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Abstract: The residential environment is constantly evolving technologically. With this evolution,
sensors have become intelligent interconnecting home appliances, personal computers, and mobile
devices. Despite the benefits of this interaction, these devices are also prone to security threats and
vulnerabilities. Ensuring the security of smart homes is challenging due to the heterogeneity of
applications and protocols involved in this environment. This work proposes the FamilyGuard
architecture to add a new layer of security and simplify management of the home environment by
detecting network traffic anomalies. Experiments are carried out to validate the main components of
the architecture. An anomaly detection module is also developed by using machine learning through
one-class classifiers based on the network flow. The results show that the proposed solution can offer
smart home users additional and personalized security features using low-cost devices.

Keywords: machine learning; anomaly detection; network security; smart home; Internet of things (IoT)

1. Introduction

The accelerated growth of applications and devices for the Internet of things (IoT)
means excellent amenities for people in diverse areas, such as smart homes, industrial
automation, healthcare, electricity control, cities, and smart grids [1]. However, deploying
IoT applications in different scenarios can also introduce security threats. An example is
the Mirai botnet, first identified in August 2016 by a security research group called Mal-
wareMustDie. Mirai scours the Web for smart home devices that have default usernames
and passwords and then enlists the devices in attacks that hurl junk traffic at an online
target [2].

IoT security is also affected by software and hardware constraints on such devices.
For example, implementing encryption and authentication mechanisms on these devices
can be challenging [3]. Another problem is that IoT applications might rely on users’
personal information to provide services. However, collecting, transferring, and using
this information increases the risk of damaging users’ privacy [4,5]. Thus, one of the most
prominent research challenges for the networking and security community is providing a
cost-effective balance between the use of sensitive data and privacy [6].

There are several types of non-standard IoT devices and protocols in smart home
scenarios whose lack of standardization can pose security risks to this environment. For
example, the owner of cameras, TVs, and smart sensors must manage the security updates
individually, even if they do not have the time or the knowledge to deal with this situation.
Moreover, without proper threat monitoring, infected mobiles devices might compromise
the smart home environment as they ingress into the home network.

Several works propose using SDN to create a safer environment for smart
homes [7–9]. When dealing with security solutions for smart homes, we should con-
sider several challenges when deploying the solution in the environment: heterogeneity of
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devices and protocols and resource constraints such as small memory, low power consump-
tion, and low computing power. Based on these security challenges, several researchers
pursue solutions that include privacy-based, risk-based, and role-based approaches [10–12].

The scientific community offers advances in the security of smart home
networks [7–12]. However, most solutions do not show how security mechanisms could
be deployed to operate in the residential environment. Therefore, there still exist research
gaps in security requirements for smart home networks consisting of device authentication,
network monitoring, secure session key management, physical protection, information
security, and user authentication [13,14]. Another limitation identified in the state of the art
is about solutions that detect anomalies. Usually, they do not present the complete struc-
ture of the solution; in other words, it is unclear how network traffic would be captured
and classified.

Therefore, this work presents FamilyGuard, an architecture that provides a way to
define and deploy mechanisms that meet the security requirements of a smart home
environment. FamilyGuard uses the SDN paradigm to analyze and manage home area
network (HAN) flows, providing flexibility when dealing with security issues, such as
traffic monitoring to identify and mitigate threats. The architecture uses machine learning
(ML) algorithms to identify anomalous behavior based on network traffic to provide
additional protection to residential environments in terms of information security. Our idea
is that the proposed architecture would help transform the static residential environment
into a dynamic one. In other words, FamilyGuard will provide means to deal with changes
in the environment and respond to threats.

Our contributions can be summarized as follows: (i) we design the building blocks of
a machine-learning-based security architecture for smart homes, (ii) we propose and imple-
ment the components responsible for monitoring the traffic of a smart home network, (iii)
we evaluate the feasibility of using one-class algorithms to identify smart home anomalies,
and (iv) we evaluate some of the architecture capabilities using an empirical strategy based
on a combination of public datasets and real-world equipment.

