, Ml ×Ml−1

Ml �→ Ml, the pull back of Ml �→ Ml−1

by Ml �→ Ml−1, can be

M × Ml −→ M × Ml−1


Ml −→ Ml−1

constructed from M × Ml by l − 1 blowing ups, too. The relative di-
agonal ∆l : Ml �→ Ml ×Ml−1

Ml is a section of Ml ×Ml−1
Ml �→ Ml

which maps onto the l-th tautological section of M × Ml �→ Ml. The
birational morphism between these two sections is isomorphic outside
the exceptional locus. Thus it can be alternatively viewed as the proper
transformation of the l-th tautological section in Ml×Ml−1

Ml under the
previous blowing ups.

Thus, Ml+1, the blowing up of Ml ×Ml−1
Ml by the smooth center

∆l : Ml �→ Ml ×Ml−1
Ml can be viewed as the 1 + (l − 1) times blowing

ups of M × Ml. q.e.d.
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This interpretation is rather useful when one discusses the properties
of the admissible strata. The blowing ups can be parameterized by a
pair of natural numbers (a, b), 0 ≤ a < b ≤ l. They are ordered as
follows:

(1, 2); (1, 3), (2, 3); (1, 4), (2, 4), (3, 4); · · · .

There are l effective exceptional classes in H2(Ml+1,Z) dual to the
exceptional divisors of the l consecutive blowing ups. As they show up
in constructing Ml+1 from Ml, denote them by Ei(l), 1 ≤ i ≤ l. Then
one has the following proposition,

Proposition 3.1. Let H = H ·(Ml+1,Z) be the cohomology ring
of Ml+1 over Z. Suppose that gs, (1 ≤ s ≤ dimH∗(M,Z)) form a
collection of ring generators of H∗(M,Z). Then it follows that π∗

i (gs)
and Ei(j), i ≤ j, 1 ≤ j ≤ l form a collection of ring generators of H.

I slightly abuse the notation by using the same symbol to denote the
exceptional divisors.

Sketch of Proof. According to Lemma 3.1 Ml+1 can be con-

structed from M l+1 by l+2·(l+1)
2 different complex codimension two blow-

ing ups. It is easy to see that it coincides with the total number
of Ei(j)

′s in the previous proposition. One should also notice that
the same number coincides with the number of two-element subsets of
{1, 2, 3, 4, . . . , l+1}. It was interpreted that the space Ml+1 is obtained
by M l+1 by blowing up the various proper transformations of the partial
diagonals ∆ab, {a, b} ⊂ {1, 2, 3, · · · l+1} in some designated order. Thus,
Proposition 3.1 is a consequence of the standard fact about the coho-
mology rings of varieties under blowing ups and Lemma 3.1. q.e.d.

This proposition has an analogue in Fulton-MacPherson’s paper [17].
In the algebraic context, one replaces H by the Chow ring, and the
similar conclusion holds.

The proper transforms of the divisors Ei(l) under the subsequential
blowing ups have P1 fibration structure over Ml. Birationally they come
from projectifying the normal bundles of these tautological sections.
The divisors Ei(l) also have P1 fibration structures under the same
projection map. The combinatorial structures of the singular fibers are
rather complicated. They will be analyzed after introduction of the
admissible graphs.

Let us consider the fiber bundle by blowing up the first i−1 sections.
It is not hard to see that the normal bundle of the i-th section is the
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pull back of the relative tangent bundle Mi+1 �→ Mi by Ml �→ Mi. Since
fi : Mi+1 �→ Mi is a fiber bundle map, there is a short exact sequence
of vector bundles

0 �→ RT(Mi+1/Mi) �→ TMi+1 �→ f∗
i+1TMi �→ 0,

where RT(Mi+1/Mi) is the relative tangent bundle of the fiber bundle
map Mi+1 �→ Mi.

Using the property that the total chern classes are multiplicative
under the short exact sequences, one can relate the chern classes of
the relative tangent bundle to those of TMi+1 and TMi. On the other
hand, Mi+1 comes from M×Mi by blowing up i different sections. There
is a canonical way to relate the chern classes of TMi+1 to TM×TMi,
too. As a result, the chern classes of TMi+1 can be written completely
in terms of the various copies of c1(TM), c2(TM) and the cohomology
classes Er(i).

The previous assertion plays a role in enumerating the invariants as
well as the proof of the main theorem. Its role in enumeration geometry
had been noticed in Vainsencher’s work [59].

About the structure of the Vainsencher’s spaces, along with the ad-
missible graphs, I will discuss it slightly later in a systematic way.

Let us adopt a convention on the family Seiberg-Witten theory. Be-
cause it is inconvenient to work with the spinc structures over a Kähler
or algebraic fibration, one redefines the new notation such that the
family invariants of the class 2C0 −KM is denoted by FSW (η, C0) and
ASW(η, C0), respectively. The element η is an element in H∗(B,Z)
or A(B), depending on whether I are working over the topological or
algebraic situation. Likewise, the notations in family blowup formula
and family switching formula should be changed accordingly.

Notice that there exists a canonical map M [n] −→ Mn, where M [n]
denotes the Fulton-MacPherson space. While M [n] enjoys an Sn ac-
tion, the space Mn does not allow a natural Sn action. Only after the
appropriate notions are introduced, can one really tell why the family
over Mn is easier to deal with than the one over M [n].
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4. The admissible decomposition classes and the family

Seiberg-Witten invariants

4.1 The exceptional cone and the stratification

The key ingredient to identify FSW and FGr in the Kähler or algebraic
context is to give the general scheme [37] of characterizing the types of
curves contributing to the family invariants. The scheme generalizes
McDuff’s proposal [43] when B is degenerated to a point.

Let us define the concept of exceptional pseudo-holomorphic curve
first.

Let (M, J) be an almost complex four-manifold with the almost
complex structure J . A connected irreducible pseudo-holomorphic curve
is the image of the following datum. Let Σ be a connected compact
Riemann Surface and f : Σ �→ M be a pseudo-holomorphic map into M
such that f is generically a 1−1 immersion. A pseudo-holomorphic curve
is the image of a pseudo-holomorphic map from an arbitrary compact
Riemann surface Σ (which may not be irreducible) to M . A pseudo-
holomorphic map f ′ : Σ′ �→ M (where Σ′ is not necessarily connected)
is said to be a multiple covering of a connected irreducible pseudo-
holomorphic curve if there exists a connected compact Riemann Surface
Σ such that f ′ : Σ′ �→ M factors through f : Σ �→ M by the finite
covering map Σ′ �→ Σ.

Definition 4.1. A connected irreducible pseudo-holomorphic curve
f : Σ �→ M is said to be exceptional (an exceptional curve) if the funda-
mental class f∗(Σ) ∈ H2(M,Z) has a negative self-intersection number.
A multiple covering of an exceptional curve is a multiple covering of a
connected irreducible pseudo-holomorphic curve which is exceptional.

Given any irreducible algebraic curve C in an algebraic surface M ,
one can take C̃ = Σ to be the normalization of C. The natural projec-
tion map induces a holomorphic map Σ �→ M . Thus, any irreducible
algebraic curve can be viewed as a special case of the connected irre-
ducible pseudo-holomorphic curve defined above.

In the paper, I consider multiple coverings of exceptional curves
which are of special type. Let f : Σ �→ M be an exceptional pseudo-
holomorphic curve. Take Σ′ = Σ

∐
Σ
∐ · · ·∐Σ (m copies), then the

natural projection map Σ′ �→ Σ induces a m-multiple covering of the
given exceptional curve.
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When M is algebraic, the image of Σ under f can be given a reduced
scheme structure which becomes an algebraic curve in M . The special
type of m-multiple covering of Σ �→ M can be thought to be corre-
sponding to putting the nonreduced scheme structure on f(Σ) with a
multiplicity m.

Consider a symplectic fibration (X �→ B, ω) of smooth four-manifolds
such that the fibers Xb are given fiberwise almost complex structures
compatible with the given family of fiberwise symplectic forms ω.

Given a fiber-wise cohomology class C0, one considers the excep-
tional cone with respect to a class C0 which collects the exceptional
curves which are non-nef with respect to C0. Throughout the section, I
take C0 to be an effective class in either the symplectic or the holomor-
phic category. In deriving the main theorems of the paper, C0 will be
taken to be of the special form C −∑i miEi, mi ∈ N ∪ {0}.

Definition 4.2. Given a point b ∈ B, the exceptional cone of C0

over b consists of all the exceptional curves in Xb which have negative
cohomological pairings with C0. The cone is denoted as ECb(C0).

It is particularly interesting to consider the case that C0 is effective.
Namely, C0 is represented by a (pseudo) holomorphic curve.

The main conclusion in the note [37] implies that if the class C0 is
effective in the pseudo-holomorphic or algebraic category (it means that
the class is represented by pseudo-holomorphic or algebraic curves), the
exceptional cone ECb(C0) is generated freely by dimR ECb(C0) ⊗Z R

irreducible exceptional curves. Thus, the cone is a simplicial cone with
the irreducible exceptional curves generating the extremal rays. This
conclusion can be checked directly for the C0 = C −∑i miEi, mi ∈ Z

discussed in the paper. The primitive effective generators of the cone
are called the extremal generators. I denote the extremal generators by
ei which satisfy e2

i < 0. Moreover, one has the following conclusion [37]:

Proposition 4.1. Suppose C0 is an effective class over b, then the
restriction of the quadratic intersection form of Xb to the exceptional
cone ECb(C0) is negative definite.

Notice that it does not imply the stronger condition that the quadra-
tic form is negative definite on the vector space ECb(C0) ⊗Z R.

By considering the case that ECb(C0) is generated by n different −1
curves, ei, with e2

i = −1, i ≤ n, one finds that the previous proposition
implies that ei · ej = 0 unless i = j. In this sense, the previous proposi-
tion generalizes the simple picture of McDuff to the family version.
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Under the assumption that C0 is not numerically effective with re-
spect to ei, the curve Poincare dual to C0 must split off a certain amount
of energy to the class dual to ei such that the class C0 decomposes as
C0 = C ′

0 +
∑

i m′
iei, m

′
i ∈ N ∪ {0} in the second cohomology group.

Remark 4.1. The energy of a class ei is its pairing with the sym-
plectic form (or the ample polarization). When the class is effective, the
positive number is equal the energy of the harmonic map representing
ei.

Under such circumstance, we say that the curve dual to C ′
0 is the

good part of the total curve in C0 and dR(C ′
0) = C ′

0 · C ′
0 − C ′

0 · KM

is the expected dimension of the good part. Likewise C ′
0 is said to be

the good part of the class C0 in the decomposition (C ′
0,
∑

m′
iei). In

the algebraic set up, one usually divides the real dimension by two and
denotes it as the algebraic dimension dC(C ′

0). One should be cautious
that the term “good part” does not necessarily mean that the curves
in C ′

0 form a based point free nonlinear system. In reality the curves
dual to C ′

0, viewed as divisors on the algebraic surface, can still have
nonfree components or other based points. Yet the usage of the family
switching formula justifies the formal interpretation.

Remark 4.2. Following the convention in [37], the curve C ′
0 is

called the good part (free part) of the curve C0. Intuitively it is the
portion of C0 which can move on M under the ideal situation. Fixing a
holomorphic structure on the smooth line bundle associated to C0, we
abuse the notation by denoting the corresponding linear system by |C0|.
Under the analogue

∑
m′

iei corresponds roughly to the base divisor of
the linear system |C0| over b in terms of algebraic geometry terminology.

Conceptually, it is rather crucial that one views the object
∑

m′
iei

as the base locus of the linear system of divisors |C0|. The concept is
intuitively clear in dimension four as the curves are also divisors of the
surface. On the other hand, special cases of similar type of decomposi-
tion correspond to “bubbling off” some exceptional bubbles in the set
up of Ruan-Tian theory. Here I offer a Seiberg-Witten style descrip-
tion of the “bubbling off” phenomenon which is slightly different from
what one would expect from Ruan-Tian theory. As a result, the prob-
lem typically associated with exceptional “bubbling off” phenomenon is
handled by a different methodology in comparison with the more gen-
eral Ruan-Tian framework. The details of the discussion in the concrete
case constitutes the definition of the modified invariants.
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It continues that, dR(C ′
0)+dimR B denotes the real expected family

dimension of the good part. The pair (C ′
0,
∑

miei) will be called a
decomposition of C0, and dR(C ′

0) +
∑

(e2
i − ei ·KXb

) + dimR B is called
the expected family dimension of the decomposition.

By attaching an exceptional cone to each point b ∈ B, one gains a
huge family of simplicial cones over the base manifold B, which may
change if b moves in B. If one specializes from the generic point to a
special point (in either topological or algebraic setting), the cones also
degenerate. The phenomenon should be understood in terms of the
Gromov-Sachs-Uhlenbeck compactness theorem in the almost complex
setting. In particular, the specialization of a generic exceptional cone
should be always contained in the exceptional cone over the specialized
point. This phenomenon plays a crucial role in understanding the de-
generations of the admissible graphs. If one works in a fully abstract
situation, there might be a monodromy action on the cones. In the
current paper, one ignores the possibility and considers the exceptional
cone generated by the type I exceptional curves (refer to Definition 4.10
in Subsection 4.3) whose monodromy action is trivial.

Over each point b in the space B (which may be chosen to be
the universal space Mn in the paper), there are a finite number of
decompositions of C, whose expected family dimensions are not less
than the family expected dimension of the class dR(C0) + dimR B =
C2

0 − C0 · KM + dimR B, while the high multiples of the exceptional
curves in ECb(C0) contribute negatively to the expected dimension. In
general, the situation can be rather complicated, and the cones can
jump randomly.

It turns out that the understanding of the seemingly complicated
phenomenon has a rather unexpected bonus. Namely, it provides me
the key idea of proving the main theorems in this paper. As it is rather
important to the later sections, let us outline the approach. The picture
will be realized through the construction of the admissible graphs over
Mn.

Following the “ideology” of Gromov-Taubes theory, one perturbs
the fiberwise almost complex structures of the fiber bundle X �→ B
to simplify the picture and stratify the base manifold B into strata
Sr, B = ∪rSr such that the exceptional cones are kept constant under
parallel transports over each stratum. One requires that each stratum
has to be smooth of correct dimension. By this one means that the
number dimR B−dimR Sr should be equal to

∑
i(ei·KM−e2

i ) if ECb(C0)
is generated by the extremal generators ei. Moreover, the closure of Sr
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in B is a stratified compact set such that the boundary components
are at least of real codimension two. It will be discussed in detail in
Subsection 4.3.1 that the current theoretical scheme is indeed satisfied
by the exceptional curve cones of the type I exceptional curves and the
strata associated with the admissible graphs which one discusses later.
Let us denote the exceptional cones ECb, b ∈ Sr by ECSr = EC[r].
The class C0 will be ignored if it does not cause ambiguity.

Definition 4.3. The stratification of B is right (of right dimen-
sion) if the space Sr is smooth and its real codimension is calculated by
the Gromov-Taubes theory formula

∑
i(K ·ei−e2

i ), where ei denote the
various extremal generators of the simplicial cone ECSr = EC[r].

In the following, one works under the assumption that the stratifi-
cation has been chosen to meet this condition.

4.2 The introduction of admissible decomposition classes

One defines a partial ordering on the exceptional cones (and on the cor-
responding strata) by saying that Sr1 ≥ Sr2 if Sr2 sits on the topological
boundary of Sr1 , i.e., Sr2 ∩Sr1 	= ∅. This automatically implies that the
exceptional cone associated with Sr2 contains the degenerations of the
exceptional cone of Sr1 .

The partial ordering can be encoded in a finite graph whose vertexes
are bijective to all the strata Sr.

In the following, we define several terminologies which we will use
frequently.

Definition 4.4. A decomposition of C0 over Sr is by definition a
pair (C ′

0,
∑

m′
iei) satisfying C0 = C ′

0 +
∑

m′
iei, m′

i ∈ N, with ei being
the extremal generators of EC(r).

The locally closed stratum Sr is said to be the support of the corre-
sponding decomposition.

A decomposition is said to be allowable if:

(1) Its expected family dimension,

dR(C0 −
∑

m′
iei) +

∑

i

dR(ei) + dimR B,

is not less than the expected family dimension of the original C0,
dR(C0) + dimR B.
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(2) The expected family dimension of the decomposition (C0 −
∑

ei,∑
ei) is not less than dR(C0) + dimR B.

(3) C ′
0 has positive cohomological energy, i.e., the class C ′

0 has a pos-
itive pairing with the symplectic form (or an ample polarization).

A decomposition class D of C0 over Sr is by definition the collection
of all the allowable decompositions over Sr. A decomposition class is
said to be empty if there are no allowable decompositions in the class.

Obviously, an empty decomposition class is not interesting to us.
If one drops the condition upon the positivity of the pairing with the
polarization, then the finiteness of the allowable decompositions in a
given decomposition class follows from a different restriction induced
by condition (1) on expected dimension. One should be cautious as
the condition affects the maximal level s (which is the maximum value
of the numerical “level” one attaches to the decomposition classes) of
admissible decomposition classes. In the following, only nonempty de-
composition classes will be discussed. In the actual application, I do not
specify whether C ′

0 has positive energy. If not, the associated invariant
will automatically be set to zero as there are no curves at all.

Requiring the decomposition class to be allowable put severe numer-
ical constraints on the relationship among the type exceptional curves
and the class C0.

Given a decomposition class of C0 (which consists of a finite number
of allowable decompositions by the energy boundedness constraint), it
was canonically associated with some stratum and the exceptional cone
over the stratum.

The support of a decomposition class D associated to
(C0 −∑i∈I ei,

∑
i∈I ei) is the defined to be the top admissible strata

SD characterized by the co-existence of the ei, i ∈ I.
The discussion offered here will be relevant to the definition of the

map Φ.

Definition 4.5. A decomposition class D2 is said to be subordi-
nate to another decomposition class D1 if first, these two corresponding
strata, SD1 and SD2 , are related SD1 ≥ SD2 by the previous partial
ordering defined among different strata. Moreover, given the strata
SDi

, i = 1, 2, let ej,i, i = 1, 2 denote the extremal generators of the
preexceptional cones CDi

, (i = 1, 2).
One requires that {ej,1|ej,1 · C0 < 0} ⊂ {ej,2|ej,2 · C0 < 0}. When

D2 is subordinate to D1, one denotes by D1 ≫ D2.
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It is clear that this subordinate relationship defines a partial ordering
among these decomposition classes. This partial ordering will be used
in defining the modified family invariant.

For the convenience of the latter application, one also defines,
The support of a decomposition class D associated to

(C0 −
∑

i∈I ei,
∑

i∈I ei) is defined to be the top strata SD of the right
codimension characterized by the co-existence of the ei, i ∈ I. Over
b ∈ SD, the exceptional cone ECb(C0) remains constant.

The points in the boundary SD−SD can be classified into two types;
those over which all ei, i ∈ I remain irreducible and those over which
some ei, i ∈ I degenerates and breaks up into some other irreducible
exceptional curve class. Some new decomposition class may appear
over SD − SD.

Definition 4.6. A decomposition class is said to be generic if its
support is of top dimensional (= dimB).

The generic decomposition classes are on the top of the pyramid of
the collection of decomposition classes. These types of decomposition
classes will play crucial roles in the definition of the modified family
invariants.

The main reason for introducing these concepts is to characterize the
decomposition classes which can contribute nontrivially to the family
Seiberg-Witten invariants in the Kähler families. To achieve this, I
would like to define the concept of admissible decompositions. Before
doing so, I define the concept of admissible decomposition classes.

Axiom 4.1. An allowable decomposition class D is said to be
admissible of level n (n ≥ 0) if:

1. There exists a descending chain of allowable decomposition classes
Di, 0 ≤ i ≤ n such that the corresponding supports SDi

form a
monotonically linearly ordered chain of length n + 1. The given
allowable decomposition class is the minimal element in the given
chain.

2. Let Di, 0 ≤ i ≤ m;Di 	= Dj be a descending chain of allowable
decomposition classes ending at D, then m ≤ n.

The generic admissible decompositions are of level zero. The con-
verse of the statement also holds.

Discarding the level, an admissible decomposition class with an ar-
bitrary level (≥ 0) is simply called an admissible decomposition class.



family blowup formula 411

The finite number of decompositions in an admissible decomposition
class are called the admissible decompositions in the class.

In some simple situation, there is a unique admissible decomposition
in an admissible decomposition class. In these cases, sometimes I may
abuse the notation by mixing up the decomposition class and the cor-
responding decomposition. However, this possibility is not guaranteed
by the abstract definition.

I consider some examples of the admissible decompositions other
than the one studied by Taubes [51], [52], [53].

Example 4.1. Consider B = pt in the context of ordinary Seiberg-
Witten theory. Let C0 = C ′

0 +
∑

miei. Then the decomposition
(C ′

0,
∑

miei) is admissible iff e2
i = −1 (ei are -1 curves) and ei · ej = 0,

ei · C ′ = 0. Under this condition, mi = −C0 · ei > 0. This corresponds
to the decompositions in McDuff’s proposal. Let B = Σ, a two di-
mensional surface. Let e, e2 = −2 be a -2 rational curve. Consider a
two dimensional family over B. Then C0 = C ′

0 + me is admissible only
when C ′

0 · e = 0, 1. In this situation, one stratifies the manifold Σ into
some two (top) dimensional and zero dimensional strata such that the
admissible decompositions lie above some zero dimensional stratum. It
is the locus that the −2 curve e exists.

If e, e2 = −n is a −n rational curve which survives on a generic 2n−2
dimensional family, then (C ′

0, me) is admissible only when 0 ≤ C ′
0·e < n.

Generalization of this special case leads to the general scheme described
above. The so called moving lemma was discussed in detail in [37] and
will be a key ingredient in applying the family switching formula to this
context.

The scheme deals with the nonrational ei as well. However, they will
not be used in the proof of the main theorem. They are nevertheless
crucial in understanding the contribution of type II exceptional curves.

Applying the previous general curve counting scheme to the fiber
bundle Ml+1 �→ Ml, the functorial setup suggests us to stratify the
space B = Ml according to the variations of the various exceptional
cones of a class C. It is rather surprising to us that it forms the main
idea of proving my main theorems as it was not originally designed for
this particular purpose.
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4.3 The definition of the admissible graph and the ad-

missible strata of Mn

4.3.1. The axioms of the admissible graph and admissible degener-

ations

In this section, we introduce the axioms which characterize the admis-
sible graphs. We also describe the procedure that admissible graphs
degenerate.

Definition 4.7. Let Γ be a finite graph with l vertexes. Γ is said
to be admissible if it satisfies the following axioms:

Axiom 4.1. There is a 1 − 1 correspondence between the vertexes
of Γ and the positive integers smaller or equal to l. An association of
this type is called a marking of the graph. More generally, one can mark
the graph by any finite subset of N. If I is the index set, the graph is
called I-admissible.

Because of the existence of the marking, one usually names the ver-
texes by their markings.

Axiom 4.2. The edges are oriented by arrows from the vertex
associated with a smaller integer to the vertex associated with a larger
integer.

For example, the arrow can start from the 1st vertex to any other
vertex, while the arrow can only start from the other vertex to the l-th
vertex.

The vertexes which are linked to the i-th vertex by arrows leaving i
are called the direct descendents of i. The vertexes which are linked to
the i-th vertex by arrows entering i are called the direct ascendents of
i. If the j-th vertex is related to the i-th one, by an oriented arrowed
path, then j is called the descendent of i, while i is called the ascendent
of j.

Axiom 4.3. The only loops allowed in the graph are formed by
three vertexes. Suppose a < b < c are the three different vertexes, then
b,c must be the direct descendents of a, while a, b must be the direct
ascendents of c. The vertexes a,b,c form a triangle.

This axiom rules out the topological types of a great number of
graphs. It puts a severe condition on the graph.
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Axiom 4.4. Any vertex can have at most two direct ascendents.
The vertex having exactly two direct ascendents forms a triangle (loop)
with its direct ascendents.

For some reasons which will become clear later, the axiom is called
the normal crossing axiom. A vertex in an admissible graph is allowed
to have a lot of direct descendents while at most two direct ascendents.
This axiom is in a sense dual to the previous one.

Axiom 4.5. Suppose there are two adjacent triangles formed by
the vertexes a, b, c and d. Suppose these two triangles share a com-

mon edge
−→
ab, then the end vertex b of this edge has exactly one direct

descendent among the two vertexes c and d.

Notice that the admissible graphs satisfying these axioms usually
are not trees. The fact that only one and exactly one direct descendent
is allowed in the Axiom 4.5 rules out the possibility that there are two
or more arrows starting from the end vertex. In other words, if there
are m adjacent triangles sharing the same vertex, then the end vertexes
of the common edges form a linear chain. Later the author learned that
there had been standard combinatorial devices–the resolution graphs
used to describe resolutions. It was widely used by algebraic geometers
including Vainsencher [59]. The reader will comprehend the benefit of
my approach.

Next I would like to study the degenerations of the admissible graphs.
The combinatorics I discuss here are not particularly hard. However,
they play a crucial role in understanding the stratification I would like
to define on Ml. The usage of the admissible graphs simplifies the lan-
guage quite a bit. It will be shown later that these graphs encode the
information of type I exceptional curves on Ml.

Definition 4.8. Let Γ1 and Γ2 be two admissible graphs with l
vertexes. Γ1 is said to be a degeneration of Γ2 if Γ1 is constructed from
Γ2 in one of the following ways:

(1) Adding a finite number of edges which preserve the admissibility
conditions.

(2) A finite sequence of elementary moves preserving the admissibility
conditions. By elementary moves I mean: Let a be the a-th vertex
with some of its direct descendents marked as ja. Let b be a vertex
such that a < b < jb and b is not among those ja. The elementary
move from a to b is by constructing a new admissible graph adding
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Figure 3. The old graph is of codimension 8 while the new
graph is of codimension 9. A closed loop is formed
by adding the new edge.

an edge from a to b while replacing the aja edges by the bja edges.
That is to say, the vertex b inherits some of the direct descendents
from the vertex a while declaring to be the direct descendent of a.

The simplest elementary move is to consider the vertexes marked
a < b < c and replace an edge from a to c with two edges from a to b,
then from b to c. I denote it by Γ1 < Γ2 if Γ1 is a degeneration of Γ2.

In the definition of the elementary moves, one requires the existence
of these ja vertexes which are some of the direct descendents of a. If one
allows the vertexes ja to be vicious, then the elementary move simply
reduces to the edges adding process described in (1). In this broader
sense, the elementary moves contain the first type of edges adding pro-
cesses as their degenerated situation. In the elementary moves defined
above, the vertex a loses some of its direct descendents ja by claiming
that b is its direct descendent. However, it is not as painful as it might
look. Because ja becomes the direct descendents of b, they become the
second generation descendents of a now.

Notice that the constraint of preserving the admissibility conditions
is crucial here. An arbitrary edge adding or elementary move needs not
preserve the admissibility conditions. Only those which preserve them
are allowed in my definition of the degeneration of graphs.

Let us introduce some more notations for the latter usage.

Definition 4.9. The set Edge(Γ) is defined to be the set of all
1-edges of the admissible graph Γ. The set Ver(Γ) is defined to be the
set of vertexes of Γ. By this notation, the codimension of an admissible
graph is simply |Edge(Γ)|, the number of 1-edges in Γ.

The definition will be justified in a moment.
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4.3.2. The admissible Stratification on Ml

In the following, I introduce and summarize in Proposition 4.2, Proposi-
tion 4.3 and Theorem 4.1 several important properties of the admissible
stratification. The proofs of Proposition 4.2, Proposition 4.3 and The-
orem 4.1 will appear in Section 4.4.

Let adm(l) denote the set of admissible graphs with l vertexes. Like-
wise let adm(I) denote the set of I-admissible graphs. Then one has the
following important assertions:

Proposition 4.2. There exists a finite stratification of Ml, pa-
rameterized by the set adm(l) such that each strata is a locally closed
(almost complex ) algebraic set.

Let the stratum corresponding to Γ ∈ adm(l) be denoted by YΓ,
then it follows that Ml = ∪Γ∈adm(l)YΓ.

Theorem 4.1. Let fl : Ml+1 �→ Ml be the fiber-bundle formed by
the tautological map of the universal spaces. Set Cb, b ∈ Ml to be the
cone of exceptional curves for the l different blowing ups. Then Cb is a
constant cone for all b ∈ YΓ.

Moreover, the strata are of the right codimension with respect to the
cones. More precisely, if ej , j ∈ J are the extremal basis generating the
cone, then the equality dimR B − dimR YΓ =

∑
j∈J(ej · KX − e2

j ) holds.

The manifold X in the statement is diffeomorphic to M♯lP
2

and the
equality is valid for all Γ ∈ adm(l). Denote the constant cone over a
stratum YΓ by CΓ and define it to be the preexceptional cone attached
to YΓ.

Notice that smooth −1 curves contribute 0 to the codimension. The
stratification of Ml exists even if M is a high dimensional (almost com-
plex) algebraic manifold. The key observation of the paper is that when
dimR M = 4, the current discussion has direct contact with Gromov-
Taubes Theory.

Definition 4.10. The extremal effective generators of the preex-
ceptional cones are called type I exceptional curves.

Those curves are special cases of the exceptional curves defined ear-
lier in Section 4.1. Type I exceptional curves are characterized by the
property of being the irreducible exceptional curves whose projection
from the blown up manifold X to M is a point.

Definition 4.11. An exceptional curve whose projection from X
to M is not trivial homologically is called a type II exceptional curve.
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Proposition 4.3. Let YΓ be the stratum corresponding to Γ. Then
the compactification (closure) of YΓ in Ml is a smooth (almost complex )
algebraic submanifold of Ml whose complex codimension is given by the
codimension of the graph Γ. One denotes this compactification by Y (Γ).
Moreover, one has

Y (Γ) =
∐

Γ′<Γ

YΓ′ ,

the smooth stratification by the admissible graphs degenerated from Γ.

This proposition characterizes the boundary components of YΓ in
terms of the degenerations of admissible graphs.

The proofs of Proposition 4.2, Proposition 4.3 and Theorem 4.1 will
appear in Section 4.4.

By definition the codimension of a graph is formally defined by
counting the number of edges. If Γ1 is a degeneration of Γ2, then it
contains more edges then Γ2 does, and is therefore of higher codimen-
sion.

From Proposition 4.3, the codimension of a graph is the same as the
complex codimension of the stratum in Ml. This justifies the usage of
the terminology.

Given the locally closed space YΓ, it forms the top stratum of Y (Γ).
I consider the preexceptional cone CΓ.

Let Ei, 1 ≤ i ≤ l be the exceptional classes of the l different blowing

ups in X = M♯lCP
2
, and let ei (I slightly abuse the notation with the

previous section about the extremal generators of an exceptional cone)
be the generators of the cone of exceptional curves CΓ.

Lemma 4.1. Given the admissible graph Γ, there exists a bijection
between the vertexes of Γ with the extremal generators ei. In particular,
there are exactly l different ei which generate the simplicial cone CΓ. Let
ei be associated with the ith vertex, and let ji be the direct descendents
of the i-th vertex. Then the class ei is equal to Ei −

∑
ji

Eji
.

By using the lemma, one figures that the cones, along with the
stratification, satisfy the key property of being the expected dimension.
Namely, the stratum YΓ is of right codimension with respect to CΓ.

codim(Γ) = −
∑

i

(e2
i − ei · K)

2
,

where ei are the extremal edges of CΓ.
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Recall that the Fulton-McPherson space M [l] also allows a stratifi-
cation parameterized by some other types of graphs (trees) consisting of
l marked vertexes and some indefinite number of unmarked vertexes. It
turns out that there is a natural surjective morphism from M [l] to Ml

which carries the various strata into the certain union of the admissible
strata. Different from the Fulton-MacPherson space which is Sl equiv-
ariant, the various strata of Ml are acted by different subgroup of Sl,
respectively. I will study this in detail as these automorphism groups
appear naturally in the scheme of counting singular curves.

The fact that there exists a stratification on Ml does not surprise
us. Because Ml can be described by l(l−1)

2 different blowing ups from
M l = M ×M ×· · ·×M along the various proper transformations of the
codimension two partial diagonals, surely there is a stratification associ-
ated with it. The surprising thing is the crucial property of this partic-
ular stratification which satisfies my need from the previous subsection.
Even though the Fulton-MacPherson spaces also carry a stratification,
they do not constitute good candidates for my purpose. This property
distinguishes the two families and thus “falsifies” the previous proposal
in [29].

To describe how the stratification YΓ is constructed explicitly, I em-
ploy induction. It is not clear from this induction process that each Y (Γ)
is smooth. One answers this question from an alternative description of
the stratification.

Given a vertex i, one considers its direct descendents in Γ and con-
nects the edges between them. Then it forms a graph of the type de-
scribed in Figure 4. The starting vertex might differ from 1. The sub-
graph associated with the vertex i is denoted symbolically by Γi. Given
a Γi, one extends it to an element in adm(l) by the stabilization pro-
cedure. Namely, I add the free vertexes to Γi and I abuse the notation
by denoting them as the same symbol. The resulting Y (Γi) are given a
special name D(Γi). Then it follows that:

Proposition 4.4. The space Y (Γ) can be canonically identified
with the transversal intersection ∩i∈Ver(Γ)D(Γi). As each D(Γi) is a
complete intersection in Ml, the space Y (Γ) is also a complete intersec-
tion.
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4.4 Inductive construction of YΓ

4.4.1. Proof of Propositions 4.2, 4.3 and Theorem 4.1

In this subsection, we construct the admissible stratification and prove
Proposition 4.2, 4.3 and Theorem 4.1.

The first step is to give an explicit construction of the stratification
and relate it with the admissible graphs. To construct the stratification,
I define Y (Γ) and YΓ by induction on l. The purpose is to understand
the geometric structures of the strata. The geometric structure will be
used explicitly if one wants to enumerate the family invariants explicitly.

First, let us consider l = 1 case. The only element in adm(1) is
γ = γ1, the trivial graph with one vertex. One defines Yγ = Y (γ) =
M1 = M .

By forgetting the l-th vertex and the edges ending at it, a new
graph Γ(−1) ∈ adm(l − 1) is constructed from Γ ∈ adm(l). It is not
hard to check that this process does not ruin the admissibility condition
in ignoring the l-th vertex.

Suppose that for l �→ l − 1, the space Y (Γ(−1)) has been defined
already. I define Y (Γ) inductively.

Consider fl : Ml �→ Ml−1; the fiber bundle map. Given Y (Γ(−1))
⊂ Ml, the space Y (Γ) is defined to be a certain compact subvariety of
f−1

l (Y (Γ(−1))). From the axioms characterizing the admissible graphs,
the vertex l can have at most two direct ascendents. If l has no direct
ascendent at all, then one says that l is a free vertex. One simply defines
Y (Γ) to be f−1

l (Y (Γ(−1))) in this case.

I slightly abuse the notation by denoting an exceptional curve and
its cohomology class by the same symbol.

If the vertex has exactly one direct ascendent, say p < l, then one
defines Y (Γ) to be the set of the points x ∈ f−1

l (Y (Γ(−1))) which lie on
the proper transforms of the exceptional set Ep(l). On the other hand, I
define Y (Γ) to be the intersection of the f−1

l (Y (Γ(−1))) with the proper
transformations of Ep(l) and Eq(l) if p and q are the direct ascendents
of l. In this case Y (Γ) is isomorphic to Y (Γ(−1)) by the projection map.
I remark briefly on this point. When p and q are the direct ascendents
of l, the three vertexes p, q and l form a triangle (loop). Suppose p < q,
then p must be the direct ascendent of both q and l. It is obvious from
the definition that the spaces Y (Γ) are compact (proper).

According to the induction construction and Ep(l) · Eq(l) = 1, the
proper transformation of Ep(l) and Eq(l) must intersect each other
transversally throughout Y (Γ(−1)).
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Therefore, the spaces Y (Γ) and Y (Γ(−1)) are isomorphic through
the projection map.

To define the locally closed space YΓ ⊂ Y (Γ), I follow a similar
induction process. Let Γ and Γ(−1) be defined as before. Suppose
YΓ(−1) is already defined, the space YΓ is chosen to be a certain open

submanifold of Y (Γ) ∩ f−1
l (Y (Γ(−1))).

If l is a free vertex, then one defines YΓ as the open submanifold
of f−1

l (YΓ(−1)) which consists of the complement of all the other excep-
tional sets.

If p is the only direct ascendent of l, I consider all the direct descen-
dents of p, not including l. Suppose they are given by p1, p2, · · · ps, then
I define YΓ by deleting from f−1

l (YΓ(−1))∩Y (Γ) its intersections with the
proper transformations of the various other exceptional set Epi

(l). Sup-
pose p and q are the direct ascendents of l and p < q. Let p1, p2, · · · ps

be the direct descendents of p other than q and l, then I define YΓ to be
the intersection of f−1

l (YΓ(−1)) ∩ Y (Γ).

By using mathematical induction, I define the spaces YΓ and Y (Γ)
for all Γ ∈ adm(l). It is rather easy to see that YΓ is a smooth, locally
closed manifold. However, it is not transparent from the present con-
struction that the compact space Y (Γ) is always smooth. We postpone
slightly the issue of smoothness by introducing another point of view of
characterizing Y (Γ), following the lead of Proposition 4.4.

The second step is to establish the relationship between geometric
degenerations and graphical degenerations.

Now one is ready to prove the statement that Y (Γ) = ∪Γ′≤ΓYΓ′ .
First, one needs to show that the various strata YΓ′ , Γ′ < Γ lie inside
Y (Γ). Then one shows that every point in Y (Γ)−YΓ lies in some strata
YΓ′ , Γ′ < Γ.

The graph Γ can be degenerated to a new graph by either repeat-
edly adding new edges between vertexes or by the elementary moves
introduced before. Let us denote the new graph by Γ′.

If one introduces one new edge or some elementary move without
involving the l − th vertex, then it has corresponded to a degeneration
of Γ(−1) already. As by induction one can assume that Y (Γ(−1)) is the
compactification of YΓ(−1) by the strata associated the various degen-
erations of Γ(−1). These degenerations of Γ are included in the space
Y (Γ).

From now on, let us consider the degenerations which involve the
last vertex. One simple possibility involves adding new edges ending at
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l. By the axioms of admissible graphs, the vertex l has at most two
direct ascendents. Therefore, there are two cases to consider. Either
one adds an edge from some p to l or one adds two edges from p < q
to l. In both cases, it can be shown easily that the stratum associated
with the new graph lies in Y (Γ).

A slightly subtle issue is about the elementary moves. As l has been
the vertex with a largest marking, an elementary move involving l must
consist of the following operations. Let a < b < l be the markings of
the three different vertexes and l is the direct descendent of a. Then
one eliminates the edge al along with the edges from a to some of its
direct descendents, then forms a edges ab along with the edges from b
to these direct descendents of a (including l). Let the resulting graph
be denoted by Γ′. As this particular process is assumed to preserve
the admissible conditions, then the vertexes a and b must be the only
two possible candidates for the direct ascendent vertexes of l. This
follows from the Axiom 4.4 of defining the admissible graphs. From
here one deduces that the edge al must be the only edge in the graph
Γ linking to l. Erasing the edge al and the vertex l simply moves Γ
to Γ(−1). As one recalls from the construction, the stratum YΓ can
be constructed from f−1

l (YΓ(−1)) ∩ Y (Γ) by removing the intersections
with the various other exceptional curves. By adding the new edge
ab and the edges from b to some of the direct descendent vertexes of
a other than l, it has corresponded to some degeneration of Γ(−1),
denoted by Γ(−1)′. As one has inductively assumed that the space
Y (Γ(−1)) consists of the finite unions of strata associated with all the
admissible degenerations of Γ(−1)’s, one finds that fl(YΓ(−1)′) lies in
Y (Γ(−1)) − YΓ(−1). Moreover, by adding the new edge bl, the space
YΓ′ is formed by restricting fiber-wise to the open curve; the proper
transform of Eb(l)−∪jb �=lEjb

(l). As fl(Y (Γ′)) has already been assumed
to lie in Y (Γ(−1)), the fact that YΓ′ lies in Y (Γ) is derived by noticing
that the proper transformation of Ea(l) splits into two components, one
involving the proper transformation of Ea(l) by Eb(l), etc. ; and another
involving the proper transformation of Eb(l) by El(l), etc. The other
elementary moves succeeding the one can involve the l-th vertex as well.
Then one argues in a similar manner.

This finishes the proof that ∪Γ′<ΓYΓ′ ⊂ Y (Γ). To prove the other
direction, let x be an arbitrary point lying inside Y (Γ)− YΓ, one would
like to show that it lies inside some YΓ′ , with Γ′ < Γ.

Let us consider the image point fl(x). There are two possibilities
according to my earlier construction. Either fl(x) ∈ YΓ(−1) or fl(x) ∈
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Y (Γ(−1)) − YΓ(−1).

Consider the possibility fl(x) ∈ YΓ(−1) first. If the vertex l is a free
vertex in Γ, then x must lie on some of the exceptional curves of the
fibers of Ml+1 �→ Ml or x would have been in YΓ already. If it lies
in a single exceptional curve, then it lies in the stratum given by the
admissible graph adding from Γ(−1) an edge from the corresponding
vertex to the l-th vertex. Likewise, if it lies at the intersection of two
exceptional curves, then it lies in the stratum associated with the graph
described below. One simply adds two edges from the two corresponding
vertexes to l from Γ(−1). As the curves are all of normal crossing (which
is associated with the fact that the exceptional divisors in Ml are of
simple normal crossing), two is the maximum number of edges one can
add at once. Both types of graphs can be degenerated from the original
Γ.

Suppose that fl(x) ∈ Y (Γ(−1)) − YΓ(−1), then fl(x) must lie in
some stratum which corresponds to certain degeneration of Γ(−1). This
follows from the induction hypothesis. If l is a free vertex in Γ, then
x lies in the stratum formed by adding the l-th vertex to the given
degeneration of Γ(−1), denoted by Γ(−1)′.

If the vertex l in the graph Γ has exactly one direct ascendent, then
x can sit on an arbitrary point in the exceptional curve lying above
fl(x). Let p denote the direct ascendent of l. If the point x lies in the
p-th component of the exceptional curve (which is associated with the
p-th vertex), then x should lie in the stratum associated with the graph
by adding one or two edges ending at l. It depends on whether x lies at
the intersection of the two different exceptional curves. In the current
situation, it is easy to construct the degeneration of graphs.

If the point x lies in a component other than the p-th one, e.g.,
the k-th one, then there must be a chain of rational curves linking the
p-th one to the k-th one. This fact introduces a sequence of vertexes
lying in-between the p-th and the l-th vertexes. From this fact and the
construction of the various strata, the point x is in a stratum associated
with the new graph Γ′, with a linear chain from p to l.

My goal is to prove that the graph Γ′ does come from a certain de-
generation of Γ. As we know, Γ(−1)′ does come from the degenerations
of Γ(−1). That is to say, there exists a finite sequence of edges adding
or elementary moves which transform Γ(−1) to Γ(−1)′ in adm(l − 1).

Suppose that the vertexes of Γ(−1)′ among the linear chain between
p and l are denoted by p = p1, p2, p3, · · · pr = l. It is not clear that
the chain is unique. One can still argue that one can always choose the
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chain such that additionally p2 is not the direct descendent of p1 = p
in Γ. To prove this statement, one uses the following lemma, which
follows from Sacks-Uhlenbeck-Gromov compactness theorem as well as
the specialization theorem in algebraic geometry.

Lemma 4.2. Let X �→ B be a fiber-wise almost complex fiber
bundle tamed by a family of fiberwise symplectic form. The base space
B is a compact base space. Suppose a fiberwise class T is represented
by compact pseudo-holomorphic curves over any set U ⊂ B, then it can
be represented by pseudo-holomorphic curves over U .

Proof. The lemma follows directly from Sacks-Uhlenbeck-Gromov
compactness theorem as well as the specialization theorem in algebraic
geometry. q.e.d.

The lemma provides us an effective way to check that whether a
point b ∈ B can be the limit of a sequence of points bn, n ∈ N .

Consider the exceptional curve dual to a cohomology class of the
following form Ep −∑Ejp , where the indexes jp run through all the
direct descendents of p in Γ. According to the assumption, the vertex l
is in the list.

By the previous lemma, the same cohomology class should be rep-
resented by certain pseudo-holomorphic curves over x, as x is assumed
to lie in the closure of YΓ. However, as l is not the direct descendent
of p in Γ′, the term −El would show up only through adding up some
other exceptional class where the term El shows up with a −1 coeffi-
cient. Given the exceptional curve such that the term −El shows up in
its cohomology class, the class Ea, with a being the direct ascendent of
l, must show up with a positive sign.

On the other hand, p is not the direct ascendent of l in Γ′, neither.
Therefore, there must be some other exceptional curve showing up such
that the term Ea is cancelled out. Arguing in this way, one traces back
to form a chain in the graph Γ′. As Γ′ is a finite graph, the process must
be terminated somewhere. The last vertex must be p as Ep is the only
term with positive coefficient in Ep−

∑
Ejp . As a result, one constructs

a chain in Γ′. The chain can be shown to be non self-intersecting. If
one writes down the effective combination, it follows easily that the net
coefficient in front of Ep2 must be zero. Otherwise, it leads to certain
contradiction on the coefficients of the other Epi

. On the other hand, as
Ep−

∑
jp

Ejp is equal to this effective expression in terms of the original
exceptional basis Ei, etc. , none of the jp can be equal to p2. As a result,
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p2 is not the direct descendent of p = p1 in Γ. Hence, one has succeeded
in finding a chain of vertexes in Γ′, starting from p and ending at l, such
that p2 is not the direct descendent of p in the original graph Γ.

As it was assumed at the initial stage that l is not the direct descen-
dent of p in Γ′, then l can not be equal to p2. Then p2 is not the direct
descendent of p in Γ(−1) either.

By the induction hypothesis, the graph Γ(−1) degenerates into
Γ(−1)′ in adm(l − 1). Consider that the first time that the edge pp2 is
added to an intermediate graph. For every admissible graph proceed-
ing this, one prolongs it to an admissible graph in adm(l) by adding
the edge pl. In adding the pp2 edge, either one simply adds it or it is
an elementary move from p to p2. In either case, one can prolong the
graph alternatively by adding the edge p2l instead. As a result, the
transformation is interpreted as an elementary move from p to p2 in
adm(l).

Now, one replaces the vertex p by p2 and discuss similarly as above.
Each time one replaces the vertex p by its direct descendent in the linear
chain. As there is only a finite number of vertexes involved, the process
must be terminated and thus one shows that the new graph Γ′ can be
reached from Γ by some edges adding or some sequences of elementary
moves. q.e.d.

4.4.2. The alternative interpretation of Y (Γ) as transversal intersec-

tion

As was mentioned, it is not obvious from the construction in Sec-
tion 4.4.1 that the compact spaces Y (Γ) for the various Γ ∈ adm(l)
are smooth. It is my next goal to give an alternative construction to
clarify this.