The remainder of this study is organized as follows. Section 2 provides a background
on smart home networks, Internet of things, SDN, and IoT security issues. Section 3 presents
a systematic literature review about security architectures for smart home environments.
Section 4 shows the proposed architecture. Section 5 provides a set of experiments and
exploratory investigations that validates some of the FamilyGuard functionalities. Section 6
discusses limitations and threats to the validity of our study. Finally, Section 7 presents the
concluding remarks and future work.

2. Background
2.1. Smart Home Concepts

A smart home can be defined based on two perspectives. The first perspective consid-
ers a house equipped with Information and Communication Technology (ICT) and with
connected devices that can be remotely monitored and controlled to meet the needs of
residents. In the second perspective, smart homes and other related buildings are seen
as elements of flexibly and interactively connected energy systems on a broader scale.
These two perspectives are useful for the families themselves and the electrical system as a
whole [15].

In the home environment, “intelligence” can integrate electrical devices and services
(e.g., heating, lighting, security, photovoltaic generation, electric vehicle charging) that
the occupants or other agents remotely control. In addition, sensors and processors can
also obtain and apply knowledge about a house, operating independently of direct human
action. Together, intelligent or smart household electrical devices have the potential to help
manage the network and promote system efficiency, helping to reduce peak demand and
match demand with supply in real time. This assists the integration of more distributed
renewable generation into electrical systems [16].
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There are questions about what technologies are needed at what times to qualify a
home as smart. Smart TVs or smartphones, for example, can be classified as smart devices
since they allow communication between the house and the outside world. In this study,
we consider that a high level of device connectivity inside and outside the residential
environment, together with the reliance on this connectivity for daily activities, is relevant
to whether a home can be named “smart”. The definition presented here is associated with
physical and operational factors and assumes that the functionalities are beyond the typical
limits of a traditional house [17].

A smart home is a communication network that connects sensors, appliances, controls,
and other devices to enable remote monitoring and control by occupants and others to
provide frequent services to residents and the electrical system. Therefore, we can say
that this concept is closely linked to the term Internet of things (IoT) because smart homes
provide facilities for the occupants of the residential environment and interconnect objects
and sensors.

2.2. Internet of Things (IoT)

The term Internet of things (IoT) refers to the network interconnection of objects (sen-
sors, actuators, devices, etc.), which allows sharing of data and information to accomplish
some task [18]. The term was also defined in the Recommendation ITU-T Y.2060 (June
2012) as “a global infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving interoperable
information and communication technologies” [19].

The advancement of IoT applications and devices is providing progress in many areas,
each of them with different requirements and goals [1]. The smart home, for example, aims
to provide greater convenience for people, the smart grid seeks to obtain higher efficiency,
reliability, and sustainability in energy systems, and smart-agro offers solutions to improve
productivity in agriculture.

As the objectives of these areas are entirely different, the security mechanisms em-
ployed in these environments need to be adapted to their needs. This work seeks to
contribute to the domain of smart homes where there are several challenges, such as
interoperability, context-aware middleware, energy-aware/efficient consumption, and
security [20].

The FamilyGuard architecture proposed in Section 4 intends to find solutions to the
security challenges of the smart home environment. Since the devices are interconnected
using different network standards [21] (Zwave, Insteon, Bluetooth, Zigbee, Ethernet, Wifi),
they can be targeted by several types of attackers, from cyber terrorists to script kiddies.
Furthermore, smart homes are usually operated by non-expert users in the security of
information [22]. Therefore, it is important that the solution involves a high level of
automation at the lowest possible cost.

2.3. IoT Security Issues

Smart home environments are full of personal information handled by devices, proto-
cols, and services to provide user convenience. Due to the sensitivity of private information,
security requirements become more and more necessary in such a scenario. However,
managing security controls in these heterogeneous environments is a significant challenge.
According to Bugeja et al. [23], security issues can be divided into three different layers of
the generic IoT architecture:

• Device Issues: devices in IoT scenarios have performance constraints such as CPUs
with low clock rates, low memory, and low throughput. These hardware limitations
make it difficult to implement security mechanisms, such as encryption, which are
computationally consuming. Many devices do not have a management interface,
making it difficult to create security mechanisms such as authentication. For this
reason, users need to trust websites or smartphones to manage their devices and
information. Another critical issue is that objects in a smart home are physically
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accessible and may be subject to physical attacks such as tampering by a visitor in the
home or even by the household to reduce the charge for some service that relies on
smart meters [23].

• Communication Issues: to interconnect many different devices in a smart home,
multiple bridges, hubs, or gateways and many communication protocols are required,
which makes it difficult to implement adequate security mechanisms. The smart home
environment is highly dynamic, where a device can join or leave the network at any
time, reinforcing the idea of developing resilient security mechanisms that can handle
asset management. A large number of existing protocols and the restricted capabilities
of each device make traditional security mechanisms unsuitable for the smart home
environment [21].

• Service Issues: to reduce the number of vulnerabilities, patch fixes need to be installed
periodically. However, performing this process on all devices could be problematic
since the firmware of these devices and protocols may not support these security
updates dynamically [23].

Based on these questions, we can conclude that implementing traditional security
mechanisms to tackle problems in smart homes may not be the best strategy. Therefore, it
is necessary to explore the use of alternative approaches. One of them is using a Software
Defined Networking (SDN) that, when applied to the IoT context, will change the network
from a static to an adaptive or programmable state, which is a necessary feature in a
heterogeneous environment.

Several areas in IoT are gaining benefits with the SDN paradigm, for example, smart
cities [24], smart grid [25], smart homes [26], among others. Kalkan and Zeadally [5]
conclude that IoT challenges such as security, scalability, and heterogeneity can be solved
through the dynamism and flexibility of SDN. However, integrating SDN and IoT environ-
ments will open up new security risks, such as attackers granting themselves unsupervised
access to SDN elements and exploiting either weak or nonexistent access control mecha-
nisms. Another example is the creation of exploits for vulnerable network components for
the purpose of installing them on rogue devices or binding them to remote connections to
the network. Researchers must strive to mitigate these threats in the future [27].

2.4. Software Defined Networking (SDN)

With SDN [28], networks became programmable, making it possible to virtualize
network functions and manage services and applications through logically centralized
platforms. SDN introduces control plane and data plane separation. One of the main goals
of this separation is creating an agile and flexible network that is capable of handling rapid
changes, supporting some requirements of IoT environments that traditional networks may
not be able to provide [5].

The SDN controller is responsible for managing the entire network, while switches are
responsible for operating the data plane based on the settings specified by the controller [29].
The Southbound API is offered by the OpenFlow protocol, and its assignment is to enable
communication between the SDN controller (control plane) and network switches (data
plane), thus allowing the controller to define the network flows and the API Northbound
interface between the controller and higher layer applications or programs.

The SDN is materialized through the OpenFlow protocol [30] and has a set of specifi-
cations maintained by the Open Networking Foundation (ONF) [31].

Security solutions involving SDN can be categorized into two types: (i) security
solutions for SDN, which aim to improve the security of protocols and controllers (control
plane); and (ii) SDN security solutions that seek to improve network security using SDN
(data plane) features [32]. Examples of security solutions for SDN are FortNOX [33],
CloudWatcher, FRESCO [34], FlowGuard [35], Avant-guard [36], among others. Such
solutions are not detailed because they are outside the scope of this work. Solutions that
use SDN to provide new security features are detailed in Section 3.
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We emphasize that our solution is easy to implement and that all its components are
operable with low-cost devices; we evaluate a class of algorithms not explored by the related
works and build a dataset that can represent the traffic of the residential environment.