In the set adm(l), there is always an element called γl, or simply γ,
which consists of l free vertexes.

It is clear that Yγ parameterizes all the l distinct points in M . It is
also clear that Y (γ) = Ml is smooth.

Let us consider the next simplest admissible graphs containing an
edge between a pair of vertexes in γ. The resulting graph has exactly
one edge and there are exactly C l

2 of them.

Proposition 4.5. Let Γa,b be the admissible graph described above
and a < b are the two vertexes involved, then Y (Γa,b) is the proper
transformation of the exceptional divisor which corresponds to blowing
up the diagonal ∆ab; xa = xb in M l, denoted as Dab.
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Y (Γa,b) are the divisors in Ml which form the building block of all
the exceptional strata. It is not hard to derive that these divisors are
Poincare dual to the class Ea(b) for a < b. Given an edge ǫ of an
admissible graph, one uses s(ǫ) to denote the starting marking and e(ǫ)
to denote the ending mark.

Let us introduce a linear ordering between different edges. Let ǫ1
and ǫ2 be two different edges of an admissible graph Γ, then ǫ1 is said to
be greater than ǫ2 if either e(ǫ1) < e(ǫ2) or if e(ǫ1) = e(ǫ2) one requires
that s(ǫ1) < s(ǫ2).

Naively, one might expect that the following relationship holds:

Y (Γ) ≈ ∩ǫ∈Edge(Γ)Ds(ǫ)e(ǫ).

However, as can be easily seen, the space on the right hand side is
usually reducible and, therefore, cannot be equal to the smooth manifold
expected from the left hand side of the equality. Instead, the following
proposition is introduced for a more generalized treatment:

Proposition 4.6. Let Γ1 and Γ2 be two different admissible graphs
such that Γ2 is obtained from Γ1 by adding a new edge ǫ smaller than the
others in Edge(Γ1). Then Ds(ǫ)e(ǫ) ∩ Y (Γ1) is an irreducible divisor in
Y (Γ1) which is also the total transformation of a smooth divisor under
blowing ups. The closed subspace Y (Γ2) is identified with the proper
transformation of Ds(ǫ)e(ǫ) ∩ Y (Γ1) in Y (Γ1), which is also one of the
Ds(ǫ)e(ǫ) ∩ Y (Γ1)

′s irreducible components.

As it is the proper transformation of a smooth exceptional divisor
under the successive blowing ups with smooth centers, the smoothness
follows by induction easily. Let us consider the admissible graph Γ ∈
adm(n) as in Figure 4. Then one can see that graphs of this type form
the basic building blocks of an arbitrary admissible graph.

In the following, we prove Proposition 4.4.

Proof. The set theoretical identity Y (Γ) = ∩i∈Ver(Γ)D(Γi) can be
proved by arguing that YΓ �→ ∩i∈Ver(Γ)D(Γi) is dense. By the induc-
tive construction of YΓ, YΓ ⊂ D(Γi), i ∈ Ver(Γ). I.e., the combinatorial
condition ji being a descendent of i corresponds to the geometric con-
struction of requiring fl−1 ◦ fl−2 · · · ◦ fji−1(YΓ) ⊂ Mji

to lie within the
i-th exceptional divisor of Mji

�→ M × Mji−1.

The combinatorial fact that ji is a direct descendent of i imposes
a relative open condition whose compliment is of higher codimension.
Thus, YΓ is dense in ∩i∈Ver(Γ)D(Γi).
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Next, I prove the transversality of the intersections. The proof is
based on induction and the blowup construction of Ml.

Consider the smallest edge ǫ in Γ according to the partial ordering;
ǫ1 < ǫ2 if (i).e(ǫ1) < e(ǫ2), or (ii).e(ǫ1) = e(ǫ2), yet s(ǫ1) < s(ǫ2). If
the ending vertex e(ǫ) is not marked by l, then the l-th vertex must be
a free vertex. The transversality of ∩Y (Γi) follows from the induction
assumption in Ml−1.

Thus, I can assume that e(ǫ) is marked by the integer l. According
to the axioms of admissible graphs, either

(a) l has one direct ascendent, or

(b) l has two direct ascendents.
Consider the admissible graph Γ(−1) by removing the l-th vertex and
the edges linking to its direct ascendents. By induction hypothesis,
Y (Γ(−1)) has been the transversal intersection of the D(Γ(−1)i). If l
has exactly two direct ascendents, then the construction of Y (Γ) implies
that Y (Γ) �→ Y (Γ(−1)) ⊂ Ml−1 induces an isomorphism. In particular
Y (Γ) is smooth of the correct dimension. To prove the transversal-
ity of the intersection, one reduces it to the case of (a): Consider Γ(0)

and Γ(1) to be the one edge extension of Γ(−1) by adjoining either of
the edges linking l. Consider Y (Γ) ⊂ f−1

l−1(Y (Γ(−1))) as the intersec-

tion of Y (Γ(0)) and Y (Γ(1)). Suppose (a) has been handled and both
Y (Γ(i)), i = 0, 1 have been known to be transversal intersections, then
Y (Γ) is also a transversal intersection once one checks that the intersec-
tion Y (Γ(0)) ∩ Y (Γ(1)) is transversal. This can be seen as the fiberwise
exceptional P1 are of simple normal crossing.

Thus, I reduce to the case (a) Suppose ǫ is the unique edge in Γ
ending at l. I use the fact that Ml is constructed by Ml−1 ×M through
a sequence of l − 1 complex codimension two blowing ups marked by
(j, l), j ≤ l − 1.

Suppose that s(ǫ) is marked by l − 1, then Y (Γ) has a P1 fiber
bundle structure over Y (Γ(−1)). Because it is the exceptional divisor
⊂ f−1

l−1(Y (Γ(−1))) of the last blowing up marked (l−1, l). The transver-

sality of the intersection ∩Y (Γi) follows from the induction hypothesis
on Y (Γ(−1)). If s(ǫ) is marked by j0 < l−1, then one has to discuss the
effect of the (j, l), l − 1 ≤ j > j0 blowing ups on the P1 bundle struc-
ture. Take Yj0+1 to be the P1 bundle which is the exceptional divisor in
f−1

l−1(Y (Γ(−1))) determined by the (j0, l) blowing up. Let Yk; k ≥ j0 +2
denote the proper transformation of Yk−1 under the (k − 1, l) blowing
ups. Then Yl is Y (Γ).
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It is enough to prove that Y (Γ) is a smooth divisor in f−1
l−1(Y (Γ(−1))).

The smoothness of Y (Γ) follows from the fact that the centers of the
subsequential blowing ups (j, l), l − 1 ≤ j > j0 are all smooth. It is
argued as below. The blowing ups centers are sections of the intermedi-
ate fiber bundles which are all birational to f−1

l−1(Y (Γ(−1))). The (j, l)
blowup center intersects each of the fibers of Yj−1 �→ Y (Γ(−1)) in at
most a single point. I characterize the intersection as the following.

The projection map Yj−1 �→ Y (Γ(−1)) induces an isomorphism from
the intersection to its image. On the other hand, its image in Y (Γ(−1))
can be identified as Y (Γ(−1)′), Γ(−1)′ < Γ(−1) or the empty set ∅.
The intersection condition forces the j − 1-th vertex to be the direct
descendent of j0-th vertex. If p = j−1-th vertex is free or if j0 has been
its unique direct ascendent in Γ(−1), the process stops and it ends up in
an admissible Γ(−1)′. If p = j − 1-th vertex has other direct ascendents
other than j0, the admissibility condition implies immediately that the
direct ascendents of j − 1-th vertex in Γ(−1) (other than j0) to be
the direct descendents of j0. Either the process will terminate which
results in a unique Γ(−1)′ or it will eventually lead to a new graph
violating some axiom of admissibility conditions. In the latter case, the
intersection is empty.

By induction hypothesis, Y (Γ(−1)′) has known to be a transversal
intersection of D(Γ(−1)′i) and therefore it is smooth. Therefore, the
intersection of the blowing up centers with Yj−1 is smooth. Thus, Yj ,
the proper transformation, is smooth, too.

Y (Γ) is a smooth divisor in f−1
l−1(Y (Γ(−1))), which is known to be the

preimage of a transversal intersection by applying induction hypothesis.
Then Y (Γ) is also a transversal intersection. q.e.d.

The locus D(Γi) plays a special role in curve theory. Let us consider
the cohomology class denoted by Ei −

∑
ji

Eji
. Then D(Γi) is the lo-

cus that the class is represented by (pseudo)-holomorphic curves. The
interior DΓi is the locus that the same class is represented by a smooth
irreducible (pseudo)-holomorphic curve.

By combining this interpretation and Proposition 4.4, one finds the
following interpretation for the locus Y (Γ).

Proposition 4.7. Let Γi denote the admissible graph derived from
Γ as was explained before. Through the identification

Y (Γ) = ∩i∈Ver(Γ)D(Γi),
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the space Y (Γ) is the locus that these different cohomology classes Ei(l)−∑
ji

Eji
(l), i ∈ Ver(Γ) are simultaneously represented by pseudo-holo-

morphic curves. Similarly, the interior YΓ of Y (Γ) is the locus that
the type I curves are all smooth and irreducible. The boundary of YΓ

describes the various degenerations of the exceptional curves.

On the other hand, any Γ ∈ adm(l) can be viewed as a degeneration
from the trivial graph γl without any edges, it follows that Ml = Y (γ) =
∪Γ<γYΓ defines a stratification of Ml.

By the induction hypothesis, codim(Y (Γ)) = codim(Y (Γ(−1))) + 1
if l has only one direct ascendent. codim(Y (Γ)) = codim(Y (Γ(−1))) +
2 if l has exactly two direct ascendents. On the other hand, 1 +
codim(Γ(−1)) = codim(Γ) in the former case while codim(Γ)
= codim(Γ(−1)) + 2 in the latter case. Then codimC(Y (Γ)) must be
equal to codim(Γ) for all Γ ∈ adm(l).

It follows that the space YΓ is the top strata of Y (Γ). According
to Proposition 4.3, the codimension of the strata should be counted by∑

i∈V er(Γ) ni. The ni is the number of direct descendents of i-th vertex,
which is also the number of edges initiating from i. Geometrically, the
equality can be understood as follows. Each Γi is associated with a
−ni − 1 rational curve. According to the general fact of rational curves
in the algebraic surfaces, its expected dimension is given by −ni.

Next let us consider the preexceptional cone CΓ.

Let Ei(l), 1 ≤ i ≤ l be the exceptional classes of the l different

blowing up in X = M♯lCP2. Let ei be the extremal generators of the
cone of exceptional curves in CΓ.

Lemma 4.3. Given the admissible graph Γ, there exists a bijection
between the vertexes of Γ with the extremal rays ei. In particular there
are exactly l different ei which generate the cone CΓ. The cone CΓ is
simplicial and is generated by l different edges. Let ei be associated with
the i-th vertex and let ji be all the direct descendents of the vertex i.
Then the class ei is dual to to Ei −

∑
ji

Eji
.

As the number of direct descendents of i is the same as the number
of edges starting from i, the sum

∑
i

(
ei·KX−e2

i

2

)
is equal to the number

of edges in Γi. From here I conclude that the stratification YΓ is of right
dimension with respect to CΓ. The exceptional cones discussed in my
paper will be some simplicial subcones of the preexceptional cones CΓ.
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4.5 The automorphism groups of the strata YΓ

Given an element g ∈ Sn, it permutes the vertexes with different mark-
ings. It is clear from some simple examples that it does not extend to an
action on adm(n). Likewise, the manifold Mn does not allow a natural
Sn action. To study how does the Sn action fails to be extended, one
can compare it with the Fulton-MacPherson space M [n] which is known
to admit a natural Sn action.

The reason that the Sn action does not extend on Mn is due to
the asymmetry of the blowing ups. Notice that M [n] and Mn can be

constructed from Mn by respectively 2n−n−1 and n(n−1)
2 blowing ups.

Given an admissible graph Γ ∈ adm(n), I define two subgroups of Sn

attached to Γ. They show up in the curve counting scheme naturally.

Definition 4.12. Let GΓ denote the subgroup of Sn which pre-
serves the admissible graph Γ. Define the group G(Γ) to be the sub-
group of Sn which permutes the graph while preserving the admissibil-
ity condition. The group G(Γ) contains GΓ as its subgroup such that
G(Γ) · Γ ⊂ adm(n).

Moreover, the next proposition summarizes the basic property of the
action of GΓ on YΓ.

Proposition 4.8. The group GΓ acts naturally and freely on the
locally closed space YΓ. Similarly, the group element g ∈ G(Γ) acts on
YΓ which maps the space YΓ to the space YgΓ.

The action of GΓ does not always extend to an action on the closure
G(Γ). Likewise, the action of G(Γ) does not always extend to an action
from Y (Γ) to Y (gΓ).

The introduction of these groups simplifies dramatically the com-
plicated counting of the combinatorial factors. Proposition 4.8 will be
used to correct the multiplicity of modified invariants.

Proof. To prove this proposition, one introduces the concept of
order function on Ver(Γ).

Let Γ ∈ adm(n) be an admissible graph with n vertexes. There are
always some vertexes which have no direct ascendents.

Definition 4.13. Define the order function on Ver(Γ) first by
requiring that the order function takes value 0 on these vertexes.They
are called the order zero vertexes. Then the order function takes value
s ∈ N if s is equal to the minimal number of edges in the oriented paths
linking an order zero vertex to this specific vertex.
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A vertex is said to be an order s vertex if the order function takes
value s on the vertex. Alternatively, the vertexes of order s are the direct
descendents of vertexes of order s − 1. I will use the order function to
“stratify” the graph. A crucial property of the order function is its
invariance under the GΓ action, preserving the graph Γ.

Given an admissible graph Γ, one defines a sequence of increasing
subgraphs by restricting to the s order vertexes s ≤ k and the edges
linking them. Thus, there is a sequence of monotonously increasing
graphs Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn = Γ. It is also easy to see that one can
assign a sequence of spaces XΓi

, XΓn = YΓ to these graphs such that
XΓi

�→ XΓi−1 has a fibration structure for all i ≤ n. The fibration
structure will be used in the explicit enumeration as being shown later.
The graphs Γi are all GΓ invariant due to the GΓ invariance of the
order function. Notice that Γi and Γi are different symbols, representing
totally different objects.

Suppose that the graph Γ has d different order zero vertexes, then
one chooses XΓ0 to be isomorphic to Yγ in Md, with γ ∈ adm(d).

Based on the simple observation that a order s, ( s > 0) vertex can
always be connected to Γs−1 by an edge in Γ, one inductively constructs
the fiber bundle structure similar to what was done in Subsection 4.4.
After the fiber bundles are constructed, it can be easily shown that all
the spaces XΓi

allow GΓ actions. In particular, the space YΓ = XΓn also
allows a GΓ action.

The construction of the spaces XΓi
is basically identical to the in-

duction construction of the spaces YΓ in Subsection 4.4. Instead of doing
induction based on the markings, one inductively constructs XΓi

based
on the usage of the order function. As it does not involve any new idea,
I skip the details of the construction. Let us briefly address the freeness
of the GΓ action. I prove it by induction on i.

Let φi : GΓ �→ S|Ver(Γi)| be the natural representation acting on
Ver(Γi). Then one proves inductively that φi(GΓ) acts on XΓi

freely.
It is clear that the image group φ0(GΓ) acts on XΓ0 freely. Assume
that the action of φi(GΓ) on XΓi

is free, one inductively proves it for
i �→ i + 1. Suppose that there is an element e 	= g ∈ GΓ which fixes
a point x ∈ XΓi+1 , then the image of x under the fiber bundle map
XΓi+1 �→ XΓi

is also fixed by g. By the free action assumption on the
φi(GΓ) action, the element g must lie in ker(φi). Thus, the element
g fixes Ver(Γi) while it permutes nontrivially some of the vertexes in
Ver(Γi+1) − Ver(Γi).

Choose a vertex v in Ver(Γi) such that some of its direct descendents
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lie in Ver(Γi+1)−Ver(Γi)−Ver(Γi+1)
GΓ 	= ∅; the vertexes not being fixed

by GΓ.
As v is fixed under g and the whole graph Γ is also invariant un-

der g, the direct descendents of v must be permuted among each other.
One classifies the direct descendent vertexes into two classes. First, one
considers these vertexes which have only one direct ascendent v. Then
one considers the class of vertexes which consists of those descendents
having another direct ascendent other than v. The action of g upon
Ver(Γi+1) must not mix up the two different classes. Let the set of
the vertexes in the first (second) class be denoted by △1 (△2), respec-
tively. It is crucial to notice that △1 is nonempty by the axioms of the
admissible graphs and by induction.

Consider the fiber of XΓi+1 �→ XΓi
passing through x. Then this fiber

is preserved by GΓ, as is its image. From the inductive construction, this
fiber can be decomposed into the direct products of different factors.
Among the different factors, I am particularly interested in a single
direct factor which is of complex |△1| dimension. It can be easily shown
that the factor is isomorphic to an open subset of the space (CP1)|△1|

such that the element g acts by permuting the elements in △1.
Let x be the image of x projecting into this direct factor. As x

is fixed by g, x must be fixed by g also. Therefore, it indicates that
the image point x must lie in the fixed point set of (CP1)|△1| under
the action of g. Thus, it must lie in the big diagonal of (CP1)|△1|.
However, this indicates that among the elements in △1, there is some
vertex which is the direct ascendent of the others. This immediately
implies that some element in △1 has more than one direct ascendent.
This creates a contradiction as by definition the vertexes in △1 can only
have one direct ascendent, namely v. The previous argument relies on
the assumption |△1| > 1, which can be proved by contradiction and by
Axiom 4.5 of the admissible graphs.

This contradiction rules out the possibility of the existence of g and
x, and therefore, the action of φi+1(GΓ) on XΓi+1 is free. By induction
process, this applies to XΓm = Y (Γ) and φn(GΓ) = GΓ as well.

This completes the proof of the proposition. q.e.d.

In the following, I give an example to illustrate the difference be-
tween GΓ and the automorphism group of YΓ.

Remark 4.3. Even though GΓ is a subgroup ⊂ Sn which acts
upon YΓ freely, it may not be the largest subgroup of Sn that can act
on YΓ. Let Γ ∈ adm(2) be the admissible graph formed by the arrow
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from 1 to 2. As M2 can be constructed by blowing up ∆M ⊂ M × M ,
the space M2 admits an S2 = Z2 action. The stratum YΓ corresponds
to the exceptional divisor under the blowing up. The group Z2 acts on
M2, its action nevertheless fixes the whole space YΓ completely. Because
the arrow from 1 to 2 is oriented, the action which switches these two
vertexes violates the admissibility condition. Therefore, GΓ = {id}.

Let us address the geometric meaning of the admissible graphs in
terms of pseudo-holomorphic curve theory. Let X �→ YΓ be the in-
duced fiber bundle by pulling back Mn+1 �→ Mn through the embed-
ding YΓ ⊂ Mn. Then the combinatorial information of the admissible
graph can be translated into the dual graph of the exceptional curves
of the fibers. Degenerations of the admissible graphs correspond to the
degenerations of the exceptional curves. As was remarked before, the
preexceptional cone CΓ is a constant cone throughout YΓ. Through this
identification, the various graphs Γi, i ∈ Ver(Γ) correspond to the irre-
ducible exceptional curves which form the extremal generators of the
cone CΓ. It is clear that the group action of GΓ and G(Γ) upon YΓ can
be lifted to be the actions upon the preexceptional cones. The various
Γi are permuted under GΓ.

An arbitrary bi-holomorphic automorphism on YΓ may not neces-
sarily induce an automorphism on the fiber bundle X|YΓ

�→ YΓ. I am
interested in identifying the automorphism group, which acts on the
fiber bundle making the projection map an equivariant map.

Recall that there is a blowing down morphism from X|YΓ
to YΓ×M ,

which is denoted by π.

Proposition 4.9. The projection map π induces a homomorphism
from Autf (X )|YΓ

to Autf (YΓ × M) denoted by π♯. The preimage of
Autf (YΓ)× id by π−1

♯ is said to be the exceptional automorphism group
of the fiber bundle. The subgroup of the exceptional automorphism group
of X|YΓ

�→ YΓ, which preserves the fiber bundle structure X �→ YΓ, is
isomorphic to GΓ.

Proof. To prove the statement, one notices that the group acts
upon the total space X , which lifts the group action upon YΓ. Then the
group induces an action on the fiber-wise H2 and, therefore, the effective
preexceptional cone, CΓ. By the assumption in Proposition 4.9, the
elements in the exceptional automorphism group act trivially outside the
exceptional locus. Thus, one is able to concentrate to study its action
on the exceptional curves. As the preexceptional cone is kept unchanged
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throughout YΓ, the induced action of the group on the cone must keep
the cone invariant while permuting the individual extremal generators.
Through the identification between these extremal exceptional curves
and the graphs Γi, it induces an action on the set of Γi’s. As these
various Γi form the building block of the graph Γ, the graph itself is
also kept invariant , with different vertexes being permuted. This is a
consequence of the fact that the diffeomorphisms induce isometries on
the preexceptional cones.

By this argument one constructs a surjection from the specific sub-
group of the exceptional automorphism group to GΓ. To see that the
kernel of the group morphism is trivial, it is sufficient to show the fol-
lowing statement: If the element induces a trivial action on YΓ, as well
as the preexceptional cone, it must be the identity.

I omit the proof as it follows from the standard theory on 2 dimen-
sional blowing ups and mathematical induction. This ends the proof of
the proposition. q.e.d.

Next, I will introduce several terminologies and notations which will
be used in the later sections:

Definition 4.14. Let GΓ be the subgroup of G(Γ) which leaves Γ
invariant. The symbol σ(Γ) = |G(Γ)/GΓ| is defined to be the cardinality
of Γ’s orbit under G(Γ).

I notice that, in general, the group G(Γ) does not act on YΓ. The
element g ∈ G(Γ) maps YΓ to YgΓ. The group GΓ is the stabilizer of Γ
under the group action on a certain subset of adm(n).

One says that Γ1 and Γ2 are equivalent if one can get Γ2 by renaming
vertexes in Γ1 while preserving the admissibility condition. In fact, Γ2

is equivalent to Γ1 if and only if Γ2 = gΓ1, g ∈ G(Γ1) = G(Γ2).

Example 4.2. Consider the graph on the left hand side of Figure 3.
It is not hard to see that GΓ = S2 × S2 while |G(Γ)| = 1120 and
σ(Γ) = 280. Consider the new graph by degeneration. GΓ = Z2,
|G(Γ)| = 560 and σ(Γ) = 280.

These numbers are relevant to the calculations in the final section.
Consider the Fulton-MacPherson space M [n], it admits a natural Sn

action. Quite different from the Fulton-MacPherson space, the space
Mn does not admit any natural Sn action. Given the special admissible
graph γ, the space Yγ , the top stratum of the stratification admits an Sn

action. However, the action cannot be extended to its compactification,
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Mn. Instead, the symmetric group breaks up into its various subgroups.
They are the GΓ defined in this section. Moreover, the groups GΓ can
vary when one moves from a generic stratum to its boundary strata. If
the degenerations of graphs break up the symmetry, the groups shrink.
Sometimes the degenerations of graphs enhance the original symmetry,
the groups get larger. In general, it is the combined behavior that
complicates the general picture. On the other hand, the introduction of
the modified family invariants can be viewed as an attempt to regulate
the complicated situation.

Proposition 4.10. Let adm(n)′ be the equivalence classes of ad-
missible graphs under the previous equivalence relationship. Let Γ be a
representative in the class [Γ]. Then the stratification Mn = ∪Γ∈adm(n)YΓ

can be rephrased as Mn = ∪[Γ]∈adm(n)′G(Γ) · YΓ.

Proposition 4.10 will be used as foundation for enumerations in sec-
tion 9.2, 9.3, 9.4, and 9.5. The group GΓ acts on the preexceptional
cone C(Γ) while permuting the extremal rays. The elements in the
group g ∈ G(Γ) intertwine the preexceptional cones CΓ and CgΓ under
the action.

When we count of nodal curves, the groups GΓ and G(Γ) would
be enough for my purpose. The main reason is that mi = 2 for all
i and it does not put any extra constraints on the symmetric group.
In general, there is no reason to expect that the multiplicity function
M : Ver(Γ) �→ Z is GΓ invariant. The precise definition of M and the
topological types of curve singularities will be given in the next section.

Let us define two new objects which are useful in discussing the
general situation.

Definition 4.15. The action of GΓ on Ver(Γ) induces an action on
the multiplicity functions. Given a multiplicity function M : Ver(Γ) �→
N∪{0}, the group GΓ,M is the subgroup of GΓ which leaves the function
M invariant.

Similarly, two different topological types (Γ1, C − M1(E)E) and
(Γ2, C − M2(E)E) determines two different multiplicity functions M1

and M2. The group G(Γ,M1,M2) is the subgroup of G(Γ) which bring
M1 to M2 under the action.

The reader should notice that GΓ,M preserves the exceptional as
well as the preexceptional cones. Likewise, the group G(Γ,M1,M2)
intertwines them.
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5. The topological type of a singular curve and the core of a

topological type

Recall the well known theorem in surface theory [1]:

Theorem 5.1. Let M be an algebraic surface, and C a holomorphic
curve on M . Then there exists a sequence of a finite number of blow-
ing ups, after which the proper transformation of the curve C becomes
smooth.

Notice that the blowing up processes are generally nonunique. Es-
pecially given such a finite sequence of blowing ups, one can perform an
indefinite number of redundant blowing ups and still arrive at the same
result. As the singularities of pseudo-holomorphic curves are locally
bi-diffeomorphic to the algebraic singularities [43], the similar conclu-
sion can be drawn for pseudo-holomorphic curves in a symplectic four-
manifolds.

Let us fix a special sequence of blowing ups of M , under which the
proper transformation of C becomes nonsingular.

Suppose that there are n individual blowing ups involved in this
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process. The combinatorial type of the blowing ups can be described
by an admissible graph Γ ∈ adm(n) as was extensively studied in the
previous section. The vertexes of the corresponding admissible graph
correspond to the blown up points, while the markings order the blowing
ups.

Let Ei be the cohomology classes associated with the i-exceptional
curves. Suppose that the proper transformation of C lies in the coho-
mology class C −∑miEi, then it follows that mi −

∑
ji

mji
≥ 0. As

usual, the indexes ji denote the direct descendents of the index i. This
simple fact can be understood and derived in two different ways. First, it
indicates that when the centers of the ji’s blowing ups are located at the
exceptional locus of the i-th blowing up, then the sum of the multiplici-
ties of these singular points must be less than or equal to the multiplicity
of the i-th singular point. On the other hand, the same conclusion can
be derived by using the fact that Ei −

∑
ji

Eji
and C −∑k≤n mkEk are

dual to the two distinct (pseudo)-holomorphic curves in the same mani-
fold. Then mi−

∑
mji

can be realized as [Ei−
∑

ji
Eji

]·(C−∑k mkEk),
and it is nonnegative by using the fact that distinct irreducible (pseudo)-
holomorphic curves intersect positively.

Given a singular curve in the class C, consider one sequence of blow-
ing up process (nonunique) and thus the admissible graph Γ which
desingularizes the curve. The pair (Γ, C −∑miEi) is defined to be
the topological type of the singular curve. For the convenience of the
later discussion, I may impose some additional conditions on the mark-
ings and the multiplicities mi. Suppose i < j are the markings of two
vertexes such that j is not a descendent of i, then the vertexes marked
k > j are not the descendents of i. This condition is imposed in or-
der to reduce the ambiguity of blowing ups. I require additionally that
mj ≥ mi for j > i if either of the following conditions holds:

(1) The j-th vertex has no direct ascendent vertex, i.e., it is a free
vertex.

(2) The i-th and j-th vertexes share the common direct ascendent
vertex, yet the j-th vertex is not a direct descendent of the i-th
vertex in Γ.

Geometrically, it corresponds to the rule of resolving the singularities
with the lower multiplicities first.

Two different singular curves in C are of the same topological type
if the associated pairs are the same. The topological type of a curve
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is equivalent to the datum of the topological types of the singularities
and the genera of the resolved curves. Notice that the definition offered
here does not coincide with the standard one in the text, but they can
be shown to be equivalent. A proof can be found in [3].

One of the goals of the paper is to calculate the “number of singular
curves” of a fixed topological type. Before doing so, let us introduce
some definitions.

Given a topological type of singular curves (Γ, C −∑miEi), the
multiplicities mi define a Z-valued function from Ver(Γ) to Z by asso-
ciating each vertex to the corresponding multiplicity. Let us denote the
multiplicity function by M(E).

Definition 5.1. A vertex of an admissible graph is said to be
redundant if the corresponding multiplicity mi is equal to zero. An
edge is said to be redundant if it connects a redundant vertex with the
others.

From the previous inequality mi ≥
∑

mji
it follows that if a vertex

is redundant, then all of its descendent vertexes are also redundant.

Definition 5.2. A vertex of an admissible graph is said to be sub-
redundant if first, the multiplicity function M takes value one on the
vertex and the vertex has exactly one direct ascendent. Second, it does
not have any descendent vertex which has more than one direct ascen-
dent. An edge is said to be subredundant if it connects a subredundant
vertex with the others.

The purpose of introducing these concepts will be clarified momen-
tarily after the introduction of the modified invariants.

Definition 5.3. An admissible graph is said to be nonredundant
if it does not contain any redundant or subredundant vertex. Given any
topological type (Γ, C−∑miEi), there exists a unique maximal nonre-
dundant subgraph Γ′ ⊂ Γ, which is constructed by removing from the
original graph Γ all the redundant and subredundant vertexes and the
edges connecting them. The resulting subgraph is called the core of the
admissible graph Γ with respect to the topological type. The markings
of the subgraph is generally given by a certain subset of {1, 2, 3, . . . , n}.
One uses the notation core(Γ,M) to denote the core of an admissible
graph.

Notice that the concept of cores depends not only on the graph
itself, but on the pair (Γ, C −∑i miEi). These definitions translate the
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geometry of singularities into a combinatorial language. The concept of
“cores” will be used in Section 9 in conjunction with Proposition 5.4,
which tells us how the modified invariants (Section 5.1) change under
the reduction process.

5.1 The definition of the modified family Seiberg-Witten

invariants

Given a topological type (Γ, C −∑miEi), one attaches the space Y (Γ)
to the admissible graph. We consider the mixed family Seiberg-Witten
invariant FSW (c, C −∑miEi) over the base B = Y (Γ).

The first step is to define a version of the modified invariants, de-
noted by FSW ∗. It will be shown that the definition of the modified
Seiberg-Witten invariant FSW ∗(c, C−∑miEi) is closely related to the
counting of singular pseudo-holomorphic curves of a fixed topological
type.

The special properties of FSW ∗ will be proved in the following sec-
tion. Namely, if Γ1 and Γ2 are congruent to each other through an
element g in Sn, then the modified invariants FSW ∗

Γ1
(1, C −∑miEi)

and FSW ∗
Γ2

(1, C −∑mg(i)Eg(i)) are equal. Notice that this particular
property is not shared by the original family invariant FSW .

First one notices that mi −
∑

ji
mji

≥ 0 for all i. This indicates
that the class C − M(E)E has nonnegative pairings with all type I
exceptional curves in the preexceptional cone CΓ. From the discussion
in Section 4.2, C − M(E)E = C −∑miEi constitutes an admissible
decomposition (class) of level zero over Y (Γ). Namely, it is a generic
admissible decomposition. Following the general wisdom, the family
invariant itself is not proportional to the “number” of singular curves,
even though these two numbers are closely related. The detailed analysis
will be done later. At this moment, I give a formal discussion.

Viewing C−M(E)E as the total cohomology class, one is interested
in the other admissible decomposition classes other than the trivial one.
Given the cohomology class C−M(E)E, let ADM(s) denote the level s
admissible decomposition classes of C−M(E)E, with the dependence on
C−M(E)E being omitted. Then it follows from the energy boundedness
property of the pseudo-holomorphic curves that ADM(s) = ∅ when s
is large enough.

By definition, ADM =
∐

s≥0 ADM(s) is the disjoint union of the
various admissible decomposition classes of different levels. By the pre-
vious remark, it must be a finite set. One should be careful that these
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sets depend on C − M(E)E and Γ explicitly. In discussing the corre-
sponding objects for different topological types, one adopts the notation
ADM(s)(Γ, C − M(E)E) instead of ADM(s).

The Φ map which associates an admissible decomposition class to
the associated admissible graph establishes a morphism Φ : ADM −→
adm(n).

Given an admissible decomposition class, my goal is to attach certain
types of mixed invariants to some admissible decomposition (which is
allowable by definition) in the same decomposition class. It can be
achieved by the application of the family switching formula. If the
admissible decompositions in the same class are not unique, then the
associated mixed invariants may look different.

The family switching formula assigns mixed invariants to the de-
composition class. In general, the uniqueness of the expression is not
ensured. However, the family switching formula relates different expres-
sions, and those different mixed invariants always resemble the same
numerical value. I state it in the following remark.

Example 5.1. Assuming that there is more than one admissible
decomposition in the given decomposition class and a mixed invariant
has been assigned to each of them, then the numerical values of the
mixed invariants attached to the different admissible decompositions in
the same class are equal.

This is a consequence of the repeated applications of the family
switching formula, Theorem 2.3. q.e.d.

Notice that it is the expression of mixed invariants which are ap-
parently different. The numerical values are the same. In fact, let
H = F +

∑
miei = F ′ +

∑
m′

ie
′
i be two admissible decompositions

in the same decomposition class. The F and F ′ are respectively the
free parts of them. The classes ei or e′j are the type I exceptional
curves in the decompositions. As they belong to the same decomposi-
tion class, ei and e′j must be permutations of each other, and ei and
e′j are characterized to be the extremal elements in the preexceptional
cone which have negative pairings with the total class. There is no
guarantee that mi and m′

i are co-related. Let Γ be the admissible graph
under the Φ map. By using the special case of family switching for-
mula along with the nested Kuranishi model technique (please consult
the Section 6.1), the invariant contribution of both decompositions are
expressed as FSWY (Γ)(c∗(κ), H −∑ ei) when the decomposition is al-
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lowable. The symbol c∗(κ) denotes the top chern class of the residual
relative obstruction bundle relating H and H −∑ ei. Otherwise it is
taken to be zero automatically. In the ensuing discussion, I assume that
the decomposition is allowable.

5.2 The mixed family invariant associated with the type

I admissible decompositions

We begin by discussing the various numerical properties of the type
I admissible decompositions. As any nonempty type I admissible de-
composition class always contains a decomposition of the form (C0 −∑

ei,
∑

ei), we investigate its degenerations by using the geometrical
properties of type I curves.

Two type I classes ei and ej are said to be directly connected if
ei · ej > 0. Two type I classes ei and ej are said to be connected if there
exists a chain of e starting at ei and ending at ej such that the adjacent
e are directly connected.

Given a finite sequence of type I exceptional classes ei, i ∈ I such
that ei ·ej ≥ 0, one collects them into different “connected components”
such that the type I exceptional classes from different “ connected com-
ponents” have trivial intersection numbers.

Lemma 5.1. Let (C0−
∑

i∈I ei,
∑

i∈I ei) be an allowable decompo-
sition, then among the “connected components” of ∪i∈Iei, there exists
at least one “connected component”, determined by J ⊂ I, such that
C0 · (

∑
j∈J⊂I ej) ≤ (

∑
j∈J ej)

2 < 0.

Proof. Suppose I has been decomposed into different “connected
components” I =

∐
r Jr following the definition.

Then it follows that

dR(C0) ≤ dR

(
C0 −

∑

i∈I

ei

)
+
∑

i∈I

dR(ei)

≤ dR

(
C0 −

∑

r

{∑

j∈Jr

ej

})
+
∑

r

dR

(∑

j∈Jr

ej

)
.

Because the classes from different Jr intersect trivially, it implies
that

dR(C0) ≤ dR(C0) − 2
∑

r

{∑

j∈Jr

ej

}
· C0 + 2

∑

r

{∑

j∈Jr

ej

}2
.
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It follows that
∑

r{
∑

j∈Jr
ej} ·C0 ≤∑r{

∑
j∈Jr

ej}2. It implies that

for at least one Jr, {
∑

j∈Jr
ej} · C ≤ {∑j∈Jr

ej}2.
By using the fact that the quadratic intersection form is negative

definite on the cone generated by ej , j ∈ Jr, it follows that

C0 ·
{∑

j∈Jr

ej

}
≤
{∑

j∈Jr

ej

}2
< 0. q.e.d.

If ei · ej = 1, i < j, it implies that when both are written in the
standard basis ei = Ei −

∑
ji

Eji
; ej = Ej −

∑
jj

Ejj
, j is the i’s direct

descendent and Ei −
∑

ji
Eji

. The two expressions Ei −
∑

ji
Eji

and
Ej−

∑
jj

Ejj
share exactly one Ej in common. This implies that ei+ej =

Ei −
∑

ji �=j Eji
−∑jj

Ejj
can be thought to be a new type I exceptional

class and can be thought to be the smoothing of ei&ej . By induction,∑
j∈Jr

ej can be “smoothed” into a new type I exceptional class. In
particular, the previous lemma implies that one can group the type I
exceptional classes and smooth them separately. At least one among
the new type I classes, e, would satisfy e · C0 ≤ e2 < 0.

The condition will play a crucial role in constructing the nested
Kuranishi model.

Conversely, suppose C0 is a class over b and ei,∈ I, ei · C0 < 0 are
all the smooth type I classes over b which are not numerically effective
with respect to C0. One has the following lemma:

Lemma 5.2. If 0 > ei·C0 > e2
i for all i ∈ I, then the decomposition

(C0 −
∑

i ei,
∑

ei) is not allowable.

Proof. Suppose that it is allowable. A direct calculation shows that

dR

(
C0 −

∑

i∈I

ei

)
+
∑

i∈I

dR(ei) − dR(C0) =

2
(∑

i∈I

e2
i +

∑

i<j;i,j∈I

ei · ej

)
− 2
(∑

i∈I

ei

)
· C0 ≥ 0.

On the other hand, the assumption implies ei · C0 − e2
i ≥ 1 for all

i ∈ I. Summing over i and one gets
∑

i∈I ei · C0 −
∑

i∈I e2
i ≥ |I|.

Combining the two inequalities one derives that
∑

i<j;i,j∈I ei · ej

≥ |I|. One would like to prove that this leads to a contradiction.
As in the previous discussion, the collection of ei, i ∈ I can be re-

grouped into connected trees such that ei in the distinct groups do not
intersect each other. Within the same group Jr, the type I classes may
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intersect each other. Given a Jr, the dual graph of the ei, i ∈ Jr forms
a connected tree and the total number of intersections

∑
i<j;i,j∈Jr

ei · ej

is equal to the number of one dimensional edges of the tree. As a con-
nected tree always has Euler number 1 which is also equal to “number of
vertexes-number of one edges”, one may identify

∑
i<j;i,j∈Jr

ei · ej with
|Jr| − 1. Thus the total number of intersections can be identified with∑

(|Jr| − 1) = |I|−number of components. In particular, it is always
smaller than |I|. q.e.d.

One can categorize the allowable decompositions (C − M(E)E
−∑ ei,

∑
ei) into two types.

Definition 5.4. Let (C − M(E)E −∑ ei,
∑

ei) be an allowable
decomposition. Then ei is a type I exceptional class which satisfies
ei ·(C−M(E)E < 0. If ei ·(C−M(E)E) ≤ e2

i for all ei, ei ·(C−M(E)E)
< 0, then it is called a type A allowable decomposition class.

If there exists at least one ei, ei · (C −M(E)E > e2
i , then it is called

a type B allowable decomposition class.

Given a type B admissible decomposition class D2, it is easy to
see that there exists a type A admissible decomposition class D1, such
that D1 ≫ D2. The type A decomposition classes are essential as
they contribute to the family invariants. Yet a vanishing argument by
dimension counting implies that a type B decomposition class always
contributes trivially to the family invariant. I will focus mostly on the
type A admissible decomposition classes in this subsection.

Given an arbitrary, nongeneric, admissible decomposition class as-
sociated to Γ, I would like to discuss in certain detail the mixed family
invariant associated with it. I will focus on the class c∗(κ) and explain
the subtlety involved in the construction.

In order to apply the family switching formula directly, one has to
be careful about the extra condition imposed in the theorem. Namely,
the S2 bundle is embedded in X �→ B in a way that the normal bundle
can be given a structure of relative complex line bundle.

In our situation, this condition is not always met. In fact, in our
setup, the naive candidates of the S2 bundle will be the various holomor-
phic curves dual to ei, ei · (C − M(E)E) < 0. However, those rational
curves usually do not form S2 bundles. Rather, they degenerate into a
tree of rational curves whose patterns are encoded in the combinatorial
data of the admissible graphs.

A direct consequence of the appearance of the singular fibers is that
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the algebraic geometric data of “obstruction sheaf” may not be locally
free. In other words, the appropriate index bundles jump when the
smooth curves degenerate into singular one. On the other hand, it is
an indirect indication that the other type of admissible decomposition
classes have supported over some Y (Γ′), Γ′ < Γ, a lower dimensional
stratum of YΓ.

Instead of analyzing the jumping phenomenon directly, one uses the
concept of admissible decomposition classes of different levels to decom-
pose the family moduli space into various “topological components”
such that one constructs a specific family Kuranishi model for each
“topological component”.

I will show that the obstruction semi-bundle, restricted to each
“component”, contains a vector subbundle canonically associated with
the type I exceptional curves. The mixed family invariant associated
with each “component” can be analyzed by using the regularly obstruct-
edness condition and the nested family Kuranishi model.

Fix an extremal generator of the exceptional cone, i.e., a type I
exceptional class ei such that ei · (C − M(E)E) < 0. Let Γei

be the
admissible graph with −e2

i −1 edges which characterizes the effectiveness
of ei.

Notice that Y (Γei
) is the moduli space of the exceptional curve in

ei.

The total space Ξ of the universal curve over Y (Γei
) carries a P1

fibration over Y (Γei
). The restriction of the P1 fibration to YΓei

gives

rise to a P1 bundle structure.

I state the following proposition regarding the existence of the P1

bundle over Y (Γei
).

Proposition 5.1. There exists a relatively minimal P1 fiber bun-
dle Ξ̃ over each Y (Γei

), denoted by Ξ̃i such that Ξi �→ Ξ̃i are birational
fiber preserving morphisms.

Suppose that the indexes ji are the markings of the direct descen-
dents of the i-th vertex. Then the smooth fibers (dual to ei) of Ξi de-
generate into singular curves over the various YΓ′

ei
, Γ′

ei
< Γei

such that
for some k 	= i, ji, etc., the k-th vertex becomes the direct descendent
of i-th vertex.

Those Y (Γ′
ei

) are of smooth complex codimension one in Y (Γei
).

The two fibrations Ξi �→ Y (Γei
) and Ξ̃i �→ Y (Γei

) are identical outside
those YΓ′

ei
⊂ Y (Γei

).
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Proof. To construct such a fiber bundle, I recall that Mn+1 �→ Mn

can be constructed from M×Mn by blowing up n different sections. One
simply ignores those indexes k mentioned above and blows up the other
sections according to their natural orders. The restriction of the new
four-manifold fiber bundle to Y (Γei

) carries a family of relative excep-
tional curves dual to ei. In the newly constructed family these particular
curves do not degenerate into singular curves as I have avoided to blow
up the corresponding k-th sections of M × Mn �→ Mn. q.e.d.

Given the admissible graph Γei
, one repeats the process and con-

structs a similar P1 fiber bundle Ξ̃i to each ei. Choose a specific or-
der to move the class C − M(E)E to C − M(E)E − ∑ ei through
C − M(E)E − ea, C − M(E)E − ea − eb, etc.

In each step, I may apply the family switching formula to the classes
and calculate the family obstruction bundle by using the P1 bundle
Ξ̃a. If some ei satisfies 0 > ei · (C − M(E)E) > e2

i , then (C −
M(E)E − ei, ei) would not be allowable. It also implies the existence
of
∑

i;ei·(C−M(E)E)>e2
i
ei · {C − M(E)E − ei} smoothing directions of

C − M(E)E which are obstructed over Γ. The vanishing argument
based on dimension counting implies that the modified family invariant
attached to (C −M(E)E −∑ ei,

∑
ei) should be zero. Thus define the

class c∗(κ) to be zero. From now on, we assume that ei ·(C−M(E)E) ≤
e2
i < 0 hold for all ei · (C − M(E)E) < 0. Denote the corresponding

relative obstruction bundle by Vi. The explicit construction of Vi is
reviewed in the proof of Proposition 5.2.

Then the class c∗(κ) is defined to be the Euler class of the underlying
real vector bundle κ = ⊕a,ea·(C−M(E)E)≤e2

a<0Va, which is also the top
Chern class of the complex vector bundle.

In the following, I prove that the class c∗(κ) is independent of the
choices of the orders of exceptional curves ei.

In general, if one starts with a different path to get from C−M(E)E
to C − M(E)E −∑ ei, one will encounter different vector bundles Va,
etc. , resulting in a possibly different κ. I show that the class c∗(κ) ∈
H∗(∩Y (Γei

),Z) is independent of the choices of the different orders.

Proposition 5.2. The construction of the class c∗(κ) is indepen-
dent of the path of moving C − M(E)E to C − M(E)E −∑ ei, where
ei are those extremal generators of the type I exceptional cone.

Proof. Fixing a switching process C − M(E)E −∑b∈J eb �→ C −
M(E)E −∑b∈J eb − ea, I first review how are the vector bundles Va
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constructed.

Given the type I exceptional class ea, ea · (C −M(E)E) < 0, I have
constructed the P1 fiber bundle Ξ̃a. Suppose one switches from C −
M(E)E−∑b∈J eb to C−M(E)E−∑b∈J∪{a} eb, the relative obstruction
bundle can be easily described in term of curve theory.

To make the discussion compatible to algebraic geometry, I adopt
the algebraic language here. One can easily translate it into the lan-
guage of topology by applying index theory of the ∂ operators. I would
slightly abuse the notation in representing the locally free sheaf and the
corresponding bundle by the same symbol.

As before, let us denote the relative P1 bundle by Ξ̃a. Let pa denote
the projection map from Ξ̃a to Y (Γea). Let K = ω

Ξ̃a/Y (Γea )
be the

relative canonical bundle(sheaf) of Ξ̃a over Y (Γea). Then the relative
obstruction bundle between C − M(E)E −∑b∈J eb to C − M(E)E −∑

b∈J∪{a} is given by the following expression:

Va = R1(pa)∗(QC−M(E)E−
∑

b∈J eb
) = R0(pa)∗(Q∗

C−M(E)E−
∑

b∈J eb
⊗K)∗.

I have used the relative Serre duality to derive the second equality.
The invertible sheaf QC−M(E)E−

∑
b∈J eb

is constructed as follows:

First notice that because Ξ̃a has a P1 bundle structure, the relative
Picard group of the fibers are of rank 1. The fibers P1 are embedded
into some birational model of M which are in the class Ea −∑Eja .

The class C is trivial along the fibers of Ξ̃a. Thus, it can be pulled back
from the base. The class −M(E)E −∑b∈J eb can be written in a form
kaEa +

∑
ja

kjaEja + others.

The term “others” refers to the exceptional classes which are inde-
pendent of Ea or Eja . Those classes are trivial along the fibers P1,
too. Throw away those terms and focus upon kaEa +

∑
ja

kjaEja . The

class Ea is of relative degree −1 on Ξ̃a while Eja all have positive de-
gree 1 on the fibers. The class kaEa +

∑
ja

kjaEja can be expressed as

the −∑ja
kja + ka multiple of the tautological class of the P1 bundle

plus a class pulled back from the base. This construction determines
uniquely an invertible sheaf (holomorphic line bundle) which is denoted
by QC−M(E)E−

∑
b∈J eb

.

The direct image sheaf Va is locally free, as

dimC R0(pa)∗(QC−M(E)E−
∑

b∈J eb
) ⊗ C = 0.
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It is because the degree
(
C − M(E)E −

∑

b∈J

eb

)
· ea ≤ (C − M(E)E) · ea

is negative.
On the other hand, if I consider the invertible sheaf associated

with C − M(E), denoted by Q (following the previous construction
for QC−M(E)E , then there is a short exact sequence of sheaves over

Ξ̃a ×Mn Y (ΓD), namely the restriction of the fibration to Y (ΓD); D ∈
ADM. When {C−M(E)E−∑b∈J eb−ea}·ea < 0, the effective divisor
Υa is taken to be the negation of the anti-effective divisor constructed
from C − M(E)E −∑b∈J eb − ea.

0 �→ O
Ξ̃a

([
−
∑

b∈J

eb

])
⊗Q �→ O

Ξ̃a
([ea]) �→ OΥa([ea]) �→ 0.

The notations in this short exact sequence deserve special explana-
tion. As (C − M(E)E −∑b∈J eb) · ea < 0, one can use the explicit
expression of C −M(E)E to write it as fiberwise anti-effective divisors
of Ξ̃′ tensored by a rank one locally free sheaf from the base Y (ΓD). It
follows from the fact that the divisor classes of any two different sections
of pa : Ξ̃′

a �→ Y (ΓD) differ by a divisor class pulled back from the base.

Remark 5.1. If {C − M(E)E −∑b∈J eb} · ea < 0, 0 ≥ {C −
M(E)E −∑b∈J eb − ea} · ea, then the short exact sequence should be
replaced by

0 �→ O
Ξ̃a

([ea]) �→ O
Ξ̃a

([
−
∑

b∈J

eb

])
⊗Q �→ O−Υa

([
−
∑

b∈J

eb

])
⊗Q �→ 0.

Here Υa is the anti-effective divisor in Ξ̃a by restricting the divisor class
−{C − M(E)E −∑b∈J eb − ea} onto Ξ̃a.

By taking the right derived long exact sequence along pa : Ξ̃′
a �→

Y (ΓD) we find that the relative obstruction sheaf Va can be decomposed
into two parts. The first part is isomorphic to the obstruction sheaf to
the deformation of the type I exceptional curve ea, which is known to
be isomorphic to the restriction of the normal sheaf of Y (Γea) ⊂ Y (γ).

The second part is of complex (ea − (C − M(E)E −∑b∈J eb)) · ea

dimension, which is the direct image sheaf R0(pa)∗(OΥa([ea])) of the
degree (ea − (C − M(E)E −∑b∈J eb)) · ea divisor Υa in Ξ̃a.
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This particular piece of vector bundle (sheaf) Va is named to be the
residual relative obstruction bundle (sheaf).

After reviewing the construction of the relative obstruction bundle
Va whose associated locally free sheaf is

SH(Va) ≡ Va = R1(pa)∗(QC−M(E)
∑

b∈J eb
),

I continue the proof of Proposition 5.2 by using the following lemma:

Lemma 5.3. Given the two classes C − M(E)E −∑b∈J eb and
C −M(E)E −∑b∈J eb − ea1 − ea2 with i, j /∈ J , the switching processes
C −M(E)−∑b∈J eb �→ C −M(E)E −∑b∈J eb − ea1 �→ C −M(E)E −∑

b∈J eb−ea1−ea2 and C−M(E)E−∑b∈J eb �→ C−M(E)E−∑b∈J eb−
ea2 �→ C − M(E)E −∑b∈J eb − ea1 − ea2 defines equivalent residual
relative obstruction virtual bundles in the K group. In particular, they
give rise to identical total chern classes.

From now on we will call the interchange of the shifting orders by ei

and ej an elementary operation. After proving Lemma 5.3, the propo-
sition can be derived easily. As (C − M(E)E) · ei ≤ e2

i < 0, i ∈ I,
all the decompositions (C − M(E)E − ∑b∈J eb,

∑
eb) are allowable.

Any two different effective moves from C − M(E)E to C − M(E)E −∑
i;ei·(C−M(E)E)≤e2

i
ei can be related to each other by a sequence of ele-

mentary operations as was done in Lemma 5.3. q.e.d.

Proof of Lemma 5.3 . In the previous construction, I have decom-
posed the relative obstruction bundle (sheaf) into two parts. As the
canonical piece is universally independent of the class C − M(E)E, I
can focus upon the second piece, which comes from the local contribu-
tion of ea1 and ea2 . As in each fiber ei and ej are among the components
of a tree of P1, their intersection pairing is either 0 or 1.

By repeating the previous construction, one attaches a P1 fiber bun-
dle over Y (ΓD) to each of ea1 and ea2 . If ea1 · ea2 = 0, one mimics the
previous construction for Q and the exceptional curves in ea1 and ea2

restrict to relative degree zero divisors on Ξ̃′
a1 and Ξ̃′

a2 , and the iso-
morphism between the two different relative obstruction bundles can
be manifestly constructed. The total spaces of the universal curves Ξa1

and Ξa2 may have singular fibers where the direct images of invertible
sheaves fail to be locally free. This is why one has adopted the relatively
minimal birational models Ξ̃a1 and Ξ̃a2 , where the pathetic symptom
does not occur.
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Suppose that ea1 · ea2 = 1, a1 < a2, then in Γ the a2-th vertex is
the direct descendent of the a1-th one. The divisors σa1 and σa2 denote
the effective sections induced by ea2 and ea1 in the P1 bundles Ξ̃′

a2 and
Ξ̃′

a1 , respectively.

I first deal with the case all Υ divisors are effective.

Let Υa1,1 and Υa2,2 be the effective divisors on Ξ̃′
a1 and Ξ̃′

a2 , which
are constructed from −C + M(E)E +

∑
b∈J eb and −C + M(E)E +∑

b∈J∪{a1}
eb through the previous process.

On the other hand, let Υa2,1 and Υa1,2 be the effective divisors on

Ξ̃′
a2 and Ξ̃′

a1 constructed from −C + M(E)E +
∑

b∈J eb and −C +
M(E)E +

∑
b∈J∪{a2}

eb, respectively.

By using the short exact sequence

0 �→ Oσa2
([ea1 ] − Υa1,1) �→ OΥa1,2([ea1 ]) �→ OΥa1,1([ea1 ]) �→ 0,

it is easy to see that locally free R0(pa1)∗OΥa1,1([ea1 ]) and

R0(pa1)∗OΥa1,2([ea1 ]) differ by R0(pa1)∗Oσa2
([ea1 ] − Υa1,1) in the K

group of coherent sheaves over Y (ΓD). Similarly, R0(pa2)∗OΥa2,2([ea2 ])

and R0(pa2)∗OΥa2,1([ea2 ]) differ by R0(pa2)∗Oσa1
([ea2 ]−Υa2,1) in the K

group of coherent sheaves over the same space.

Because Y (ΓD) is smooth and compact, the K group of coherent
sheaves is naturally isomorphic to the K group of vector bundles.

Observe that O(−Υa1,1) and O(−Υa2,1) restrict to identical locally
free sheaves over σa1 = σa2 and can be factorized out from the relatively
zero dimensional push-forward R0(pa1)∗ and R0(pa2)∗. Thus they do
not affect the comparison.

By using the following lemma, one finds that the residual relative
obstruction bundles from the two different processes give rise to the
same c·(κ). q.e.d.

Lemma 5.4. The two locally free sheaves R0(pa1)∗Oσa2
([ea1 ]) and

R0(pa2)∗Oσa1
([ea2 ]) are isomorphic.

Proof. From the fact that σj and σi are the zero loci of of ej

and ei over Ξ̃′
i and Ξ̃′

j , one finds easily that the locally free invertible

sheaves R0(pi)∗Oσj
([ei]) and R0(pj)∗Oσi

([ej ]) are the normal sheaves

of σj ⊂ Ξ̃′
i and σi ⊂ Ξ̃′

j , respectively. Because the P1 bundle structures
are invariant under blowing ups, one can focus upon the j-th blowing
up and ignore all the direct descendents of j, lj . Likewise, one can also
ignore all the direct descendents of i except j.
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It is sufficient to prove that the normal bundles σj ⊂ Ξ̃′
i and σi ⊂ Ξ̃′

j

are isomorphic. Let Kσj
denote the restriction of the relative canonical

bundle of Mj+1 �→ Mj to σj = σi. Then the normal bundle of σj ⊂ Ξ̃′
i

can be identified with K⋆ ⊗C L⋆
ei

.

On the other hand, the section σi ⊂ Ξ̃′
j of the P1 bundle can be

lifted to the bundle inclusion Lei
⊂ TMj+1/TMj |σi

. Again, the normal

bundle of σi ⊂ Ξ̃′
j can be identified with ∧2(TMj+1/TMj |σi

) ⊗ L⋆
ei

=
K⋆ ⊗ L⋆

ei
.

Thus, these two normal bundles are isomorphic and Lemma 5.4 has
been proved. q.e.d.

5.3 The family invariants associated with the admissible

decomposition classes

Having addressed the uniqueness of the class c∗(κ), one can associate a
canonical mixed family invariant to the given admissible decomposition
class. Yet this decomposition (C−M(E)E−∑i∈I ei,

∑
i∈I ei) is not the

decomposition which admits an algebraic geometric interpretation for
curve counting. In this subsection, I would like to transform the given
mixed invariant by an equivalent mixed invariant.

Starting from the original mixed invariant, one can apply the family
switching formula repeatedly to get to the appropriate mixed invariants
of F or F ′. The base class insertions depend on multiplicity function
M(E) explicitly yet the numerical values of the invariants before and
after the “switching” the ei-multiplicities are not changed.

Because of this proposition, it makes perfect sense to talk about the
mixed invariants attached to an admissible decomposition class even
though the explicit forms of them may not be manifestly independent
to the choices of decompositions. To simplify my notation, the mixed
invariant attached to the decomposition class D ∈ ADM(s) is denoted
by FSW (D).

Let s be the smallest number such that ADM(s + 1) = ∅. Then
one defines the corresponding modified mixed family Seiberg-Witten in-
variants to be the mixed family invariants without the correction terms.
Namely,

FSW ∗(D) ≡ FSW (D).

Suppose the modified invariants have been defined for the levels
s ≥ 1 + p; one defines the level p modified mixed family Seiberg-Witten
invariants by the following recipe. Let D ∈ ADM(p), then we define,
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FSW ∗(D) ≡ FSW (D) −
∑

s>p

∑

Di∈ADM(s);D≫Di

FSW ∗(Di),

where the partial ordering ≫ has been defined in Definition 4.5. By the
reversed induction on the integer p, one can eventually decrease p to
0 and define the modified family invariants of the level zero admissible
decomposition class, which is unique and is (C − M(E)E, 0) in the
current situation.

Notice that for level zero decomposition class D, all Di satisfy D ≫
Di automatically. Thus, one has to subtract all the modified family
invariants of the nonzero levels in order to define modified invariant.
Also notice that in defining the admissible decomposition classes, we
have restricted ourselves to consider the exceptional cones, which are
the subcones of the preexceptional cones CΓ. They are characterized by
the property that the intersection pairing with C −M(E)E is negative.
In this process, one ignores the contribution from type II exceptional
curves. I leave the justification of the procedure to the next section
where I will clarify the relationship between this procedure and the
assumptions in the main theorem.

Suppose that Γ′ is in the image of Φ(ADM(s)). One considers
EC(C − M(E)E) ∩ CΓ′ as the effective type I exceptional cone when
one determines the admissible decomposition classes. A priori it is not
clear from the definition that this cone is simplicial. But it follows from
the fact that the intersection form is negative restricted on EC that the
subcone is again simplicial. As we know that the extremal generators
are the only irreducible exceptional curves in the cone, they must be
some of the type I exceptional curves in CΓ′ . It follows that the type I
effective exceptional curve cone is a simplicial subcone of Γ′ generated
by some of the extremal generators of CΓ′ .

As the reader may have noticed, the definition offered here is rather
formal. Only in the proof of the main theorem, I will clarify the reason
to make such a definition.

Remark 5.2. In the previous discussion, one should be aware that
the explicit value of s determined by the energy boundedness property
may also depend on the manifold M . At first it may look like a poten-
tial exception that endangers the “universality” property of our main
theorem. However, one can always enlarge the value of s without af-
fecting the definition of the modified invariants. This is because the
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modified invariants associated with the noneffective classes are auto-
matically zero.

5.4 The invariance of the modified family invariants un-

der the reduction process

Having defined the modified invariants, the first step of reduction is to
remove the redundant vertexes and prove the invariance of the modi-
fied invariants under this process. By using the family blowup formula
[38] repeatedly and the fact that mi = 0 for these redundant vertexes,
one reduces the original modified invariant FSW ∗(c, C −∑miEi) by
removing these redundant vertexes and edges. Suppose i is a redun-
dant vertex, then Ei · (C − M(E)E) = 0. In particular, Ei is not in
the type I effective exceptional cone of the class C − M(E)E over the
whole space Y (Γ). In particular, Ei can never be among an admissible
decomposition over Y (Γ). Then some simple calculation shows that the
modified invariant is invariant under the reduction. As the flavor of the
argument is similar to that of the subredundant case, the easier case
is skipped here. In the following, one can assume that the redundant
vertexes have been taken care of and that there is no redundant vertex
in the original admissible graph Γ.

Similarly, one would like to eliminate the subredundant vertexes as
well as the subredundant edges.

First I show that it is possible to permute the markings of the ver-
texes such that the vertexes in the core are marked by the index set
I = {1, 2, · · ·m} and the subredundant vertexes are marked from m+1
to n. A priori it is not quite clear that the permutations always preserve
the admissibility condition. In the following proposition, I clarify the
situation.

Proposition 5.3. Let (Γ, C −∑i miEi) be a topological type of a
singular curve such that Γ does not contain any redundant vertex. Then
there exists a permutation g ∈ G(Γ) which moves Γ to a new admissible
graph g(Γ) such that the subredundant vertexes of g(Γ) are marked by
{m + 1, · · ·n} for some m.

Proof. To prove Proposition 5.3, first we notice that the subredun-
dant vertexes form linear chains. As mi −

∑
mji

≥ 0 and there are no
redundant vertexes, each subredundant vertex has at most one direct
descendent. On the other hand, by definition, a subredundant vertex
can have no descendent vertex with more than one direct ascendent.
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This forces the subredundant vertexes to form linear chains, and they
are isolated from the other parts of the admissible graph. Since they
form linear chains, there is a unique maximal element in every chain.
One calls it the leading vertex in the chain.

Because the chains become disconnected from the admissible graph
after removing the leading vertexes, one can mark the vertexes such
that the vertexes within the core are marked from 1 to m, while the
subredundant vertexes are marked from m + 1 to n. Moreover we can
arrange that the direct descendent vertex of a subredundant vertex is
marked by the consecutive integer. The permutation defined in this way
preserves the admissibility conditions, and therefore, belongs to G(Γ).

q.e.d.

The following proposition describes the relationship between the
modified invariants before and after the reduction.

Proposition 5.4. (The Reduction Proposition) Let Γ be an ad-
missible graph without any redundant vertex. Let J be the index set pa-
rameterizing the subredundant vertexes in Γ, then the modified invariant
FSW ∗

Y (Γ)(1, C −∑miEi) and FSW ∗
Y (core(Γ,M))(1, C −∑i/∈J miEi) are

equal to each other.

Proof. To prove this proposition, one first shows by induction that
the unmodified family invariants FSW are unchanged under this pro-
cess. One should notice that the k = 1 version of the family blowup
formula gives a complex one dimensional obstruction bundle.

Recall that ∆l denotes the relative diagonal map from Ml to the
Ml×Ml−1

Ml. Suppose that a and a+1 are the markings of the two con-
secutive subredundant vertexes. When the (a+1)-th vertex is removed,
family blowup formula relates the family invariants before and after the
blowing ups by an insertion class of the form ∆∗

a+1(C−∑i<a miEi−Ea),
while the elimination of the a + 1-th vertex gives the base space a CP1

bundle structure whose fibers are dual to ∆∗
a+1Ea. The fact that the

multiplicity of −Ea+1 is one implies that the obstruction vector bundle
is a line bundle while the powers of relative tangent bundles RTMi do
not show up.

Let us summarize as follows: Let Γ be the original admissible graph
and Γ̃ be the reduction by removing the subredundant vertex at one
of the ends. According to the previous paragraph, there is a canonical
map from Y (Γ) surjectively to Y (Γ̃), which has the P1 bundle structure.
The bundle structure can be seen easily from the inductive construction
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displayed in the previous section. The fiber bundle can be embedded
into M|Ver(Γ)| �→ M|Ver(Γ̃)| such that the fibers are dual to ∆∗

a+1Ea.

If we push forward the cohomology class ∆∗
a+1(C−∑+i < amiEi−

Ea) along the P1 bundle, it is equal to the pairing between ∆∗
a+1(C −∑

i<a miEi − Ea) and ∆∗
a+1Ea which is equal to 1. This shows that

FSW is invariant under the single reduction. Then the general situation
follows from mathematical induction and the repeated applications of
the family blowup formula. To show that the modified invariant is
unchanged as well, let us study how the reduction of the subredundant
vertexes affects the admissible decompositions. As we know that the
subredundant vertexes form distinct linear chains, the Poincare dual of
the exceptional curves associated with these subredundant vertexes are
−2 curves of the forms Ea −Ea+1 and −1 curves Ea, respectively. The
second case appears only when the vertex a does not have any direct
descendent, i.e., it is at the end of an isolated linear chain.

According to the general rule of determining the admissible decom-
position classes, the curve class Ea can appear in the list only when
they have negative pairings with the class C −∑miEi = C −M(E)E;
which is impossible as ma ≥ 0. Suppose that the good part of the
hypothetical admissible decomposition is written as C −∑niEi, then
the multiplicities nv = mv = 1 for the ends of the linear chains. Let
v be the subredundant vertex at the end of one linear chain, then
nv = (C −∑niEi) · Ev ≥ 0 as C −∑niEi and Ev coexist, and the
distinct (pseudo)-holomorphic curves intersect positively. On the other
hand, if nv > 1, then some multiple of Ev must have shown up among
the exceptional parts of the admissible decomposition. This is not al-
lowed as we have discussed. Therefore, nv = 1 for all these ends of
linear chains of subredundant vertexes. Next, suppose that the partic-
ular admissible decomposition reexpresses C − M(E)E as

C −
∑

niEi +
∑

i∈J

qi(Ei − Ei+1) + others,

where the term others represents certain collections of type I exceptional
curves which I am not interested in at this moment. The middle terms
come from the −2 curves in the various linear chains. By setting qv = 0,
one derives a collection of linear equations,

1 = ni + qi−1 − qi, i ∈ J.

Again, as C −∑niEi and Ei −Ei+1 coexist and C −∑niEi is the
good part, it implies that ni − ni+1 ≥ 0. As nv = 1 for these ends of
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the linear subredundant chains, 1 − ni ≤ 0, i ∈ J . According to the
previous equations, the sequence qi must be nonincreasing when the
indexes run through the chains according to their increasing orders on
the markings. On the other hand, qv = 0 for these ending vertexes. It
implies that qi are all zero for these subredundant vertexes. In other
words, the hypothetical admissible decomposition cannot possibly in-
volve these Ei − Ei+1.

When one compares the admissible decompositions with respect to
these two pairs (Γ, C −∑miEi), (core(Γ,M), C −∑i/∈J miEi), the col-
lections of the admissible decomposition classes are in one to one cor-
respondence. Because we have shown that the exceptional −2 and −1
curves associated with the subredundant vertexes cannot appear among
the admissible decompositions of the class C −∑miEi, the good part
C −∑niEi carries the same properties ni = 1, for all i ∈ J . By exactly
the same reasonings and by induction as in the case of the un-modified
family invariant, one can show that the modified invariants FSW ∗ are
unaltered as well.

A concrete argument involves the backward induction on the levels
of the admissible decomposition classes and the usage of Proposition 5.3.

As the admissible decompositions are un-altered, the cohomology
classes c which appear in the insertions of the mixed invariants are pulled
back from the base manifold Y (core(Γ,M)) by the compositions of the
projection maps. Moreover the insertions of the new cohomologies class
given by the family blowup formula are always of degree two which
“cancel” with the P1 fibration structures, simply keeping the answer
unchanged. q.e.d.

As a result, one has the following conclusion:

Proposition 5.5. For the purpose of invariants calculation, the
admissible graph in the topological type (Γ, C −M(E)E) can be replaced
by its core and the multiplicity function M by its restriction to the
core(Γ,M).

The proposition can be explicitly used to simplify the evaluation of
the contributions of the level s, s > 0 admissible decompositions to the
family invariants.
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6. The family Kuranishi model and the regular

obstructedness

6.1 The nested Kuranishi model

I have spent a great deal of effort in defining the concept of admissible
graphs, admissible decomposition classes, and the admissible stratifica-
tion of the universal spaces. The purpose of developing these machiner-
ies is to prove the main theorem in the introduction. Before we move
on, the following is a simple terminology which I will use frequently.

Definition 6.1. Let B be a stratified manifold and X �→ B is a
fiber bundle of almost complex four-manifolds. A curve C in X is said
to support over a point b ∈ B if its image under X �→ B is the point b.
A curve is said to support over a stratum of B if the point b lies in the
stratum of B.

In the latter case, I only require the curve to support upon some
point in the strata. Having defined the family Seiberg-Witten invari-
ants FSWY (Γ)(1, C−M(E)E), its relationship with the family Gromov-
Taubes theory suggests that the numerical invariant should be related
to the counting of smooth curves in the class C −M(E)E. However, it
does not count the number of singular curves in C with the prescribed
topological types of singularities assigned by M(E). There are several
evidences indicating that the naive curve counting idea does not work
directly. Before giving a proof of the main theorem, it is very important
to have a deep digestion regarding these issues.

First, the restriction of the family moduli space to YΓ admits the
action of a possibly nonempty group GΓ,M. Therefore, the counting
problem is automatically (at least partially) symmetric with respect to
the group action. To get the counting of curves, formally one should
expect to divide the family invariant by the order of the group. Very
unluckily, the original family invariant does not carry the necessary
divisibility property.

Second, the small n example in Section 9 (cf. [59]) has shown that it
is possible that some other types of curves contribute to the invariants as
well. Even though a naive argument may suggest that one can move the
generic points (sections) on the fiber bundle with the intersected curves
supporting over YΓ, the first observation shows that this is not the case.
In fact, there are topological obstructions to move the counted solutions
to support merely over YΓ. In other words, the (pseudo-) holomorphic
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curves can support over Y (Γ)−YΓ as well. Simple examples of this type
lead to some Taubes type admissible decompositions involving certain
number of type I exceptional curves.

Third and noteworthy, there might be some multiple coverings of the
exceptional curves appearing in the counting problem. In other words,
a high multiple of exceptional curves can show up, and the counting
scheme detects the singularities as well as the smooth points with mul-
tiplicity more than one. Therefore, the appearance of these exceptional
curves can be somewhat detrimental to the counting scheme.

As was discussed briefly, the exceptional curves can be divided into
two different types. The so-called type I exceptional curves and type II
exceptional curves. They are distinguished by their different behavior
under the blowing down projection maps. The former type of curves
get mapped to points while the latter get mapped to nontrivial curves
in M .

In general, there is no constraint about the support of type II excep-
tional curves. They can show up freely over the top stratum YΓ. The
appearance of the type II exceptional curve is no doubt detrimental to
the formulation.

In the paper [38], [39], I gave an algebraic formalism to handle the
type II exceptional curves under some conditions on the associated mod-
uli spaces.

By twisting with a very high power of ample line bundles (which
definitely weakens the range of the validity of the theorem), the type II
exceptional curves can be gotten rid of. From our point of view, it was
the type I exceptional curve along with the complicated behavior of the
other singular curvesthat made the original program look hopeless.

Within our framework these various difficulties and discrepancies can
be understood and handled from a unified point of view. The existence
of the family blowup formula, as well as its cousin, family switching
formula, make this somewhat difficult problem transparent and solvable.

The key concept is the “admissible decomposition classes”, intro-
duced in the previous section. When this concept was introduced by
the author, there was not yet clear indication that it had anything to
do with any known mathematical structure. It turns out that, very sur-
prisingly, the purely family Gromov-Taubes theoretical concept roots
deeply in the excess intersection theory developed by the algebraic ge-
ometers. Historically residual intersection theory has played an impor-
tant role in the study of enumerative geometry. The theory developed
here, which apparently has nothing to do with the well known structure,
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turns to be tied to the theory [16] very closely. For a demonstration of
this phenomenon, in Section 9 we will employ the n = 8 case as a con-
crete example. In that example, I will explain briefly how the multiple
coverings of the type I exceptional curves relate to the old problem that
might puzzle Vainsencher [59] and probably the other algebraic geome-
ters a lot. In general, the so called “reduced” family moduli spaces
over Y (Γ) − YΓ is nonempty. Even worse, they are generally very com-
plicated, nonreduced geometric objects. The greatest problem is that
these structures actually depend on the geometry of the manifolds M
and C strongly. In two respects it is difficult to extract information
from these singular objects:

(1) It is not clear what type of objects one is counting.

(2) Even if the counting interpretation is available, it “might” depend
on M and the class C explicitly and ruin the keyword “universal”
in the main theorem.

These are the questions I intend to answer.
To begin this discussion, let me prove a version of Kuranishi model

suitable to my purpose. The Kuranishi models were extensively dis-
cussed by Taubes [53], Li-Tian [28], Ruan [46], Siebert [50], etc. in the
context of either Seiberg-Witten theory or Gromov-Witten invariants.
Historically, it was frequently used in Donaldson theory [9].

If one adopts the algebraic family Seiberg-Witten “invariants,” then
the invariants are defined even for nongeneric moduli spaces. The dif-
ferential topological argument is of perturbation nature. Thus, they
should be viewed as the two sides of the same story.

In an old fashion discussion, people started from the perturbation
on elliptic PDEs to produce the transversal moduli objects in order to
define the suitable invariants. The key idea of the Kuranishi model is to
perform the perturbation in a broader context. Specifically, the pertur-
bation needs not come from the perturbation of the elliptic equations,
which is much more restrictive. In many situations, there is either dif-
ficulty in performing the geometric perturbation or the desired generic
geometric perturbation is out of reach. Then one considers some nonge-
ometric perturbation under which the corresponding zero locus become
smooth, yet the smooth object usually does not share the same geo-
metric meaning as the original problem. In our situation, the original
geometric question is regarding curve counting. By perturbing the fam-
ily Kuranishi model, one gains a means of counting the “invariants,” but
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loses the original symplectic or algebraic geometric meaning. However,
the extremal power of family blowup formula and the family switch-
ing formula bring everything back to the algebraic geometric context at
least at a formal level.

Let M be the “zero locus/moding out gauge equivalence” of the
family Seiberg-Witten equations. It is usually called the family Seiberg-
Witten moduli space over B. If the space is already smooth, there is no
difficulty in defining the invariants. On the other hand, a singular M
does not give rise to a meaningful invariant count directly. Following
Taubes [53], the insertions of powers of e(e) can be replaced by impos-
ing the extra conditions requiring the spinors sections to vanish when
restricted on suitable sections of the fiber bundle X �→ B. In this way,
one can always assume that the family dimension of the moduli space is
zero. It is clear that the extra conditions do not harm the discussion as
they are of algebraic nature. Let us review briefly the analytical setup.

Given a family of fiberwise Riemannian metric and self-dual two
forms on the fiber bundle, let us denote the family of metrics and two
forms by g(b) and µ(b), respectively, where b denotes a point in B. Then
the family Seiberg-Witten equations can be written down immediately.
Let us write down the deformation complex accordingly. To simplify
the notation, let us assume that a local trivialization of X �→ B has
been chosen such that g(b) and µ(b) are viewed as a local family of
metrics and two forms on the same manifold M . Before writing down
the complex, I introduce some notations. Let ∗ denote the usual Hodge
star operation Ω2(M) �→ Ω2(M). Let v denote a tangent vector in
TbB. Then ∗̇g(b)(v) : Ω2(M) �→ Ω2(M) is the linearized map along the
v direction. Likewise, µ̇(v) denotes the first jet of variations of self-dual
two forms along the v direction. Suppose 2d is the real family dimension
of the fiber-wise spinc structure, let xi = si(b) be d different points on
M with si being the sections of the original fiber bundle X �→ B.

Let (A0, Ψ0, b) denote a Seiberg-Witten solution supporting over b.
Then the triple (a, ψ, v) denotes a first order infinitesimal deformation
of (A0, Ψ0, b). The family deformation complex reads as,

TbB ⊕ Ω1(M) ⊕ Γ(S+) �→ Ω0(M) ⊕ Ω2
+(M) ⊕ Γ(S−) ⊕ R2d,

where the linearized map is given by assigning (v, a, ψ) to

(δ(a), P+Fa − 2Re(σ(ψ, Ψ0)) − i(P+µ̇(v))+

∗̇g(b)(v)P−FA0 , DA0ψ + a · Ψ0, α(x1), . . . , α(xd)).
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The symbol α(xi) denotes the α component of the spinor Ψ0 at
the point xi. The pairing · between a and Ψ0 is the usual Clifford
multiplication. Notice that some reduction has been done to ensure the
vanishing of the anti-self-dual projection. The fact that (A0, Ψ0, b) is a
solution has been used to ensure

∗̇g(b)(v)(FA0 − σ(Ψ0, Ψ0) − iµ) ≡ 0.

If the linearized map is surjective, then the solution (A0, Ψ0, b) is
a smooth point in the family moduli space. Otherwise, there will be
a nontrivial cokernel. Even though the reduced family moduli space
is “expected” to be of zero dimensional. This is hardly what usually
happens in real life. Suppose that the point (A0, Ψ0, b) moves along the
reduced family moduli space and kernels and cokernels of the complex
form semi-bundles. A new subtlety in the family theory is that, even
though (A0, Ψ0, b) is a smooth point of the family moduli space, (A0, Ψ0)
at b may not be a smooth point in the fiberwise moduli space over
b. This discrepancy opens up the possibility of introducing the nested
family Kuranishi model.

In the following, the extended cokernel semi-bundle

Ω0(M) ⊕ Ω2
+(M) ⊕ Γ(S−) ⊕ R2d/Im(TbB ⊕ Ω1(M) ⊕ Γ(S+)),

will be abbreviated as Obs.
In the algebraic geometric description of the Kähler-Seiberg-Witten

theory, it can be identified with more recognizable objects through fam-
ily blowup formula. Suppose pg(M) = 0 and C is very ample, B = Y (Γ)
and x1, x2, · · ·xd are d cross sections of X �→ B, the map

TbB �→ H1(Xb,OXb
(C − M(E)E)) ⊕ Cd

at (s, b) ∈ (H0(Xb,OXb
(C − M(E)E)), Y (Γ)), s(xi) = 0 can be deter-

mined as follows:
First, the deformation of the complex structure at b determines the

Kodaira-Spencer map TbB �→ H1(Xb, ΘXb
), where ΘXb

denotes the holo-
morphic tangent sheaf of Xb. The infinitesimal deformation of holomor-
phic structures on C−M(E)E prolongs the infinitesimaldeformation of
complex structures on Xb which determines a covariant derivative ∇.

A covariant derivative of s ∈ H0(Xb,OXb
(C −M(E)E)), ∇s, deter-

mines a morphism from ΘXb
to the locally free sheaf OXb

(C −M(E)E).
Then

TbB �→ H1(Xb,OXb
(C − M(E)E))
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is identified with the composition of the Kodaira-Spencer map with some
covariant derivative map ∇s. As usual, the factor Cd is identified with
(L|x1 , L|x2 , · · ·L|xd

), where L is the holomorphic line bundle associated
to OXb

(C − M(E)E).
We consider some sublocus of the family moduli space as the follow-

ing. Given a solution (α, β), one requires that the α component vanishes
on d sections of X �→ B. The sublocus defined by imposing the algebraic
constraints will be called a reduced family moduli space and is denoted
by Mred. If it consists of a finite number of smooth points, the signed
points count the invariant [53], [48], [49].

Warning 1. The reduced family moduli space Mred is the reduction
of the family moduli space by imposing a finite number (determined by
its family dimension) of section passing conditions on the solutions.
It has nothing to do with the reduced scheme structure in algebraic
geometry.

In the following, I review briefly the standard Kuranishi model con-
struction and give a formulation in the family version.

Proposition 6.1. Let B be a finite dimensional oriented compact
manifold and let X �→ B be a smooth fiber bundle of oriented smooth
symplectic four-manifolds whose fibers are diffeomorphic to M . Given
a spinc structure L and a reduced family Seiberg-Witten moduli space
of the spinc structure Mred �→ B with expected dimension zero; there
exists a family Kuranishi model of Mred which consists of a smooth
section s : O × Rk �→ Rk′

satisfying:

(1) The finite dimensional smooth manifold O, has a compact closure.

(2) The zero locus s−1(0) is diffeomorphic to Mred, which is compact.

(3) The image of O �→ B can be arranged to lie in an arbitrarily small
prechosen open neighborhood of the projection image Mred �→ B,
by shrinking O if necessary.

(4) For generic choice of η 	= 0 in the neighborhood of 0 ∈ Rk′

, the
preimages s−1(η), η ∈ Rk′

are smooth, compact, oriented and are
of zero dimension.

The signed sum of the finite number of points in the preimage s−1(η)
of a generic η defines the family Seiberg-Witten invariant of L over B,
which is independent of the choices of the Kuranishi models satisfying
(1), (2), (3), (4).
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The construction is standard. For the convenience of the readers,
we outline the key points of the construction.

Sketch of Construction. Given a fiberwise spinc structure L on
X �→ B, an oriented fiber bundle of smooth oriented Riemannian four-
manifolds over a compact smooth oriented base manifold B, the same
argument as in the ordinary Seiberg-Witten theory [61] implies that
the family moduli space M of the solutions of family Seiberg-Witten
equations over B is compact and there is a natural projection mor-
phism from M to B. Suppose that the realfiberwise expected dimen-
sion of the moduli space is d(L), then the family expected dimension is
dimR B +d(L). For simplicity, one assumes that the base manifold B is
even dimensional. Consider the submoduli space of the family moduli
space requiring the spinor sections ψ ∈ Γ(S+) to vanish at dimR B+d(L)

2

different cross sections xi : B �→ X , 1 ≤ i ≤ dimR B+d(L)
2 of X �→ B. The

dependence on the choices of the cross sections has been suppressed and
it is denoted by Mred. The moduli space with dimR B+d(L) additional
algebraic section-passing constraints is called a reduced family moduli
space. When dimR B + d(L) ≥ 0, the expected family dimension of
Mred is zero.

Suppose a family of fiberwise self-dual symplectic forms ω has been
given on X �→ B which split the fiberwise spinc spinor Ψ into (α, β) ∈
Γ(LC0) ⊕ Γ(LC0 ⊗ K−1

X/B). The reduced family moduli space Mred is
defined to be the zero locus of the smooth section

([A, Ψ], b) −→ (P+FA − σ(Ψ, Ψ) − iµ + irω, DAψ,

α(x1(b)), · · ·α(xd(b)), b),

of the Banach vector bundle

(Ω2
+)X/B ⊕ Γ(S−

L ) ⊕ RdimR B+d(L)

over the family configuration space CL �→ B of the gauge equivalence
classes of ([A, Ψ], b) tuples. A trivialization of LC |xi(b) has been chosen
implicitly.

It is well known that one can construct some Kuranishi models of
Mred which reembed Mred into a finite dimensional manifold O′ �→ B
noncanonically. By shrinking the neighborhood O′ of Mred if necessary,
it can be chosen to have compact closure in CL. Moreover, it maps onto
an open neighborhood of the image Mred �→ B under the canonical
projection map. The existence of Kuranishi model implies the existence
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of a finite rank vector bundle W′ = OBS and Mred �→ O′ can be realized
as the zero locus of a smooth section s′ ∈ Γ(W′) in the neighborhood O′.
The datum (O′, s′,W′) defines a Kuranishi model of Mred = s′

−1(0).

The compactness of the closure O′
implies that the vector bundle

W′ can be generated by a finite number of C∞ global sections si ∈
Γ(O′,W′) over O′. Then the datum of Kuranishi model (O′, s′,W′) can
be stabilized by W and can be replaced by the one, (O′×B W×Rk, s =
s′ ⊕ IdW +

∑
i≤k tisi ⊕ (t1, t2, t3, · · · , tk),W

′ ⊕ W ⊕ Rk).

By choosing a suitable W; W ⊕ W′ ≡ Rh, and by renaming an
open neighborhood in O′ ×B W as O, the resulting family Kuranishi
model is isomorphic to one which is of the particularly simple form
(O × Rk, s,Rk′

).

As Mred = s−1(0) is compact, there is a small open neighborhood
N0 of 0 ⊂ Rk′

such that the preimages s−1(η), η ∈ N0 is compact.
By shrinking O and Rk′

if necessary, this additional property can be
assumed to hold on the original model. Then the finite dimensional
Sard theorem implies that the regular values are open dense and the
generic fibers are smooth, compact of zero dimensional. It is suitable to
define the invariants by using the compact regular fibers. Taking any
η ∈ Rk′

belonging to this dense subset, the sign count on s−1(η) defines
the invariant.

The fact that the invariants defined in this way are independent of
the way of choosing the Kuranishi family has been proved by the experts
mentioned before. I do not plan to repeat their wisdom here. q.e.d.

In the family theory, it is necessary to construct a version of Kuran-
ishi model which enables us to separate the invariant contribution away
from a smooth embedded submanifold.

Let us formulate a sufficient condition to achieve this goal. Let
T �→ OBS be the family tangent-obstruction complex of the reduced
family Seiberg-Witten moduli space M. As one is discussing the family
invariants, there is always a horizontal TB factor in T . At this moment,
one does not impose any regularity condition on T or OBS. Let Obs

denote the cokernel semi-bundle of the fiberwise tangent obstruction
complex.

Definition 6.2. Suppose that M ×B S = MS ⊂ Mred is the
compact subspace of the reduced family moduli space which is supported
over a compact smooth oriented manifold S. The pair (MS ,S) is said
to be regularly obstructed if:
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(1) There exists a family Kuranishi model of MS such that the cok-
ernel obstruction semi-bundle of the fiberwise tangent-obstruction
complex Obs splits off a subbundle V over MS .

(2) The restriction of the family tangent-obstruction map to
π∗

S(TB|S) �→ V, constructed by differentiating the fiber-wise de-
formation complex with respect to the base, is surjective onto V

over MS .

(3) The kernel of the map in (2). is TS ⊂ TB|S .

The explicit form of the map π∗(TB|S) �→ V can be found in the
proof of Proposition 7.2.

One has to be cautious that the regular obstructedness condition is
not an intrinsic differential topology concept independent of Kuranishi
perturbation. It is possible that after a slight perturbation, the regular
obstructedness condition is easily destroyed. In actual application, the
regular obstructedness is closely related to the appearance of some type
I exceptional curves. Thus, it should be viewed as a concept in the
Gromov-Taubes theory.

In the following, I discuss the tool I use to calculate the “excess”
contribution of family invariant. To illustrate the main idea, let us
discuss an important special case first. Later I generalize the picture to
the “nested” situation based on induction.

Proposition 6.2. Under the assumption that the pair (MS , S)
is regularly obstructed, the family invariants attached to MS and the
family invariants over Mred −MS are well defined and they satisfy the
excision property. Namely, The sum of the invariant contributions over
MS and over Mred − MS are equal to the invariant defined by Mred.
Moreover, if the reduced family moduli space Mred −MS consists of a
finite number of smooth points, then the excess invariant contribution
is calculated by the sum of signed numbers counting these finite number
of points.

In general, one does not expect Mred −MS to be compact. In fact,
its closure Mred −MS can intersect with MS . The proposition guaran-
tees that once the “lucky” situation is met, the invariant count can be
proceeded in an intuitive way. In terms of algebraic geometric language,
it is the “equivalence” of the invariant we are going to determine (cf.
[16]).
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At first, one may naively try to perturb arbitrarily the family Seiberg-
Witten equations. However, there is a potential danger in that the so-
lutions over S can be perturbed into B−S and the counting over S and
the counting over B − S mess up. In our explicit application, the com-
pact manifold S will be chosen to be the various Y (Γ), Γ ∈ Φ(ADM),
which are the existence loci of certain type I exceptional curves. A ran-
dom perturbation of the equations will alter the loci as well. In fact,
one needs to make an effective use of the fact that, effectively, the pair
(MS , S) is regularly obstructed.

Following the regular obstructedness assumption, the fiberwise ob-
struction semi-bundle Obs can be split in the C∞ category into Obs|S =
Obs′⊕V over MS . The Obs′ denotes the residual cokernel semi-bundle
whose explicit form is not relevant to us at this moment.

In other words, restriction of the family tangent obstruction complex
over MS is reduced to a subcomplex formally identifiable as one coming
from the family theory over S. By passing from the family theory over B
to one over S, one removes from OBS the bundle V, which is identified
with the normal bundle of S, NS in TB, through the restriction of the
tangent obstruction map π∗

S(TB|S) −→ V.

Proof of Proposition 6.2. Given an Rk family of family Kuranishi
perturbations of the family tangent obstruction complex over Mred, un-
der which the linearized Fredholm operator becomes surjective, the re-
striction of the Kuranishi map to MS defines another Rk1 perturbation
family over the subspace MS . During the process, one has to restrict
to those perturbations in the Rk family with trivial projection onto V.

These two spaces are related by the restriction map ResS : Rk �→
Rk1 . Moreover, the family of finite dimensional perturbation parame-
terized by Rk1 is surjective to the residual extended obstruction semi-
bundle Obs′ over MS .

One can derive a commutative diagram between : O × Rk �→ Rk′

and s|S : O|S × Rk1 �→ Rk′
1 as follows:

O × Rk ResS−→ O|S × Rk1s

s|S

Rk′ −→ Rk′
1 .

Since the restriction map ResS is surjective, the Baire second cat-
egory subset of Rk gets mapped to a Baire second category subset of
Rk′

1 . This enables us to choose the generic elements simultaneously to
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make the perturbed Mred and MS smooth at the same time. It can be
achieved by choosing the deformation parameters coherently. Since V

has been removed from the original extended obstruction semi-bundle
Obs|S , the formal family dimensions of the two reduced moduli spaces
M and M ∩ π−1(S) are both zero. This follows from the fact that
dimC V = dimC B − dimC S. Because both the reduced moduli spaces
are compact, both of them consist of finite number of signed points. It is
crucial that the vector bundle V has been removed when one considers
the restriction morphism. Otherwise, the restricted family over S will
have a negative family expected dimension.

When both the perturbed objects are compact, smooth of zero di-
mension, one can perform the counting simultaneously and get a pair
of integers. The second integer is interpreted as the family invariant
attached to MS , and the former one as the total invariant. Their dif-
ference is defined to be the invariant contribution over B−S. As usual,
it does not relate to classical counting directly unless Mred −MS has
been compact and smooth of dimension zero. This scheme explains why
the invariant contributions satisfy the excision property.

On the other hand, once the lucky situation mentioned in the later
part of Proposition 6.2 is met, the reduced family moduli space can still
be a possibly nonsmooth space over S and a finite number of points over
B − S. As a finite set is compact, there exist a tubular neighborhood
NSB of S such that the support of these finite number of solutions do
not lie in the neighborhood.

Potentially the tangent obstruction complex may still have nontriv-
ial cokernels over MS , one can find a finite number of sections of the
extended family Seiberg Witten deformation complex such that the re-
striction of the sections to S generate the cokernel semi-bundles over
MS . By multiplying some bump functions, the sections can be ar-
ranged to support within NSB. Then one can choose the perturbation
to support within the neighborhood such that the reduced moduli space
over B − S is not changed under the perturbation. Under this special
type of perturbation, it is clear that the statement in the proposition
is valid. In general, one needs to prove that the definition is indepen-
dent of the choices of the perturbations as well as the choices of the
regular values. The argument is exactly the same as the usual case and
is therefore omitted. The only minor difference is that the cobordism
also restricts to a subcobordism relating MS �→ S and one proves the
invariance of both objects simultaneously. One can consult [53] or [46]
for details. q.e.d.
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Having addressed the special case, I move to the general situation.
As will be seen in the actual application, I will need to deal with cases
that different “components” MS coexist at the same time. I will en-
hance my tool to deal with these situations, too.

The major issue is to deal with the cases that different Si and Sj

intersect each other. Some Sj can even be contained in the other Si.
The following proposition is therefore named as the nested family

Kuranishi model. Let us explain its meaning and formulate it as a new
proposition.

To simplify my discussion and make it coherent to the language
of algebraic geometry, I make some additional assumptions on Si and
B. I assume that Si, B are almost complex manifolds. When Sj ⊂ Si

or Si ⊂ B, they give rise to pseudo-holomorphic imbeddings. This
includes the special cases that B is complex and S1, S2, · · · form a chain
of complex submanifolds in B.

Corollary 6.1 (Nested Kuranishi Model). Let

∅ ⊂ · · ·Sm ⊂ Sm−1 ⊂ Sm−2 · · · ⊂ S0 = B

be a nested family of compact oriented smooth almost complex mani-
folds such that their dimensions drop down monotonically. Let MSi

=
Mred ×B Si, m ≥ i ≥ 0 be the corresponding “components”of reduced
family moduli spaces.

Suppose that the adjacent MSj+1 �→ Sj+1 and

Mred ×B Sj �→ Sj ; Sj+1 ⊂ Sj

satisfies the regular obstructedness assumption of Definition 6.2. Then
one can define the nested family invariants such that invariant contri-
butions over Sj −Sj+1 make sense. They are defined in such a way that
the excision property is valid. i.e., The total invariant over B can be
alternately calculated as the sum of the invariant contributions over the
various Sj − Sj+1.

Proof. The proof of the corollary follows from Proposition 6.2 by
applying induction on the pair Sj+1 ⊂ Sj . q.e.d.