3. Related Work

Several research projects worldwide seek to propose solutions to improve the security
of residential environments. We conduct a systematic literature review to identify the
main works and also the research gaps. First, keywords, such as smart home, security
mechanisms, anomaly detection, etc., widely used in journal and conference articles, are
adopted as input to search engines such as Google Scholar, IEEE Xplore, and ACM Digital
Library. We select the following criteria for selecting articles: the number of citations,
the journal’s impact factor, and the conferences’ maturity. Finally, the selected studies
are organized according to the following characteristics: year of publication, placement
strategy, validation strategy, possible threats, security goals compromised, countermeasures,
techniques employed for developing countermeasures, and the existence of SDN resources.
Later in this section, we describe each of these items together with a table that summarizes
our systematic literature process. Next, we will discuss the selected studies.

Abu-Tair et al. [37] describe an architecture in its initial conception. The work evaluates
cryptographic algorithms, which IoT devices can use before connecting them to the smart
home architecture. This is an embryonic proposal that aims to create a prototype to test
numerous applications in order to seek optimal performance and security for the devices.

Gordon et al. [38] use Field Programmable Gate Arrays (FPGA) to perform parallel
processing. The proposed parallelization and implementation of the K-Nearest Neighbors
(KNN) machine learning algorithm in FPGA are achieved using Vivado Design Suite
from Xilinx and High-Level Synthesis (HLS). The proposed solution presents a better
performance in FPGA when compared to four alternative KNN instances.

Ammi et al. [10] suggest a new Blockchain-based solution for smart home systems,
using a combined hyperledger array and a hyperledger composer. This solution explains
commonly used permissioned blockchain security limitations with permissions. The archi-
tecture contains four layers: cloud storage, Hyperledger Fabric, Hyperledger Composer,
and a smart home layer. The architecture is implemented and tested to improve smart
homes’ integrity, confidentiality, availability, authorization, and privacy.

Mascarenhas et al. [11] aim to reduce attacks on a smart home network and thus
create a patrolling system for this epitome of urbanization. The proposed design consists
of individual device proxies. The central hub pulls application layer data from every IoT
device from every proxy device on the network. The collected data are used as the input to
train the central hub to identify intrusions into the smart home network. The architecture
uses XGBoost to categorize and detect anomalies. In addition, it implements a rule-oriented
access mechanism to validate authorization and access controls.

Ameer et al. [12] show an access control model for IoT in the smart home. The
authors provide a formal definition for extended generalized role-based access control
(EGRBAC) and show its capabilities with a use case. EGRBAC is the initiative developing
a comprehensive family of IoT smart home access control models. A proof-of-concept
demonstration using AWS-IoT Greengrass is discussed in the appendix.

Augusto-Gonzalez et al. [7] present an architecture embedded in a smart device,
adapted for home networks, and designed to be vendor independent. The conceptual
design of the architecture involves advanced data flow analysis, which is able to classify
user and device profiles; it can also be used for automated real-time risk assessment.
Comparisons and matches with secure data flow patterns are made using a self-learning
approach. Data analysis and visualization techniques are implemented to ensure greater
user awareness and understanding of security status, potential threats, risks, associated
impacts, and mitigation guidelines. The defined validation strategy is based on a triple
view that combines laboratory tests, testbeds, and pilot tests in a real environment.
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Sharma et al. [8] introduce an architecture that uses the SDN paradigm within the
residential environment. Three case studies are used to demonstrate that the architecture
can provide additional protection to residential environments. The first one is related to
user privacy, the second is the use of the architecture to prevent DoS/DDoS attacks, and
the third one suggests that the architecture can resolve security breach issues in digital
voice assistants. The overhead and performance of SHSec are evaluated using packet loss
rate, flow configuration time, and controller response time.