One can generalize the corollary slightly further to cover the cases
that the inclusion pattern of a collection of smooth oriented manifolds is
encoded by a finite graph instead of a chain. The manifolds bijectively
correspond to the vertexes of the graph, while an oriented 1-edge is
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constructed when one manifold is a proper submanifold of the other
with no other manifolds among the collection lying in-between. This
format will be used later. The graphs mentioned here correspond to the
subordinate relationships of different levels of admissible decomposition
classes.

It is easy to see that the regular obstructedness condition is tran-
sitive. Namely, if S3 ⊂ S2 ⊂ S1 are three oriented smooth mani-
folds which satisfy the consecutive regularly obstructed conditions, then
S3 ⊂ S1 is also regularly obstructed.

Let V1 denote the piece of obstruction subcomplex which splits off
over S2. Let Obs′ be the extended residual obstruction complex (which
is in general a semi-bundle) over S2. By the original assumption, the
Obs′ splits off another vector bundle over S3, which is denoted by
V2. Then the regularly obstructedness of these consecutive pairs are
equivalent to the surjectiveness of the maps φ1 : TS1|S2 �→ V1 and
φ2 : TS2|S3 �→ V2. Forgetting the manifold S2, the map TS1|S3 �→
V1|S3 ⊕ V2 is induced by first splitting TS1|S3 into TS2|S3 ⊕ NS2/S1

and extending φ2 to a map φ̃2 : TS1|S3 �→ V2 by composing with
the projection map TS1|S3 �→ TS2|S3 . Then one defines the morphism

TS1|S3 �→ V1|S3 ⊕V2 by φ1 ⊕ φ̃2. The splitting of the tangent bundles
and the projection map relies on the introduction of certain Riemannian
metrics and is therefore noncanonical. Nevertheless it is an easy exercise
in linear algebra to prove the surjectivity of the restriction map.

Proposition 6.2 and Corollary 6.1 are in certain sense the differen-
tial topological analogue of the residual intersection theory [16] in the
context of family invariants. They will play a crucial role in the proof
of my main theorem.

6.2 The nested perturbations preserving the regular ob-

structedness

The previous discussion is good enough for enumerating the contribu-
tions of the admissible decomposition classes supporting over nongeneric
strata. However, I need a stronger version in identifying the modified
family invariants and the relevant Gromov-Taubes invariants. Namely,
under a special sequence of family Kuranishi perturbations, the reduced
family moduli space over the top stratum is compact. The reader should
be aware that this subsection is not used in the algebraic geometric proof
of the main theorems.
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We will try to construct such kind of perturbations concretely. First,
we set up the theory in a general setting.

As before take X �→ B to be the fiber bundle of four-manifolds over
which a fixed fiberwise spinc structure has been chosen. We focus on a
reduced family moduli space over B of the fixed spinc structure.

Suppose that B is given an almost complex structure and let Y
denote the resulting almost complex manifold. Let X be an almost
complex submanifold of Y . If there are more than one X involved, I
use the double subscripts j; k to parameterize the manifolds. Let J
be an index set and let Xj;k, j ∈ J be a collection of almost complex
submanifolds of Y such that different Xj;k intersect transversally. The
second subscript k; k ∈ N∪{0} denotes the level of the set Xj;k. Namely,
it satisfies two properties:

(1) If Xl;kl
⊃ Xj;kj

is a proper inclusion, then kl < kj .

(2) There exists at least one Xl;k−1 ⊃ Xj;k with level k − 1.

The levels discussed in this subsection will correspond to the levels
of the admissible decomposition classes, once we apply the general setup
to a concrete problem.

As before, I still require the embedding X ⊂ Y (or in general Xj;k ⊂
Y ) to induce regularly obstructed reduced family moduli space MX ⊂
Mred (MXj;k

⊂ Mred).

The regular obstructedness condition requires that the restriction of
the cokernel semi-bundle Obs|X is isomorphic to Obs′ ⊕ V ∼= Obs′ ⊕
NXY . Through the isomorphism V inherits a structure of complex
vector bundle, because X ⊂ Y is almost complex. Let OBS denote the
obstruction bundle of a chosen family Kuranishi model. The previous
isomorphism induces an isomorphism on the obstruction bundle OBS ∼=
OBS ′ ⊕ V ∼= OBS ′ ⊕ NXY .

The reduced family moduli space Mred can be identified to be s−1(0),
where s ∈ Γ(O|Y ,OBS) is a smooth section of the extended obstruction
bundle defining the reduced family moduli space in this particular family
Kuranishi model. Through the isomorphism OBS|X ≡ OBS ′ ⊕ NXY ,
the section s induces a smooth section ⊥s of NXY viewed as a vec-
tor bundle over NXY ⊃ X. One says that the section is regularly
obstructed in the strong sense if ⊥s|O|X is the zero section. Similarly,
the section is regular obstructed in the weak sense if the restriction of
⊥s|O|X to an open neighborhood of the zero locus s = 0 is identically
zero. It is obvious that the former implies the latter.



468 ai-ko liu

Before my discussion, I fix a diffeomorphism between NXY and a
tubular neighborhood NXY of X in Y . Suppose the space Y is stratified
into smooth locally closed strata with smooth closures, I requirethe
diffeomorphic identification to satisfy some extra constraint.

Let Y ′ = Xj′;k′ with X = Xj;k = X ⊂ Y ′ ⊂ Y be the smooth
compactification of an almost complex stratum including X. Then
NXY ′ ⊂ NXY denotes the corresponding inclusion of normal bundles.
One requires that the tubular neighborhoods and the diffeomorphisms
have been chosen in a way such that the image of NXY ′ into NXY is
compatible with the corresponding tubular neighborhood one has chosen
for X into Y ′. If for all the possible Y ′ = Xj′;k′ the condition has been
satisfied, then the tubular neighborhoods of Xj;k are said to be stratified
tubular neighborhoods. Let us fix such a sequence of stratified tubular
neighborhoods and diffeomorphisms ιj;k : NXj;k

Y �→ NXj;k
Y .

In my actual application, the space Y will be stratified into the union
of different strata; each allows the action by a finite group ⊂ Sn.

Definition 6.3. Let J be an index set such that Y =
∐

j∈J;k Yj;k

be the stratification such that the compactification of all strata are
smooth submanifolds of Y . Let Gj;k be a finite group acting on Yj;k

that preserves the almost complex structure. A set W is said to be GJ

equivariant if for all j and k, W ∩ Yj:k is equivariant under the Gj;k

action.

In my setup, I take Yj;k to be the open submanifold Xj;k−∪p;qXp;q ⊂
Xj;k.

When Y is stratified by locally closed almost complex submanifolds,
we require that the tubular neighborhoods of X ′s are GJ equivariant.
This additional assumption is essential in discussing the divisibility of
the family invariants. To simplify the notation, I will implicitly identify
NXY with V.

Proposition 6.3. Let s−1(0) = Mred �→ Y , NXY , and NXY
denote the reduced family moduli space over Y , the normal bundle of
X in Y and the GI equivariant tubular neighborhood, respectively, as
have been defined already. Suppose that the reduced family moduli space
over X, denoted by the shorthand notation Mred ×Y X, is defined by a
regularly obstructed smooth section of the regularly obstructed extended
obstruction bundle. Let Ỹ = BlXY denote the almost complex blowup of
Y along X, and p : Ỹ �→ Y is the tautological blowing down map. Then
there exists a series of nested smooth perturbations of the pulled back sec-
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tion spert ∈ Γ(Ỹ ,OBS), such that the perturbed zero loci (spert)−1(0),
denoted by Mpert, can be decomposed into Mres

pert

∐Mred ×Y P(NXY ).
The support of the perturbation can be chosen to be a smaller GI equiv-
ariant tubular neighborhood of X. The branch Mres

pert is compact and is
supported away from the exceptional locus P(NXY ).

Here the symbol Mres
pert denotes the perturbed version of the residual

reduced family moduli space over Ỹ −P(NXY ), which is disjoint from
Mred ×Y P(NXY ).

When there are more than one X present, I apply the proposition
repeatedly to deal with them. I start from the X ′s with higher levels.The
explicit construction of the perturbations allows us to apply an induction
argument on the levels k in modifying the k-th perturbed moduli space
Mpert;k, k > 0 step by step. The subscript k indicates how many times
the nested perturbations have been performed. Eventually one ends up
with a Mres

pert, whose support is completely away from all the Xj;k.

I must emphasize that the perturbations and the perturbed reduced
family moduli spaces are not defined over the original base manifold Y
but over a birational model.

Proof. Let us begin our proof of the previous proposition. To blow
up X in Y , one removes the subspace X from Y and then glues back
E = P(NXY ). From now on the blown up tubular neighborhood will
be denoted by ÑEỸ .

First one notices that in the blown up manifold Ỹ = BlXY , P(NXY )
is a smooth, almost complex submanifold (of real codimension two).

Take the smooth complex line bundle corresponding to the excep-
tional submanifold. Let h denote a smooth transversal section of the
exceptional line bundle over Ỹ whose zero locus defines E = P(NXY ).
If one works over the holomorphic category, it can be chosen to be
the smooth complex line bundle associated with the exceptional divi-
sor. The restriction of the line bundle to E can be identified to be the
tautological line bundle of the projectification of NXY .

Because the defining section s has been assumed to be regularly
obstructed, p∗s|X projects trivially (= p∗s̃|X) onto the p∗NXY factor
under the natural projection map OBS �→ p∗NXY .

To choose the small perturbation carefully, one notices that the reg-
ular obstructedness of s guarantees that p∗s|ÑE Ỹ

can be reexpressed

schematically as sres ⊕ (s̃ ⊗C h
−1

) ⊗ h. The formula deserves some
special explanation.
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In the formula, the section sres is a smooth section of p∗OBS ′, the
residual extended obstruction bundle.The symbol h is defined to be the
pulled back version of h under the projection map Mred ×Y BlXY �→
BlXY . Because h vanishes on E, the expression s̃ ⊗C h

−1
has an ap-

parent singularity at E similar to the entire function sin(z)
z in complex

analysis. Instead, I interpret this symbol as the nonvanishing smooth
section of p∗NXY ⊗L⋆

E under the isomorphism by the regular obstruct-
edness, which relates to s̃ by tensoring with h. The contractability of
ÑEỸ into E implies that the “factorization” can be extended to the
tubular neighborhood of E.

Since the zero section s has been splitted into two parts near E ⊂ Ỹ ,
so is M|ÑE Ỹ

. One portion is defined by the zero locus of sres ⊕ h. An-

other branch is locally defined by sres ⊕ (s̃⊗ h
−1

). These two branches
usually are not disjoint without the further perturbations. Since h triv-
ializes LE outside E, the factorization operation can be interpreted
as a modification of the topological type of OBS. One can extend

sres ⊕ s̃ ⊗C h
−1

to be a smooth section of OBS ′ over Ỹ .
Let H denote the hyperplane line bundle over the projective space

fiber bundle E = P(NXY ) �→ X. As ÑEỸ can be retracted into
E = P(NXY ), we use the same symbol H to denote its extension from
P(NXY ) to ÑEỸ . We have L⋆

E = H.
The short exact sequence of the vertical tangent bundle TverP(NXY )

of P(NXY ) �→ X implies that the complex vector bundle p∗NXY ⊗C

H = p∗NXY ⊗C L⋆
E fits into the following short exact sequence,

0 �→ C �→ p∗NXY ⊗H �→ TverP(NXY ) �→ 0.

The trivial factor C in the exact sequence is crucial to our construc-
tion.

First one considers the constant nonzero section of the trivial line
bundle C over ÑEỸ . One then chooses a GI equivariant Riemannian
metric on ÑEỸ and then a GI invariant cut off function φ(r), which is
radially symmetric with respect to the chosen metric. Without losing
generality, I assume that ÑEỸ is within the cut-locus of the smooth
metric.

The bump function φ(r) is identically ≡ 1 for all the points near E
and is ≡ 0 for all points near the collar boundary of ÑEỸ . Then the
φ-cut off version of the constant section is extended and embedded into
a smooth section of the obstruction bundle OBS over Ỹ = BlXY . Let
1φ denote such a cut off version of the constant section. Then I perform
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the desired perturbation by adding ǫ · 1φ to the section sres ⊕ (s̃⊗h
−1

).

One then takes ǫ large enough to exceed supx∈E(‖ sres⊕(s̃⊗h
−1

) ‖ (x)).

After it is carefully chosen, the perturbed section sres ⊕ s̃ ⊗ h
−1

+ ǫ1φ

does not vanish in a neighborhood of E.
The construction of the perturbation has ensured that the reduced

family moduli space is modified only in the given tubular neighborhood
of E = P(NXY ), which is determined by the choice of the cut off
function φ(x).

It is obvious from the construction that, after the specific perturba-
tion, the reduced family moduli space over E defined by h = 0, sres = 0

is disjoint from the residual part which is defined locally by

sres ⊕ (s̃ ⊗ h
−1

) + ǫ1φ = 0. q.e.d.

Next, I also need to ensure that the perturbation has not spoiled the
nice property of the original reduced family moduli space.

The following lemma is crucial in the inductive construction:

Lemma 6.1. Let OBS be the family extended obstructed bundle of
a family Kuranishi model O over the almost complex base manifold Y
and s ∈ Γ(O,OBS) be the defining section of the family moduli space.
Let X1 ⊂ X2 ⊂ Y be the inclusions of almost complex submanifolds
of Y . Suppose that the family Kuranishi model is regularly obstructed
with respect to both X1 and X2. Additionally assuming that the smooth
section s is regularly obstructed with respect to X1 and X2 in the weak
sense, then for sufficiently small ǫ,the ǫ perturbed section of the residual
family obstruction bundle over Ỹ = BlX1Y is regularly obstructed with
respect to BlX1X2 in the weak sense.

Proof. Notice that after the blowing up, NBlX1
X2 Ỹ is not iso-

morphic to NX2Y . The residual extended family obstruction bundle
may not be regularly obstructed with respect to BlX1X2 ⊂ Ỹ , either.
As I have shown, the zero locus of the perturbed section is away from
E = P(NX1Y ). Thus, by shrinking the family Kuranishi model to a
smaller neighborhood of the perturbed zero locus, the regular obstruct-
edness condition still holds.

First I introduce the splitting of the complex normal bundles. NX1Y
= NX1X2 ⊕ NX2Y |X1 by using the Riemannian metric. Because the

zero locus of the ǫ perturbed version sres ⊕⊥s⊗h
−1

+ ǫ1φ is away from
P(NX1X2), I can shrink the family Kuranishi model if necessary.
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The new section has been perturbed from sres⊕⊥s⊗h
−1

by adding
ǫφ(r)1. As has been remarked, the OBS ′, after being restricted to the
zero locus of the perturbed section, is regularly obstructed with respect
to X2. I only have to prove that the ǫφ(r)1 projects trivially into the
factor isomorphic to NX2Y .

Because the cut off function φ(r) has been chosen, the perturbation
supports in a neighborhood of E. Recall that section 1 is constructed
by pulling back the tautological section of NX1Y ×X1 (NX1Y − 0) �→
(NX1Y − 0) by the diffeomorphism NX1Y

∼= NX1Y .
By the choice of the stratified tubular neighborhood, NX1X2 is dif-

feomorphic to a tubular neighborhood of X1 in X2. Thus, for all x in
this tubular neighborhood, the values of 1 all lie in the factor NX1X2.
Thus, their projection from NX1Y = NX1X2 ⊕ NX2Y |X1 to NX2Y |X1

is trivial. This proves the lemma. q.e.d.

Next, I would like to apply this lemma iteratively to the general
context. I blow up Xj;k according to the descending orders of the levels
k. I.e., each Xj;k is blown up only after all the Xl;k′ of higher levels
have been blown up already.

Each time during the blowing up, there are three different situations:

(i) If the Xl;kl
is totally disjoint from the blowup locus, then the

regular obstructedness condition over Xl;kl
is not affected.

(ii) If Xl;kl
contains Xj;k properly, then the previous lemma is applied

to guarantee the regular obstructedness of the perturbed section
(in the weak sense).

(iii) Here, Xl;kl
and Xj;k do not contain each other, yet Xl;kl

∩ Xj;k is
nonempty. In this case, one can apply the proof of the lemma to
X1 = Xl;kl

∩ Xj;k ⊂ X2 = Xl;kl
, after some simple change of no-

tations. Then one proceeds to the following iteration procedures:

(1) Blow up the appropriate loci with level k.

(2) Pull back the family Kuranishi model to the blown up manifold.

(3) Split the defining section into the “excess part” and “residual
part.”

(4) Perturb the section by ǫφ(r)1 supported near the exceptional loci.

(5) Using the lemma repeatedly to guarantee the regular obstructed-
ness (in the weak sense).
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(6) Go back to step (1) to blow up the appropriate loci with level
k − 1.

7. The proof of the Main Theorems

In Subsection 7.1, I provide the C∞ argument to identify the modi-
fied family invariant with the enumeration of smooth curves in the class
C −M(E)E. In Subsection 7.2, I prove that the modified family invari-
ant attached to (Γ, C −M(E)E) is a universal polynomial expression of
c1(C)2, c1(C) · KM , K2

M , χ(M).

In Subsection 7.3, I combine Göttsche’s argument to realize the
transversality condition of the reduced family moduli space over an open
set in Y (γ). As a result, the enumeration of nodal curves in any suffi-
ciently very ample |C| can be identified with a constant multiple of the
modified family invariant FSWY (γ)(1, C −∑ 2Ei). In Subsection 7.4
and Subsection 7.4.2, the divisibility and the factorization properties of
the modified family invariants FSW ∗ are studied in detail.

7.1 The proof of the Main Theorems; first step

After all the preparation in the previous subsections, one is ready to
state and prove the main theorems in the introduction.

Recall the basic fact that if dR(C0) + dimR B < 0, then all the pure
and mixed family invariants of C0 vanish. Under the usual convention,
the vanishing of the invariants under this condition is viewed as a defi-
nition rather than a “property.” However, I want to emphasize that it
is a consequence of the family Kuranishi model, as well as the algebraic
Kuranishi model, rather than merely a definition. In terms of family
Kuranishi model, the fact is almost trivial. Namely, the generic fibers of
the chosen perturbation is compact and smooth of negative dimension,
therefore an empty set. The invariants are zero automatically. The cor-
responding vanishing result in algebraic family Seiberg-Witten theory
was explained in [38] under the assumption that the class C0 is simple.

Given one topological type of singular curves (Γ, C − M(E)E), the
primitive object to consider is FSWY (Γ)(1, C − M(E)E). Notice that
when one considers nodal curves, Γ is taken to be γ, and the family in-
variant is evaluated over Y (γ) = Mn. To reduce the ambiguity, I choose
{Γ, M(E)} carefully to satisfy the extra conditions on the markings and
multiplicities. In general, the situation is rather complicated; the major
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complication comes from the fact that both type I and type II excep-
tional curves and their multiple coverings can show up in the counting
scheme. In fact, they do show up very frequently.

To simplify this already complicated discussion, type II exceptional
curve is temporarily dismissed.

Assumption 1. The family Kähler Seiberg-Witten moduli space
is said to be good if the stratum of smooth curve is smooth of right
family dimension and the other strata of singular curves are of real
codimension at least two.

Under this optimal assumption, the spinors whose zero loci are
smooth curves form the top dimension of the moduli space and the
counting of the invariants is equivalent to the counting of the smooth
holomorphic (algebraic) curves. The concept of “goodness” was first
introduced in Donaldson theory and Gromov theory several years ago.

Suppose that the family moduli space has been good and all the
curves obtained by cutting down the dimension of the moduli space
supporting over YΓ, then the contraction of the curves by the blowing
down map gives rise to singular curves with singularities exactly of the
prescribed types. Under this ideal condition, the family invariant should
be proportional to the number of singular curves.

Let us analyze the difficulty of achieving these two assumptions.
First, there is some topological obstruction to achieve goodness. More-
over, even if the condition of being a good family moduli space has been
achieved, there is still some further serious obstruction for the curves to
lie over the open strata YΓ. It turns out that the concept of admissible
decomposition classes helps to analyze the obstructions in a uniform
way.

Let us temporally ignore the first question and concentrate on the
second one. Namely, there are occasions that some smooth curves repre-
sentatives in the moduli space obtained by imposing the points passing
condition lie above Y (Γ) − YΓ. Let us choose n = 4 and M ≡ 2, the
4-nodes nodal curve case, as an example to illustrate the general phe-
nomenon. More examples will be discussed in Section 9.

Let C−2E1−2E2−2E3−2E4 be the cohomology class I would like to
count the smooth curves over M4. It turns out that one can decompose
C − 2E1 − 2E2 − 2E3 − 2E4 as the sum of L = C − 3E1 −E2 −E3 −E4

and e = E1 − E2 − E3 − E4. It is easy to check that these two classes,
L and e, are perpendicular to each other.

This indicates that it is possible that the smooth curves we want
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to count are presented as the disjoint unions of the smooth curves in
C − 3E1 − E2 − E3 − E4 and E1 − E2 − E3 − E4. Because the curve
e = E1 −E2 −E3 −E4 lies over some subvariety of Y (Γ)−YΓ, the total
curve does, too.

This gives us the first indication that the family invariants should
not count the number of nodal curves—-It also contains the other types
of contributions as well. The bad news is that there might be singular
curves in C − 2E1 − 2E2 − 2E3 − 2E4 − · · · which have a higher family
dimension than the expected one. Examples of this type give rise to
serious obstruction for a family moduli space to be good.

Even though the curves with lower “expected” family dimensions
are actually of lower dimension, cutting down the family moduli space
by dC(C) − n points can give rise to curves sitting over Y (Γ) − YΓ.
Ideally, one assumes that the reduced moduli space is a smooth zero
dimensional compact manifold, then the pure invariant is counted by
the sum of the signed points. To calculate the number of nodal curves,
one needs to calculate the other types of contribution and subtract the
total contribution from the other. Schematically, one should expect the
following equality:

FSWY (Γ)(C − M(E)E) = N(Γ, M(E)) + others,

where N(Γ, M(E)) denotes the contribution from the smooth curves
which are supposed to be proportional to the number of the singular
curves we want to count.

In other words, N(Γ, M(E)) = FSWY (Γ)(C − M(E)E) − others.

One of the difficulties with the ideal picture is that it is extremely
difficult to ensure the transversality of the reduced family moduli space.
Therefore, the terms others seldom make sense as counting of a finite
number of elements in the appropriate moduli spaces. The situation
becomes hopeless as the second problem comes into play. This is the
main reason that Vainsencher’s approach of counting nodal curves only
worked for n relatively small (n ≤ 6) and broke down when n went
larger.

It is the goal of the present section to develop a method to bypass
the difficulties. The method would be in a sense parallel to the residual
intersection theory [16] developed by the algebraic geometers, yet the
foundation is the nested Kuranishi model discussed above.

Let us make another working assumption on the family moduli space
temporarily.
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Assumption 2. The reduced family moduli space is said to be
partially good if the strata with expected family dimensions less than
the expected one are either empty or of actual dimension less than the
expected one.

In general, it is hard to realize the condition in the algebraic category.
On the other hand, I will realize the condition in the pseudo-holomorphic
category when I consider nodal curves.

Assumption 3. Consider the subspace MII in the family moduli
space consisting of the curves whose projections into M (under the
blowing down map) are not reduced, i.e., they are of multiplicities larger
than one. Then the family moduli space is said to be type II nice if
the expected dimensions of the types of curves are all less than the
expected family dimension of the family moduli space. In other words,
the reduced family moduli space does not intersect with MII.

In particular, if the subset MII is empty, then it is viewed as type
II nice. If the family moduli space is both partially good and type II
nice, then the points of the corresponding reduced family moduli space
do not represent curves with multiple coverings of type II exceptional
curves.

In the explicit identification of the nodal curve invariants on K3,
one will encounter this type of situation.

It follows from Göttsche’s argument that the reduced moduli space
can be made to be type II nice after twisting the line bundle to a high
enough power (see below).

Under these working assumptions, the reduced family moduli space
consists of points sitting over both YΓ and ∪Γ′<ΓYΓ′ .

If one does not impose the extra regularity assumption, there is no
hope of interpreting the pure family invariant as a counting of curves.

Another working assumption is imposed at this point.

Assumption 4. The intersection of the reduced family moduli
space with the preimage of YΓ consists of a finite number of (might
be nonreduced) points which correspond to smooth curves in the ap-
propriate cohomology classes.

This can be achieved in some particular situation by the perturba-
tion argument. Without this assumption, the curve counting problem
should be interpreted as a weaker notion of enumerating the “equiva-
lence” of some type of curves. Only in the pseudo-holomorphic category
can it be reinterpreted as a counting of singular pseudo-holomorphic
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curves.

They are imposed at this moment to clarify and simplify the argu-
ment and to give us conceptual guidance. Using the concept of type II
exceptional curves, Assumption 4 implies that the admissible decompo-
sitions classes involving type II exceptional curves do not contribute to
the invariant counting over YΓ.

Borrowing language from algebraic geometry, one gets a new inter-
pretation of the previous counting scheme. Namely, the weird term
of “the others” in the previous equality should be interpreted as the
various “equivalences” of invariants over ∪Γ′<ΓYΓ′ .

Let us ignore the technical details at this moment and address how
the weakened form of the scheme partially resolves the transversality
issue from the other approaches. It buildsup one of the major difficul-
ties in Vainsencher’s [59] or Kleiman-Pienes’ [24] approach. The curve
counting scheme of ours, as well as the algebraic geometric one, relies
on the correspondence that relates the singular curves to the singular
points lying in the algebraic surface. The family blowup formula estab-
lishes a machinery to detect the singular points of the curves. Whenever
the curves have nonreduced components, the machinery tends to detect
a continuous family of singularities. As the correspondence fails to be
a finite to finite correspondence, the naive counting loses its direct geo-
metric meaning. This problem was first recognized by Vainsencher [59]
and was the major difficulty of the current scheme to count pseudo-
holomorphic curves. It might not be noticed by the reader that these
exotic symptoms are dealt with smoothly by the technique of family
Seiberg-Witten theory. i.e., under the formulation of family Seiberg-
Witten theory, the seemly exotic and un-curable phenomenon becomes
a normal phenomenon once the appropriate concepts have been defined
and the appropriate tools have been built up.

Because the present assumptions do not guarantee the regularity
of the reduced family moduli space lying over ∪Γ′<ΓYΓ′ , it is not in-
terpreted as a geometric counting directly. However, the language of
the family invariants allows us to interpret these contributions as a cer-
tain combination of mixed invariants of some other spinc structures.
Then the repeated applications of family blowup formula and the fam-
ily switching formula reduce the various mixed family invariants to the
topological datum involving cohomology classes C2, C ·KM , K2

M , c2(M).

Let us argue how the “equivalences” of the reduced family moduli
space over Y (Γ) − YΓ can be interpreted as the combinations of mixed
family invariants. The concept of the admissible decomposition classes
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plays an essential role here. I first give a argument in some simpler case
to demonstrate my point of view. Despite of its simpleness, it serves as
a prototype of the general theory.

As I have assumed that the family moduli space is partially good,
the image of the reduced moduli space over Y (Γ) − YΓ may not be the
whole Y (Γ) − YΓ.

Example 7.1. Take n = 4 and consider Γ1 ∈ adm(4) to be the
admissible graph such that the leading vertex is the direct ascendent
of the three other vertexes. It is easy to see that, when one considers
the case that the unresolved curves have four nodes, the reduced family
moduli space which lies over Y (Γ)−YΓ actually lies over Y (Γ1). Without
imposing the partial goodness assumption, this may not be the case.
To relax the assumption, one has to use the remark at the beginning
of Section 6.2. This also constitutes the major reason to impose the
allowable condition in defining the admissible decomposition classes.

As has been analyzed, the space Y (Γ1) is the closure of the space
over which the type I exceptional curve e = E1 − E2 − E3 − E4 or
its degenerations support upon. On the other hand, as was calculated
before, the cohomology class C − 2E1 − 2E2 − 2E3 − 2E4 splits into
L = C − 3E1 −E2 −E3 −E4 and e = E1 −E2 −E3 −E4. Then the key
idea is to notice that e = E1−E2−E3−E4 is a type I exceptional curve
lying in the type I preexceptional cone over YΓ1 . Being exceptional, it
cannot move in a single fiber. Therefore, the compactified moduli space
of the curve e = E1−E2−E3−E4 (or simply the family Seiberg-Witten
moduli space, as it is a compact space) is isomorphic to Y (Γ1). The
reduced family moduli space of C − 2E1 − 2E2 − 2E3 − 2E4 over Y (Γ1)
is equal to the reduced family moduli space of C − 3E1 −E2 −E3 −E4

with the presence of the curve e = E1 − E2 − E3 − E4. As a result,
the “equivalence” of the invariants of C − 2E1 − 2E2 − 2E3 − 2E4 over
Y (Γ) is reinterpreted as the mixed invariant of C − 3E1 −E2 −E3 −E4

inserting PD(Y (Γ1)) into the invariant.

This type of argument is possible due to the nested Kuranishi model
developed in Section 6.1. To begin the argument, let us demonstrate the
main technique in the special case. As a type I exceptional curve has
been splitted off over Y (Γ1), it is not hard to check that the space Y (Γ1)
is regularly obstructed in B = Y (Γ) with respect to the cohomology
class C−2E1−2E2−2E3−2E4. More explicitly, the bundle V, which is
splitted off from the Obs, is nothing but the Seiberg-Witten obstruction
bundle of the class e = E1 − E2 − E3 − E4. The reader should notice
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that the smoothness of the stratum Y (Γ1) (Proposition 4.3 and 4.4) is
used essentially here.

It follows that, by the machinery of nested Kuranishi model, the
invariant contribution over S = Y (Γ1) makes perfect sense even though
the moduli space is hardly regular. In family Seiberg-Witten theory,
the removal of the bundle V over S = Y (Γ1) corresponds to replace
the cohomology class C − 2E1 − 2E2 − 2E3 − 2E4 by its good part
C − 3E1 − E2 − E3 − E4.

In general, the possibility of identifying two nonregular objects di-
rectly relies heavily on either the nested Kuranishi models of the family
Seiberg-Witten moduli space or the algebraic family Seiberg-Witten in-
variants defined in [38] based on the idea from [29].

Thus, in the n = 4, i.e., the 4 nodes nodal case, the number of nodal
curves is related to the family invariants by

1

4!
(FSW (1, C − 2E1 − 2E2 − 2E3 − 2E4)

− FSW (PD(Y (Γ1)), C − 3E1 − E2 − E3 − E4)).

Applying the concept of admissible decomposition classes, it is easy
to see that (C − 3E1 − E2 − E3 − E4, e = E1 − E2 − E3 − E4) is an
admissible decomposition (class) of level one.

One has proved that

(FSW (1, C − 2E1 − 2E2 − 2E3 − 2E4)

− FSW (PD(Y (Γ1)), C − 3E1 − E2 − E3 − E4))

is proportional to the number of 4-node nodal curves with the pro-
portionality condition 4! (which will be identified more systematically
later). This is exactly the modified invariant FSW ∗(1, C−2E1−2E2−
2E3 − 2E4) defined in the previous section. Without using the nested
Kuranishi model technique or the concept of mixed invariants, the por-
tion of reduced moduli space over Y (Γ1) is a nonreduced object depend-
ing both on M and C. Algebraic geometers [59], [24] proved that this
space can be made to be transversal of right dimensions after imposing
conditions on C. Without using the ad hoc argument, it was impossible
for them to say anything about it. And the existence of the “universal”
formula cannot be achieved then.

As I have cut down the moduli space by imposing points passing
condition, the expected family dimension of the reduced family moduli
space is zero.
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Definition 7.1. A (pseudo) holomorphic curve is said to be type
I (or II) free if there is no type I (or II) exceptional curve among its
irreducible components.

A priori, there might be some type I− free smooth curves sitting
over Y (Γ) − YΓ. As Proposition 4.3 asserts that Y (Γ) − YΓ is a divisor
in Y (Γ) with real codimension two, the family expected dimension of
this type of curve drops by at least two. Thus, by choosing the sections
of the fiber bundle (which cut down the dimension of the moduli space)
to be generic enough, one can assume that the “reduced” family moduli
space over Y (Γ) − YΓ do not contain any type I− free smooth curves.
Even if it does, one can still analyze them by a detour(see below) that
their contribution to the invariant vanishes as they are of lower expected
dimension than the original family invariant.

Because the working assumptions guarantee that it is type II nice,
it follows from Taubes’ [51] calculation of the dimension of pseudo-
holomorphic curves that the curves corresponding the reduced family
moduli space over Y (Γ) − YΓ must contain type I curves in their irre-
ducible components.

7.1.1. The validity of the regular obstructedness condition

I have formulated the nested Kuranishi model to analyze the reduced
family moduli space. I first provide a check that the assumption in the
proposition is satisfied. Namely, the regularly obstructed condition is
satisfied in the setting.

Suppose that there exists at least one type I exceptional class over
b which is non-nef with respect to C − M(E)E. Let us collect all such
ei ∈ ECb(C − M(E)E), i ∈ I and consider the decomposition (C −
M(E)E −∑i∈I ei,

∑
i∈I ei) and the family moduli space associated to

the given decomposition. In order that this component of family moduli
space has a nontrivial contribution to the family invariant,

(i) C − M(E)E must be effective;

(ii) Its formal dimension dR(C − M(E)E −∑i∈I ei) +
∑

i dR(ei) +
dimR B must be greater or equal to dR(C − M(E)E) + dimR B.

In other words, (C −M(E)E −∑i∈I ei,
∑

i∈I ei) must be allowable.
According to Lemma 5.1, one must be able to group ei, i ∈ I into
“connected components” such that at least one group Jr ⊂ I satisfies
(
∑

j∈Jr
ej) · (C − M(E)E) ≤ (

∑
j∈Jr

ej)
2 < 0.
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Geometrically, those ej , j ∈ Jr can be smoothed into a type I ex-
ceptional curve eJr such that

∑
j∈Jr

ej is viewed as a degenerated con-
figuration of eJr . Since the lemma guarantees the existence of at least
one eJr , I collect all such eJr =

∑
j∈Jr

ej , eJr · (C −M(E)E) ≤ e2
Jr

< 0
and discard the others temporally. The coexistence of all such each eJr

defines an admissible stratum over which eJr appears as an irreducible
smooth type I exceptional curve.

Proposition 7.1. Let (C − M(E)E − ∑i∈I ei,
∑

i∈I ei) be an
allowable decomposition over b of C − M(E)E with ei being the type I
exceptional classes ei·(C−M(E)E) < 0. Then there exists a partition of
I into I =

∐
Jr and an admissible graph Γb, with the subscript indicating

its b dependence, which satisfies the following conditions:

(i) ea1 · ea2 = 0, a1 ∈ Jr, a2 /∈ Jr. Any two ea1 , ea2 in the same group,
a1, a2 ∈ Jr, are connected by a chain of ek, k ∈ Jr such that the
adjacent ek’s have intersection number 1.

(ii) b ∈ Y (Γb).

(iii) The locally closed locus YΓb
is defined by the coexistence of the

smooth irreducible type I exceptional curves eJr , Jr ⊂ I, 1 ≤ r ≤ r0

such that eJr · (C − M(E)E) < e2
Jr

< 0, for all r ≤ r0. In
other words, (C − M(E)E −∑r≤r0

eJr ,
∑

r≤r0
eJr) defines a type

A allowable decomposition.

(iv) When the generic point z ∈ YΓb
specializes to b, the smooth curve

representing eJr is broken into the tree of type I curves represented
by the sum

∑
j∈Jr

ej.

(v) For r > r0, 0 > {∑j∈Jr
ej} · (C − M(E)E) > {∑j∈Jr

ej}2.

(vi) The family moduli space associated to the decomposition (C −
M(E)E−∑i∈I ei,

∑
i∈I ei) is embedded as the degenerated config-

urations of the decomposition (C−M(E)E−∑r≤r0
eJr ,
∑

r≤r0
eJr)

such that:

(a) eJr is degenerated into
∑

j∈Jr
ej.

(b) C − M(E)E −∑r≤r0
eJr is degenerated into C − M(E)E −∑

i∈I ei +
∑

r>r0

∑
j∈Jr

eJr .
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In particular, any type B allowable decomposition class can be
viewed as a degenerated configuration of some type A allowable de-
composition class.

Proof. Most of the statements are merely the reformulation of our
earlier discussion. The study of the admissible strata and the admissible
graphs allows us to compare the topological degenerations of the class
eJr �→ ∑

j∈Jr
ej and the geometric degenerations of the corresponding

curves. (i) follows from the basic property of the “connected compo-
nents”. (ii), (iii), (iv) follow from the construction of the admissible
stratum. (v) explains the role of r0. In (vi), the class C − M(E)E
of any holomorphic curve with {C − M(E)E} · ei < 0, i ∈ I must
split into (C − M(E)E −∑i∈I ei,

∑
i∈I ei). By grouping ei, i ∈ Jr to-

gether, the curve dual to C − M(E)E can be reinterpreted as a curve
in (C −M(E)E −∑r≤r0

eJr ,
∑

r≤r0
eJr), where I have taken the union

of the curves in C − M(E)E −∑i∈I ei and in
∑

r>r0
eJr and viewed it

as C −M(E)E −∑r≤r0
eJr , using the identity −∑i∈I ei +

∑
r>r0

eJr =
−∑r≤r0

eJr . q.e.d.

Conversely, suppose there is an ei such that (C − M(E)E) · ei <
e2
i < 0. Namely, the strict inequality holds. If the curve poincare dual

to ei is broken into two two components ei;1 + ei;2 with ei;1 · ei;2 = 1,
then the following property holds.

Lemma 7.1. Under the above assumption, then either (C −
M(E)E) · ei;1 ≤ e2

i;1 or (C − M(E)E) · ei;2 ≤ e2
i;2.

Proof. If not, I assume both inequalities are violated and derive a
contradiction.

Suppose (C − M(E)E) · ei;1 > e2
i;1 and (C − M(E)E) · ei;2 > e2

i;2.
Because all the intersection numbers are integer valued, they imply

(C − M(E)E) · ei;1 ≥ e2
i;1 + 1

and
(C − M(E)E) · ei;2 ≥ e2

i;2 + 1.

Adding them together yields

(C − M(E)E) · {ei;1 + ei;2} ≥ e2
i;1 + e2

i;2 + 2.

On the other hand, the original assumption on ei;1, ei;2 implies

(C − M(E)E) · (ei;1 + ei;2) < e2
i;1 + e2

i;2 + 2ei;1 · ei;2 ≤ e2
i;1 + e2

i;2 + 2,
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which implies that

(C − M(E)E) · (ei;1 + ei;2) ≤ e2
i;1 + e2

i;2 + ei;1 · ei;2 ≤ e2
i;1 + e2

i;2 + 1.

By combining both inequalities it immediately leads to a contradic-
tion. q.e.d.

When e1 · (C − M(E)E) < e2
1 < 0 holds, the switching process

C − M(E)E �→ C − M(E)E − e1 + e1 produces a residual relative
obstruction bundle of complex rank −e1 · (C − M(E)E) + e2

1. The
lemma implies that any codimension one degeneration of e1 contains a
smooth component e′ with e′ · (C − M(E)E) ≤ e′2.

Given the class C−M(E)E which is effective over a point b ∈ Y (Γ),
the sheaf short exact sequence

0 �→ O(C − M(E)E) �→ O(C) �→ OM(E)E(C) �→ 0

induces a long exact sequence which can be truncated into a four term
long exact sequence when C is very ample:

0 �→ R0(p)∗(O(C − M(E)E)) �→ R0(p)∗(O(C)) �→
R0(p)∗(O∑miEi

(C)) �→ R1(p)∗(O(C − M(E)E)) �→ 0.

The map R0(p)∗(O(C)) �→ R0(p)∗(O∑miEi
(C)) can be interpreted

as the fiberwise restriction map from the sections of O(C) to a combi-
nation of type I exceptional curves. The stalks of the kernel sheaf of the
map projectifies to be the family moduli space of C − M(E)E.

Given a point b ∈ Y (Γ), we would like to check that it satisfies the
condition in applying nested Kuranishi model.

If b does not support any allowable decomposition, then the reduced
family moduli space over b is of negative expected dimension and it
does not contribute to the family invariant. Thus, we assume that there
exists an allowable decomposition over b. In particular, there are a
finite number of smooth type I exceptional curves over b dual to the
classes ei, i ∈ I such that ei · (C − M(E)E) < 0. The combinatorial
Proposition 7.1 asserts that there exists at least one Γb such that the
stratum YΓb

is defined by the type I curves eJr with eJr ·(C−M(E)E) ≤
e2
Jr

, i.e., there exists a type A admissible decomposition class which
supports over YΓb

. Knowing the existence of such Γb, one proves the
following statement.
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Proposition 7.2. Let YΓb
be an admissible stratum which is the

coexistence locus of a finite number of smooth irreducible type I excep-
tional curves ei with (C − M(E)E) · ei ≤ e2

i , then the closure of the
family moduli space over YΓb

to Y (Γb) satisfies the regular obstructed-
ness condition. Namely, there exists a quotient bundle of the cokernel
semi-bundle Obs which is isomorphic to NY (Γb)(Y (Γ)).

Proof. From the four term long exact sequence

0 �→ R0(p)∗(O(C − M(E)E)) �→ R0(p)∗(O(C)) �→
R0(p)∗(O∑miEi

(C)) �→ R1(p)∗(O(C − M(E)E) �→ 0,

it is apparent that the cokernel at x ∈ Y (Γb) is isomorphic to
H1(Xx,O(C − M(E)E)). As has been addressed, the map

Tx(Y (Γ)) �→ H1(Xx,O(C − M(E)E))

is induced by the Kodaira-Spencer map. To prove the assertion, it
suffices to prove that there exists a vector subspace V of H1(Xx,O(C −
M(E)E)) and a surjective natural homomorphism from H1(Xx,O(C −
M(E)E)) to V .

The vector space V satisfies the property that Tx(Y (Γ)) �→ V in-
duces an isomorphism on Tx(Y (Γ))/Tx(Y (Γb)).

Because we have known that Y (Γb) is the transversal complete inter-
section ∩t∈Ver(Γb)Y (Γt

b), thus the normal bundle of Y (Γb) ⊂ Y (Γ) (being
isomorphic to Tx(Y (Γ))/Tx(Y (Γb))), can be decomposed into the sum
of the restriction of the normal bundles of Y (Γt

b) ⊂ Y (Γ). Thus, it
suffices to prove that for all t which mark the vertexes of Γb, there ex-
ists a vector bundle Vt isomorphic to a subbundle of Obs such that
Tx(Y (Γ))/Tx(Y (Γt

b)) maps isomorphic onto Vt|x,

T (Y (Γ))/T (Y (Γt
b))|Y (Γt

b
)
∼= Vt,

while

H1(Xx,OXx(C − M(E)E)) �→ (Vt)|x
is surjective.

For a given t, the admissible graph Γt
b corresponds to a type I

curve et. Consider the P1 fiber bundle Ξ̃t. One takes Vt|x to be
H1(Ξ̃t|x,O

Ξ̃t|x
(et)). In the following, I define a natural map from

H1(Xx,OXx(C − M(E)E)) to H1(Ξ̃t|x,O
Ξ̃t|x

(et)).
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Step 1. First, because C − M(E)E is effective, pick an effective
divisor ΣC−M(E)E representing C − M(E)E, the short exact sequence

0 �→ OXx �→ OXx(C − M(E)E) �→ OXx∩(C−M(E)E)(C − M(E)E) �→ 0

induces a map

H1(Xx,OXx(C − M(E)E))

�→ H1(ΣC−M(E)E ,OXx∩ΣC−M(E)E
(C − M(E)E)).

When C is very ample, the long exact sequence maps the cokernel
of the map isomorphically onto H2(Xx,O), which is pg dimensional.

Step 2. By assumption, et · (C − M(E)E) ≤ e2
t < 0. It im-

plies that et has a negative pairing with C − M(E)E, which forces
any effective representative to break off at least a copy of et when the
curve representing et is smooth irreducible. It remains true if one passes
from the family moduli space over YΓb

to its closure over Y (Γb). Thus,
OΣ(C−M(E)E)

(C −M(E)E) can be pulled back to the fiber over x of the
universal type I curve Ξt, (Ξt)x = {x}×Y (Γt)Ξt, and it induces a natural
surjection,

H1(ΣC−M(E)E ,OΣC−M(E)E
(C − M(E)E))

�→ H1((Ξt)x,O(Ξt)x
(C − M(E)E)) �→ 0.

Step 3. This step is parallel to the construction of the residual
relative obstruction bundle. Suppose et is expressed as Et−

∑
Ejt where

jt are the direct descendents of t. Then one considers the forgetting map
by reducing M(E)E =

∑
miEi to M̃t(E)E = mtEt +

∑
jt

mjtEjt , i.e.,
one erases all the multiplicities for i 	= t, jt. Because

∑
i�=t,jt

miEi is
an effective divisor on Xx defined by a holomorphic section s, then the
tensor product with the given section induces a map

·⊗s : H1((Ξt)x,O(Ξt)x
(C−M(E)E)) �→ H1((Ξt)x,O(Ξt)x

(C−M̃t(E)E)).

Step 4. While (Ξt)x is smooth irreducible over YΓb
, it degenerates

into some trees of P1 over Y (Γb) − YΓb
. Recall that in Section 5.2 I

have constructed a universal P1 bundle Ξ̃t birational to the total space
of the universal type I curves Ξt over Y (Γet) = Y (Γt

b). Because the

reduction of the multiplicity function M̃t(E) depends on Et and Ejt
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only, the invertible sheaf O(Ξt)x
(C − M̃t(E)E) is the pull-back of the

invertible sheaf O
(Ξ̃t)x

(C − M(E)E) from (Ξ̃t)x.

The birational map Ξt �→ Ξ̃t induces the isomorphism,

H1((Ξt)x,O(Ξt)x
(C − M̃t(E)E)) �→ H1((Ξ̃t)x,O

(Ξ̃t)x
(C − M̃t(E)E)).

Step 5. According to the construction of the residual relative ob-
struction bundle in Section 5.2, there exists a surjective map,

H1((Ξ̃t)x,O
(Ξ̃t)x

(C − M̃t(E)E)) �→ H1((Ξ̃t)x,O
(Ξ̃t)x

(et)),

when the numerical condition et · (C −M(E)E) ≤ e2
t < 0 is satisfied. I

take Vt = H1((Ξ̃t)x,O
(Ξ̃t)x

(et)).

By composing the maps from Step 1 to Step 5 together one gets a
map

H1(Xx,OXx(C − M(E)E)) �→ H1((Ξ̃t)x,O
(Ξ̃t)x

(et)).

In the following, the surjectivity of the constructed map is proved.
Steps 2, 3, 4 and 5 are all surjective. The map constructed in Step 1 has
a pg dimensional cokernel. Thus, it suffices to prove that the connecting
homomorphism

H1((Ξ̃t)x,O
(Ξ̃t)x

(et)) �→ H2(Xx,OXx)

is trivial. Recall that the connecting homomorphism is a portion of the
long exact sequence

H1((Ξ̃t)x,O
(Ξ̃t)x

(et)) �→ H2(Xx,OXx)
τ→ H2(Xx,OXx(et)) �→ 0,

where H2(Ξ̃t|x,O
Ξ̃t|x

(et)) = 0 has been used. On the other hand, Serre

duality and the adjunction formula KXx = KM ⊗ {⊗1≤i≤nO(Ei)} im-
plies that

H2(Xx,OXx(et)) = H0(Xx,KXx ⊗O {OXx(et)}∗)
is also of pg dimensional. In particular, this implies that the τ map is
an isomorphism. Therefore,

H1((Ξ̃t)x,O
(Ξ̃t)x

(et)) �→ H2(Xx,OXx)

is trivial. By commutativity of the diagram, the cokernel of the map in
Step 1 maps trivially to H1((Ξ̃t)x,O

(Ξ̃t)x
(et)).

The proof of the proposition is complete after the following lemma
is proved. q.e.d.
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Lemma 7.2. The composite linear map

Tx(Y (Γ)) �→ H1((Ξ̃t)x,O
(Ξ̃t)x

(et))

is surjective and the subspace Tx(Y (Γb)) lies in the kernel.

Proof. I construct a map

Tx(Y (Γ)) �→ H1((Ξ̃t)x,O
(Ξ̃t)x

(et))

by the following procedure and prove that it induces an isomorphism
from Tx(Y (Γ))/Tx(Y (Γt

b)) to H1((Ξ̃t)x,O
(Ξ̃t)x

(et)).

Because the isomorphism

H1((Ξt)x,O(Ξt)x
(et)) �→ H1((Ξ̃t)x,O

(Ξ̃t)x
(et)),

I construct a composite map

Tx(Y (Γ))
a→ H1(Xx,O(et))

b→ H1((Ξt)x,O(Ξt)x
(et)).

The first map a is induced by composing the Kodaira-Spencer map
with ∇st : ΘXx �→ O(et), with st being the holomorphic section defining
the divisor (Ξt)x ⊂ Xx and ∇ being a connection determined by the
infinitesimal deformation of holomorphic structures. The second map b
is induced by the sheaf short exact sequence

0 �→ O �→ O(et) �→ OΞt|x(et) �→ 0.

To prove the surjectivity of the composite map b◦a, one considers the
following exact sequence, which is the datum of an algebraic Kuranishi
model of the family Seiberg-Witten theory of et,

0 �→ R0(p)∗(O(et)) �→ R0(p)∗(O(Et))
evt→ R0(p)∗(O∑

jt
Ejt

(Et)) �→
R1(p)∗(O(et)) �→ R1(p)∗(O(Et)) �→ 0.

From surface Riemann-Roch and Serre duality, h1(Xx,O(Et)) = q =
b1
2 . The map evt : s → ⊕jts|Ejt

, s ∈ R0(p)∗(O(Et)) defines a global

section of the locally free sheaf R0(p)∗(O∑
jt

Ejt
(Et)) of rank −e2

t − 1

such that the zero locus of the global section defines the moduli space
of the exceptional curves in et.

The following three spaces are isomorphic:
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(i) The moduli space of the exceptional curves dual to et.

(ii) The support of the coherent sheaf R0(p)∗(O(et)).

(iii) The closure Y (Γt) of the admissible stratum YΓt .

It follows from the construction of the universal spaces Mn, n ∈ N

that there is at most one effective curve in et over each fiber Xx. The
equivalence (i) ↔ (ii) follows from the fact that h0(Xx,O(et)) 	= 0 if and
only if the class et is represented by an effective divisor over x ∈ Y (Γ).
The equivalence (i) ↔ (iii) follows from the interpretation of Y (Γt) as
the existence locus of et.

Because Y (Γt) is known to be smooth of the right dimension, the
global section defined by evt is transversal. Therefore c : Tx(Y (Γ)) �→
H0(Xx,O∑

jt
Ejt

(Et)) is surjective and its kernel defines Tx(Y (Γt)). It

is standard to check that the composition of c with the connecting ho-
momorphism H0(Xx,O∑

jt
Ejt

(Et)) �→ H1(Xx,O(et)) is identical to a,

which is induced from the Kodaira-Spencer map of the fiberwise defor-
mation of complex structures.

On the other hand, the composite sheaf morphism

R0(p)∗(O∑
jt

Ejt
(Et)) �→ R1(p)∗(O(et)) �→ R1(p)∗(OΞt(et))

induces a map for all x ∈ Y (Γt),

H0(Xx,O∑
jt

Ejt
(Et)) �→ H1((Ξt)x,O(Ξt)x

(et)).

This map is an isomorphism because of the following reasons. Firstly,
curve Riemann-Roch implies that these two vector spaces have the same
dimension. Secondly, the kernel H1(Xx,O) of

H1(Xx,O(et)) �→ H1((Ξt)x,O(Ξt)x
(et))

is mapped isomorphically onto the cokernel H1(Xx,O(Et)) of

H0(Xx,O∑
jt

Ejt
(Et)) �→ H1(Xx,O(et))

under the composite map

H1(Xx,O) �→ H1(Xx,O(et)) �→ H1(Xx,O(Et)).

The composite map H1(Xx,O) �→ H1(Xx,O(Et)) is the one defined by
tensoring with a nonzero element of H0(Xx,O(Et)). q.e.d.
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Given any stratum YΓb
which is defined by the coexistence of a finite

number of type I curves dual to ei; (C −M(E)E) · ei ≤ e2
i , I pass to its

closure Y (Γb) and consider points in the boundary Y (Γb) − YΓb
. The

same analysis also applies to the closure of the family moduli space over
YΓb

to Y (Γb). On the other hand, new type of decompositions may
appear and dominate the family moduli space over some degenerated
strata YΓ′ , Γ′ < Γb. Let us summarize the pattern of their degenerations.

(i) If ei · (C − M(E)E) < 0, and ei is degenerated into at least two
components ẽi. Then at least one among them also satisfies ẽi ·
(C − M(E)E) < 0.

(ii) If (C −M(E)E −∑ ei,
∑

ei) is allowable, then ei can be grouped
and smoothed out into eJr =

∑
j∈Jr

ej such that certain eJr sat-

isfies eJr · (C − M(E)E) ≤ e2
Jr

< 0.

(iii) Given a class C0 and an allowable type I decomposition (C0−e, e).
If the inequality d(C0−e)+d(e) > d(C0) holds strictly and e breaks
into two components e1, e2, then at least one of them satisfies
d(C0 − ei) + d(ei) ≥ d(C0).

In particular it implies that if a decomposition (C − M(E)E −∑
ei,
∑

ei) is of Taubes’ type and ea · eb = 0, a 	= b, then any
degeneration of the curves in ei into some other degenerated type
I curves leads to a nonallowable decomposition.

(iv) If (C0 −
∑

ei,
∑

ei) is allowable, then there must be at least one
ei such that C0 · ei ≥ e2

i < 0. If one collects these ei, ei · C0 ≤
e2
i , (C0 −∑i;ei·C0≤e2

i
ei,
∑

i;ei·C0≤e2
i
ei) forms a type A allowable

decomposition.

From (i), (ii), (iii), (iv), we conclude the following. If an allowable
decomposition (C − M(E)E −∑ ẽj ,

∑
ẽj) supports over YΓ′ , Γ′ < Γb,

then either these all ei remain irreducible, {ei} forms a sublist of {ẽj}
and the family moduli space of (C−M(E)E−∑ ẽj ,

∑
ẽj) embeds canon-

ically into the corresponding moduli space of (C−M(E)E−∑ ei,
∑

ei),
or some ei breaks up into irreduciblepieces and certain components of ei

are amongthese ẽj . In the former case, the decompositions are related
by the partial ordering ≫. Conversely, if D1 ≫ D2, then one can always
embed the reduced family moduli space attached to D2 into that of D1

as its boundary component.
In particular, by viewing the type B decompositions as the degenera-

tions from some type A allowable decomposition by the partial ordering
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≫, the validity of the regular obstructedness condition on the latter
can be inherited by the former. Next, we discuss the weaker regular
obstructedness condition for type B decompositions.

We have analyzed the validity of the regular obstructedness condi-
tion on type A allowable decompositions. Namely, the numerical condi-
tion e · (C−M(E)E) ≤ e2 < 0 has been used. If the decomposition is of
type B, then the pairing with some e satisfies 0 > e · (C−M(E)E) > e2

and dimC H1(Ξ̃b,O(C − M(E)E)) is smaller than dimC H1(Ξ̃b,O(e)).
After all, this type of decomposition does not contribute to the invari-
ant, due to a vanishing argument we will discuss below. Yet we still
point out the weaker regular obstructedness condition it satisfies.

Let us investigate in detail what happens in this situation.
Let ΣC0 be an effective curve over b poincare dual to C0 = C −

M(E)E. As e · (C −M(E)E) < 0 and Ξb is irreducible, ΣC0 breaks off
at least a copy of Ξb and ΣC0 = ΣC0−e + Ξb. The kernel of the sheaves
surjection OΣC0

(C0) �→ OΞb
(C0) is isomorphic to OΞb

(e) and they fit
into a short exact sequence,

0 �→ OΞb
(e)

⊗sΣC0−e−→ OΣC0
(C0) �→ OΣC0−e

(C0) �→ 0

by tensoring with sΣC0−e
, the defining holomorphic section of ΣC0−e.

The cokernel of the connecting homomorphism δ̂ in the derived long
exact sequence

δ̂ : R0(p)∗(OΣC0−e
(C0)) �→ R1(p)∗(OΞb

(e))

maps injectively into R1(p)∗(OΣC0
(C0)). The regular obstructedness

condition can not be satisfiedbecause the connecting homomorphism δ̂ is
not trivial. The numerical condition e·C0 > e2 implies that Ξb ·ΣC0−e =
e · (C0 − e) > 0.

Lemma 7.3. The rank of the connecting homomorphism δ̂ is at
least e · (C0 − e).

Proof. The splitting C0 �→ (C0 − e) + e induces an isomorphism
between the moduli space of curves of C0 and C0 − e over b. In par-
ticular, it induces an isomorphism between the Zariski tangent space
H0(ΣC0 ,OΣC0

(C0)) and H0(ΣC0−e,OΣC0−e
(C0 − e)). Then one com-

pares H0(ΣC0−e,OΣC0−e
(C0 − e)) and H0(ΣC0−e,OΣC0−e

(C0)) by using
the sheaf injection,

0 �→ OΣC0−e
(C0 − e) �→ OΣC0−e

(C0).
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Because (C0 − e) · e is the total degree of O(e) on the components
of ΣC0−e, the results follows. q.e.d.

Notice that the rank of δ̂ is not universal, which depends on the
multiplicity of Ξ in the curve ΣC0−e.

In the following I give a geometric interpretation of the connect-
ing morphism δ̂. Because the curve ΣC0−e has a positive pairing with
Ξb, there exists infinitesimal deformations which corresponding to the
smoothing of the generic intersection ΣC0−e ∩ Ξb, viewed as the singu-
larities of the total curve ΣC0 .

Because e · C0 < 0, any curve over b in C0 must split off at least a
Ξb and these infinitesimal smoothing deformations are obstructed over
b. The map δ̂ determines the obstruction classes of those infinitesimal
deformations in the obstruction space of e, H1(Ξb,OΞb

(e)). The exact
sequence in Remark 5.1 singles out a universal (C0 − e) · e dimensional
infinitesimal deformations which allows us to identify H1(Ξ,OΞ(C0)) as
the quotient of H1(Ξ,OΞ(e)).

By discarding those (C0 − e) · e dimensional universally obstructed
infinitesimal deformations, the regular obstructedness condition can be
realized over b, not in the cokernel space H1(ΣC0 ,OΣC0

(C0)) of the
tangent obstruction complex but in the obstruction vector spaces of the
pair ΣC0−e

∐
Ξb.

One can generalize the previous discussion to the decomposition
involving more than one typeI curve as follows: Choose a switching
process

C0 �→ C0 − e · · · �→ C0 −
∑

ei

and reenumerate ei such that 0 > C0 ·ei > e2
i if and only if i ≤ r for some

r. The switching process of C0 −
∑

i≤r′ ei �→ C0 −
∑

i≤r′+1 ei r′ ≥ r and
the construction of its residual relative obstruction class can be done as
in Section 5.2. For i ≤ r, each ei introduces an ei · C0 − e2

i dimensional
obstructed infinitesimal deformations to the deformation complex. The
total

∑
i≤r(ei ·C0 − e2

i ) dimension of the obstructed deformation can be
counted alternatively by the following procedure. Consider the corre-
sponding obstruction space for the intermediate class C0−

∑
i≤r0

ei, r0 <
r in the switching process C0 �→ C0 − e1 �→ · · ·C0 −

∑
i≤r ei, the dimen-

sion should be ei · (C0 −∑j≤r0
ej) instead. And the total dimension

sums up to
∑

0≤r0≤r er0+1 · (C0 −
∑

j≤r0
ej). However we have to take

into account
∑

i<j≤r ei · ej dimensional obstructed deformations from
the type I curves ei, i ≤ r which has been ignored implicitly when we
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split off
∑

i≤r ei from C0. Or equivalently, consider a residual relative
obstruction bundle of ei ·(

∑
j<i ej) dimension by taking the direct image

of O∪j<iσj
(C0) along the P1 bundle Ξ̃i, where σj is the effective cross

section of Ξ̃i defined in the proof of Lemma 5.3. After adjusting by the
cross terms of type I curves, the answers sum up again to

∑

0≤r0≤r

er0+1 ·
(
C0 −

∑

j≤r0

ej

)
+
∑

i<j≤r

ei · ej =
∑

i≤r

(ei · C0 − e2
i ).

Recall that the universal
∑

i≤r(C0−ei) ·ei dimensional infinitesimal
deformations constructed from the smoothing of (C0 − ei, ei) �→ C0 are
all obstructed. Because the existence of these infinitesimal deformations,
the actual degree of the total residual relative obstruction class is of∑

i≤r(C0 − ei) · ei degree higher than the naive expected value dC(C0 −∑
i ei) +

∑
i dC(ei) − dC(C0).

It implies the vanishing of the mixed invariant attached to the type
B decomposition class. This also explains why we had assigned c·(κ) to
be zero in Section 5.1.

7.1.2. The excision property and the identification with the modified

Family invariants

To count the singular curves in C with the prescribed topological types
of isolated singularities, one considers a particular resolution process
which desingularizes the curve. The combinatorial datum are encoded in
Γ and the multiplicity function M. The resolution process is nonunique.
One can reduce the ambiguity by the following principle. First, resolve
a curve singularity until all the “infinitesimally near” singularities are
resolved into smooth germs. Second, always choose to resolve singular-
ities with lowest multiplicities. Suppose a pair (Γ,M) has been chosen
which satisfies the additional property. Then the singular curves in C
with the prescribed topological types of singularities become smooth
curves in the class C − M(E)E over Y (Γ).

Take the preexceptional cone CΓ associated with the admissible
graph Γ. It follows from the construction of Γ that the following state-
ment is true: The linear functional of cupping with C − M(E)E is
nonnegative on CΓ.

To discuss the family invariant of C − M(E)E over Y (Γ), take the
fiber bundle Mn+1 ×Mn Y (Γ) �→ Y (Γ) and consider the pure invariant
FSWY (Γ)(1, C − M(E)E). One can always rewrite this pure invariant
as the mixed invariant over Mn,
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FSWY (γ)(PD(Y (Γ)), C − M(E)E).

In this reinterpretation, the family expected dimension is raised by
codimR Γ, which is compensated by the base cohomology class insertion
of the poincare dual PD(Y (Γ)) ∈ HcodimR Γ(Y (γ),Z). As the constant
dimension shift applies to all decompositions, it does not affect the
concept of allowable decompositions.

Over the support of an allowable decomposition class, YΓ1 , the re-
duced family moduli space may contribute to FSWY (Γ)(1, C−M(E)E)
as well. By interpreting the original pure invariant as a mixed invari-
ant over Mn, one keeps track of all the allowable decompositions of
C − M(E)E on Mn. If the closure of the support Y (Γ1) is disjoint
from Y (Γ), the corresponding allowable decomposition in Y (γ) does
not appear in the family theory over Y (Γ). This is coherent with the
observation that under this Y (Γ) ∩ Y (Γ1) = ∅ assumption, PD(Y (Γ))
annihilates cohomology classes from Y (Γ1).

Proposition 7.3. Let YΓ1, Γ1 < Γ, be the support of an allowable
decomposition class. on Y (γ) = Mn. Then the preexceptional cone Cγ

is a proper subcone of CΓ1. Moreover, the extremal generators ei of
CΓ1 −Cγ are characterized by the property that ei · (C −M(E)E) < 0.

Proof. The first statement is a direct consequence of the Gromov-
Sacks-Uhlenbeck compactness theorem (which is also true over an alge-
braic closed field of characteristic zero by specialization argument). The
second statement follows from the maximality condition on the defining
property of the support of an allowable decomposition. We prove by
contradiction. Suppose that there exists at least one extremal genera-
tor e ∈ CΓ1 − Cγ such that e · (C − M(E)E) ≥ 0 holds. The markings
of their leading vertexes determine an ordering among these e′s. Then
one chooses the e with a smallest leading vertex i.

By the choice of e, there must be some direct descendent of i in Γ′.
Otherwise, the class e would be a −1 class and it would have been in Cγ .
List all the direct descendents of i and find the one with the smallest
marking j. Removing the edge from i to j leads to a new graph which
we claim to be admissible. Among all the axioms of admissible graphs,
the only one which is relevant to removing an edge is Axiom 4.4. It is
not violated as j is the smallest direct descendent of i. One can compare
the preexceptional cones before and after removing this edge. It is easy
to see that the only change in their extremal edges is e. In particular, all
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the extremal ei, ei ·(C−M(E)E) < 0 have not been touched. Therefore,
I can iterate this procedure until all these e′s disappear. At the end, it
results in a Γ′

0, Γ
′
0 > Γ′ such that the extremal edges of CΓ′

0
− Cγ have

negative pairings with C −M(E)E. This implies that Γ′
0, instead of Γ′,

would have been the support of an allowable decomposition. q.e.d.

Recall that the collection of extremal edges ei, ei ∈ CΓ1 −Cγ gener-
ates a low dimensional simplicial subcone of CΓ1 , which was given the
name “exceptional cone over YΓ1” in defining the concept of admissible
decomposition classes.

As ei · (C −M(E)E) < 0, the (pseudo)-holomorphic curves over YΓ1

are forced to break off certain multiples of ei spontaneously. Here one
should notice that all ei are represented by exceptional rational curves
or their various degenerations.

The type I exceptional curve dual to ei is irreducible and smooth over
YΓ1 . In general, ei can be represented by a bunch of rational curves over
the higher codimension strata inside Y (Γ1). Even though a (pseudo)
holomorphic curve supported over YΓ1 and dual to C −M(E)E always
splits off those type I curves dual to ei with ei · (C −M(E)E) < 0; it is
not necessarily the case when we pass to the boundary Y (Γ1)− YΓ1 . In
fact, the argument merely implies that the (pseudo) holomorphic curves
in C −M(E)E and ei both contain some type I curve bubbled off from
ei.

Thus, I have introduced the admissible decomposition classes of
higher levels to take care of the possible contribution from the higher
codimension strata, which parameterize the new topological types of
curves popping out.

On the other hand, the reduced family moduli space associated with
(C−M(E)E−∑i,ei·(C−M(E)E)<0 ei,

∑
i,ei·(C−M(E)E)<0 ei) is canonically

embedded into the reduced family moduli space associated with C −
M(E)E such that the embedding map (after restricted to YΓ1) is an
isomorphism over YΓ1 .

Suppose that the map has extended to an isomorphism over Y (Γ1),
the nested Kuranishi model can be applied to calculate the invariant
contributions inside and outside Y (Γ1).

This additional assumption implies that all the (pseudo)holomorphic
curves of C − M(E)E supported over Y (Γ1) can be decomposed into
holomorphic curves in C − M(E)E − ∑

i,ei·(C−M(E)E)<0 ei and∑
i,ei·(C−M(E)E)<0 ei. Violation of this hypothesis indicates the appear-

ance of the higher level admissible decomposition classes.
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Recall that one has defined the concept of admissible decomposition
classes of level s. It is clear that the map intertwining the admissible de-
composition classes and the admissible graphs Φs : ADM(s) �→ adm(n)
is injective. The subscript s here denotes the level of the decomposition
classes.

Given such a decomposition, one can canonically attach a reduced
family moduli space to it such that the compactified reduced family
moduli space contains all the curves associated with this decomposi-
tion or its various degenerations. If the decomposition does not satisfy
the allowable condition, its Seiberg-Witten invariant contribution must
be zero; thanks to the vanishing result for the family invariants with
negative family dimensions. This follows from a standard family Ku-
ranishi model argument as well as the dimension restriction. On the
other hand, if one decomposition can be cohomologically degenerated
from the other, the family moduli space of the former decomposition
can be viewed as the boundary component of latter. In paricular, the
reduced family moduli space of a type B allowable decomposition class
is included in the one of some type A decomposition class.

By using the concept of admissible decomposition classes, one can
decompose the original Kähler Seiberg-Witten family moduli space into
a union of different closed sub-moduli spaces. It will be shown in the
following that the corresponding family invariants enjoy a corresponding
decomposition.

Schematically, one can write down the following equality between
the (reduced) family Seiberg-Witten moduli spaces

MKähler
red = ∪D∈ADMMKähler

D ,

where one has summed over all the admissible decomposition classes
of different levels. The reader should notice that some admissible de-
composition class may support on the boundary strata of an admissible
stratum under the Φ map. Yet its Kähler family moduli space is not
completely contained in the one attached to a lower level admissible
decomposition class. One should take those decomposition classes into
consideration, too.

The argument of nested perturbation allows us to find some better
representatives other than MKähler such that the corresponding decom-
position into the perturbed MKähler

D becomes a disjoint union. The
reader should notice that under the special perturbation the perturbed
geometric objects completely lose their special role being the moduli
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space of unparameterized curves.

Even though each individual piece is usually not transversal, for
enumeration purposes one can adopt the family Kuranishi model to
enumerate the invariant contribution of each individual piece, with the
understanding that the base manifold Mn or Y (Γ) has to be blown
up in advance to get anenhanced birational model. By taking Xj;k =
Y (ΓD), j ≡ D and k = level(D) and Y = Y (Γ), one apply the nested
perturbation to the blown up space Ỹ = Ỹ (Γ).

The projection morphism Ỹ (Γ) −→ Y (Γ) induces an isomorphism
over YΓ. Over a partial compactification pc(YΓD

) containing YΓD
⊂

Y (Γ), the preimage of pc(YΓD
) under the blowing down morphism

Ỹ (Γ) �→ Y (Γ) is isomorphic to a projective space fiber bundle over
pc(YΓD

).

The space pc(YΓD
) is taken to be the union of YΓD

and YΓ′ , Γ′ < ΓD

such that the exceptional cone ECb(C −M(E)E) remain constant over
b ∈ YΓ′ .

The nested perturbation has the crucial property that after the
nested perturbations, the perturbation of MKähler

D is moved to support
over the corresponding projective space bundle over pc(YΓD

).

Then I proceed as follows:

1. For each D, I project the perturbed version of the reduced family
moduli space to pc(YΓD

).

The stratification of Y (Γ) into pc(YΓ)
∐

D pc(YΓD
) and a union of

some strata which support no allowable decompositions unifies the local
family Kuranishi models of the perturbed MD into a new family Ku-
ranishi model of Mpert. Even though the new spaces are not complex
analytic, one can choose a small neighborhood of Mpert and set up a
family Kuranishi model accordingly.

By the uniqueness of the family invariant, the pure invariant it de-
termines is given by FSWY (Γ)(1, C − M(E)E). On the other hand, all
the nongeneric YΓD

are supported over by some reduced family mod-
uli spaces associated with D. These reduced family moduli spaces are
regularly obstructed, according to Proposition 7.2 and argument right
after the proof of Lemma 7.3.

If the decompositions are all of Taubes’ type, the analysis of the
nested Kuranishi model is rather easy. The major complication is that
some Taubes’ type admissible decomposition class may support at the
boundary stratum of the others. Moreover, the supports of the two
different Taubes’ type decompositions may intersect and lead to some
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admissible decomposition of a higher level. Let us illustrate this phe-
nomenon by giving a simple example.

Suppose that ei, i = 1, 2 are two type I exceptional classes and let
e1, e2 and C−M′(E)E be perpendicular to one another.Let Y (Γe1) and
Y (Γe2) be the closed loci over which the classes e1 and e2 are effective. It
is easy to see that D1 = (C −M′(E)E + e2, e1), D2 = (C −M′(E)E +
e1, e2) are two decompositions of Taubes’ type. The new admissible
decomposition D1,2 = (C −M′(E)E, e1 + e2) supporting over Y (Γe1)∩
Y (Γe2) is admissible because e1 ∩ e2 = 0.

It is easy to see that the nested Kuranishi model can be applied
to calculate the invariant contribution of D1,D2 and D1,2 which can
be expressed as FSWY (Γ1)(1, C − M′(E)E + e2) − FSWY (Γ1,2)(1, C −
M′(E)E), FSWY (Γ2)(1, C−M′(E)E+e1)−FSWY (Γ1,2)(1, C−M′(E)E)
and FSWY (Γ1,2)(1, C−M′(E)E), respectively. The first two objects are
the modified family invariants in this special context. In general, one
has to introduce the combinatorial pattern similar to Cech theory to
record the family invariants defined over each stratum. More precisely,
if e1, e2, · · · , ek, ei ∩ ej = 0 are k disjoint type I class supporting over
Y (Γei

), i ≤ k.

The locus that ei and ej coexist is the transversal intersection of
Y (Γi) and Y (Γj). Similarly, let I be a subset of {1, 2, · · ·n − 1, n}.
The space Y (ΓI) = ∩i∈IY (Γei

) is the locus over which ei, i ∈ I co-
exist. Let (C − M(E)E) be the generic admissible decomposition to
start with. Then DI = (C − M(E)E −∑i∈I ei,

∑
i∈I ei) is an admis-

sible decomposition such that the corresponding holomorphic curves in
C −M(E)E −∑i∈I ei and ei, etc. are pairwisely disjoint. After the ad-
missible perturbation, one attaches a family invariant to the perturbed
family moduli space over YΓI

.

By the excision principle, one can show easily that the invariant
attached to the configuration is defined to be the following alternating
sum:

FSWY (ΓI)

(
1, C − M(E)E −

∑

i∈I

ei

)

−
∑

I⊂J⊂{1,2,···k},|J |=|I|+1

FSWY (ΓJ )


1, C − M(E)E −

∑

j∈J

ej




+
∑

I⊂J⊂{1,2,···k},|J |=|I|+2

· · · .
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It is apparent that the pattern is parallel to the Cech theory encod-
ing the intersection pattern of these Y (ΓI). Apparently, it may look
different from what have appeared in Section 5.3. However, one can
cast it into

FSWY (ΓI)

(
1, C − M(E)E −

∑

i∈I

ei

)

−
∑

I⊂J⊂{1,2,···k},|J |=|I|+1

FSW ∗
Y (ΓJ )


1, C − M(E)E −

∑

j∈J

ej




−
∑

I⊂J⊂{1,2,···k},|J |=|I|+2

FSW ∗
Y (ΓJ )(1, · · · ,

if one has defined

FSW ∗
Y (ΓJ )


1, C − M(E)E −

∑

j∈J

ej ,
∑

j∈J

ej




to be a similar alternating sum for all J, J ⊃ I which contains I properly.
This justifies the definition of the modified invariants in Section 5.3,
under the assumption that all the decompositions are of Taubes’ type.

Given a decomposition class D, one considers all the admissible
D′,D ≫ D′. It is obvious that MKähler

D ⊃ MKähler
D′ when D ≫ D′.

Because the relation ≫ is transitive, D′ ≫ D′′ implies that D′′ also
satisfies D ≫ D′′.

My goal is to argue by induction that the contribution of MKähler
D

to the family invariant is given by

FSWY (ΓD)(c·(κD), C − M(E)E − ζD),

ζD =
∑

ei, ei · (C −M(E)E) < 0, ei ∈ EC(ΓD) while the excess contri-
bution of MKähler

D − ∪D≫D′MKähler
D′ is given by

FSW ∗
Y (ΓD)(c·(κD), C − M(E)E − ζD).

In Subsection 5.1, the appearance of new admissible decomposi-
tion classes in higher codimensional strata has been the main cause
for the family moduli space of C − M(E)E to differ from that of
C − M(E)E − ζD. By inductive assumption, all the higher level ad-
missible decomposition classes have been handled already. By blowing
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up the various lower dimensional strata suitably as in Subsection 6.2,
one can separate the reduced family moduli space MKähler

D from all those
MKähler

D′′ ,D 	≫ D′′ no matter D′′ is of type A or type B.

The family switching formula between C − M(E)E − ζD and C −
M(E)E over a birational model of Y (ΓD) identifies the family Kuran-
ishi models for these two classes. One can choose the Kuranishi models
coherently that their extended family obstruction bundles differ by the
relative obstruction bundle. Namely, if s : O × Rk �→ Rk′

is one family
Kuranishi model of the class C − M(E)E − ζD with the central fiber
s−1(0) being the reduced Kähler family moduli space, then the corre-
sponding object for C − M(E)E is s′ : O × Rk �→ Rk′ ⊕ Vrel. In fact,
both family Kuranishi models can be perturbed such that the zero loci
of the defining sections s, s′ are away from the blown up loci. Thus, one
can still assume effectively that these two family Kuranishi models are
defined over Y (ΓD) instead of some smooth birational model of Y (ΓD).

If the type I exceptional curve dual to one of ei breaks into at least
two irreducible components over b ∈ Y (ΓD), then a higher level admis-
sible decomposition class D′′,D′′ 	≪ D is supported over some degen-
erated stratum containing b. Thus, one can assume that all the type
I curves dual to these ei in the decomposition class D are all smooth
irreducible away from the blown up exceptional loci of Y (ΓD). This
conclusion has been adopted in Proposition 5.1 to construct the relative
minimal model Ξa and κD.

By the computation in Section 5.1, the relative obstruction bun-
dle has been shown to be isomorphic to NY (ΓD)Y (Γ) ⊕ κD in the C∞

category. Moreover s′ also maps trivially into 0 ∈ Vrel.

The nested perturbation introduces a perturbation of s′ and hence
a coherent perturbation of s such that the perturbed s′ still projects
trivially into the NY (ΓD)Y (Γ) factor.

Thus, one has the following,

Proposition 7.4. For a particular choice of nested perturbation,
the perturbed version of the reduced family moduli space attached to
C − M(E)E can be identified to be the solution points in the reduced
family moduli space attached to C − M(E)E − ζD which satisfies one
additional constraint: it lies in the zero locus of a smooth section of κD.

The smooth section is determined by the nested perturbation through
the projection of s′ into κD.

By performing further perturbations upon these two family Kuran-
ishi models simultaneously, the regular obstructedness condition implies
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that the family invariant associated with MD should be identified with
FSW (c·(κD), C − M(E)E − ζD). The additional insertion c·(κD) rep-
resents the Euler class of κD. Because the top chern class of a complex
vector bundle is equal to the Euler class of the underlying even rank
real vector bundle, one can replace the zero locus by its Poincare dual
c·(κD). Notice that the piece of obstruction bundle ∼= NY (ΓD)Y (Γ) has
been removed because of the reduction from the family theory over Y (Γ)
to the family theory over Y (ΓD).

When D is of the highest level, there is no other D′,D ≫ D′. The
argument given above implies that the invariant contribution of Y (ΓD)
is equal to the mixed family invariant FSWY (ΓD)(c·(κ), C − M(E)E),
that was why we had defined FSW ∗ ≡ FSW in this case.

In general, we argue inductively by the descending orders of their
levels that the invariant contribution over Y (ΓD)−∪D≫D′Y (ΓD′) is the
corresponding modified invariant.

For simplicity, one can employ the nested perturbation to separate
MKähler

D − ∪D≫D′MKähler
D′ and the various different

MKähler
D′ − ∪D′≫D′′MKähler

D′′ from each other. If D′ is of type B, it does
not contribute to the family invariant, as was argued after the proof of
Lemma 7.3. Thus, we can focus upon type A decomposition classes D′.

The separated applications of Kuranishi models to each of them
implies that one can attach an integral valued invariant to each of them
while the total sum is equal to

FSWY (ΓD)(c·(κD), C − M(E)E).

On the other hand for those D′ ≪ D, their levels are higher than
the level of D. Thus their invariant contributions have been identified
to be FSW ∗

Y (Γ
D′ )

(c·(κD′), C −M(E)E) through the induction process.

Therefore, the excision property implies that the invariant attached
to MKähler

D − ∪D′≪DMKähler
D′ is

FSWY (ΓD)(c·(κD), C − M(E)E)

−
∑

D′≪D

FSW ∗
Y (Γ

D′ )(c·(κD′), C − M(E)E).

Having expressed inductively the invariant contributions of Y (ΓD)−
∪D′≪DY (ΓD′) by FSW ∗

Y (ΓD)(c·(κD), C − M(E)E), finally one has the
following identity:

FSW (1, C−M(E)E) = unknown+
∑

D

FSW ∗
Y (ΓD)(c·(κD), C−M(E)E).
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By comparing with the definition of modified family invariant, one
can identify the invariant contribution from the Kähler reduced family
moduli space over Y (Γ)−∪D∈ADMY (ΓD) with the pure modified family
invariant of C − M(E)E. I will address in Section 7.3 how to realize
the modified invariants as the curve counting explicitly.

Remark 7.1. In the C∞ argument, one can perturb the Kuranishi
models in computing the invariant. In an algebraic argument, such op-
eration is not allowed. Instead, one should observe that after blowing
up the higher codimensional strata, the top Chern class of the mod-
ified family obstruction bundle becomes zero when it is restricted to
any blown up exceptional loci. It is because the modified obstruction
bundle always has a one dimensional trivial factor over each blown up
exceptional locus. Moreover, it implies that the top Chern class of the
modified obstruction bundle annihilates any cycle classes of the blown
up exceptional loci. This provides an algebraic explanation why the
family invariant can still be enumerated on Y (ΓD).

7.2 The universal polynomials and the completion of the

proofs

Having discussed the algebraic construction, one moves back to the proof
of the main theorem. I will use both the C∞ and the algebraic arguments
in my discussion.

According to family Kuranishi model, if the reduced family moduli
space over YΓ is known to consist of a finite number of isolated smooth
points, then a direct counting is possible.

Theorem 7.1. Under the previous Assumptions 2 and 3, the num-
ber of solutions in the reduced family moduli space over YΓ can be iden-
tified with the modified pure invariant of C − M(E)E, which can be
expressed as the various combinations of different mixed invariants by
reversing the induction process adopted on page 500.

The theorem, along with the repeated application of family blowup
formula (Theorem 2.2), and the family switching formula (Theorem 2.3),
gives rise to the proof of the main theorem. To see this, one notices that
under the condition requiring that the admissible decomposition in-
volving only type I exceptional curves, the decomposition schematically
looks like C−M′(E)E+

∑
miei, where ei = Ei−

∑
ji

Eji
and M′ is a new
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multiplicity function. A modified mixed invariant of this decomposition
can be expressed schematically as FSW ∗

Y (Γ′)(η, C−M′(E)E) with η be-

ing a cohomology class in H∗(Y (Γ′),Z), canonically constructed from
the various ei. As ei are all type I exceptional curves, the topological
information extracted from them does not depend on the global geom-
etry of the chosen fiber bundle Mn+1|f−1

n+1(Y (Γ′)) �→ Y (Γ′), even though

they have a mild but explicit dependence on the class C through its
tensor product with the obstruction vector bundles.

It can be demonstrated easily that the cohomology class η depends
on c1(C) and also on the normal bundles of ei in the fibers explicitly.
Through the explicit forms of the family switching formula, it can be
traced to the data of the relative tangent bundles TMi+1/TMi. The
explicit forms of these topological datum are calculated by using either
the Grothendieck-Riemann-Roch theorem or the family index theorem.

On the other hand, a cohomology class of the type C − M′(E)E
can be explicitly written as C −∑ piEi, pi ≥ 0. To calculate its mixed
family invariant, one makes use of the family blowup formula.

At this point, some discussion is required. There are two possible
approaches to reduce the invariants. One is geometric and the other is
purely algebraic. Suppose that Γ′ is the admissible graph that supports
the particular decomposition of curves. Then C − M′(E)E has non-
negative pairings with all elements ei in CΓ′ . On the other hand, there
can still be redundant and subredundant vertexes in Γ′ with respect to
C − M′(E)E.

The concept of core discussed earlier (see Section 5) can be used
in this situation. Namely, there is a subgraph of Γ′ which is the core
such that one can reduce C −M′(E)E to C −M′

red(E)E. The vertexes
that are removed from Γ′ are some of the vertexes over which the mul-
tiplicity function M′ takes values 0 or 1. Those are the redundant and
subredundant vertexes.

As a result, the modified mixed invariant of C − M′(E)E can be
rewritten as certain modified mixed invariant of C − M′

red(E)E over
Y (core(Γ′,M′)) such that the class η is pulled back from Y (Γ′) to
Y (core(Γ′,M′)) through H∗(Y (Γ′),Z) �→ H∗(Y (core(Γ′,M′)),Z). For
simplicity, we denote it by the same symbol if it does not cause con-
fusion. By comparing the preexceptional cones CΓ′ and Ccore(Γ′,M′),
one finds that the latter is a simplicial subcone of the former and the
extremal generators lying out of this subcone are the −1 and −2 curves
corresponding to the redundant and subredundant vertexes. The re-
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duction to the core depends heavily on the usage of the family blowup
formula in a systematic way. If there are no admissible decomposition
classes succeeding this, then the mixed invariant can be reinterpreted
formally as the invariant attached to the curves of topological type
(core(Γ′,M′), C−M′

red(E)E), such that the singularities are required to
lie in the Poincare dual of η. Only when η = 1 ∈ H0(Y (core(Γ′,M′)),Z)
can one interpret the mixed invariant as (up to a multiple) the virtual
number of curves of a fixed topological type. Examples of these types
can be found easily in the nodal curves counting of low n (please consult
Section 9).

On the other hand, one can discard the geometric meaning of these
modified family invariants and view them merely as combinations of
mixed family invariants of the form FSWY (Γ′)(η, C−M′(E)E) schemat-
ically.

To enumerate the answer, one applies the family blowup formula
directly. The process is purely algebraic, and the geometric meaning of
the mixed invariants is completely lost. To simplify the notation, we
assume from now on that Γ′ is its own core.

Let r be the cardinality of Ver(|Γ′|). By forgetting the r-th vertex
and the edges ending at r, one gets a new admissible graph Γ′(−1) with
r − 1 vertexes. From the definition-construction of the strata in Sec-
tion 4.4, there is a canonical projection morphism Y (Γ′) �→ Y (Γ′(−1)).
Applying the family blowup formula, one relates the mixed invariant of
Mr+1|f−1

r+1(Y (Γ′)) �→ Y (Γ′) to the mixed invariant of C −∑i<r miEi over

the blown down fiber bundle, contracting the r-th exceptional divisor.
As the class C −∑i<r miEi does not depend on Er, the family moduli
space actually comes from the pulled back of the corresponding moduli
space over Y (Γ′(−1)).

Notice that one has the following vanishing theorem of family in-
variants:

Theorem 7.2. Let X �→ B1 be a fiber bundle of four-manifold which
we discuss the family Seiberg-Witten theory upon. Let g : B2 �→ B1 be a
smooth fiber bundle map of relative dimension a, and g∗X �→ B2 is the
pull back fiber bundle by the fiber product construction. Let L be a spinc

structure over X �→ B1 and g∗L be the corresponding spinc structure
by the pull back of g. Then the family invariants (in the associated
chamber; cf. [29]) of these two fiber bundles and spinc structures are
related by
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FSWB2(PD(F ) ∪ η, g∗L) = FSWB1(η,L),

where η is an arbitrary cohomology class in H∗(B1,Z) and PD(F ) is
the Poincare dual of the fibers of g : B2 �→ B1. Or equivalently

FSWB2(η
′, g∗L) �→ FSWB1(g∗η

′,L).

Thus, if η′ is in the kernel of the push forward morphism g∗ :
H∗(B2,Z) �→ H∗(B1,Z), then the mixed invariant FSWB2(η, g∗L) over
B2 vanishes.

In particular, the mixed invariant vanishes automatically if deg(η′) <
dim(F ) = a.

Proof. The theorem is proved by noticing that the family moduli
spaces of g∗(L) and L are related by pulling back. Specifically, let
ML be the family moduli space over B1 and ML′ be the one over
B2. For uncorrelated perturbations, these two objects are not linked.
However, if one requires the perturbation of the family Seiberg-Witten
equations over B2 to be pulled back from that of B1, then one has
ML′ = ML ×B1 B2, the fiber product. I have implicitly make choices
of the chamber structures for them to be compatible.

In particular, the expected family dimensions of these two differ-
ent moduli spaces differ by a. The conclusion of the theorem follows
from the push-forward formula (integration along fibers) in differential
topology or algebraic geometry (by replacing H∗ by A∗). q.e.d.

Despite the simplicity of the vanishing theorem, it is rather impor-
tant in my discussion. It indicates that, potentially, there are admissible
decomposition classes whose mixed invariants are zero due to the van-
ishing theorem. In fact, concrete examples in the nodal curves counting
shows that this phenomenon appears frequently.

The vanishing theorem suggests that only certain members of ad-
missible decomposition classes contribute to the family invariants even
though they are all allowable.

Let us continue our discussion. By using the push forward formula
in the vanishing theorem, one can reduce FSWY (Γ′)(η, C −∑i<r miEi)
to FSWY (Γ′(−1))(ηp, C−∑i<r miEi), where ηp is constructed from η by
first cupping with the various Chern classes of the obstruction bundle
and then pushing forward along the morphism Y (Γ′) �→ Y (Γ′(−1)).
One should notice that the morphism is a holomorphic fibration (in the
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sense of algebraic geometry) rather than a fiber bundle. But the same
argument as in the proof of Vanishing theorem goes through.

In particular, the vanishing theorem implies that certain terms are
killed in performing the push-forward operation. By the mathematical
induction upon r, one can eventually reduce the original mixed invariant
to the form FSWpt(µ, C) ·

∫
Y (Γ′) ̟. The class µ is taken to be 1 if

M is regular of q = b1
2 = 0. Otherwise, one needs to insert the top

cohomology class from the Albanese torus counting the curves within a
fixed holomorphic structure as was discussed briefly in [29] as well as in
my thesis.

If one couples the Vainsencher’s families with, e.g., hyperkähler fam-
ily of K3, T 4, or S1 family of Kodaira surfaces [29], then the subscript
pt in FSWpt should be replaced by S2 and S1, respectively.

The explicit form of
∫
Y (Γ′) ̟ can be rather complicated. To us, the

key property it carries is that ̟ is a cohomology class involving the
various chern classes of the relative tangent bundles (see Theorem 2.2
and Section 3) TMi+1/f∗

i+1TMi = RT(Mi+1/Mi) and c1(C). On the
other hand, the fact that YΓI

is a complete intersection of divisors in
Mr implies that

∫
Y (Γ′) ν =

∫
Mr

ν ∪PD(Y (Γ′)). An arbitrary class ̟ on
an arbitrary submanifold can not be automatically pulled back from a
class on Mr. In our situation, the cohomology class ̟ is a product of
chern classes c1(C), c·(TMi+1/TMi). Thus it is actually pulled back
from Mr to Y (Γ′).

The key property about these spaces Y (Γ′) is that its Poincare dual
can be formally expressed as the cup products of the various Ei(s), etc.

Take Γi (with superscript) to be the admissible subgraph starting
from the i-th vertex followed by its direct descendents ji. List ji ac-
cording to their orders, j1

i < j2
i < j3

i < j4
i . . . ju

i , where the subscript
i stands for the fixed i and the superscripts indicate their orders. The
number u denotes the number of direct descendents of the i-th vertex.

Proposition 7.5. The cohomology class PD(Y (Γi)) is expressible
as Ei(j

1
i ) ∪ (Ei(j

2
i ) − Ej1

i
(j2

i )) ∪ (Ei(j
3
i ) − Ej1

i
(j3

i ) − Ej2
i
(j3

i )) ∪ . . . =

∪q≤u(Ei(j
q
i ) −

∑
t<q Ejt

i
(jq

i )).

Sketch of Proof. It follows from Proposition 4.4 that each Y (Γi)
is a complete intersection, and each irreducible divisor is taken to be
the proper transformation of the exceptional divisors under the consec-
utive blowing ups. One should notice that the expression of PD(Y (Γi))
can be calculated cohomologically from the family blowup formula by
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applying it to the type I class Ei −
∑

ji
Eji

. In the process of enu-
merating FSWY (γ)(1, Ei −

∑
ji

Eji
), family blowing up formula relates

FSWY (γ)(1, Ei −
∑

ji
Eji

) to FSWY (γ)(1, Ei) through inserting a se-
quence of first Chern classes of one dimensional obstruction bundles.
The class

∪q≤u(Ei(j
q
i ) −

∑

t<q

Ejt
i
(jq

i ))

is the cup product of these first Chern classes. Or equivalently, the top
Chern class of the direct sum of the obstruction line bundles. q.e.d.

By using the various facts, the original mixed invariants can be re-
expressed as the integration over Mr of various cohomology classes in-
volving c1(C), the relative tangent bundles of fi+1 : Mi+1 �→ Miand
the various exceptional classes Ea(b), a < b. By using the explicit coho-
mology ring structure of Mr, one can eventually reduce the cohomology
pairing to a polynomial of c1(C), c1(TM), c2(TM), which is easily seen
to be of the form c1(C)2, c1(TM) · c1(C), c1(TM)2 and c2(TM). As
c1(TM) = −KM , and c2(TM) = χ(M), the polynomial is of degree r
in terms of these basic variables.

This proves the assertions of the main theorem under the working
assumptions posed earlier in Section 7.1. The relationship between the
modified invariants and the number of singular curves will be addressed
in Section 7.3. To explain the disappearance of the term FSW (µ, C),
one notices that it must be ±1 either by using the following theorem,
or by a direct calculation.

Theorem 7.3 (Li-Liu, Kroheimer-Mrowka). The wall crossing
number associated with the special variation of Seiberg-Witten invariant
is ±1.

If the first Betti number b1 is zero, one uses directly the usual
Seiberg-Witten invariants in the literature. If the first Betti number
of M is positive, then the variation of Seiberg-Witten invariant is used
here.

Given a four-manifold, there is a Seiberg-Witten µ map

µ : H1(M,Z) → H1(ML,Z)

similar to the Donaldson µ map. One can insert a certain number of
µ map image classes into the definition of the Seiberg-Witten invari-
ants. This variation of the Seiberg-Witten invariant corresponds to the
counting of holomorphic curves fixing the holomorphic structure of the
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holomorphic line bundle. Their wall crossing formulas were discussed in
the author’s thesis and in [29].