Alves et al. [9] present a service by using SDN to perform autonomous management of
wired and wireless home networks. According to the authors, an ISP can use the solution
to reduce customer network downtime. With this control, ISPs have a more comprehensive
range of operations to troubleshoot remotely and therefore they reduce the amount of onsite
maintenance. A prototype is evaluated, simulating common failures in home networks. As
a result, the architecture increased throughput and reduced network delay.

Hafeez et al. [39] provide a service-oriented security solution using cloud computing
and SDN to improve network monitoring, security, and management. Installed residential
devices act as a sensor for the Cloud Security Service (CSS), which collects network-level
statistics that can be used to perform analysis to detect botnets, malware, and other insights
into the network. The cloud manager is the central component of the architecture, and
its responsibility is to manage client requests, resources, and traffic analysis tasks. The
authors also discuss how to evaluate the prototype in different scenarios such as latency,
collaborative threat detection, privacy, efficiency, scalability, and bandwidth.

Demetriou et al. [40] present a solution partially inspired by the SDN paradigm, de-
signed with the idea of being easily deployed in HAN. The architecture features distributed
security control that includes a controller in a home router for policy enforcement and
a monitor on the user’s phone to collect runtime status and make access decisions. To
avoid changing the mobile operating system, the monitor is in the form of a user-space
app. It detects the application communicating with the network and its compliance with
security policies and sends the access permission to the router controller over a secure
control channel. The router uses this information to enforce policies, being that only traffic
with monitor permission can access IoT devices.

Stewart et al. [41] introduce the architecture CommunityGuard (CG) with two main
components. The first one is the guardian node, responsible for observing all the traffic on
the home network. The second is the community outpost, a cloud server that interfaces
with guardian nodes and performs traffic monitoring. When it identifies a security issue, it
will deploy defenses as needed. An initial prototype is created using the Snort IPS system to
manage its configuration automatically. Together, these components provide collaborative
security monitoring.

Table 1 summarizes the results of our systematic literature review process. Next, we
detail the characteristics of our taxonomy.
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Table 1. Characteristics of architectures.

Name Ref Year Placement
Strategy

Validation
Strategy

Possible
Threats

Security Goals
Compromised Countermeasures Techniques/Tools SDN

FamilyGuard 2022 Edge/Cloud Empirical
Experimental

DDoS
Replay attack
Eavesdropping

Availability
Integrity
Confidentiality

Anomaly
detection

Unsupervised algorithms
LOF, OCSVM, IF

•

CBB [10] 2021 Edge/Cloud Experimental
Message Modification
Replay attack
Eavesdropping

Availability
Integrity
Authenticity
Confidentiality

Blockchain-
based Chaincode ◦

Urban Patrol [11] 2021 Edge/Cloud Experimental
Sinkhole Attack
Worm Attack
Side Channel Attack

Availability
Confidentiality
Integrity
Authenticity

Anomaly detection
Blockchain
RBA

ML XGBoost ◦

TSP2 [37] 2020 Edge Theoretical
Replay Attacks
Data Leakage
Eavesdropping

Confidentiality Cryptography
Lightweight
cryptography
algorithms

◦

EGRBAC [12] 2020 Edge/Cloud Experimental Man-in-the-Middle
Identity misbinding

Authenticity RBAC Custom model ◦

GHOST [7] 2019 Edge/Cloud Theoretical Impersonation
Replay attack

Integrity
Availability

Anomaly detection
Blockchain

- •

SHSec [8] 2019 Edge Experimental DDoS Availability
Confidentiality

Anomaly
detection

Conditional
probability
distribution

•

HNR [9] 2018 Edge/Cloud Experimental DDoS Availability Autonomous
management

Fault detection •

Securebox [39] 2017 Edge/Cloud Experimental DDoS Integrity
Availability

IPS SNORT •

HanGuard [40] 2017 Edge Empirical Man-in-the-Middle
Identity misbinding

Authenticity Control policies Custom model ◦

CG [41] 2017 Edge/Cloud Experimental DDoS Availability IPS SNORT ◦
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• Name: name of the project, solution, architecture, or framework.
• Ref: reference of the analyzed work.
• Year: the year of publication of the work.
• Placement Strategy: the solutions are monitoring traffic and managing the network

to improve security in the residential environment. It is essential to assess where
these data are being processed and where they are being managed. If this process-
ing/management occurs inside the house, it is considered the edge computing strategy;
when the processing occurs outside the residential environment, we consider it the
cloud computing strategy. The solutions can use both strategies that keep the analysis
inside the home, but help can be sought in a cloud to perform the functions.