One would like to remark here that, there is a large distinction be-
tween the topological version and the algebraic version of family Seiberg-
Witten invariants.

According to the discussion in [38], they match up when pg = 0.
On the other hand, the topological family Seiberg-Witten invariants
usually vanish for ample classes over pg 	= 0 algebraic surfaces. Only by
taking suitable families of real 2pg dimension, can one get the answer
±1. Otherwise the invariants vanish despite the fact that the beautiful
polynomials are still there.

On the other hand, the algebraic version of the “invariant” produces
±1 if the cohomology class is simple in the sense of [38]. Because the
simpleness condition is valid for suitably high powers of very ample
line bundles, one gets a nonvanishing result as in the pg = 0 case.
In this sense, algebraic geometers would definitely prefer the algebraic
“invariants” that are more compatible with the algebraic calculation.
However, I need to warn the reader that they are not the real topological
invariants living on B = pt.

Let X be an irregular algebraic surface. If one considers the “non-
linear system” fixing only the topological type of L, then the Seiberg-
Witten invariants SW (L) can be calculated by the wall crossing formula
as was done by Li-Liu [29], [30]. I skip the general formula here as the
reader can find the general formulas in the papers [29], [30]. In the
special case that X is an abelian surface, the wall crossing numbers are
given by ∆FSWS2(1, L) = L2

2 + 1. One should modify the universal
polynomials by multiplying with the universal wall crossing numbers.

In the next subsection, I discuss to what extent the working assump-
tions are realistic. For technical reasons I do so only for curves with
nodal or ordinarysingularities. The curves with more general singular-
ities are handled under some additional assumption on the topological
types of the curve singularities.

7.3 The verification of the working assumptions for nodal

singularities

The goal of this subsection is to verify the four working assumptions in
Section 7.1 for nodal curves. In this case, by replacing C with kC, an ar-
gument based on Göttsche’s observation [19] provides the transversality
condition.
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The discussion I offer here is well known to some algebraic geometers.
In particular, Göttsche offered an argument in his paper [19, Proposition
5.2. and Remark 5.4.]

Göttsche’s basic conclusion is that by taking the number k suffi-
ciently large (he gave an effective bound), the singular curves in the
k-very ample linear system with a fixed number of multiple points with
prescribed multiplicities (of expected dimension 2d) which pass through
d different generic points is a finite set. In particular, if one imposes
generic conditions (points) more than half of its real dimension, the set
is empty. This implies the type II freeness condition and the projection
(blowing down) of the algebraic curves in the reduced moduli space are
irreducible. However as will be explained below, Göttsche’s argument
only implies the partially goodness condition over Yγ .

To discard the accidental appearance of those non-partially good
curves in the holomorphic category, one works in the pseudo-holomorphic
category and considers almost complex structures sufficiently closed to
the Kählerian complex structures (as will be done in the special cases
of X = K3 and T 4 later), then the various strata of Gromov moduli
spaces can be perturbed to satisfy the partially good condition. By
requiring the class C to be sufficiently very ample for the original com-
plex structure, Göttsche’s argument [19] implies that the holomorphic
curves in the reduced Kähler family moduli space projects irreducibly
to M . Even after a small perturbation, it continues to hold for pseudo-
holomorphic curves in the family Gromov moduli space. This can be
seen alternatively by arguing that if the image of the curve is not re-
duced or irreducible, the expected dimension will drop below the critical
level and is not picked up in the reduced perturbed moduli space. From
now on I use the symbol S to denote the union of the closures of the
admissible strata supporting nongeneric type I decompositions. The
space S is the locus over which some type I exceptional curve has a neg-
ative pairing with the cohomology class C −M(E)E. If one takes S ′ to
be the union of all the admissible strata Y (ΓD) supporting nongeneric
admissible decomposition classes, then S ′ is a subset of S. It is because
the extra allowable conditions.

Combining these facts, one can choose a generic family sufficiently
closed to the original family such that the reduced family Gromov mod-
uli space over Y (γ)−S consists of a finite number of irreducibly smooth
curves and over S some possibly continuous families of singular curves
along with the type I multiple coverings. The finiteness of the smooth
curves is implied by using the existence of Ruan-Tian invariant [48] for
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the generic choices of almost complex structure j.

As Taubes’ technique only identifies the smooth curves with the
solutions of the Seiberg-Witten invariant, I screen away those singular
curves by keeping the family over S unperturbed. One applies the nested
family Kuranishi models to analyze the invariant contribution over S.

According to the numerical analysis in the note [37] and the fact that
it is partially good in the pseudo-holomorphic category, the perturbed
family Gromov-Taubes moduli space over Y (γ)−Yγ−S is of at least real
codimension two relative to the expected family dimension. Thus, one
can assume that the reduced perturbed Gromov-Taubes moduli space
supports over Yγ . By screening the nongeneric admissible decomposi-
tions, one can identify the modified invariant with (up to a multiple) the
number of smooth curves in C −∑ 2Ei by applying Taubes “SW=Gr”
([51], [52], [53]). The same number is also equal to the corresponding
Ruan-Tian invariant. The reader can consult Section 8 for additional
discussion about the identification.

The appearance of the type II curves usually makes the expected
dimensions of the good part higher than the expected dimension of the
original class. Once the type II multiple covering shows up in the de-
composition, it usually happens that there are high dimensional families
of curves satisfying the points passing constraint.

The same assertion also holds for type I multiple coverings. The
reason that one wants to get rid of the type II, but not type I, excep-
tional curves is their spontaneous appearance everywhere on the mani-
fold Y (Γ) or Ml. Moreover, they depend on the class C as well as the
algebraic surface M . When they appear, the conclusion of the main
theorem cannot hold. To simplify the discussion, one imposes condi-
tions to make them go away. In the paper [38], the author has set up
some fundamentals to discuss the type II curves. The details of the ap-
plication of this idea will appear in some separate article. In discussing
the general singular curves, the working assumption is NOT known to
be true or not. It is one of the obstacles algebraic geometers face even
in proving the conjecture for nodal curves. In this paper, the “number
of singular curves” is generally interpreted as a kind of equivalence or
virtual numbers. I leave the transversality issue as an open problem.

Recall that a line bundle L is p-very ample if the sheaf morphism

H0(X,L) �→ H0(X,L ⊗OZ) �→ 0

is exact for all zero dimensional subschemes Z of X of length p + 1.
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Recall the following theorem of Göttsche, which gives an effective
version of the transversality theorem of nodal curves over Yγ .

Theorem 7.4 (Göttsche). Assume C is 3n − 1-very ample, then
a general n dimensional linear subsystem ⊂ |C| contains only finitely
many curves with ≥ n singularities. If, furthermore, C is 5n − 1-very
ample (5-very ample if n = 1), then the curves have precisely n nodes
as singularities.

One can find the proof in [19, Proposition 5.2.], By applying this
theorem, one gets an effective condition for the reduced family moduli
space over Yγ to be a finite number of smooth points. It is not clear that
it is optimal for a general M . It would be rather interesting to conjecture
a precise relationship between k-very ampleness and the numerical type
II free condition in the pseudo-holomorphic category.

When C is a 5n−1-very ample, it only guarantees the transversality
of the reduced family moduli space of C −∑i≤n 2Ei over Yγ . As be-
fore, S ′ denotes the union of all Y (Γ) such that Γ supports nongeneric
admissible decomposition classes. The space S ⊃ S ′ is the union of loci
over which the class C − M(E)E is not type I free.

I had explained how to use the nested perturbation to deal with the
reduced family moduli space over S ′. The set S − S ′ is stratified by
admissible strata over which some type I class e has a negative pairing
with C − M(E)E. However, the intersection pairing is in the range
e2 < e · (C − M(E)) < 0 and the decomposition is not allowable. The
argument on page 491 can be applied to these types of decomposition
classes which shows that their contributions to the family invariant van-
ish, due to dimension reason.

The reduced family moduli space over Y (γ) − Yγ − S has not been
analyzed yet. If one chooses to work in the C∞ category, one can bypass
the part of moduli space by using Taubes’ gluing theorem and prove
that, effectively, it does not contribute to the curve counting.

This is done by proving that the counting of the isolated number of
curves over Yγ matches up to n! with the Gromov-Ruan-Tian invariant
count (if pg = 0). Under the condition that the Kähler reduced family
moduli space over Yγ is compact (it is sufficient to assume that C is 3n−
1-very ample), a suitably chosen one parameter family of perturbation
[48] of the almost complex structures of M will introduce a compact
cobordism between the reduced Kähler family moduli space over Yγ

with the reduced Gromov-Ruan-Tian moduli space over the same space.
As we had known that n! of the Gromov-Ruan-Tian invariant count
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matched up with the modified family Seiberg-Witten invariant, so is
the number of algebraic curves over Yγ .

The following is the main result in this subsection.

Proposition 7.6. If the class L is 3n-very ample, then the actual
dimension of the algebraic family moduli space of L −∑i≤n 2Ei over
Y (γ) − Yγ − S matches its expected family dimension.

In particular, if one requires the curves to pass through L2−L·KM

2 −
q + pg − n generic points in M , then there exist no such curves over
Y (γ) − Yγ − S.

Proof of Proposition 7.6. I begin the proof by characterizing the
locus Y (γ) − Yγ − S explicitly.

Lemma 7.4. A type I class ei has a nonnegative pairing with
L −∑i≤n 2Ei if and only if ei is a −1 class Ei or a −2 class Ei − Eji

.

Proof. If i is a vertex with more than one direct descendent, then
its pairing with L−∑i≤n 2Ei is negative. The argument is still valid if
one replaces L −∑i≤n 2Ei with L −∑i≤n mEi, m ≥ 2. This ends the
proof of Lemma 7.4 q.e.d.

If a point z ∈ Y (γ) − Yγ − S is not in the stratum supporting
admissible decomposition classes, then every vertex in Γ, z ∈ YΓ has at
most one direct descendent vertex. The admissible graph of this type is
a union of linear chains (including isolated vertexes).

Fix an arbitrary point z ∈ Y (γ) − Yγ − S, let L be an ample class
on M . We want to prove that, for k large enough, |[kL −∑i≤n 2Ei]|
over such zis based point free. Then it follows from the strong form of
Bertini theorem that a generic member of [|kL−∑i≤n 2Ei]| is smooth.

In this context, I first choose p = 3n and pick k such that L = kL
is 3n-very ample over X = M . Then

H0(M,O([kL])) �→ H0(M,OZ([kL])) �→ 0

is exact for all length 3n + 1 subschemes Z of M .

This implies that the restriction map from the global sections of M
to its local 3n + 1 jets at a point in M is always surjective.

An algebraic curve in |[kL− 2
∑

i≤n Ei]| intersects with multiplicity
two with any smooth type I −1 curve. By blowing down consecutively,
one finds that this curve has at least one multiplicity-two singularity on
the previous exceptional loci. Suppose the curve in |[kL − 2

∑
i≤n Ei]|
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has been smooth, the blown down curve in M has type A double point
singularities.

One has the simple observation:

Lemma 7.5. Let f be a local defining equation f(x, y) ∈ k[x, y]
having a multiplicity two singularity at (0, 0) such that the blown up
locus is singular at some point in the exceptional P1

k. Then the map
k[x, y] �→ k[x̃, y] or k[x, y] �→ k[x, ỹ] with respect to the new singularity
in P1

k drops the total degree of a monomial at most by 2.

Proof of Lemma 7.5. As the blowing up is a local phenomenon, an
analysis using the local model is enough. Let k[x, y] be the polynomial
ring over an algebraic closed field of characteristic zero.

Algebraically, blowing up the origin in L2 involves the change of
variables (x, y) �→ (x, xy) or (x, y) �→ (yx, y). Some simple calculation
shows that, over a double point, the monomials in a local defining equa-
tion get changed by xayb �→ xa+b−2yb or xayb �→ xaya+b−2. A change
of variable y = ỹ + c or x = x̃ + c transforms xayb into terms such as
xa+b−2ỹi, i ≤ b or x̃jya+b−2, j ≤ a. q.e.d.

Because I know that each curve in |[kL − 2
∑

i≤n Ei]| has multiple
points with at least multiplicity-two in each of the earlier blowing ups,
the generic members ideally would have double points at each step of
the blowing ups. Specifically, they carry type A double points. This
is always possible as kL is taken to be 3n-very ample. By applying
Lemma 7.5 repeatedly in a linear chain with r vertexes, only the first
2r-jets can contribute to the second jet in the final blown up algebraic
surface. Because the total number of vertexes in Γ is n, a 2n-very ample
class gives us enough control about the local behavior of the algebraic
curves in |[kL −∑i≤n 2Ei]|.

Let Γ be a union of different connected admissible graphs which are
all linear chains. For the a-th linear chain (a ≤ s), n̂a denotes the
number of vertexes in this chain. Then it follows

∑
a≤s n̂a = n. Here s

stands for the number of components in Γ.
The vanishing of the 0 and 1-st jets at each blown up point (∈ M)

impose all together 3n linear conditions on the direct sum vector space
of the local 2n̂a jets at all the initial blowing up point. For general
singularities, it is nontrivial to check that these conditions are all linear
independent. In this particular case one knows that the 3n = 3

∑
a≤s n̂a

linear conditions are all linear independent because the singularities
involved are all simple An̂a

singularities. Their local versal deformation
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spaces are well known to be of n̂a dimensional, a different number than
one would have obtained if these linear conditions are not independent.

Take Z to be a specific length 3n subscheme of M such that it
supports over the blown up points with lengths 3n̂a. It is not hard
to show that the annihilator of those 3n̂a linear conditions form an
ideal in k[x, y]. The length 3

∑
a n̂a subscheme of M is defined by the

corresponding ideal of co-length 3
∑

a≤s n̂a = 3n.
It is not hard to see that the curves that have the prescribed sin-

gularities are determined by imposing
∑

a≤s 3n̂a = 3n linear conditions
on |[kL]|.

Let V be the 3n dimensional vector space ⊂ H0(X,OZ([kL]))⋆ which
corresponds to the linear conditions imposed on the space
H0(X,OZ([kL])). Because H0(X,OZ([kL]))⋆ �→ H0(X,O([kL]))⋆ is in-
jective, these conditions are linear independent globally.

From this simple argument one is able to estimate the actual fiber-
wise dimensions of |[kL − 2

∑
i Ei]| to be less than that of |[kL]|by 3n.

Because dimk Y (Γ) = n + s, the family moduli space over Y (γ) − Yγ −
S is always of lower dimension than the expected family dimension
k2L2−kL·KM

2 −q+pg−n. This ends the proof of Proposition 7.6. q.e.d.
Despite of the possibility to get rid of type II curves by imposing the

extra sufficiently very ample condition on L, it is not a natural condition
from the point of view of symplectic geometry.

7.4 The structure of the modified family invariant

7.4.1. The divisibility of the modified invariant

In the following, I first offer a proof of the divisibility of the modified
family invariants, even if C is not sufficiently very ample. I still assume
that Γ = γ and the curves carry isolated ordinary singularities. Then I
formulate a sufficient condition on (Γ0,M0) for the modified invariant
to have the expected divisibility condition.

Recall that by a repeated application of the family blowing up and
switching formulas, the modified family invariants can be expressed
as the universal polynomial of four variables C2, C · KM , K2

M , χ(M),
I would like to extrapolate the divisibility to the cases that C is not
sufficiently very ample.

Because of some technical reason, the algebraic proof I present here
only works for the case of singular curves with ordinary singularities.
I first prove the proposition under the optimistic situation that the re-
duced family moduli space sitting over YΓ is smooth of zero dimension.
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Notice that one also needs to choose the cutting sections in an equiv-
ariant way, which can be realized if the cutting sections of the family
invariants are constructed from the trivial sections in Y (Γ) × M .

In this situation, the finite number of smooth points must be equiv-
ariant under GΓ,M. Then the divisibility of the modified invariants
follows directly.

This type of assumption is realized when the singular curves only
carry ordinary singularities. As was repeatedly discussed by Vainsencher
[59] and Göttsche [19], the regularity can be achieved by twisting the
ample line bundle to a very high power.

By the main Theorem 1.1, the modified invariants are expressible as
universal polynomials in the four different variables, K2

M , KM · C, C2,
χ(M). Let these four variables be represented by x, y, z and w, then the
invariant FSW ∗ can be expressed as a universal polynomial F (x, y, z, w)
∈ Z[x, y, z, w], a polynomial of four variables. The assertion in the
special case implies that the polynomial takes values in |GΓ,M| · Z on
each M when C is taken to be a high power of very ample line bundles.

By using Göttsche’s [19] argument reviewed in Subsection 7.4.2, one
can choose M and the holomorphic line bundles among the four explicit
series (which I will apply again in the proof of Theorem 7.5) carefully
such that x, y, z, w mod p take arbitrary values in Z/pZ.

This enables us to prove inductively that the polynomial F is di-
visible by pi, i ≤ ordp(|GΓ,M|) for all p. Then its divisibility by |GΓ,M|
follows.

It seems to us that the algebraic argument for the general cases still
relies upon some difficult transversality condition that we know very
little about.

After dividing the modified invariants by the corresponding orders
of finite groups, one gets the equivalences or virtual numbers (∈ Q)
associated with the singular curves. Only when the reduced moduli
space over YΓ consists of a finite number of (possibly nonreduced) points,
the virtual number can be directly interpreted as a weighted count of
singular algebraic curves.

As the analogue of Ruan-Tian invariant is not known to exist for
the other singular curves of different topological types of singularities,
the divisibility and the equivalence of the various modified invariants of
the general singular curves are not ensured in a similar way.

Nevertheless, I prove the divisibility of the modified invariant for
a general class of singular curves. As usual, Γ0 denotes a connected
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admissible graph and Γ0,M0 encodes the topological type of an

isolated curve singularity.

Definition 7.2. A topological type of curve singularity Γ0,M0 is
said to be strictly descending if the value of M0 is strictly decreasing in
the sense that mi > mji

for all the direct descendents of i.

If a vertex has no direct descendents, it is called an ending vertex.
Otherwise, it is called a nonending vertex.

If all the nonending vertexes of Γ0 have more than one direct de-
scendents, then the topological type Γ0,M0 automatically becomes

strictly descending.

On the other hand, an An curve singularity is not strictly descending
as all the multiplicities mi = 2.

Fix an admissible graph Γ of this special type, the number of its
connected components will be denoted by comp(Γ) = m.

Proposition 7.7. If (Γ,M) is lifted from a strictly descending
topological type (Γ0,M0), then the modified family invariant associated
with Γ,M is divisible by S|comp(Γ)|.

Proof. The top stratum YΓ allows a natural S|comp(Γ)| action. To
derive this statement in the proposition, I prove that Y (Γ) − S ⊃ YΓ

also allows a natural free S|comp(Γ)| action.

Suppose Γ′ is an admissible degeneration of Γ. Suppose |comp(Γ′)| =
|comp(Γ)|, then the degeneration do not fuse any two components to-
gether. It is easy to see that the permutations of different components
do not destroy the admissibility condition and the S|comp(Γ)| action in-
tertwines the different components and the action is free.

My goal is to show that for any Γ′, |comp(Γ′)| < |comp(Γ)|, YΓ′ ⊂ S.
Therefore, S|comp(Γ)| acts on Y (Γ) − S freely.

According to my convention of choosing Γ0, the multiplicity mi is
the minimum among all ml, l ≥ i which are not the descendents of i. I
had pointed out earlier, this corresponds to blowing up the singularities
with lower multiplicities first.

Suppose that |comp(Γ′)| < |comp(Γ)|, then there are at least two
different components in Γ which are fused into one. In other words,
some new edge must relate two vertexes from the different components
of Γ. Fixing such pair of components Γ1 and Γ2 such that there exists
an edge from Γi to Γj , I argue that there must be an edge ending at the
leading vertex of Γj .
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Consider all the edges connecting Γi to Γj . One defines an order
among them by comparing the markings of the ending vertexes. Choose
the smallest edge in this sense. I claim that it must end at the leading
vertex of Γj . If not, it ends at some other vertex of Γj . However, all the
vertexes in Γj other than the leading one have direct ascendents in Γj .
Therefore, this vertex must have at least two direct ascendents; one from
a vertex in Γi, another one from Γj . By the axiom of admissible graphs,
these two vertexes in Γi and Γj must be related by a new edge, yet the
new edge is smaller than the previous one because the ending vertex of
the new edge is the direct ascendent of the chosen one. Contradiction!

Consider the 1-edge and denote its beginning vertex and ending
vertex by a and b. I prove that Ea − Eb has a negative intersection
pairing with C − M(E)E.

Because b is the leading vertex of Γj , the value mb is larger than the
multiplicities for all other descendents; thanks to the strictly descending
condition on the topological type. On the other hand, a is congruent
to a vertex in Γj . Thus, ma < mb. Because (Ea − Eb) · C − M(E)E =
ma−mb < 0, Ea−Eb has a negative intersection pairing with C−M(E)E
and YΓ′ is in the locus S.

By applying the nested perturbation, one can construct a GI equiv-
ariant smooth section of the modified extended family obstruction bun-
dle whose zero locus supports over Y (Γ) − S completely. Because the
noncompact base allows a free S|comp(Γ)| action, one descents the bundle
as well as the section onto the quotient Y (Γ) − S/S|comp(Γ)|.

A generic perturbation and the transversality argument implies that
the Euler number of the original bundle is divisible by |S|comp(Γ)|| =
|comp(Γ)|!. q.e.d.

7.4.2. The factorization formula of the modified invariants

Next I want to introduce the result that under a quite general assump-
tion, the generating functions of the normalized modified invariants sat-
isfies certain factorization formula. This phenomenon was first observed
and proved by Göttsche [19] for the cases of nodal curves under the
assumption that the line bundles are high powers of very ample line
bundles. But the observation has a wider implication than what it sets
out to prove. As the modified invariants are equal to the singular curves
counting only under suitable hypothesis, my attempt was to introduce
a structure without imposing conditions on C.

Due to the discussion in the previous subsections, the proof of the
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main theorems is complete. But to apply the conclusion of the main
theorems to the concrete cases, a better understanding about the struc-
ture of the modified invariants is necessary. It is my goal to provide such
a structure. In this subsection, I focus on singularities of some special
types. Namely, the singular curves with a finite number of singularities
of identical topological types, which cover the nodal curves cases.

First, we state the congruence property of F in Proposition 7.8,
which follows from Proposition 7.7.

Proposition 7.8. Let (Γ, C−M(E)E) be a topological type of sin-
gular curves such that (Γ,M(E)E) is strictly descending. Let
F(x, y, z, w) ∈ Z[x, y, z, w] be the universal polynomial such that

FSW ∗
Y (Γ)

(
1, C −

∑
M(E)E

)
= F(C2, C · KM , K2

M , χ(M)) · SW (C).

Then F(x, y, z, w) ∈ |GΓ,M| · Z[x, y, z, w].

One should notice again that the divisibility property is usually not
shared by the un-modified family Seiberg-Witten invariants.

The following convention and definition are useful in my discussion.

Definition 7.3. An admissible graph Γ is said to be a disjoint
union of the Γi, 1 ≤ i ≤ m, denoted as Γ =

∐
i≤m Γi if the admissible

graph Γ, viewed as an ordinary graph, is the disjoint union of Γi. More-
over, through this decomposition, the markings of Γ are inherited by
the Γi. The various graphs Γi are I-admissible for some finite index set
I.

I slightly abuse the definition of admissible graphs and still call them
admissible graphs (with respect to an index set). Two admissible graphs
are congruent if there is a one to one correspondence between their
markings under which these two arrowed graphs are isomorphic.

We are interested in some special types of admissible graphs that can
be decomposed into “isomorphic” connected components, i.e., Γ is the
disjoint union of Γi such that each Γi is a connected admissible graph,
and different Γi and Γj are congruent to each other.

Suppose that the topological type of the singular curve satisfies the
property that the multiplicity functions M of the congruent components
are identified through the isomorphism, one would like to study the
modified family invariants of these types.

Definition 7.4. Given a connected admissible graph Γ0, one con-
siders the set of all admissible graphs whose connected components are
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congruent to Γ0 and one denotes it by adm(Γ0). Then the set can be
further decomposed into

∐
k admk(Γ0) according to the values of the

function comp(·), the cardinality of its connected components.

Given a connected admissible graph Γ0, one considers the multiplic-
ity function M(E)0 : Ver(Γ0) �→ N ∪ {0} defined on the vertexes of
Γ0. Through the congruence relationships among the connected com-
ponents, one can canonically extend M(E) to a multiplicity function of
an arbitrary Γ ∈ adm(Γ0).

Let Γ and Γ′ be arbitrary two different elements in admk(Γ0) and M,
M′ denotes the canonical extension of the multiplicity function M(E)0
to Γ and Γ′, respectively.

I would like to argue that the modified family invariants over Y (Γ)
and Y (Γ′), as were defined in the previous section, are identical. First,
one notices that it is not true if we replace the modified invariants by
the corresponding mixed invariants.

As the base manifolds Y (Γ) and Y (Γ′) are merely birational to each
other in the complex analytic sense, there is no obvious reason to believe
that their associated mixed invariants should be related. On the other
hand, the top dimensional strata YΓ and YΓ′ in Y (Γ) and Y (Γ′) are
isomorphic to each other. Let c and c′ denote the base class insertions
used in the mixed as well as the modified family invariants. Then c and
c′ can be identified after being pulled back to H∗(YΓ,Z) ∼= H∗(YΓ′ ,Z).

We have the following proposition:

Proposition 7.9. Under the same convention as above, the modi-
fied family invariants of C−M(E) and C−M′(E) over Y (Γ) and Y (Γ′)
are identical. Namely, the following equality holds:

FSW ∗
Y (Γ)(c, C − M(E)) = FSW ∗

Y (Γ′)(c
′, C − M(E)).

I offer a simple proof of the proposition:
Proof. Because in general Y (Γ) 	= Y (Γ′), a direct identification

of the family moduli space is not possible. First, one notices that the
reduced family moduli spaces are defined by the zero loci of some finite
dimensional vector bundles. In the Kähler category, one can make the
canonical choice by using the algebraic geometric data. The obstruction
bundles can be calculated by some repeat application of family blowing
up formula, etc.

At this moment, I do not care about their detail forms. Let us
denote the associated obstruction bundles by OBSΓ and OBSΓ′ . It is
rather crucial that OBSΓ|YΓ

∼= OBSΓ′ |YΓ)
.
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On the other hand, the reduced perturbed family moduli spaces
can be splitted into different components. The dominated components
that define the modified family invariants support over some compact
subsets of the open manifolds Y (Γ), Y (Γ′). Despite that the OBSΓ and
OBSΓ′ are not co-related, their restrictions to YΓ and YΓ′ are canonically
isomorphic. As the dominant components of the reduced perturbed
family moduli spaces can be arranged to lie completely over YΓ, YΓ′–
after one has perturbed the defining sections carefully, the isomorphism
of the vector bundles ensure that they are two different smooth sections
of the same vector bundle. Then they can be both interpreted as two
different family Kuranishi models for the same moduli problem.

Regarding the issue that the sections can be perturbed to have their
zero loci in the top strata, I have used the fact that the dominant
components completely avoid the strata which support admissible de-
composition classes. By using the uniqueness of the invariants under
the family Kuranishi model technique, one can identify the modified
invariants accordingly.

Recall that the Φ map associates each admissible decomposition
class into the corresponding admissible stratum. In the condition that
characterizes the admissible decomposition classes, they have the prop-
erty that their family expected dimensions are not less than the one
of the original class. As one has performed a special perturbation in
the first step such that the dominant component is disjoint from these
components, the dominant component has the crucial property that the
preimage of any stratum of codimension two or higher is of smaller
expected dimension than the original expected dimension. Thus, the
generically perturbed reduced family moduli space avoidsany stratum
Y (Γ̃) with codimension two or higher and consists of a finite number of
smooth points. q.e.d.

After proving this proposition, it makes sense to consider the follow-
ing generating series,

F(Γ0,M0; M) =
∑

k

∑

Γ∈admk(Γ0)

FΓ,M(M)

σ(Γ,M)|GΓ,M| t
k,

where FΓ,M(M) is the abbreviation of the universal polynomial con-
structed by the main theorem and the group GΓ,M(E) ⊂ GΓ is the
subgroup of GΓ which keeps the multiplicity function M invariant. The
symbol σ(Γ,M(E)) denotes the cardinality of the orbit through Γ under
the G(Γ,M(E)) action.
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My next goal is to study the structure of the generating function.
The following theorem is largely inspired by Göttsche’s argument [19] on
the nodal curves (M ≡ 2) case. My formulation shows that the similar
but more general phenomenon holds in a much more general context.

Consider M to be the disjoint union of two algebraic surfaces M(1)
and M(2), denoted by M = M(1)

∐
M(2). Then one has the following

decomposition result for Y (Γ), Γ ∈ admn(Γ0). Notice that the notations
M(i) instead of Mi are used in order not to be confused with the i-th
universal space.

Proposition 7.10. The space Y (Γ) allows the following decompo-
sition into disjoint unions:

Y (Γ) =
∐

Γ1
∐

Γ2=Γ,Γ1,Γ2∈adm(Γ(0))

Y (Γ1) × Y (Γ2)

where Y (Γ1) denotes the stratum of Γ1 associated with M(1) while Y (Γ2)
is associated with M(2).

Namely, decomposition of the strata follows closely from the decom-
positions of the corresponding admissible graphs, which runs through
all the possibilities.

Proposition 7.10 follows from a simple lemma which asserts that:

Lemma 7.6. Let Γ be an admissible graph. Suppose that Γ can
decomposed into Γa and Γb, then YΓ is canonically isomorphic to an
open submanifold of the direct product of YΓa and YΓb

.
Let M be decomposed as M(1) and M(2) and let Γ be a connected

admissible graph, then the closure Y (Γ) of YΓ in Mk, k = |Ver(Γ)|, is
equal to the disjoint union of those of M(1) and M(2).

Proposition 7.10 is a simple corollary of this lemma. I leave the
proofs of these combinatorial lemma and proposition to my reader. The
key fact is that the diagonal ∆(M2) = ∆(M(1)2)

∐
∆(M(2)2). i.e.,

there is no mixed term among M(1) and M(2).
Let us consider the following situation. As before, suppose M =

M(1)
∐

M(2) is the disjoint union of the two different algebraic surfaces.
Let C = C(1) + C(2) be the sum of the two different line bundles on
M(1) and M(2), respectively. Then one considers the modified family
invariant of C−M(E)E on Y (Γ). According to the previous proposition,
one finds that the modified invariant satisfies the convolution relation.

Namely,
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FSW ∗
Y (Γ) =

∑

Γ1+Γ2=Γ

FSW ∗
Y (Γ1) · FSW ∗

Y (Γ2).

The invariants are taken with respect to C−M(E)E ,C(1)−M(E)1E
and C(2) − M(E)2E, respectively. Notice that the class C − M(E)E
decomposes accordingly.

By taking FSW on both sides, it is not hard to see that the identity

FSWY (Γ) =
∑

Γ1+Γ2=Γ

FSWY (Γ1) · FSWY (Γ2),

holds for the original family invariants.

To see that a similar equality holds for FSW ∗ as well, we inter-
pret FSWY (Γ)(1, C−M(E)) as FSWY (γ)(PD(Y (Γ)), C−M(E)E) and
then compare their admissible decompositions on Y (γ). In defining the
admissible decompositions, one begins with the generic decompositions
and then inductively defines the nongeneric decompositions of the vari-
ous levels.

Since M(1) and M(2) are disjoint, a decomposition over the uni-
versal space of M(1)

∐
M(2) can carry curves only when M(E)E is

written as M(E)1E1 + M(E)2E2, with M(E)1,M(E)2 being the mul-
tiplicity functions over M(1) and M(2), respectively. It assigns a mul-
tiplicity function uniquely to each factor Y (Γ1) × Y (Γ2) of the disjoint
union decomposition in Proposition 7.10. Conversely, each pair of de-
compositions of C(1) − M(E)1E1 and of C(2) − M(E)2E2 sum up to
a decomposition of M(1)

∐
M(2). It is easy to see that the type A

allowable condition is preserved as the dimension formula simply adds
together. On the other hand, a type B decomposition may split into
allowable and nonallowable decompositions. It does not affect our dis-
cussion as type B decompositions do not contribute to the modified
invariant.

First, the generic admissible decomposition classes are easily seen
to be preserved under the splitting. One would like to inductively
prove that the level function is additive under the splitting. Namely, if
D1(1) and D2(2) are two admissible decompositions on M(1) and M(2)
of level a and b, respectively, then D1(1) + D2(2) is admissible over
M(1)

∐
M(2) of level a + b; and vice versa.

In defining the modified invariants, one can express it as the alter-
nating sum of the mixed invariants associated with the type A admis-
sible decomposition classes of different levels. Schematically, one has
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FSW ∗(D) = FSW (D) −∑s

∑
D≫D′∈ADM(s) FSW (D′).

Then the splitting of the modified invariant follows from the cor-
responding splitting of the various mixed invariants on the right hand
side.

On the other hand, take X to be the principal homogeneous space
over Scomp(Γ), consisting of a finite number of points. Then one considers
the relative trivial GΓ0,M0 bundle over X, and let GX,Γ be the sections
of the relative bundle which inherits the group structure from GΓ0,M0 .
Notice that GX,Γ is of order |GΓ0,M0 |comp(Γ). The symmetric group
S|comp(Γ)| acts upon GX,Γ naturally.

Then the group GΓ,M can be factorized by the following finite groups
short exact sequence:

1 �→ GX,Γ �→ GΓ,M �→ Scomp(Γ) �→ 1.

Alternatively, GX,Γ is described by |comp(Γ)| elements in GΓ0,M0

such that the multiplication is performed component-wisely. The group
S|comp(Γ)| acts upon GX,Γ by permutation. GΓ,M is called the wreath
product in the literature.

As was mentioned before, the modified family invariant does not
depend on the explicit markings. Therefore, the previous convolution
identity implies immediately the product formula of the generating se-
ries. Namely,

F(Γ0,M0; M) = F(Γ0,M0; M(1)) ×F(Γ0,M0; M(2)).

On the other hand, the denominators |GΓ,M| can be factored as
|GΓ0,M|comp(Γ)(which is the order of GX,Γ) times |Scomp(Γ)|. One changes
the variable t → |GΓ0,M| · t in F(Γ0,M0)(t), then one defines

F(Γ0,M; M)(t) = F(Γ0,M0; M)({|GΓ0,M0 |} · t).

Then F satisfies the following factorization property:

Theorem 7.5. The power series F(Γ0,M; M) ∈ Z[[t]] defined
above can be factored as follows:

F(Γ0,M; M) =

(A1(Γ0,M0))
χ(M)

· (A2(Γ0,M0))
K2

M · (A3(Γ0,M0))
C·KM · (A4(Γ0,M0))

C2

.

Here, Ai(Γ0,M0) ∈ Q[[t]], 1 ≤ i ≤ 4 are universal, independent of
the manifold M or the cohomology class C one chooses. However, the
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formal power series depends manifestly on the graph Γ0 and and the
multiplicity function M0, and, therefore, the topological type of the curve
singularities.

In the theorem, the power series are formulated to have coefficients
in Q. If one knows that FSW ∗ is always divisible by |Scomp(Γ)|, it
is enough to restore the integrability. I give the sufficient conditions
for the integrability condition to hold. In particular, the power series
associated with ordinary singularities are all in Z[[t]].

The key argument of the proof is essentially due to Göttsche [19]. I
follow his idea and go through certain details.

Proof of Theorem 7.5. To prove a theorem of this type, which ex-
tracts out the dependence of the invariants on the four different variables
K2

M , KM · C, C2 and χ(M), one formally sets χ = x, K2 = y, K · C =
z, C2 = w as four formal variables. By the family blowup formula, etc.,
the power series F can be expressed as an element in Z[x, y, z, w][[t]].

To show that the equality holds, one first shows the following lemma:

Lemma 7.7 (Göttsche). Let Ψ ∈ Z[x, y, z, w][[t]] be a power se-
ries in t such that the coefficients of all tk are homogeneous in x, y, z, w.
Then Ψ ≡ 0 if and only if the power series takes value zero for all
(x, y, z, w) ∈ Z4.

Proof. One side of the lemma is trivial. If Ψ|Z4 is zero, then by
homogeneous property, Ψ|Q×Q×Q×Q = 0, too. As the rational numbers
Q are dense in R, Ψ|R4 = 0 ∈ Z[[t]] identically. q.e.d.

Following Göttsche, one considers the following four different al-
gebraic surfaces together with four different very ample line bundles.
Consider M(i), Ci, 1 ≤ i ≤ 4 to be

(CP2, H), (CP1 × CP1, H1 + H2), (K3, L4), (T
4, L18).

The four variables x, y, z, w take values

v1 = (3, 9,−3, 1), v2 = (4, 8,−4, 2), v3 = (24, 0, 0, 4), v4 = (0, 0, 0, 18),

respectively.

It is easy to see that these four column vectors are linearly indepen-
dent in Z4. That is to say, they span a rank four sublattice of Z4. Let
the discriminant of the sublattice be r. Then for any element z ∈ Z4,
there exists ci, 1 ≤ i ≤ 4 such that rz =

∑
ci ·vi. By repeatedly applying
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the product formula for F , one finds that

F|(x,y,z,w)=ζ =
∏

Fci/r|(x,y,z,w)=vi
,

which is valid for all ζ ∈ Z4. In particular, it applies to the standard
basis vectors (1, 0, 0, 0).(0, 1, 0, 0).(0, 0, 1, 0), (0, 0, 0, 1). By comparing
the identities after taking suitable powers, one proves that the identify
F|(x,y,z,w)=z =

∏
iAi(Γ0,M0)zi is valid for all z ∈ Z4. Then the the-

orem is proved by considering the power series formed by the difference
of the left hand side and the right hand side and by application of the
previous lemma. This ends the proof of Theorem 7.5. q.e.d.

By considering Γ0 ∈ adm(1), which consists of a single vertex, the
factorization holds in this particular case. One can choose the unique
multiplicity M to be any positive integer m1 > 1. This corresponds to
ordinary singularities of multiplicity m.

Corollary 7.1. Take m1 = 2, then the factorization identity holds
for the nodal curves counting, and the power series is the weighted pow-
ers of the four different series determined in Section 8.

It was derived by Göttsche [19] in a different formulation, assuming
the classes are high power of ample line bundles. By taking m1 to be
other positive integers, one gets equalities of similar types, too.

Remark 7.2. In the m = 2 case, the explicit formula for A3, A4

have been conjectured explicitly by Göttsche-Yau-Zaslow [63], [19]. It
is very interesting to figure out the explicit formulas for general m or
even more generally, for all (Γ0,M0) pairs.

In the next section, the explicit forms of Ai(Γ0,M0), 1 ≤ i ≤ 4 will
be determined for Γ = γ ∈ adm(n) and mi = 2; namely, the nodal curve
cases.

8. The explicit determination of the universal polynomials

In the previous sections, we have proved the existence of the univer-
sal polynomials. The generating functions of these universal polynomi-
als exhibit certain interesting factorization properties that merit further
examination.

The explicit determination of these polynomials has been done for
n ≤ 6 by Vainsencher [59], [24] and recently for n ≤ 8 by Kleiman-Piene
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[24], respectively. Their method was based on a direct calculation using
the computer program Schubert for n ≤ 8.

It is my goal to remedy this situation. In this section, I offer an
alternative scheme to determine the whole power series. First, I will
discuss the major difficulty to work over the algebraic category. Then I
try to identify the power series Ai, 1 ≤ i ≤ 4 with the known calculation
including the Yau-Zaslow conjecture in the special cases ([5], [6] and
later [23]) and the Caporaso-Harris calculation of the Severi degree on
CP2, partially following Göttsche’s approach [19].

My method is based on a small variant of Taubes’ original proof of
SW = Gr. The idea of the current attempt was developed during my
stay at Park City in the summer of 1997. The equivalence of FSW and
FGr in some special cases had been discussed in a joint work with T.
J. Li already.

The difficulty of working in the algebraic context is that the reg-
ularity and transversality of the appropriate reduced moduli space is
difficult to achieve. Sometimes it is even impossible to achieve it within
the algebraic context. Despite the fact that algebraic geometers have
succeeded in developing intersection theory to deal with the nongeneric
situation, it is still quite a challenge when one handles the enumeration
questions.

One encounters this problem in the picture of singular curves count-
ing, too. My scheme suggests that the universal polynomials we have
determined give rise to the “equivalence” of singular curves. Only when
the associated reduced moduli space is regular and is of dimension zero,
then a direct enumeration is possible.

Let us restrict ourselves to the case of nodal curves. Given a lin-
ear system on an algebraic surface, let us investigate the difficulty of
identifying the invariants with the number of nodal curves. Under the
ideal assumption that the number of nodal curves in the linear system
has been determined by other schemes, there is still a big obstruction
to claim directly that the invariant is up to a constant(n!) equal to the
number of nodal curves in the linear system.

Resolving the nodal singularities of the finite number of n-nodes
nodal curves on M , they give rise to smooth curves (which may not
be irreducible) in C −∑ 2Ei supporting over Mn. There is no doubt
that they show up in the enumeration of the modified family invariant
FSW (1, C−∑ 2Ei). On the other hand, if one does not impose the type
II nice condition and the partially goodness condition on the reduced
family moduli space, the smooth curves in the class C −∑ 2Ei usually
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constitute a proper subset of the objects we count.

Even though one expects that the modified invariants and the the
number of smooth curves should be identified, it is quite difficult to ar-
gue that the other nonsmooth curves contribute zero to the enumeration
problem. It is because no transversality condition has been imposed and
there can be cancellations between different contribution of nonsmooth
curves.

It turns out that the argument in this section relies heavily upon
the techniques developed in the C∞ category. To remedy the major
difficulty in the algebraic category, one needs to extend the view to the
almost complex category.

As algebraic surfaces over C carry integrable complex structures,
they can be viewed as almost complex manifolds such that their po-
larizations give rise to symplectic forms. This point of view has been
emphasized by [21], [48] and [51], [52], [53], etc.

Given an almost complex structure j over the differentiable four-
manifold M , it makes sense to define the pseudo-holomorphic Mori-cone.
Take ω to be an symplectic form tamed by j.

Recall the following definition:

Definition 8.1. Let c be a cohomology class in H2(M,Z). Then
c is said to be effective with respect to j (or simply j-effective) if c is
represented by j-pseudo-holomorphic curves in M . The collection of all
the j-effective classes in H2(M,Z) is denoted as Cj and is called the
j-Mori cone of M . Likewise, one defines

CQ
j = {x |x ∈ Cj , energy(x) = x ∪ ω < Q}

if one fixes a symplectic form or ample polarization on M .

The usual homological Mori (effective) cone is defined in H2(M,Z).
As I often use the cohomology than homology, the j-Mori cone is the
dual of the usual one when j is integrable.

By using Sacks-Uhlenbeck-Gromov compactness theorem for pseudo-
holomorphic curves, it follows that:

Proposition 8.1. Let j∞ be a degeneration of a sequence of almost
complex structures jn, n ∈ N with jn → j∞ in the appropriate topology.
For all fixed positive numbers Q, there exists a large enough N0 such that
the energy bounded subset in the jn-Mori cone of M , CQ

jn
, with n ≥ N0

are embedded into CQ
j∞

.



family blowup formula 527

This proposition asserts that the curve cone in the almost complex
category is semi-continuous while taking limits of the almost complex
structures.

Proof. If not, one can find a subsequence of jn such that CQ
jn

− CQ
j∞

are nonempty. Because the energy is uniformly bounded by Q, Sacks-
Uhlenbeck-Gromov compactness implies that CQ

jn
and CQ

j∞
are all finite

sets. By restricting to a subsequence, one can find a sequence of jn

pseudo-holomorphic curves in a fixed class 	∈ CQ
j∞

. But by compactness
the class must be represented by a j∞ pseudo-holomorphic curve, a
contradiction. q.e.d.

Similarly, one can define the family Mori-cone for a family of almost
complex structures parameterized by a compact manifold B to be the
cohomology classes which are j effective for some j among the family.
The similar conclusion holds for them, too.

The j∞ will be taken as a single or an S2 family of integrable complex
structures on either CP2, T 4 or K3, etc. in our application. When
I discuss the general algebraic surfaces, I restrict myself to algebraic
surfaces with pg = 0.

The main conclusion of this simple proposition is that one can con-
trol the j-Mori cones by choosing j sufficiently closed to the integrable
complex structures whose j∞-Mori cones are explicitly known by alge-
braic geometric means.

The key benefit of working in the almost complex category is that
the transversality condition can be met in an easier way, as long as the
question of multiple coverings of exceptional curves does not come in to
play a role.

It is in the papers of Ruan-Tian [48], [49] that they developed the
Gromov-Witten invariants for semi-positive symplectic manifolds. The
reader should consult their formulations for the details.

Under the condition of being semi-positive, the compactified com-
ponents of the Gromov moduli spaces can be better controlled which do
not appear in the enumeration of their invariants for dimension reason.
One reason that I stick to the earlier formulation of Ruan-Tian is that
the general invariants [42], [15], [47], [50], defined by the existence of
the virtual fundamental cycles, are Q valued instead of being Z valued.

Heuristically, the “nodal curve invariants” should correspond to the
Ruan-Tian invariants coupled to gravity [49]. However, one should be
cautious, as the Ruan-Tian invariants are not always enumerative. Com-
plicated by the appearance of the multiple covering of exceptional curves
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(−1 curve in the usual case and -2 curves in the S2 family), the invari-
ants were defined under an inhomogeneous perturbation on the right
hand side of the Cauchy-Riemann equations [48]. As a result, those
high genus invariants do not usually count the number of holomorphic
curves, but instead, the signed sum of the zero sets of some perturbed
Cauchy-Riemann equations.

To justify the argument, let me remark the following for the semi-
positive symplectic manifolds:

Remark 8.1. The Ruan-Tian invariants coupled to gravity can
be defined as integer valued invariants using the unperturbed equations
when the -1 pseudo-holomorphic spheres are known to be extinct or
when the class is not multi-toroidal. Similarly, the same conclusion
holds if both −1 and −2 pseudo-holomorphic spheres are known to be
extinct on a hyperwinding S2 family of T 4 (which is true automatically)
and K3.

By hyperwinding S2 family of T 4 or K3, one means the S2 family
of almost complex structures on T 4 or K3 which tame an S2 family
of symplectic forms homotopic to the S2 family of hyperkähler Kähler
forms.

The remark is a straightforward observation from Ruan-Tian theory.
Let us remark briefly. According to Ruan-Tian [48], in the case that the
source complex structure is fixed (without coupled to topological grav-
ity), the reason that the inhomogeneous terms were used is because of
the following two phenomena. First, there are usually multiple covering
of exceptional curves. Second, the appearance of ghost bubbling in the
high genus case.

In dimension four, the only troublesome multiple coverings are over
−1 curves. Their Gromov expected dimension is usually negative, but
they exist for generic almost complex structures as multiple covering of
pseudo-holomorphic −1 spheres. A similar conclusion holds if one con-
siders an S2 family of almost complex structures and pseudo-holomorphic
−1 and −2 spheres. The condition in the lemma gets rid of them. On the
other hand, the Gromov moduli space dimension formula for a smooth
genus g pseudo-holomorphic curve is given by 2c1(M) ∩ [A] + 4(1 − g),
where [A] denotes the homology class of the curve. It is crucial that the
genus g appears with a negative sign. If the smooth curve degenerates
into one with a lower genus, the dimension of the moduli space gets
promoted, which appears to contradict to the intuition.

On the other hand, it is well known that the Deligne-Mumford mod-
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uli space Mg ( and the Teichmüller space Tg, g > 1) are of real 6g − 6
dimension. If one couples the Ruan-Tian theory to gravity [49] and
considers the point class insertion, the expected dimension formula for
a smooth genus g curve gets corrected into 2c1(M) ∪ [A] + 2(g − 1) or
2c1(M) ∪ [A] + 2(g − 1) + 2, depending whether one is considering a
single or an S2 family of almost complex structures.

It is crucial that we are working over a four-manifold, in which case
the positivity of this term g−1 is insured. In other words, the dimension
drops down whenever the genus drops down. This can guarantee the
compactified strata are at least of real codimension two as was argued in
[48], [49]. The remaining argument goes through as in Ruan-Tian [48],
[49]. The transversality of the appropriate moduli spaces are argued
as usual [44]. The simple calculation offered here explains why, after
coupling the theory to the gravity, the “ghost bubbling” phenomenon
is no longer a problem.

Let us consider the following situations:

♣: Either M = CP2, with B = pt or M = K3 or T 4 with an
S2 family of almost complex structures homotopic to the hyperkähler
structures(which were named as the hyper-winding family in [29]).

In the last two cases, I have chosen the cohomology class C to be a
primitive class with C2 ≥ 0.

♣: M is an algebraic surface with pg = 0. In this case, one choose
C to be sufficiently very ample.

By choosing the (families of) almost complex structures suitably
closed to the integral ones, the previous proposition implies that the
energy bounded subsets of the j Mori-cones for these almost complex
structures are embedded in the corresponding cones of integral complex
structures. It is a special property of hyperkähler complex structures
that a class C is effective for one and only one complex structure among
the twistor family. It is a simple consequence by some Hodge structure
consideration.

Because that CP2 is known to be minimal (it does not contain any
−1 curve), a small perturbation of its almost complex structures surely
satisfies the condition in the remark. Pick a complex structure on K3
or T 4 such that the Picard lattice Pic = Z[C]. Then one considers
a hyperkähler S2 family containing this particular complex structure.
Then choose any hyper-winding family of almost complex structures
sufficiently closed to some specific hyperkähler families. The existence
of this type of hyperkähler families follows from Yau’s solution of Calabi
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conjecture [62].
If a pseudo-holomorphic curve in [C] degenerates, then it is easy to

argue that there can be no −2 curves in its connected components.
By the primitiveness assumption of C, and the fact that no other

class is effective near the support of C, the family Gromov moduli spaces
of all such C are “compact” in the sense that all the pseudo-holomorphic
curves are irreducible. In particular, the class is not multiple-toroidal.

In case where M is an algebraic surface with pg = 0, there is some
additional assumption on C, as was pointed out earlier. If C is suffi-
ciently very ample, Göttsche’s argument implies that any singular curve
with a fixed number of singularities (fixing the multiplicities) does not
appear in a generic linear system with a dimension lower than its ex-
pected one. In particular, it implies that the holomorphic curve in the
reduced moduli space must be irreducible and reduced. One can choose
the almost complex structure sufficiently closed to the integral one to
preserve the property. In particular, the bubbling of exceptional −1
curves does not cause trouble, as these curves carry an infinite number
of singularities.

After this preparation, one is ready to prove that the n! times the
number of nodal curves in the family can be identified with the modified
family Seiberg-Witten invariants of the class C−∑i≤n 2Ei, for the pairs
(M, C), discussed above.

Mimicking the construction in [29], one considers the space B =
S2 × Mn in considering the hyper-winding family of almost complex
structures. The symbol FSW ∗

B(1, C −∑ 2Ei) will be often called the
nodal invariants.

After perturbing from complex to the almost complex category, the
family Seiberg-Witten invariants no longer have a direct contact with
Gromov theory. To remedy this, one needs the gluing argument of
Taubes which was an important part of his fundamental work “SW=Gr.”

To discuss the direct link between family Seiberg-Witten invariants
and the family Gromov theory, a version of gluing argument stronger
than the one contained in Taubes’ paper will be necessary. While it is
not my intent to develop the argument in the the present paper, I adopt
a “detour” to suit for my derivation. I plan to discuss the general case
in the future.

Thus, one needs to insure that the type II multiple coverings do not
contribute to the modified invariants. Or the counting scheme would
be modified again, and it would depend on the manifolds as well as the
cohomology classes involved explicitly.
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In the cases of hyper-winding family of K3 or T 4, the assumption
on the cohomology class guarantees that the pseudo-holomorphic curves
must be irreducible. The fact that the j-Mori cone is locally of at most
rank one near the support of C insures that the multiple coverings of
type II exceptional curves can not show up in the family over S2 × Mn

for these types of class C.

On the other hand, for CP2, one is not in such a nice situation.
The type II exceptional curves frequently come in to play a role in the
universal formula. The contribution of the type II exceptional curves to
the invariants is a rather subtle issue. Later it will be addressed briefly.

Conjecture 8.1 (Di Francesco-Itzykson). Take the algebraic sur-
face M to be CP2, then the polynomial determined in the main theorem
is equal to n!× the number of n nodes nodal curves in |dH| if n ≤ 2d−2.

The conjecture was formulated as a sub-conjecture in Göttsche’s
paper [19], in which he mentioned that the conjecture was already known
to P. Di Francesco and C. Itzykson [8].

I would like to point out that I do not plan to prove the conjecture
directly in the algebraic category, which will involve resolving the non-
transversality issue of the reduced moduli space. The issue may be out
of reach using the current technique. Instead, one shows that the alge-
braic counting of the nodal curves are in fact symplectic invariants, and
they coincide with the Ruan-Tian invariants with appropriate choice of
genus. Then one applies Taubes’ gluing technique to prove the equiv-
alence between the two invariants. One should notice that I restrict
myself to the embedded curves cases without considering the multiple
tori, in which case the identification between these two invariants is
possible, yet not direct (e.g., in [23]).

Let us summarize the cohomological conditions we put upon the
classes in CP2, K3, or T 4. When M = CP2, one assumes the classes
dH to satisfy d ≥ n+2

2 , following Di Francesco-Itzykson. If the algebraic
surface is either T 4 or K3, one assumes the cohomology classes to be
primitive with nonnegative self-intersections.

Proposition 8.2. Under the previous assumption, the multiple
coverings of the type II exceptional curves do not show up in the reduced
moduli space over Mn if one chooses the (families of) almost complex
structures to be sufficiently closed to the chosen integral complex struc-
tures.

Proof of Proposition 8.2. The cases of K3 and T 4 have been
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discussed already. In considering CP2, one supposes that the conclusion
was wrong. Then one would be able to generate by Sacks-Uhlenbeck-
Gromov compactness theorem a holomorphic multiple covering type II
exceptional curve over the complex manifold Mn.

As it is a type II exceptional curve, it follows that the type II curve
is represented by d1H −∑niEi such that m · d1 ≤ d. The integer m
stands for its multiplicity.

The difficulty of dealing with the type II exceptional curves is that
they do not show up according to their expected dimensions. It is
subtle to bound their actual dimensions or to describe their deformation
tangent obstruction complexes.

On the other hand, the reduced moduli space is constructed by re-
quiring the holomorphic curve to pass through d2+3d

2 −n different generic
points (sections). In general, it is rather hard to classify the explicit
form of all the type II exceptional curves. I leave the systematic study
of the type II exceptional curve to a separated article. To argue their
disappearance in the reduced moduli space, there are two different ap-
proaches; one can either argue geometrically that they do not show
up, or one can argue homologically that the appropriate moduli space
contributes trivially to the family invariants applying the concept of
admissible decomposition classes involving the type II curves. In this
paper, I adopt the direct geometric approach as it is elementary. In
short, one argues by dimension count and by contradiction.

Suppose there is a configuration involving multiple coverings of type
II exceptional curves, then it implies that the class dH can be de-
composed into at least two components, d =

∑
midi with at least

one mi ≥ 2. On the other hand, a holomorphic curve of the form
djH −∑niEi projects to a possibly singular curve in the class djH on

CP2. Denote f(x) = x2+3x
2 to simplify the notation.

It is well known that the moduli space (or linear system) of holo-
morphic curves representing djH is of f(dj) dimensional. Then one can
estimate the actual dimension of this configuration and bound it by∑

f(dj) from above. In the inequality, one has ignored the singulari-
ties which may develop under the contraction map, so the inequality is
usually not sharp.
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On the other hand, it is easy to see that

f(d) = f(
∑

midi) =
∑

f(di) +
∑

i

(m2
i − 1)

2
d2

i

+
∑

i

3

2
(mi − 1)di +

∑

a �=b

ma · mbda · db.

The existence of the particular configuration implies that
∑

f(di)

≥ f(d) − n = d2+3d
2 − n. It follows that

∑

i

(m2
i − 1)

2
d2

i +
∑

i

3

2
(mi − 1)di +

∑

a �=b

ma · mbda · db ≤ n.

To minimize this number, one shows that there is a way to reduce
this number if the decomposition has more than two components. In
fact, one can reduce the number of dj by fusing two into one. Suppose
da and da+1 are the two elements under fusion. Then define d′a+1 = 0
and d′a = ma · da + ma+1 · da+1 with m′

a = 1. This process does not
affect the crossing terms with the other classes, yet the terms involving
multiplicities mi and the crossing term between da and da+1 disappear.
Thus, the previous expression is monotonously decreasing under this
process. Finally, one can reduce to the two di case. By replacing d1

by m1d1 and d2 by m2d2 with new multiplicity changed to one, the
expression still drops down. Then it becomes an elementary exercise to
check that all the possibilities violate the previous inequality as far as
n ≤ 2d − 2. q.e.d.

In the proof, the condition n ≤ 2d − 2 guarantees that the type
II multiple covering does not show up in the “reduced” family moduli
space. In other words, they do show up in the family moduli space in
a lower dimension. The language of type II multiple-coverings cast the
original Di Francesco-Itzykson conjecture into a theoretical framework.
Not interrupted by the appearance of these type II curves, the enumer-
ation of the nodal curves in the holomorphic category is still blocked
by the fact that the other singular curves in C −∑ 2Ei over Yγ may
not behave according to their expected family dimension. There is no
real cure about this problem in an easy way. That is why I need to
expand to the almost complex category which provides us a larger room
to maneuver.
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Recall the construction of the universal space Mn which was re-
viewed earlier. Given an almost complex structure (or an S2 family
of them) on M , the almost complex structure on Mn+1 is canonically
constructed. In particular, Mn+1 �→ Mn is a pseudo-holomorphic fibra-
tion. The fibers inherit the almost complex structures from the fibration
structure. The construction of Mn in the almost complex category set up
a map from the space of almost complex structures of M to the almost
complex fibration Mn+1 �→ Mn. A perturbation of the almost com-
plex structure on the underlying four-manifold induces a corresponding
perturbation on the pseudo-holomorphic fibration Mn+1 �→ Mn.

To begin the argument, I first show,

Proposition 8.3. Let U be a small neighborhood of the specific
integrable complex structures of M = CP2 (or M = K3, T 4, or a pg =
0 algebraic surface) in the space of almost complex structures (or S2

families of almost complex structures) of M .

There exists a Baire second category subset in U of almost complex
structures of M such that the restriction of the reduced family Gromov-
Taubes moduli space of a class over Yγ (or S2 × Yγ) consists of a finite
number of smooth points which represent smooth curves supporting over
Yγ.

The reader must be warned that the statement is not true over the
whole Mn due to the appearance of the type I exceptional curves, etc.

Proof. It is well known that by perturbing the almost complex struc-
tures, one can make sure that the moduli space of pseudo-holomorphic
curves of a given type is smooth of a correct dimension. The exception
is due to either multiple covering of type I and type II curves. When
multiple coverings of either type of exceptional curves are among the
irreducible components, they contribute negatively to the family dimen-
sion. As a result, the good part’s family dimension gets enhanced and
sometimes exceeds the expected family dimension of the original curve.

The type I curves do not show up on Yγ , the open top stratum of
Mn, and the type II curves are forbidden to show up either by dimension
reason (for CP2) or by primitiveness assumption on the cohomology
class (or for K3 and T 4) or by the sufficiently very ample assumption
of C using Göttsche’s argument.

Then the restriction of the family Gromov-Taubes moduli space over
Yγ gives rise to a partially compactified stratified space of right dimen-
sion as far as the almost complex structures are chosen to be generic
in U . It is crucial to notice that the space is not compact as one has
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removed the portion over ∪Γ<γYΓ.

The standard theory (e.g., [48], [49]) gives a cobordism between dif-
ferent family moduli spaces if one deforms the almost complex structures
in a generic real one-parameter family [48], [44].

However, the un-compactness of these restricted family moduli space
makes the usual cobordism argument useless. Namely, it does not fol-
low from the technique that the numbers associated with the reduced
restricted family moduli spaces are actual invariants. Even if one makes
the reduced family Gromov-Taubes moduli space transversal over Yγ ,
the noncompactness nature of the space forbids us to conclude that
there is a finite number of solutions on the general ground. It is because
the solutions may leak to the boundary due to un-compactness.

The surprising thing is that they really do. The proof is actually
beyond the scope of the apparently useless argument and it involves use
of the Ruan-Tian invariants [49].

One should notice that we are not free to perturb the almost com-
plex structures of the family Mn+1 �→ Mn in an arbitrarily generic way,
or it loses the geometric meaning, being the universal fibration of M .
Instead, one is only able to perturb the almost complex structures of
the fibration Mn+1 �→ Mn that are induced from the corresponding
perturbation of almost complex structures on M . Apparently, one can-
not expect the smoothness result under these non-sufficiently generic
perturbations. The crucial observation is that one can contract the ex-
ceptional curves and the pseudo-holomorphic curves supporting over Yγ

are contracted into pseudo-holomorphic curves in M with at least n dis-
tinct singularities. If the reduced family moduli space over Yγ contains
nonsmooth curves, then the corresponding curves in M would either
have more than n singularities or with exactly n singularities (some of
those are worse than the nodes). In either case, it is easy to estimate
their dimension, and they are strictly smaller than the expected Gromov
dimension of the nodal curves. Thus, they do not show up in the top
dimensional stratum under the generic perturbation of almost complex
structures of M .

As a consequence, the generic reduced family Gromov-Taubes mod-
uli space over Yγ does not contain singular curves. q.e.d.

The previous argument sets up a bijective correspondence of smooth
curves supporting over Yγ and n-nodes nodal singular curves in M . As
was explained before, the appearance of Gγ introduces a symmetric
factor n!, which is hardly relevant to our discussion. In the following,
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we will vaguely say that the number of curves in the restriction of family
Gromov-Taubes moduli space is equal to the number of n-nodes pseudo-
holomorphic nodal curves in M .

To make contact with the Ruan-Tian theory [49], one notices that
Ruan-Tian invariants (without the inhomogeneous perturbation) count
the number of genus g curves and its stable degenerations. In general,
these two objects are not identical. In the case of K3 and T 4, the
assumption that the classes are primitive force the pseudo-holomorphic
curves to be irreducible. On the other hand, one has the following
simple but crucial observation, which have probably been noticed by
other people previously:

Lemma 8.1. An embedded irreducible genus g pseudo-holomorphic
curve with respect to a generic almost complex structure (generic in
the sense of being in certain Baire second category set) develops nodal
singularities in M .

Using this, one proves that, generically, there are only a finite num-
ber of curves in the reduced moduli space over Yγ , as a consequence of
the fact that Ruan-Tian invariants are well defined and are finite.

Proof. The lemma is well known to the experts. It comes from com-
paring the dimension of Gromov-Witten invariants and that of embed-
ded singular curves in a smooth symplectic four-manifold. Let us men-
tion briefly that irreducible curves in C with singularities of multiplicity

mi, i ≤ n has an expected complex dimension C2−KM ·C
2 −∑(mi(mi+1)

2 −
2) with B = pt. On the other hand, the genus g curve has an ex-
pected Ruan-Tian dimension −KM · C + (g − 1) (the genus 0 case can
be discussed similarly).

On the other hand, the adjunction formula of embedded genus g
curves implies that the geometric genus and the arithmetic genus are

related by 2g − 2 +
∑

i
m2

i−mi

2 = C2 + C · KM .

By comparing the two formulas one gets
∑

i(mi−2) = 0. As each mi

is assumed to be bigger than 1, the sum can be zero only when mi = 2
for all i. Then the conclusion follows from the fact that, under a generic
perturbation, the actual dimensions of the relevant moduli spaces obey
the dimension formulas. q.e.d.

On the other hand, the previous discussion has not touched the
issue that the modified family invariants should calculate the number
of irreducible as well as reducible nodal curves. In fact, if A and B are
represented by irreducible nodal curves, respectively, of n and m nodes.
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Then the total curve A+B in the relative generic position should carry
m + n + A · B nodes.

Keeping this in mind, it follows that one should have the following
relationship between the numbers of reducible and irreducible nodal
curves. Even though I only need the version for CP2, I discuss it in
the general setting, as the remark is rather important in understanding
the relationship between our modified invariants with Ruan-Tian type
invariants [49].

The adjunction equality in dimension four predicts a special genus
that an embedded pseudo-holomorphic curve should have. One de-
fines the corresponding Gromov invariant to be Gr(C). In general, the
symbol Gri(C) denotes the Gromov-Witten-Ruan-Tian invariant whose
source curve is irreducible of genus g− i (or its various bubbling config-
urations). Either by dimension reason or by the restriction i ≤ g, the
symbol will represent zero for large enough i.

Define for each cohomology class C the following generating function
(cf. [23], [18]):

F (C) =
∑

i≥0

1

dC(C) − i!
Gri(C)qdC(C)−i.

The symbol Gri(C) denotes the genus g − i Gromov-Ruan-Tian in-
variants coupled to gravity. One adopts dC(C) − i to parameterize the
sequence of invariants because of two reasons: Firstly, it is the dimen-
sion of the irreducible genus g− i curve; Secondly, if C = Ca + Cb, then
dC(C) − ia − ib − Ca · Cb = (dC(Ca) − ia) + (dC(Cb) − ib). Namely, it
is additive under taking unions.

Given an almost complex structure, consider the j-Mori (effective)
cone. Given a class C in the cone, a cohomological decomposition is
said to be permissible if C =

∑
Ci, with all the Ci in the j-Mori cone,

and Ci · Cj ≥ 0. Let us denote the permissible decompositions of C by
Perm(C) (please do not confuse it with the admissible decompositions).
Notice that I do not exclude the possibility that Ci = Cj , i 	= j. When
this happens, the previous inequality forces that C2

i = C2
j ≥ 0.

Let us consider the following compound Ruan-Tian power series

FRT (q) =
∑

(Ci)∈Perm(C)

∏
F (Ci).

The power series encodes the number of nodal curves in C while the
total number of nodes is recorded as the difference between the exponent
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of q and dC(C). One should notice that FRT (q) is a polynomial of degree
dC(C), with the leading term being Gr(C), in the sense of Taubes.

A priori, one may suspect that it should be equal to the correspond-
ing normalized generating function Fnor(q) of FSW ∗.

Fnor(q) =
∑

δ

1

(dC(C) − δ)!

FSW ∗(C − 2
∑δ

i=1 Ei)

δ!
qdC(C)−δ.

It is indeed correct, as far as the type II exceptional curves do not show
up.

It is very interesting to study Fnor(q) − FRT (q), which we hope to
discuss in a separated article.

Translated into this formation, the Di Francesco-Itzykson conjecture
asserts that the difference, denoted as ∆II(q), is a polynomial of degree

at most d2−d
2 + 1, for dH over CP2.

To identify the two different invariants, one needs to adopt Taubes’
gluing theorem ”Gr �→ SW” [53]. However, I would like to make an
efficient usage of the fact that I am working on a slight perturbation of
Kähler surfaces. To bypass the gluing of the curves involving the type I
multiple coverings, I adopt the gluing theory over Yγ for smooth curves.

Let ω denote the family of symplectic two forms, which is the slight
perturbation of the fiberwise Kähler forms on Mn+1 �→ Mn.

As I had argued, one first chooses a generic j of M such that all
the moduli spaces of j-pseudo holomorphic curves in M are of their
expected dimensions. After it is done, one considers the corresponding
Vainsencher fibration Mn+1 �→ Mn.

One divides the space Mn into three regions: Mn = Yγ ∪ (Mn−Yγ −
S)∪S. The space S has been defined on page 508 to be the set over which
at least one type I class pairs negatively with C−M(E)E. By choosing
the intersecting cross-sections to be generic, by Proposition 8.3 one has
known that the reduced family Gromov-Taubes moduli space over Yγ

consists of a finite number of smooth curves (notice that the finiteness
is not a trivial issue and is the consequence of the Ruan-Tian theory).
By the blowing down projection, they give rise to n-nodes nodal curves
we would like to count. Over the portion S the reduced Gromov-Taubes
moduli space behaves badly, and it may contain a continuous family of
curves along with a certain multiple of type I curves.

I would like to argue that the reduced family moduli space over
(Mn − Yγ − S) can be perturbed to be empty.
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First, it follows from the choices of the almost complex structures
and the class C that the curves in this portion of the reduced family
Gromov-Taubes moduli space are reduced complex curves. In other
words, no multiple coverings of type II curves are allowed to show up.

Lemma 8.2. Under the previous convention of (M, C) and the
choices of j, the portion of the reduced family Gromov-Taubes moduli
space over (Mn − Yγ − S) can be chosen to be empty.

Proof. If not, there would be a curve in C −∑ 2Ei which passes
through the d generic sections. The number d stands for dC(C) − n,
the expected family dimension of C −∑ 2Ei. The curve can be used
to define a decomposition of cohomology classes. Then it follows that
either the decomposition is allowable or it can be not allowable, yet the
actual moduli space exceeds the expected dimension.

As was calculated in the note [37] by following Taubes’ argument, if a
decomposition over (Mn−Yγ−S) is allowable, then it must contain some
multiple coverings of type II curves and the type II curves must have a
negative pairing with the total class. If this happens, the projection of
the total curve would be nonreduced, a contradiction to the choice of C
and j. If the decomposition is not allowable, yet its family dimension
jumps up, then its projection to M would give a j pseudo-holomorphic
curve with the prescribed singularity multiplicities such that its actual
dimension exceeds its expected dimension. This violates the choice of j
and is impossible. q.e.d.

Following the machinery of Taubes [51], one considers the family
Seiberg-Witten equations perturbed by −rω, r → ∞. It is crucial at
this moment that the family theory only uses the fiber-wise vertical al-
most complex structures. As a result, Taubes’ theorem implies that the
large r limit of the solutions will converge to pseudo-holomorphic curves
supporting over Mn. As I have shown, the j version of the reduced fam-
ily Gromov-Taubes moduli space does not support over Mn − Yγ − S;
namely the pseudo-holomorphic curves are lying over Yγ and S. The
choice of generic sections and almost complex structures also guarantee
that the reduced Gromov-Taubes moduli space over Yγ consists of a
finite number of smooth points (see Proposition 8.3).

Taubes’ theorem [51], [52], [53] implies that there is a bijective cor-
respondence between the reduced family Seiberg-Witten moduli space
over Yγ and the reduced family Gromov-Taubes moduli space over Yγ

such that the germs of these two spaces are homeomorphic to each other.
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By the reduced family Seiberg-Witten moduli space it means the fol-
lowing: Suppose that d denotes the expected family complex dimension
of the specific spinc structure. Take s1, s2, . . . , sd to be the d number of
sections of the fiber bundle Mn+1 �→ Mn. The fiber-wise homotopy class
of the sections is specified as was discussed in [29]. As a Seiberg-Witten
solution consists of the equivalence class of pairs (A, Ψ, b), b ∈ Mn. The
reduced family Seiberg-Witten moduli space collects all the pairs such
that the restriction of Ψ to the d points s1(b), s2(b), . . . , sd(b) vanish.

As Taubes had written down the identification in fully detail, the
reader can directly consult [51], [52], [53] for details. His proof works for
the smooth curves gluing in the family case with essentially no major
change.

The subtle part that the current gluing theorem [53] does not analyze
is the family moduli space over S.

It is a well known fact in Kähler Seiberg-Witten theory that the
deformation of Kähler forms on a Kähler surface Z does not change the
zero loci of the holomorphic spinors. Instead, the number r that appears
in Taubes’ analysis only changes the scale of a spinor by solving the
Kazdan-Warner equation. More explicitly, given a holomorphic section
s, one needs to solve f : Z �→ R [13] in the equation such that

∆(f) − ef · |s|
2

4
− 1

2
∗ (iF+

A ∧ ω) = rω ∧ ω.

Here ef · s is viewed as a nonunitary gauge transformation acting on
s. The connection A is the background connection.

The explicit form of f is irrelevant to us. Due to the observation,
it follows that the Kähler family moduli spaces for different r can be
canonically identified.

Proposition 8.4. Let Mr1
Kähler and Mr2

Kähler be the Kähler fam-
ily Seiberg-Witten moduli spaces over X = Y (γ). Then there exists a
canonical isomorphism φr1,r2 : Mr1

Kähler �→ Mr2
Kähler between them such

that φr2,r3 ◦ φr1,r2 = φr1,r3. Through these identifications, the tangent
obstruction complex of the moduli spaces are identified, too.

Proof. The argument has been given in [13] when B = pt. The
argument of the family version is identical. q.e.d.

This proposition is the mathematical statement which is mainly re-
sponsible for SW = Gr in the Kähler category and is well known to the
experts. R. Friedman and J. Morgan [13] studied their identification
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as analytic spaces when the irregularity q = 0 and B = pt. In other
words, the dual picture of holomorphic curves counting and the Seiberg-
Witten invariants enumeration is manifest over Kähler surfaces. Thus,
one should view the large r version of the family Kähler Seiberg-Witten
moduli space over X as the nongeneric family moduli space stabilized
under the identifications.

Even though one is not able to count the holomorphic curves over S
as our intuition might have suggested, the Kuranishi model technique
(e.g., [53] or [38]) readily defines some integer associated to the appar-
ently nonsmooth moduli object, which can be further analyzed by using
the concept of admissible decompositions , family blowup formula and
the family switching formula, etc.

Let us continue the previous argument. Consider the version of the
family Seiberg-Witten equations perturbed by the −rω with r large.
Let us take a closer look at the reduced family Seiberg-Witten moduli
space over Mn. First, Taubes’ theorem SW �→ Gr implies that the
r �→ ∞ limits of the solutions (after suitable rescaling by r) gives rise to
some pseudo-holomorphic curves passing through the the same tuples
of defining sections. On the other hand, we have prepared the family
of almost complex structures in a generic way such that the curves
support over Yγ and S. There are a finite number of smooth curves
supporting over Yγ . As the reduced Gromov-Taubes moduli space over
Yγ is Gγ = Sn equivariant, the signed number is divisible by n!, and its
quotient by n! gives the number of n-nodes nodal curves in C. The large
r version of the reduced family Seiberg-Witten moduli space restricted
over Yγ is homeomorphic to the reduced Gromov-Taubes moduli space
over Yγ as a consequence of Taubes’ gluing theorem for smooth curves.

Next, let us move to the reduced family moduli space over S, as it
is another source which contributes to the family invariant in a nontriv-
ial way. Their invariant contribution can be calculated by using some
family Kuranishi model and the switching formula, etc.

As the previous proposition has identified the Kähler family moduli
spaces for different r. The diffeomorphisms φr1,r2 also identify local
neighborhoods of the r1 and r2 versions of the reduced Kähler Seiberg-
Witten moduli spaces over S, denoted by Mr1

Kähler,red ∩ π−1(∂Yγ) and

Mr2
Kähler,red∩π−1(∂Yγ), respectively. Thus, one can identify their family

Kuranishi models and construct a universal family Kuranishi model
working for all large enough r. The previous identification of Kuranishi
models automatically normalizes the fact that the solution spinors and
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the Kähler forms expand with the scale O(
√

r) and O(r) with the r
varying.

Let Mred(ω, r, Z) denote the r · ω perturbed version of the reduced
Seiberg-Witten family moduli space over the set Z ⊂ Mn. When one
takes Z = Mn, one abbreviates it as Mred(ω, r).

The primary concern is to study Mred(ω, r) and its relationship
with the Kähler family Seiberg-Witten moduli space. It follows from
Taubes’ “SW �→ Gr” that the solutions of the rω perturbed(r �→ ∞)
Seiberg-Witten equations creates pseudo-holomorphic curves. On the
other hand, the reduced family Gromov-Taubes moduli space for the
specific family of almost complex structures support over Yγ ∪S. More-
over, its support over Yγ is a finite number of points pi invariant under
the Sn action.

Thus, one concludes that if one chooses the real number r to be
large enough, the image of π : Mred(ω, r) �→ Mn lies in B ∪ O. The
set B,O with B ∩ O = ∅ denote the union of ǫ balls ∪iB(pi, ǫ) and the
ǫ neighborhood of S, N (S, ǫ), respectively. In the mean time we have
implicitly chosen a Riemannian metric over Mn.

Even though the compact sets Mred(ω, r,B) = Mred(ω, r) ×Y (γ) B
and Mred(ω, r,O) = Mred(ω, r) ×Y (γ) O may not consist of a finite
number of points, the standard technique of family Kuranishi model
still allows us to read off the invariant contribution through perturbation
argument [53]. In particular, it follows from Taubes’ argument that the
invariant contribution over Mred(ω, r,B) is identified with the counting
of smooth pseudo-holomorphic curves in the class C − 2

∑
Ej .

The next goal is to compare Mred(ω, r,O) with π−1(S)∩Mr
Kähler,red.

The nested Kuranishi model and the family switching formula, etc.
have been used to read off the invariant contribution from π−1(S) ∩
Mr

Kähler,red. The next proposition identifies this invariant contribution
with the one from Mred(ω, r,O).

Proposition 8.5. Let r be a large enough real number and let nO ∈
Z and nS ∈ Z be the family invariants associated with Mred(ω, r,O) and
π−1(S) ∩Mr

Kähler,red, respectively. Then nO = nS .

If the reduced Kähler family Seiberg-Witten moduli space has been
sufficiently good, the proof of the proposition would be quite trivial.
In the general situation that no additional assumption has been made
upon Mr

Kähler,red, I need to apply the technique I developed to separate
the excess contributions from the residual contributions.
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Proof. In the proof of the main theorem, I argued by induction
over the levels of the admissible decomposition classes that the Kähler
family Seiberg-Witten moduli space can be perturbed coherently such
that the different branches associated with the different admissible de-
compositions are disjoint from each other.

The benefit of working with the perturbed objects rather than the
original Kähler moduli spaces dramatically simplifies the identification.
I view the perturbed version family moduli space as the reference space.
On the other hand, the large r version of the ω deformed family Seiberg-
Witten moduli space can still be viewed as a family Kuranishi model of
the former.

Let us follow the previous convention and name the closure of the
family Seiberg-Witten moduli space over Yγ to be the dominant branch.
The dominant branch of the Kähler family moduli space may support
upon S as well. It is hard to distinguish its contribution to the family
invariants from those from the branches lying completely over S. In the
perturbed version, one needs to make sure that the dominant branch
supports over a compact set ⊂ Y (γ) totally disjoint from S. Once it
is achieved by the specific perturbation, the dominant branch and the
nongeneric branches do not intersect each other.

In this way, one can view the large rω deformed reduced family
moduli space as an alternative family Kuranishi model of the perturbed
dominant branch.

As was discussed, the perturbations are performed after the base
manifold Y (γ) is blown up repeatedly into a sequence of birational

manifolds, finally into Ỹ (γ). However, I can always pull back the large

rω-deformed reduced family moduli space to Ỹ (γ) and compare them

as family Kuranishi models over Ỹ (γ). As Ỹ (γ) �→ Y (γ) is isomorphic
over Yγ , the rω-deformed reduced family moduli space is not altered
under the pull back processes as long as I have chosen the almost com-
plex structure generic enough such that the finite number of pseudo-
holomorphic curves all lie above Yγ .

Both family Kuranishi models are of dimension zero. Either of them
can be interpreted as small perturbations of the dominant branch of the
Kähler family moduli spaces. As the family Kuranishi model defines
a unique invariant, the invariant defined by these two different models
must coincide. q.e.d.

Because the invariant attached to the former is equal to n! times the
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number of j pseudo-holomorphic curves counted by the Gromov-Ruan-
Tian invariant, finally one has identified up to an n! multiple the number
of n-nodes pseudo-holomorphic curves representing C with the family
Seiberg-Witten invariant contribution over Yγ . As the latter object has
been defined to be the modified invariant, as is expressible by a universal
formula in C2, C · KM , K2

M and χ(M), one has the following theorem:

Theorem 8.1. Let C be one of the following:

(1) A cohomology class with C2 > 0 on CP2 satisfying the condition
C = dH, d > n+2

2 ;

(2) A primitive class on K3 or T 4;

(3) A sufficiently very ample class in a pg = 0 algebraic surface.

Under the generic choices of (an S2 family of ) almost complex struc-
tures in a small neighborhood of the specified integrable complex struc-
tures, the modified family invariants FSW ∗ of C −∑ 2Ei are identified
with (up to a n! factor) the (dC − n)-th power coefficient of the power
series FRT (q).

Notice that one imposes the condition C2 > 0 to avoid discussing
the multiple toroidal classes, which are the possible sources of the type
II exceptional curves. The previous identification still works as far as
the following three conditions hold.

(1′) The multiple coverings of type II exceptional curves do not show
up in the generic “reduced” moduli space over the Mn family.

(2′) The permissible decomposition of C, Perm(C) does not contain
any multiple covering of exceptional curves.

(3′) The multiple toroidal classes are excluded as they are, from my
point of view, curves with infinite numbers of singularities.

The coefficients FRT (q) in the special case (2) is already calculated
by Bryan-Leung [5], [6] and later by Parker-Ionel [23] as simple modular
forms and in (3) by Harris-Caporaso [7] by some beautiful recursive
formulas.

As a corollary of the identification, one has the following corollary,
which is known as the Göttsche-Yau-Zaslow conjecture.
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Theorem 8.2. Let M be a K3 surface. Suppose that C is an
integral cohomology class in Pic(M) ⊂ H2(M,Z) of square C2 ≥ 0,
with the additional primitive assumption when C2 = 0. Let Nn(C2) be
“the virtual number” of n nodes nodal curves” in the class C with square
C2. Consider the generating function

Fk(q)
K3 =

∑

r≥2k−2

N r
2
−k+1(r)q

r.

Then it is a quasi modular form, given by (DG2)
k · q

∆(q) , where

∆(q) = q
∏

s

(1 − qs)24 = η(q)24

is the modular form of weight 12 of SL2(Z).

And similarly, for T 4:

Theorem 8.3. Let M = T 4 be an abelian surface. Suppose that
C is an integral cohomology class in Pic(T 4) ⊂ H2(M,Z) of square
C2 ≥ 0, with the additional primitive assumption when C2 = 0. Let
Nn(C2) be the “virtual number” of n-nodal curves in the class C and
consider the generating function

Fk(q)
T 4

=
∑

r≥2k−2

N r
2
−k+1(r)q

r
2 .

Then it is a quasi modular form, given by (DG2)
k · D2G2(q).

The Gromov-Witten analogue of the previous theorems were known
previously in the special cases of “primitive cohomology classes”. It
appeared in the papers of Bryan-Leung [5], [6] and Göttsche [19].

The same theorem also shows that the four different power series
can be explicitly identified in the situation that the curves are nodal.
Let us recall the formulation in Göttsche [19].

First notice that the modified family invariants are equal to zero
if the family dimensions are negative. In this case, one can formally
apply the family blowup formula, etc. to generate formally the same
polynomial as in my main theorem. Let us give them a name “formal
invariants.” They are obtained by extrapolating the universal power se-
ries to the cases that the expected dimensions are negative. I emphasize
this point as the universal formula itself does not include this condition.

Replacing the modified invariants by their formal analogue, one con-
siders the formal power series F for (q).
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Then my main theorem, along with the identification offered here
shows that:

Theorem 8.4. By substituting DG2(q) for q, F for (DG2(q)) can be
identified with

(DG2(q)/q)χ(C)B1(q)
K2

M B2(q)
C·KM

(∆(q)D2G2(q)/q2)
χ(OM )

2

,

with B1(q), B2(q) being power series which are computable from
Caporaso-Harris’ formulas in [7].

In particular, the first 28 terms have been determined by Göttsche
[19]. I want to point out that the insight about the appearance of these
modular and nonmodular objects here is completely due to Yau-Zaslow
and Göttsche. The previous theorem was stated as a conjecture in
Göttsche’s paper. I list it here as an application of the technique in
gauge theory.

Knowing that the Di Francesco-Itzykson conjecture is valid, one
wonders about its generalization toward the general algebraic surfaces.
If the algebraic surface is of nonvanishing geometric genus pg, then it fol-
lows from the fact that they are simple type for the usual Seiberg-Witten
invariants, all the modified family invariants of the classes C −∑miEi

are zero. Thus, the virtual number of nodal curves are all zero. In
other words, the counting of algebraic nodal curves is not an invariant
count in the symplectic setting. That is why I restrict myself to pg = 0
algebraic surfaces in the previous discussion.

Given a class C in the Picard group of an algebraic surface, let
us consider the subset of Perm(C) which collects all the permissible
decompositions containing some nonprimitive classes in its components.
Let us define several concepts:

Definition 8.2. The class C is said to be perfect if there are
no permissible decompositions of C which contain multiple coverings
of exceptional classes generic enough to survive the almost complex
perturbation, i.e., they exists for generic almost complex structures.

Given a perfect class C, the permissible decomposition of C ′ is said
to be a reduction of some permissible decomposition of C if there exists
a map from the components of C to the components of C ′ such that
each component of C is a multiple of the corresponding decomposition
component of C ′. If all the multiplicities are equal to one, it is called
trivial. Otherwise the reduction is said to be nontrivial.
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In b+
2 = 1(pg = 0) category, smooth −1 curves are the only excep-

tional curves that survive the almost complex perturbation. In b+
2 = 1

category, the nonperfect classes are those that the equality SW = Gr
fails naively (cf. [53]).

For obvious reasons, one is only interested in the collections of non-
trivial reduction, which I denote by Permred(C). Following this conven-
tion, Perm(C) ∩ Permred(C) = ∅.

Given a perfect class with nontrivial Permred(C), one defines a di-
mension function α(C) : Permred �→ N∪{0} by counting the sum of the
Gromov-Taubes formal dimension of each component.

Let us define an important number attached to each C.

Definition 8.3. Let α be the Z valued function defined above.
Then one defines α♯(C) to be supx∈Permred(C)α(C)(x).

The number α♯(C) is the maximum value of the function α(C). If
α♯(C) is strictly less than dC(C) by m, then the class is said to be m-
completely perfect. My scheme of curve counting in Section 4 and 5 does
not allow us to say anything explicitly about the nodal curves counting
of a class which is not completely perfect. To do so, it involves the
modification of the scheme, which will depend on the geometry of the
specific manifolds. The machinery built up in [38] is aiming to discuss
this issue.

The specialty of the j-ample classes (by j-ample, one means that
the class defines a positive linear functional on the j-Mori cone) is that
a j-ample class is eventually m-completely perfect, after twisting by a
high k power which may depend on m.

Lemma 8.3. Let C be a j-ample class, then the number d(kC) is
greater than α♯(kC) for large enough k.

The lemma is elementary and is left to the reader. The gap between
d(kC) and α♯(kC) gives us an upper bound on the number of nodes
that the δ nodes nodal pseudo-holomorphic curves (with node numbers
bounded above by this gap) counting can be free from the interruption
of multiple coverings of type II exceptional curves.

Let us remark here that even if the m-completely perfect condition is
satisfied by a class C, there is still serious difficulty to realize the curve
counting in the algebraic or Kähler category. The reduced family moduli
space is not partially good or type II free, since the algebraic curves
seldom behave according to the dimension formula. As was pioneered
by Taubes [51], [52], [53] and Ruan-Tian [48], [49], the almost complex
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category seems to give the better playground for enumerative geometry
of algebraic surfaces.

Let us give some simple examples which are not 1-completely perfect.

Example 8.1. Let C be an effective class on K3 with C2 = 0,
then kC is never m-completely perfect for any m and k.

Let C = dH on CP2, then C is m perfect if and only if m ≤ 2d− 2.

They are both simple translations of my previous observation. This
concept of being m-completely perfect gives a sufficient condition for the
nodal curves invariants defined by the modified family invariants and
the pseudo-holomorphic nodal curves counting to be compatible. In the
following, I would like to explain from the point of view of modified
invariants the special phenomenon happened on K3 and T 4.

Despite the general complications due to the appearance of the type
II exceptional curves, these curves are not harmful to the prediction
of “nodal curves counting” for algebraic K3 and T 4 in the Yau-Zaslow
conjecture.

In the original Yau-Zaslow argument, they predicted that the count-
ing of rational curves in a linear system of K3 is dependent on the
class C through the weaker numerical invariant C2. As the question
of counting algebraic nodal curves in an arbitrary linear system is not
a well posed question, one needs to replace it by some other concept.
In an earlier approach, T. J. Li and the author tried to interpret it as
some Gromov-Witten invariant of pseudo-holomorphic curves. Later, N.
C. Leung and J. Bryan followed the lead and calculated the invariant
for primitive classes. Their calculation was used in the previous argu-
ment to identify the whole power series of nodal curves invariants. In
the following, I follow the definition of modified family Seiberg-Witten
invariants and prove that the virtual numbers are independent of the
geometric details of C.

It turns out that the existence of the hyperkähler structures on these
manifolds and a special type of vanishing theorems on the family invari-
ants play rather crucial roles in our discussion.

As was discussed in [29], one needs to consider X = K3 × S2 or
T 4 × S2 with B = S2. Then one can deform the family Seiberg-Witten
equations by the S2 family of hyperkähler forms. By the family wall
crossing formula [29], it follows that the relevant family invariants are
nonvanishing. As it has been discussed [29] in detail, I do not plan to
repeat it here. It is easy to see that the topological family invariants
of the S2 family are equivalent to the algebraic Seiberg-Witten invari-
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ants for algebraic K3 or T 4. As usual, I have used the curve class to
parameterize the spinc structures.

It was noticed that the family Seiberg-Witten invariants enjoy a
nice functorial property that I plan to discuss. Let C1 and C2 be two
cohomology classes with C2

i ≥ −2. Also let MCi
�→ B denote the

relative family moduli space associated with Ci. Suppose that one is
interested in calculating the family invariant of C1

∐
C2, then one takes

MC1
∐

C2
= MC1 ×f MC2 , the fiber product of the relative moduli

spaces.
As the fiber product of two fibrations can be viewed as the preimages

of the diagonals under MC1 ×MC2 �→ B×B, one can view the original
family invariant as the mixed invariant over a larger family over B ×
B, by inserting PD(∆(B)). The symbol ∆(B) denotes the diagonal
embedding B �→ B × B.

Let ηi be a chosen basis of H ·(B,Z). It is well known that PD(∆(B))
=
∑

ηi ⊗ η∗i . The elements η∗i form the dual basis in H ·(B,Z).
By combining these facts together, the contribution of the pair of

curves C1
∐

C2 to the family invariant is given by

∑

i

FSW (ηi, C1) · FSW (η∗i , C2).

Even if MCi
is not smooth, the identity can be proved easily by

using the family Kuranishi model technique.
By applying the argument to B = S2, one has the following special

vanishing theorem for K3 or T 4. A generalization of this theorem has
been used by T. J. Li and the author to study some other questions.

Proposition 8.6. Let M be either K3 or T 4, with B = S2. Let
C1, C2 be two curve classes in H2(M,Z) such that C1

∐
C2 represents

the coexistence of C1 and C2 among the family. Then the expected
contribution to the family invariant of the coexistence of C1 and C2,
C1
∐

C2, always vanishes.

Proof. It is crucial that S2 has no middle cohomology. Thus,
H ·(S2,Z) is generated by [pt] or [S2]. From the previous formula, it
follows that the contribution of C1

∐
C2 to the S2 family is given by

FSW (1, C1) · FSW ([S2], C2) + FSW ([S2], C1) · FSW (1, C2).

Then its vanishing follows from the well known fact that the ordinary
Seiberg-Witten invariants of K3 and T 4 are trivial for all nonzero spinc
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classes. Notice that I have reinterpreted FSW ([S2], Ci) as the ordinary
Seiberg-Witten invariant, adopting the Gromov type notation. This
completes the proof of the proposition. q.e.d.

As I have discussed, the algebraic Seiberg-Witten invariants of K3
(or T 4) are equivalent to the family invariants over S2. As the space S2 is
hidden in the algebraic invariant, the previous argument does not apply
directly. I outline an equivalent argument that works for the algebraic
“invariants” as well. Let us give a brief discussion as to why it should be
trivial. The reason that the Seiberg-Witten invariants of the algebraic
K3 vanish is because of the appearance of a complex rank one trivial
obstruction bundle over the moduli space. When one promotes it into a
S2 family, it is cancelled by the tangent bundle of S2. The coexistence
of two curves, C1 and C2, produces a rank two trivial obstruction vector
bundle, which cannot be completely cancelled by the one dimensional
TS2. As a result, their contribution to the family invariants is zero.

One can interpret Proposition 8.6 in the following way: if the con-
tribution of C1

∐
C2 to the family invariant is nonzero, it provides a

topological obstruction for the curve C1 to disappear completely while
C2 survives. The vanishing of these types of contributions have been
reflected by the fact that one can deform the S2 family of hyperkähler
complex structures to one with rank(Pic) = 1 locally. The fact has been
used in the previous argument in identifying the nodal invariants.

Consider B = S2 × Mn, with M being either K3 or T 4. It is not
easy to pin down the schematic expression of the expected contribution
of the type II multiple coverings. However, a slight generalization of
the vanishing theorem shows that the expected invariant contribution
of any nonirreducible curves vanishes. This includes the contribution
of the admissible decomposition classes involving the appearance of the
type II exceptional curves.

A complete proof of the fact will involve a longer argument as well as
a lot of new notations. We sketch a simplified argument when Pic = ZC.
It is enough to capture the main spirit of the argument without losing
the generality.