• Validation Strategy: knowing the form of architecture validation is essential for us to
analyze how the solution is explored. Hypothetical validation has a distant relation-
ship to a real environment, empirical validation uses information from operational
configurations, experiences, and observations, experimental validation seeks to repro-
duce the scenario where the solution is being applied, and theoretical validation uses
theoretical arguments to support the results.

• Possible Threats: threats that the solutions aim to solve.
• Security Goals Compromised: what can be compromised by threats.
• Countermeasures: identify the main contribution created by the presented solutions.
• Techniques/Tools: techniques/tools used to create countermeasures.
• SDN: identifies whether the selected reference adopted SDN resources. The • symbol

means that the architecture supports SDN while the ◦ symbol indicates no SDN
support.

Our solution has benefits concerning the works analyzed in Section 3. The structure of
the FamilyGuard architecture is robust and flexible to meet the heterogeneity of residential
environments. Its design allows SPPs to provide customized templates for each environ-
ment according to customer demand. Another important factor in our proposal is that
FamilyGuard considers all devices present in residential environments, not just IoT devices
like most architectures analyzed. The AI Workflow Orchestrator (AIWO) can configure
and manage multiple workflows to meet the HAN. When it detects a threat, the Security
Orchestrator (SECOR) runs to mitigate the problem.

4. FamilyGuard

FamilyGuard is a security architecture designed for smart homes equipped with dif-
ferent types of computing devices. The main goal of FamilyGuard is to anticipate and
respond to the needs of residents, working to promote their comfort, convenience, safety,
and entertainment. According to [42], home environments lack reliable security solutions
since households occasionally only have antivirus software installed on computers and
rarely have perimeter defenses installed on their networks such as an intrusion detection
system (IDS) or a firewall. Besides, our systematic literature survey presented in Section 3
showed that proposed solutions only focus on IoT devices and ignore the other communi-
cation devices present in the HAN. Our solution serves the entire residential environment,
detecting threats in IoT and mobile and traditional devices, such as computers and laptops.

Figure 1 presents a high-level view of the architecture. Security service providers
(SSPs) are responsible for providing management and configuration features that help
protect existing information on a home area network (HAN), such as machine learning
(ML) models to identify anomalies in network behavior. The user can access the services
provided by SSPs through an application on their mobile device and hire a Security-as-a-
Service (SECaaS) that meets their needs. HANs can send information and alerts to SPPs
if they identify anomalous situations in the network. In this way, by managing multiple
households, an SPP can work collaboratively to detect threats.
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Figure 1. High level architecture. The user can access some of the security services provided by SSPs
using mobile devices.

Each family living in a smart home environment has specific needs. Therefore, besides
dealing with the heterogeneity of devices, it is necessary to address the specificities of each
smart home environment. We will tackle this issue by analyzing the inbound and outbound
network traffic. With this in mind, we propose the following essential components of Fami-
lyGuard: Home Surveillance Unit (HSU), controller, network flow generator (NFG), and
Central Security Assistant (CSA), which are described respectively in the Sections 4.1–4.4.
Figure 2 shows each of the components in the environment and how they communicate.

Figure 2. Communication between the architecture components.

The NFG receives network packets transmitted by the home gateway and generates
network flows analyzed by the HSU. Upon identifying any anomalous behavior, the
controller receives a notification, and the device involved in the anomalous behavior can be
blocked to mitigate potential threats. The rules that determine the actions to be taken when
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identifying a threat depend on the HSU configuration; it may issue only a notification or
completely block device communication.