Suppose that C is a primitive class which generates the Picard group
locally among the S2 hyperkähler family. Suppose one is studying the
class kC − 2

∑
Ei and the decomposition involving type II curves looks

like
(k1C − . . . ) + m(k2C − . . . ) + . . . ,

where . . . represent certain terms the details of which we do not care
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about. They can be either the various Ei, the type I or the other type
II exceptional curves, etc. It can happen that the free part k1C − . . .
is zero while m > 1, or m = 1 when k1C − . . . and k2C − . . . coexist.
No matter which possibility occurs, let us take a closer look at the
tangent obstruction complex of the joint curves. It is easy to see that
there is always a trivial rank (≥ 2) obstruction subbundle sitting on
the appropriate moduli space by following the previous argument. As
either the topological or the algebraic family invariants only have the
capacity to remove a trivial obstruction line bundle, the contribution to
the family invariants always vanish. It is not hard to reformulate and
recast the previous argument into an invariant calculation, based on the
family blowup and switching formulas. I do not plan to do so as it will
occupy too much un-necessary space in the paper. The set up of virtual
admissible decomposition classes will be discussed in the sequel to the
paper [41].

I cannot help pointing out the important consequence of the pre-
vious result. It shows that only reduced irreducible curves can have
nontrivial expected contributions to the family invariants. It gives a
philosophical explanation as to why the algebraic geometric counting
of nodal curves gives the same result as from the Gromov-Ruan-Tian
theory. My result implies that the universal “equivalence” of the nodal
invariants is not corrected in terms of what was predicted from the gen-
eral consideration. This type of miracle only happens for these special
manifolds with hyperkähler structures. This also explains why these
manifolds are chosen in identifying the universal power series.

I need to warn the reader that the result does not imply the strong
statement that the top stratum of the family moduli space over Yγn

consists of irreducible curves. In fact, the complex structures may be
chosen such that all curves in the given linear system are reducible. In
this type of situation, the reducible curves do contribute to the invari-
ant (otherwise the invariant would have been simply zero), but their
expected contribution to the invariant still vanish.

The reader who feels puzzled about this fact may consult the ex-
ample in [48]. For a certain choice of perturbation, a certain genus
zero boundary component of the Gromov moduli space suddenly grows
to a wrong dimension and occupies the whole moduli space. Yet their
expected contribution to the Ruan-Tian invariants is zero due to dimen-
sion restriction under the generic perturbation.

Next, let us state an interesting corollary of our explicit identifica-
tion. Namely, one has the following blowup formula of “nodal curves
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invariants.”
Let C be an ample class in M . Consider the one point blowup of

M , denoted by M̃ , then mC − E is ample on M̃ for m large. In fact,
the minimum of m is related to the well known Seshadri constant in the
literature [11].

One is interested in comparing the nodal curves invariants of mC
and mC − E. As usual, let us consider the formal analogue instead
of the actual modified invariants. Then the generating functions are
related by multiplying the original power series by

(
DG2

q

)−1 B2(q)

B1(q)
.

More precisely:

Corollary 8.1 (Blowup Formula of The Nodal Invariants). The
blowup formula relates the generating function in the following way

F for

M̃
(DG2) = F for

M (DG2) ·
(

B2(q)

B1(q)

)
·
(

DG2

q

)−1

,

where B1 and B2 are the two power series derived by Göttsche, starting
as

B1(q) = 1 − q − 5q2 + 30q3 − 345q4 + 2961q5 . . . ,

and
B2(q) = 1 + 5q + 2q2 + 35q3 − 140q4 + 986q5 + . . . .

Proof. This follows from simply plugging K2
M̃

= K2
M −1 and (mC−

E) · K
M̃

= mC · KM + 1 into the universal formula. q.e.d.

One should notice that it is exactly the same process which lead
Kroheimer-Mrowka to derive their blowup formula of Donaldson invari-
ants for simple type manifolds [26]. It is desirable to have a proof of the
Fintushal-Stern style blowup formula, which can cast B1(q) and B2(q)
into a closed form. Even though the proof is simple once assuming the
validity of the main theorem, the corollary admits some interesting inter-
pretations. It implies that the coefficients of the two power series B1(q)
and B2(q) should have a purely local interpretation independent of the
global geometry of the algebraic surface. The identification is from the
global point of view which involves the global geometric information of
the manifolds. The blowup formula of nodal invariants suggests that
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the coefficients can be determined from purely local information, which
is independent of the geometry of the algebraic surfaces. This interpre-
tation resembles a version of local-global duality in geometry. I hope to
come back to this topic in the future.

The following problem is worthy to be further investigated.

Remark 8.2 (Open Problem). Determine the closed forms of
B1(q) and B2(q) and understand their geometric meanings, e.g., find out
the analogue interpretation similar to Yau-Zaslow conjecture. Study the
relationship between B1(q), B2(q) and modular forms. Prove the nodal
curve blow-up formula by local geometry.

The similar factorization formulas for other types of repeated singu-
larities also imply similar blowup formulas for these invariants. In fact,
there are infinite numbers of them such that the case of nodal curves
Γ0 ∈ adm(1) and M = 2 is the lowest among a huge tower.

The detailed structure of these formulas is not well studied at this
moment. The formulas of these types probably have no direct link with
Ruan-Tian type invariants [49].

9. Case study: some explicit determination of the modified

invariants and the relationship with Vainsencher’s work

I have exhausted almost all the effort in giving a theoretical yet ab-
stract deduction. Let us discuss briefly the application of the machinery
developed above to recover the formula of Vainsencher [59].

We will illustrate by using n ≤ 8 cases to give the reader certain in-
sight about how my machinery works and how it relates to the argument
of Vainsencher. Several examples of the admissible decompositions and
the admissible graphs are illustrated.

9.1 The list of Vainsencher’s formulas

Even though the language I have used here is quite different from the
one used in Vainsencher’s paper, the results are parallel for n ≤ 6. The
result for n ≤ 7, 8 is known by Kleiman-Piene [24] already. For historical
interest, the reader can consult Vainsencher’s original paper [59]. Notice
that in my language, the concept of “singular curves” does not show up
at all. My scheme counts the smooth curves in the appropriate resolved
classes. The fact that the invariants can be related to the nonnodal
singular curves is NOT used in the proof of the main theorem.



554 ai-ko liu

Let us begin by listing the recursive formulas of Vainsencher for
n ≤ 6. I follow his notations but rearrange the terms.

n!tgn = ♯Σ((2[n]); S), n = 1, 2, 3;

♯Σ((2[4]); S) = 4!tg4 + 6♯Σ((3); S);

♯Σ((2[5]); S) = 5!tg5 + 30♯Σ((3, 2); S);

♯Σ((2[6]); S) = 6!tg6 + 30♯Σ((3(2));S) + 90♯Σ((3, 2, 2); S);

♯Σ((2[7]); S) = 7!tg7 + 210♯Σ((3(2)), 2; S)

+1260♯Σ((3, 2, 2, 2); S) + 30♯Σ(3(2)′; S)).

In his notation, S is the algebraic surface, while tgn is equal to Nn in
my notation. For the definition of ♯Σ, please consult his original paper
[59].

We will see how these coefficients come out from the admissible
graphs and the weights are deduced from the family blowup formula. It
will be clear in a moment how his notion ♯Σ can be related to FSW ∗.

In the general proof, I have not written down explicitly the terms
FSW ∗ on the right hand side. In practice, it will be rather difficult to
identify all the admissible decomposition classes, especially when n goes
large. Some of them do not contribute to the invariants by the vanishing
theorem deduced before. Therefore, my proof is a theoretical proof
rather than an enumerative one. In the following I plan to discuss the
small n cases and link the modified invariants FSW ∗ and the admissible
decompositions of different levels with the counting of nonnodal curves.

First one has:

Proposition 9.1. For n ≤ 2, the smooth representatives with-
out type I components are the only representatives that are admissible.
Therefore, the invariant FSW (1, C − 2E1) or FSW (1, C − 2E1 − 2E2)
are manifestly equal to FSW ∗. In other words, the admissible decom-
positions are all of level zero (generic).

Proof. The proposition is proved by a direct calculation, we omit
the simple arithmetic here. q.e.d.

Before studying the concrete examples, let us make a brief remark
here.
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Remark 9.1. The nongeneric admissible decomposition classes
appearing in the following examples all have unique representatives.
Because they are eventually reduced to some mixed family invariants
involving a few nodes, one can easily identify those invariants with the
counting of of nonnodal singular curves. One should be cautious that
when n goes larger, the family invariants associated with those non-
generic admissible classes may need to be modified before I interpret
them as enumerative invariants. I do not go into details here because
these interpretations do not affect the proof of my main theorem.

9.2 The n=3, 4 cases

Take n = 3. Then there exists an exceptional curve W = E1 −E2 −E3,
whose pairing with L = C − 2(E1 +E2 +E3) is equal to -2. As a result,
when W shows up, L must split as L−W + W . As it is of multiplicity
one and (L−W ) ·W = 1, the expected dimension of the curve is lower
than the smooth representative [51]. It is not admissible.

The first nonnodal contribution shows up when n = 4. The case was
discussed theoretically in Example 7.1. Let us be brief here. By adding
a new vertex “4” to a graph in adm(3), one obtains an injection from
adm(3) to adm(4). We are interested in the graphs in adm(4)−adm(3).
Let us consider Γ to be the admissible graph ∈ adm(4), with three
edges from 1st vertex to the vertexes marked 2, 3 and 4. The stratum
associated with it has complex codimension 3. The exceptional curves
in the preexceptional cone CΓ is generated by E1−E2−E3−E4, E2, E3

and E4. The strata is the locus that these type I curves coexist.

As has been discussed in Example 7.1 that L − W + W with (L −
W ) · W = 0 is a new admissible decomposition of level 1. We have
L − W = C − 3E1 − E2 − E3 − E4.

For this type of graph, we have G(Γ) = GΓ = S3, permuting the last
three vertexes. Therefore, σ(Γ) = 1.

Applying the family blowup formula to the situation, notice that the
vertexes 2, 3, 4 are all subredundant. By the construction of cores, one
can in principle reduce the invariant to its core, the one vertex graph in
the situation. Originally one has FSW ∗(c, L − W ) = FSW (c, L − W ),
where c is the cohomology class dual to Y (Γ). This follows from the
fact that there are no level two admissible decomposition classes. It is
easy to calculate by Proposition 4.4 that

c = π∗
2(E1(2)) ∪ π∗

3(E1(3) − E2(3)) ∪ π∗
4(E1(4) − E2(4) − E3(4)).
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On the other hand, blowing down three times produces

c′ = π∗
2(C − 3E1(2)) ∪ π∗

3(C − 3E1(3) − E2(3))

∪ π∗
4(C − 3E1(4) − E2(4) − E3(4)),

By pairing c with c′ one finds that the original invariant is equal to
FSW (c∪ c′, C − 3E1) evaluated on the fiber bundle formed by the fiber
product of M2 �→ M with M4 �→ M . Due to the next vanishing result,
one reduces to the pure invariant on M2 �→ M , FSW (1, C − 3E1). The
coefficient 6 comes from

∫
M4/M1

c∪c′. It matches up with the coefficient

in front of ♯Σ((3); S) in Vainsencher’s formula. Let us remind the reader
that the number 6 does not come from σ(Γ) as one may suspect naively.

9.3 The vanishing theorem and n=5, 6

Let us first recall the vanishing theorem of family Seiberg-Witten in-
variants.

Theorem 9.1. Let B1, B2 be two smooth base spaces. Let g : B1 �→
B2. Let X �→ B2 be a fiber bundle of four-manifolds with b+

2 > 0. One
can consider the fiber product of X with B1 by pulling back the fiber
bundle X �→ B2 to B1. Then one can pull back the spinc structure
on X to a spinc structure on X ×B2 B1. One can consider the family
Seiberg-Witten invariant on the new fiber bundle in the corresponding
pulled back chambers. Then we have

FSW (c, ·) = 0 unless c is in the image of

[Fz]∪ : H∗(B2, Z) �→ H∗(B1, Z)

by cupping with the Poincare dual of the fibers Fz = g−1(z), z ∈ B2.

Proof. The proof of the theorem is given in Theorem 7.2. It is
similar to the argument of the special case B1 = M × Mn �→ Mn = B2.

q.e.d.

If n is equal to 5, one still has the canonical embedding
ST 5

4 : adm(4) �→ adm(5), by adding a new vertex marked by 5. The
image of the graph Γ in adm(5) also gives a nontrivial contribution to
FSW . On the other hand, we would like to investigate the elements in
adm(5) − ST 5

4 (adm(4)).

Lemma 9.1. Let Γ be an admissible graph such that every vertex of
Γ has less than three direct descendents, then Γ cannot be in Φ(ADM) ⊂
adm(n) with respect to C − 2E1 − 2E2 − 2E3 . . . − 2En.
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This lemma rules out almost all elements in adm(5)−ST 5
4 (adm(4))

from being in the image of Φ map. The only new element that survives
is the graph Γ, constructed by adding the new edge from the vertex 1
to the vertex 5.

This particular stratum is of complex codimension 4 in M5, even
though it is an admissible decomposition class. It turns out that the
invariant FSW ∗ does not contribute to the right hand side due to the
vanishing theorem, Theorem 9.1.

Remark 9.2. This example indicates that not all the admissi-
ble decomposition classes contribute to the invariant. In Vainsencher’s
formulation, it was directly thrown away by dimension reason. In my
approach, it can be ignored only after applying the vanishing result ap-
propriately. The main difference between Vainsencher’s approach ( [59],
see also [24]) and mine is that I consider the class C−∑ 2Ei rather than
the singular curves themselves (which can be different from C −∑ 2Ei

if nonnodal singularities develop). It turns out that it is the type I
exceptional classes which affect the counting in a rather subtle way.

Consider the admissible graph ∈ adm(n) with n − 1 edges linking
from 1 to 2, 3, · · ·n. Let W = E1 − E2 · · · − En be the exceptional
curve associated with the first vertex. One calculates that W · L =
4 − 2n. W 2 = −n. Then the decomposition L = L − 2W + 2W with
(L − 2W ) · W = 4 is an allowable decomposition (for n ≥ 5 > −(−4)).
which lies in some admissible decomposition class.

The obstruction bundle can be calculated to be of complex (n −
4 − 1) + (2n − 4 − 1) = 3n − 10 dimension. On the other hand, as
L = C −∑ 2Ei, L − 2W = C − 4E1 does not depend on the class
Ei, 2 ≤ i ≤ n, then the cohomology class (and the corresponding spinc

structure) is pulled back from M2 �→ M1 by B1 = Mn �→ M1 = B2.
From the vanishing theorem, the mixed family invariant is zero unless
the base class insertion is in the image of H∗(M1) �→ H∗(Mn).

In order that the contribution is nonzero, it is necessary to have
3n − 10 ≥ 2n − 2. The number n must be greater than or equal to
8. This statement replaces the corresponding argument in Vainsencher
[59] that the curves with multiplicity= 4 singularities contribute to the
curve counting only when n ≥ 8.
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9.4 The n=7 cases

First I consider the special admissible graph linking 1 to three of the
remaining 6 vertexes and leave the other three untouched. The σ(Γ) of
this type of graphs is 35. On the other hand, there is a standard factor 6
appearing in the family invariant by the similar derivation I performed
in the previous cases. It turns out that the number 210 = 35× 6 shows
up in front of the net contribution.

Let us consider the graph connecting edges from the first vertex to
the second and the third and the 6th. Then one connects edges between
the 2nd vertex and the vertexes marked 4, 5, 6. Finally one leaves the
7th vertex un-touched. It is the stable version of the Figure 6a. The
number σ(Γ) is given by 105. On the other hand, there is a standard
factor 2 in front of the family invariant after I perform the reduction
using family blowup formula. As a result, the coefficient 210 appears in
front of the invariant.

Another type of new contribution comes from the graph in Figure 7a.

Let 1, 2, 3, 4, 5, 6, 7 be the 7 vertexes marked by these numbers. One
connects 1 to 2, 4, 7. Then one connects 2 to 3, 4, 6. One also connects
the 3−rd vertex to the vertexes 5, 6, 7. The graph has 9 edges and three
loops. According to Proposition 4.3, the stratum corresponding to this
graph is of complex codimension 9. First let us calculate σ(Γ).
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The first two vertexes 1 and 2 are fixed. The vertex 4 can be replaced
by any vertex between 3 and 7 (there are exactly 5 different ways to pick
it). Once it is fixed, there are 4 vertexes left unmarked. Then one picks
the smallest number among them to replace 3. I assign the remaining
three numbers to vertexes 5, 6, 7 according to all possible orders and the
resulting graphs are not equivalent to each other. As a result, σ(Γ) = 30.
It is also easy to see that G(Γ) is the semi-direct product of Z/5Z and
S3 while GΓ = {1}.

Over the compactification of this stratum, the class L = C −2(E1 +
· · · + E7) has negative pairings with W1 = E1 − E2 − E3 − E7, W2 =
E2 − E3 − E4 − E6 and W3 = E3 − E5 − E6 − E7. In other words,
if the class L is represented by a pseudo-holomorphic curve, certain
multiples of W1, W2, W3 must show up. It turns out that Wi · Wj = 0
for i, j = 1, 2, 3. L · Wi = −4, 1 ≤ i ≤ 3 and W 2

i = −4.
Thus, the new admissible decomposition splits L into

L′ + W1 + W2 + W3

with L′ = C − 3E1 − 2E2 − E3 − E4 − E5.
In this way, the invariant contribution should be FSW (1, L′) with

the invariant being calculated over Y (Γ).
Similarly, one considers the space Y (Γred) in M5. Γred is obtained

from Γ by removing the vertexes 4 and 5 from the graph (please see
Figure 7b). The resulting graph contains 5 vertexes. The new graph
has 7 edges and three different loops. According to the general concept
of cores, it is the core with respect to the class L′ that I discussed before.

The space Y (Γ) has a (CP1)2 fibration structure over the space
Y (Γred).

Applying the family blowup formula reducing the class L′ to C −
3E1 − 2E2 − E4, the invariant is then replaced by

FSW (c, C − 3E1 − 2E2 − E4),

with c = π∗
4(C − 3E1(4)− 2E2(4)−E3(4))∪ π∗

5(C − 3E1(5)− 2E2(5)−
E3(5) − E4(5)).

Using the fact that the fibers CP1 × CP1 are dual to π∗
4(E2(4) −

E3(4)) ∪ π∗
5(E4(5)), one finds that the mixed invariant can be reduced

to
FSW (1, C − 3E1 − 2E2 − E4),

with the invariant being calculated on Y (Γred). The Y (Γred) is a complex
three dimensional submanifold in M5. From the fact that there are
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E_1

C-3E_1

The result of first blow up

Figure 8

three loops in Γred, it turns out that YΓred
is isomorphic to the stratum

corresponding to the graph 1 �→ 2 in M2. From here, one can calculate
the invariant by using either family blowup formula or by identifying
this invariant with the counting of curves with a triple point. The proper
transformation has two branches passing through E1, while one of these
branches being tangent to E1. In the old notation of Vainsencher [59] it
was denoted by 3(2)′. If one remarks the graph by switching the order
of the 3rd and 4th vertexes, then it is illegal to blow down the third
exceptional curve without doing it for the fourth one first. Therefore,
our blowup formula formalism does not connect it with the counting of
singular curves of type 3(2)′ directly. If one bears in mind that the new
graph is equivalent to the original one by some element in G(Γ), then
their contributions can be identified by using the group actions of G(Γ)
and by the existence of the universal formulas. The argument has been
outlined in Section 5.4 and Section 7.2.
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9.5 The case n=8

If n is equal to 8, the naive counting of Vainsencher failed. As his
argument extensively relies on the transversality of the zeros of the
obstruction bundle (or in his terminology, the reduceness of the space
and the correctness of the dimension), his method breaks down when
the assumption does not hold.

Let the curve C be a singular curve with a fourth order point. Then
a single resolution of the algebraic surface at the singular point resolves
into a smooth curve which intersects the exceptional curve at four dif-
ferent points. However, as I use the cohomology class C − 2E1 instead
of C − 4E1, it is represented as C − 4E1 + 2E1. Namely, the double
covering of E1 shows up among the irreducible components. As there
is an infinite number of singularities now, any further blowing ups at
the support of E1 will detect singularities. In other words, the points in
M8 that associate to singular curves become nonisolated! That is why
Vainsencher’s counting fails. My key observation is that by applying
the family Seiberg-Witten theory, the counting still makes sense in the
situation. The so-called family switching formula was not originally de-
veloped for the nodal curves counting. After applying my tools to the
current situation, it resolves the question immediately. It was histori-
cally the first indication that the family Seiberg-Witten theory should
solve the problem.

There are a few different admissible decomposition classes which
could contribute to the family invariant. Define Wf = E1−E2−E3 · · ·−
Ef to be an −f curve. For each 8 ≥ f ≥ 3, any holomorphic curve in
C−∑i≤8 2Ei coexists with an irreducible Wf must split off at least one
copy of Wf . The existence loci of Wf can be described easily as the
admissible strata associated with the admissible graphs Γf . Each Γf is
the union of 8 − f free vertexes and a f − 1 fan graph.

Consider the admissible decomposition classes of the form (C−4E1−
2Ef+1 − 2Ef+2 · · · − 2E8, 2Wf ) when f ≥ 5. They are all non-Taubes
type decompositions as the double coverings of Wf are involved.

The family dimensions of these decomposition classes are easily cal-
culated. They are all of dC(C)− 1 = dC(C − 2

∑
i≤8 Ei)+ 7 dimension.

In other words, all these non-Taubes type decompositions are of 7 di-
mension higher than the expected dimension of nodal curves. A priori,
all these decomposition classes can contribute to the family invariants.
In fact, it is not the case. The f = 5, 6, 7 cases can be proved to con-
tribute trivially due to the vanishing theorem.
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One finds out that the only admissible decomposition of C−2E1 · · ·−
2E8 that contributes is

C − 4E1 + 2W8 = C − 4E1 + 2(E1 − E2 − E3 − E4 · · · − E8),

with
W8 · (C − 4E1) = 4.

I will describe immediately the contribution of this type of curve to the
family invariant. For f = 4, there is a level one admissible decompo-
sition class of the form (C − 3E1 − E2 · · · − E4 − 2(E5 · · · − E8), W4);
which is a nongeneric Taubes type decomposition. The decomposition
(C − 4E1, 2W8) is of level 5 in terms of our terminology.

In terms of my formulation, the nonisolated locus in Vainsencher’s
observation can be identified as follows. Given a singular curve in |C|
singular at the point p. The locus (it does not consist of isolated points
any more) in M8 is the space Y (Γ) ∩ f−1(p), where f = f7 · f6 · · · f1 is
the projection map M8 �→ M1. The graph Γ in the current situation is
the n = 8 version of the graph in Figure 4. The space YΓ is the locus
that the −8 curve W = E1 −

∑
i≥2 Ei exists. The closure Y (Γ) is the

locus (⊂ M8) that the pseudo-holomorphic curve E1 −∑i≥2 Ei or its
various degenerations support upon.

According to the general scheme [37] or the proof of my main theo-
rem, the contribution of this type of curve should be given by FSW (c∪
c′, C − 4E1), where c represents PD(Y (Γ)), while the cohomology class
c′ ∈ H∗(M8) is the sum of the various chern classes of V.

c′ =
∑

i

ci(V).

The bundle V is a certain complex rank 7 virtual vector bundle on
M8. If one restricts to the sublocus, one can choose an explicit bundle
representative in the K group which have a direct geometric meaning.

By dimension reason, only the 7th Chern class contributes nontriv-
ially. Therefore, the net contribution is FSW (c ∪ c7(V), C − 4E1). By
applying the family blowup formula seven times, one reduces the invari-
ant to FSW (c∪ c7(V), C−4E1), where the fiber bundle is the pull back
of M2 �→ M by M8 �→ M . The graphical operation corresponds to the
reduction of subredundant vertexes. Because the fiber bundle is pulled
back from M , one can push forward along M8 �→ M , and the invariant is
reduced to FSW (f∗(c∪c7(V)), C−4E1) on M . By using c = PD(Y (Γ))
and the fibration structure g : Y (Γ) �→ M , the invariant is equal to
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FSW (g∗(c7(V)), C − 4E1). Suppose g∗(c7(V)) = r[pt] ∈ H0(M, Z),
then the final answer will simply be r · FSW (1, C − 4E1). One learns
that FSW (1, C − 4E1) calculates the number of singular curves with a
fourth order point.

Using Vainsencher’s notation, it is expressible as r · ♯Σ((4); S). The
integer r can be calculated by using the family index theorem. As
we do not plan to enumerate the polynomial explicitly by the direct
calculation, I skip the detail calculation here. The key point is that the
integer r is derived from the topological information of the obstruction
bundle, which is constructed from the curve W = E1 −E2 −E3 − · · · −
E8 and π∗

1C. The number r is independent of C as it is obtained by
integrating c7(V) along g : Y (Γ) �→ M .

Summary 1. In the previous discussion, I only list the admissi-
ble decompositions which contribute to the invariants. There are many
other admissible decompositions which do not contribute to the invari-
ants. In this sense, Vainsencher’s original argument was much more
economical than ours. As my goal is to prove the existence of the uni-
versal formula rather than to enumerate the invariants directly, it should
not be viewed as a defect.

9.6 A Simple comparison of my scheme with the one from

the excess intersection theory

Finally, I want to make the link between my approach and the one from
the excess intersection theory, e.g., [16]. I point out the relationship for
the reader who has special algebraic-geometric interest in the topic. I
do not plan to give a full length discussion here but may consider the
details along the line in the sequel to this paper. I only discuss the
concrete example when n = 8, given the fact that all the general cases
follow similarly.

Consider the class C−2
∑

i Ei with n = 8. The admissible decompo-
sition class discussed in the previous section was given by C−4E1 +2W
with W = E1−E2−E3 . . .−E8. Let Γ be the admissible graph attached
to W , the graph starting at 1 with 2, . . . 8 being its direct descendents.

As was discussed already, the obstruction bundle is of complex 14
dimension. It can be decomposed into V1 ⊕ V2; each is seven dimen-
sional. The virtual bundle V1 is closely related to the obstruction bundle
of the −8 curve. According to the general recipe derived from the fam-
ily switching formula [39], the mixed invariant that contributes to the
counting is given by FSW (c7(V1)·

∑
i ci(V2), C−4E1) with B = M8. Let
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π : X �→ M8 be the fiber bundle projection map, then the vector bundle
V1 is virtually isomorphic to [Rπ∗O]− [Rπ∗O(W )] over Y (Γ). And it is
easy to see that c7(V1) is Poincare dual to the compactification of the
stratum, Y (Γ). As g : Y (Γ) �→ M1 = M has a fibration structure, the
mixed invariant can be recast into the

∫
g−1(p) c7(V2) ·FSW (1, C −4E1),

where the pure invariant is evaluated on M1 = M . This is the answer
predicted by the family Seiberg-Witten theory in light of Gromov the-
ory, as was worked out in the previous subsection. On the other hand,
let us investigate the question in light of algebraic geometry [16].

Given a singular curve with fourth order singular point, the first
blown up point is fixed without choice. The proper transformation of
the singular curve is then C − 4E1. Instead, the family invariant used
to count the nodal curve is C − 2E1 − 2E2 − 2E3 · · ·− 2E8, then we find
that C−2E1 splits into C−4E1+2E1 with a nonreduced component. A
nonreduced component is viewed as a curve with an infinite number of
singularities, then the consecutive blow-ups can be applied on the curve
2E1, producing a high dimensional locus over which the curve C − 4E1

exists. In fact, this is the main ill symptom of the counting scheme
studied by Vainsencher [59]. In particular, the same problem also shows
up when n > 8 in a more complicated way.

Let us study the particular example by the residual intersection the-
ory. I will show that under the transversality assumption (which can be
avoided by using the Seiberg-Witten theory approach), the calculation
based on the residual intersection theory does match our calculation
from the point of view of Gromov-Taubes theory.

It is easy to see that, given a singular curve with a fourth order
point at p ∈ M , the locus corresponding to it can be identified with
g−1(p) ⊂ Y (Γ) ⊂ M8. In other words, the Euler class of the appropriate
obstruction vector bundle is not represented by a transversal section.

To handle this situation, let me recall the formula developed in Ful-
ton’s book [16]. All the terminologies in the following are understood
in the algebraic context.

Theorem 9.2 (Residual Formula for Top Chern Classes). Let s be
a section of a rank e vector bundle E on a purely n dimensional scheme
X. Assume that Z(s) contains D, an effective Cartier divisor on X.
Then there is a section s′ of E ⊗O(−D) such that the canonical homo-
morphism from E ⊗ O(−D) to E takes s′ to s. (Locally the functions
defining s are divisible by an equation for D, and the quotients define
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s′.) In addition, Z(s′) is the residual scheme to D in Z(s) and

Z(s) = Z(s′) +
∑

i

(−1)i−1ce−i(E) ∩ Di−1 · [D]

in An−e(Z(s)). In particular, if s′ is a regular section, then Z(s′) =
[Z(s′)], which gives an explicit formula for Z(s).

The above theorem is a word by word reproduction of the Exam-
ple 14.1.4 in Fulton’s book [16]. Let us consider the case of M being
algebraic.

In my set up, I first take X = M8. In Fulton’s formulation, the space
D must be a Cartier Divisor. I assume that I have chosen a linear sub-
system of |C| such that there are a finite number of singular curves with
fourth order singular points among them. Moreover, I assume for sim-
plicity that the scheme of the singular curves with fourth order points is
reduced and transversal. Notice that in algebraic geometry, one usually
imposes extra conditions on very ampleness of the complete linear sys-
tem to achieve this condition. Let C1, C2 · · ·Cr be, respectively, these
r different singular curves, and let p1, p2, · · · pr be their singular points.
Then the degenerated locus is given by Z = ∪i≤rg

−1(pi) ⊂ Y (Γ). This
locus is understood as the projection of Z(s) ⊂ |C| × M8 into M8. To
calculate their contributions to the curve counting, one needs to blow
up the loci to make them into Weil divisors. Therefore, I must consider
X to be the blown up manifold of M8 along the locus ∪i≤rg

−1(pi), and
the Cartier divisor D is chosen to be the (union of) exceptional divisor.
As the original locus ∪i≤rg

−1(pi) is smooth, D has a projective space
bundle structure over its base. Since Z is complex 7 dimensional, the
divisor D is of complex 15 dimension and the fiber projective spaces are
of complex 8 dimensional.

As Z breaks up into different connected components, we may assume
that r = 1, and the net result we get should be multiplied by the number
of the singular curves to get the total result.

Given the fact that the situation starts from counting the nodal
curves, the obstruction bundle E is given by the following expression:

Let C(i) = C − 2
∑

j≤i Ej be the cohomology classes intertwining
C and C(8) = C − 2

∑
Ej . Recall that I defined fl : Ml+1 �→ Ml on

page 400. One defines ha,b : Ma �→ Mb to be the composition of various
fl. In fact, one has ha,b = fb ◦ fb+1 · · · fa−1. Let the relative tangent
bundle of fl : Ml+1 �→ Ml be denoted by El. Then El is a complex rank
two vector bundle over Ml+1. Based on these notations, the obstruction
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bundle E can be written as

⊕0≤iC(i) ⊗ (h∗
n,i+1E∗

i ⊕ C).

It is clear that the vector bundle E is of rank 24.
To relate the two different approaches, one has the following crucial

proposition whose proof was hidden in the family switching formula:

Proposition 9.2. Let E be the obstruction bundle defined above;
then the restriction of E to Y (Γ) has an alternative decomposition in
the K group.

E|Y (Γ) = V1 ⊕ V2 ⊕ V3.

The virtual vector bundles V1 and V2 are defined as before and the vector
bundle V3 is complex 10 dimensional.

V3 = g∗(S3(T ∗M ⊕ C) ⊗ C).

The decomposition of the obstruction bundle into factors constitutes
the main ingredient of the hidden link.

Let us see how the proposition, along with the residual intersec-
tion theory in [16], lead to an alternative calculation of the nonisolated
contribution of the counting parallel to ours.

From Fulton’s theory, the contribution to the counting of the top
chern classes is given by

∑

i

(−1)i−1ce−i(E) ∩ Di−1 · [D].

By using D as the exceptional divisor, which has a projective space
bundle structure over Z, one reduces this explicit contribution to an
evaluation over D, where D is also viewed as the tautological line bundle
of the projective space bundle over Z. On the other hand, let us denote
the normal bundle of Z ⊂ M8 by NZ . Then the scheme D is isomorphic
to P (N). According to the previous proposition, the equivalence class
of the vector bundle E enjoys a special decomposition restricted to Z.
In particular, the same decomposition still survives after one pulls back
the vector bundle from Z to D. Thus, I can assume at this moment
that the vector bundle E is simply the direct sum of these three complex
vector bundles of ranks 7, 7 and 10, respectively.

By using the defining property of the Segre classes, one finds that
the previous expression can be reexpressed as c(E) · s(N)[P (N)], where
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c and s represent the total Chern classes and Segre classes, respectively.
It immediately leads to a dramatic simplification once one realizes that
V1 ⊕ C2 = N !

From here it follows that c(E)·s(N)[P (N)] = c(V2⊕V3)[Z]. By using
the fact that Z is the typical fiber of g : Y (Γ) �→ M , and the fact that V3

is pulled back from M by g∗, one further reduces the previous expression
to c(V2)[Z]. Because Z is 7 dimensional, the expression finally simplifies
to c7(V2)[Z]. The answer here should be multiplied by the number
of singular curves with fourth order points, which finally leads to the
final expression, identical to the one given by family Seiberg-Witten
theory. One notices that the the points p1, p2, . . . pr can be interpreted
as the projection of the zero locus of the canonical section of V3 on
|C| × M . According to the standard theory, it can be reduced further
to
∫
M c2(V3), as was discussed in [29]. The same expression essentially

appears in the family blowup formula reducing FSWM (1, C − 4E1) to
a mixed invariant.

A much more detailed discussion along this line will be presented in
Part II of the paper.

10. List of notations

A A connection of some positive spinc spinor bundle which satisfies the
Seiberg-Witten equations. See page 393.

Ai(Γ0,M0) the four formal power series in q which appear in the fac-
torization of the generating function of the normalized modified
invariants with type Γ0,M0. See Theorem 7.5 on page 522.

adm(l) the set of the admissible graphs marked by {1, 2, · · · , l}. See
page 415.

adm(I) the set of the admissible graphs marked by a finite set I ⊂ N.
See page 415.

adm(n)′ the equivalence classes of admissible graphs in adm(n) under
the action of admissibility preserving elements in the symmetric
group Sl. See Proposition 4.10 on page 433.

ASW(η, C0) the mixed algebraic Seiberg-Witten invariant of the class
C0, where η is an element in the cycle class group A(B). See
page 403.
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ADM the set of admissible decompositions with C0 = C − M(E)E
fixed. See page 437.

ADM(s) the set of level s admissible decompositions in ADM. See
page 437.

B the base manifold of a fiber bundle X �→ B. See page 395.

BlXY the blown up manifold by blowing up the almost complex sub-
manifold X ⊂ Y . See page 468.

C in the symplectic setting, a cohomology class on H2(M,Z) or in the
holomorphic geometry setting, a divisor class on M . See page 393.

C0 a fiberwise class over X �→ B. In the fiber bundle Ml+1 �→ Ml, it is
taken to be of the form C − M(E)E. See page 405.

CΓ the preexceptional cone attached to YΓ which is generated by a
finite number of type I exceptional classes. See page 415.

Cj the j-Mori cone of an almost complex structure j. CQ
j denotes the

subset of Cj with energy bounded above by Q. Please consult
Definition 8.1 on page 526.

codim(Γ) codimension of an admissible graph, defined by counting the
number of 1-edges on Γ. See page 416.

comp(Γ) the number of connected components of a graph.

core(Γ,M) the core of a topological type of singular curves (Γ, C −
M(E)E). See Definition 5.3 on page 436.

χ(M) the Euler number of the manifold M .

dR(C0) the real dimension of fiberwise Seiberg-Witten moduli space of
the class C0, which is equal to C2

0 − K · C0. See page 394.

dC(C0) the complex dimension of fiberwise Seiberg-Witten moduli space

of the class C0, which is equal to
C2

0−K·C0

2 . See page 396.

dimR B the real dimension of the manifold B.

D a decomposition class which consists of a collection of decompositions
of the form (C−∑miei,

∑
miei). See Definition 4.4 on page 408.
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≫,≪ the subordinate partial ordering among different decomposition
classes. See Definition 4.5 on page 409.

∆ab the (a, b) diagonal in M l. See the proof of Proposition 3.1 on
page 402.

∆l the relative diagonal map from Ml to Pl = Ml ×Ml−1
Ml. See the

proof of Proposition 5.4 on page 451.

∆(q) the weight 12 modular form of SL2(Z). See Theorem-Corollary 1.1
on page 389.

∆II(q) the difference between Fnor(q) and FRT (q) which involves the
contribution from the type II exceptional curves. See page 538.

ECb(C0) the exceptional cone of a class C0 over b ∈ B. See Defini-
tion 4.2 on page 405.

Edge(Γ) the set of 1-edges of Γ. See Definition 4.9 on page 414.

Ei(j), i ≤ j, 1 ≤ j ≤ l the cohomology class in H∗(Ml,Z) associated to
the (i, j) blowing up. Occasionally, the same symbol also denotes
the divisor class of the exceptional divisor. See page 402.

Ei the fiberwise exceptional class associated to the i-th blowing up. See
page 416.

ei the cohomology class of an exceptional curve. In this paper, it refers
mostly to a type I exceptional class. See page 405, Definition 4.3
on page 408 and page 416.

ǫ an edge of an admissible graph. See page 424.

e(ǫ) the ending vertex of an edge ǫ. See page 424.

F(Γ0,M0; M) the generating fuction of the modified family invariant on
M with duplicated singularities of type Γ0,M0. The symbol

F(Γ0,M0; M) denotes the normalized generating function by the
change of variable t �→ |GΓ0,M0 |t. See page 519.

FSWB(1, C0) the pure family Seiberg-Witten Invariant of the class C0,
associated to the spinc structure parameterized by L = 2C0 −
KM over the base B. We use FSWB〈1,L〉 when we use L to
parameterize the invariant. See page 395.
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FSWB(c, C0) the mixed family Seiberg-Witten Invariant of the class
C0, associated to the spinc structure 2C0 − KM over the base B.
The class c denotes a cohomology class ∈ H ·(B,Z). See page 395.

FSW (D) the short hand notation of the mixed family invariant deter-
mined by the decomposition class D. See page 448.

FSW ∗(1, C0), FSW ∗(c, C0) the pure and mixed modified family invari-
ant. Please consult Subsection 5.1 on page 437.

FSW ∗(D) the short hand notation of the modified mixed family invari-
ant determined by the decomposition class D. See page 448.

FRT (q) the compound Ruan-Tian power series. See page 537.

Fk(q)
K3 the generating function enumerating the number of nodal curves
on K3. See Theorem-Corollary 1.1 on page 389.

Fk(q)
T 4

the generating function enumerating the number of nodal curve
on T 4. See Theorem-Corollary 1.2 on page 389.

F for (q) the formal power series of normalized family invariant enumer-
ating the nodal curves in |L| on M . See Theorem 1.1 on page 390.

F for

M̃
(q) the formal power series of normalized family invariant enumer-

ating the nodal curves in |L − E| on the blown up M̃ . See Theo-
rem 1.2 on page 390.

fl : Ml �→ Ml−1 The natural projection map from Ml to Ml−1 which
gives Ml a fiber bundle structure over Ml−1. Please see page 400.

G2(q) the weight two quasi-modular form, which is an Einsenstein se-
ries. Please see Theorem-Corollary 1.1 on page 389.

tgn the number n nodes nodal curves in a linear system. Used by
Vainsencher in [59]. See page 554.

γ the trivial admissible graph with no edges. γl denotes the trivial
admissible graph with l free vertexes. See page 418.

Γ An admissible graph. Please consult Subsection 4.3 on page 412.

Γ(−1) the admissible graph constructed from Γ by removing the l-th
vertex along with all the 1-edges ending at l. Please consult Sub-
section 4.4.1 on page 418.
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Γi the admissible graph derived from Γ by removing all the edges Not

starting from the vertex marked i. Please see page 417.

Γei
the admissible graph attached to ei such that Y (Γei

) can be identi-
fied with the existence locus of the type I exceptional curve dual
to ei. Please consult page 442.

ΓD the admissible graph attached to a decomposition class in the con-
crete universal family. Please see page 445.

(Γ, C − M(E)E) the topological type of singular curves in the class
C. It is the shorthand notation of (Γ, C −∑miEi). Please see
page 436.

GΓ the subgroup of the symmetric group Sl preserving the admissible
graph Γ. Please consult Definition 4.12 on page 428.

G(Γ) the subgroup of the symmetric group Sl which maps the admissi-
ble Γ ∈ adm(l) to an admissible graph in adm(l). Please consult
Definition 4.12 on page 428.

κ the residual relative obstruction bundle of a switching process C0 �→
C0 −

∑
ei. Please consult page 443 in Subsection 5.2.

L an sufficiently very ample line bundle on M . See Main Theorem 1.1
on page 382.

|L| the linear system of L, which is defined to be P(H0(M, L)). See
Main Theorem 1.1 on page 382.

L a fiberwise spinc structure of X �→ B. Please consult Section 2 on
page 393.

M an algebraic surface or a symplectic four-manifold.

M [n] The n-th Fulton-Mcpherson space of M .

Ml The l-th universal space of M . It can be constructed from M l

by l(l+1)
2 consecutive blowing ups. Please consult page 400 in

Section 3.

M(E) the multiplicity function defined on Ver(Γ),
M(E) : Ver(Γ) �→ Z which characterizes the resolution multi-
plicities. See page 436.
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M(E)E the short hand notation of
∑

miEi, where mi defines the mul-
tiplicity function M. See page 437.

µ a smooth section of the fiberwise self dual two form of X �→ B. Please
see page 393.

Mred the reduced family moduli space. Please consult page 459.

MS the reduced family moduli space over the space S. Please see
Definition 6.2 on page 461.

MKähler the Kähler family Seiberg-Witten moduli space.

Mr
Kähler the −rω deformed version of the Kähler family moduli space.

Please consult Proposition 8.4 on page 540.

Mred(ω, r, Z) the fiber product of the reduced −rω deformed Kähler
family moduli space with Z �→ Y (γ). Please consult page 542.

MKähler
D the reduced Kähler Seiberg-Witten family moduli space at-

tached to the decomposition class D.

Mpert the perturbed version of the reduced family Seiberg-Witten mod-
uli space by the nested perturbation. See Proposition 6.3 on
page 468.

Mpert;k the perturbed version of the reduced family Seiberg-Witten
moduli space by k nested perturbations. Please consult page 469.

Mres
pert the residual part of the perturbed reduced family Seiberg-Witten

moduli space. Please consult Proposition 6.3 on page 468.

NSB the tubular neighborhood of a submanifold S in B. Similarly
NXY represents a tubular neighborhood of an almost complex
submanifold X in an almost complex manifold Y . Please see
page 464 and page 467.

N(Γ,M(E)) the contribution to the family invariant FSWY (Γ)(1, C −
M(E)E) from the smooth curves which are expected to be propo-
tional to the number of singular curves in |C| with the prescribed
topological type specified by (Γ,M). Please see page 475.

nL(δ) the virtual number of δ nodes curves in a generic δ dimensional
sub-linear system of |L|. Please see Main Theorem 1.1 on page 382.
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nL(Γ, L −∑miEi) the virtual number of singular curves of topological
type (Γ, L −∑miEi) in the linear system |L|. See Main Theo-
rem 1.2 on page 383.

Obs the cokernel semibundle of the Seiberg-Witten deformation com-
plex. Please see page 458 and page 461.

OBS the obstruction bundle of the Kuranishi model. Please consult
page 467.

ω a family of fiberwise symplectic forms over the fiber bundle of four-
manifolds X �→ B. Please see page 393.

Perm(C) the set of permissible decomposition of the class C. See
page 537.

πi the composition of the projection map Ml �→ M l and M l �→ M to
the i−copy of M . Please consult page 400.

pa the projection morphism from the total space of the P1 bundle Ξ̃a

to its base. Please consult page 444.

pc the partial compactification of YΓD
. See page 496.

Ψ A Dirac spinor in Γ(S+). Please see page 393.

ψ a spinor in Γ(S+). Please consult page 458.

ST b
a the stablization map from adm(a) to adm(b), b > a by joining b−a

free vertexes. See page 556.

Sr a strata parameterized by r over which the preexceptional cone is a
constant cone. Please consult page 407.

SD the strata associated to D. It is called the support of D. Please
consult Definition 4.5 on page 409.

S± the positive and negative spinor bundles associated to a spinc struc-
ture. See page 458.

s(ǫ) the starting vertex of an edge ǫ. See page 424.

σi the section of the P1 bundle Ξ̃′
j induced from the intersection with

the type I exceptional curves dual to ei; ei · ej = 1. Please consult
page 447.
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♯Σ((2[n]; S) the expected number of singular curves on an algebraic
surface S with singularities of type 2[n] in [59]. Please consult
page 554.

△i; i = 1, 2 the two classes of vertexes in Ver(Γi). Please see page 430.

Ver(Γ) the set of vertexes of Γ. Please see Definition 4.9 on page 414.

X a fiber bundle of smooth four-manifolds over certain base manifold
B. Please see page 395.

Xj;k a collection of almost complex submanifolds of Y which are pa-
rameterized by two indices (j, k) ∈ J × N ∪ {0}. Please consult
page 467.

Ξa the total space of the universal type I exceptional curve associated
to ea, which has a P1 fibration structure. Please consult page 442.

Ξ̃a the relative minimal model of Ξa which has a P1 fiber bundle struc-
ture. Please consult Proposition 5.1 on page 442.

YΓ the locally closed strata in Ml associated to Γ. Please consult the
remark right after Proposition 4.2 on page 415.

Y (Γ) the closure of YΓ in Ml. Please consult Proposition 4.3 on page 416.

YD = YΓD
the support of a type I decomposition class.

Yj;k the difference Xj;k − ∪p;qXp;q. Please consult Definition 6.3 on
page 468.

Γ > Γ′ the partial order > among admissible graphs by the degeneration
relationship. Please consult Definition 4.8 on page 413.

level a nonnegative integer attached to a decomposition class to mea-
sure its order among the set of the decomposition classes. Please
consult Axiom 4.1 on page 410.

Va the relative obstruction bundle associated to the switching process
C − M(E)E −∑b∈J eb �→ C − M(E) −∑b∈J eb − ea. Please see
page 443 and the proof of Proposition 5.2 on page 443.

Va the relative obstruction sheaf corresponding to Va.
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Υa a divisor in Ξ̃a which is constructed by restricting −C + M(E)E +∑
b∈J eb + ea. Its degree is equal to ea · (M(E)E +

∑
b∈J eb + ea).

Please consult page 445.

Υa,1 or Υa,2 the different versions of Υa in two different switching pro-
cesses where the orders of ea1 and ea2 are reversed. Please see
page 447.

ζD the sum of all the type I exceptional class
∑

i ei which are involved
in a decomposition class D. See page 498.
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