4.1. Home Surveillance Unit (HSU)

The HSU is responsible for receiving flows from the network, performing traffic anal-
ysis tasks, and managing the network through the controller interface. The HSU uses a
workflow to handle incoming network traffic flows and perform analysis. A workflow can
contain multiple artificial intelligence models to handle flows and perform analysis sequen-
tially. For example, the HSU receives a flow and forwards it to Workflow A, which initially
prepares the flow by removing unnecessary characteristics; another model identifies the
traffic type of the flow and forwards it to the last model to verify if the flow has anomalous
behavior. The structure HSU has two main components: the Security Orchestrator and the
AI Workflow Orchestrator, shown in Figure 3 and described below:

• Security Orchestrator (SECOR): is responsible for managing, configuring, and pro-
viding notification information related to security policies applied in HAN. Upon
receiving the result of a prediction from the AI Workflow Orchestrator, the decision
engine checks the applicable security policies to defeat or mitigate the detected threat
and then notifies the controller so that the change in the flow table is performed to
block or limit access to the device on which the threat was detected. The user can also
change the security policies, being able to choose to either block the infected device
immediately or be notified and make the blocking decision later.

• AI Workflow Orchestrator (AIWO): in charge of receiving prediction requests and
generating results for the Security Orchestrator, being also responsible for managing
and administering services available for predictions, categorized as Data Preparation
Services, Anomaly Detection Services, and Services of Anomaly Classification.

Figure 3. Communication between the services present in the HSU.

Figure 4 exemplifies the structure of the AIWO, which allows for the definition of
multiple workflows using a set of available models. SSPs and users are set free to create
and define workflows to meet specific HAN needs with this structure. For example, we can
have workflows that identify anomalies in specific scenarios, such as in IoT devices, and
ignore traditional home devices, such as notebooks and personal computers.

It is essential to highlight that we can have several workflows in operation; however, a
prediction request does not have to go through all workflows. AIWO allows a configuration
in which flows from certain devices are routed to specific workflows. In this way, we can
have models that identify anomalies at a lower level of granularity.
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Figure 4. Workflow Orchestrator is responsible for managing several workflows.

4.2. Controller

The SDN controller is installed in a computing device responsible for receiving the
HSU instructions and relaying them to the home switch (HS), where all devices in the
home must be connected using wired or wireless connections. The approach used in this
work was to deploy the HSU and the controller on the same device. The main advantage of
running the HSU with the controller was maintaining a simple deployment scenario in a
smart home, avoiding using another device to execute the HSU instructions. Performance
is another aspect that motivated this decision, as the exchange of messages between the
controller and the HSU is faster when they are on the same device.

Using an SDN controller in the scope of a residential environment could bring several
advantages such as greater agility, more programmability, centralized data control, sim-
plified operations, and better management of network resources. The HSU, for example,
can send a blocking rule to the controller when it identifies a threat. In this way, the HSU
takes advantage of the dynamism provided by the use of the controller to actively act on
the network to mitigate threats that could harm users’ privacy.

Despite its benefits, adding an SDN controller in a residential scenario might not be a
simple task for a user. However, for the scenario involving smart homes, a small device
with low cost and good computing power can meet this need. The ISP or SSP can also
provide an SDN-based device when offering such a solution for home users. The potential
complexity for end users in dealing with an SDN controller is eliminated by adopting the
FamilyGuard architecture, which performs all the management (communication) of the
controller and provides APIs for developing web pages or mobile applications to control
their devices and information.

4.3. Network Flow Generator (NFG)

The NGF component collects traffic that traverses a given network, or network seg-
ment, to generate [43] network flows. According to RFC 7011, a flow can be defined as
a set of IP packets passing an observation point in the network during a specific time
interval. Network flows have been used in several network applications ranging from
troubleshooting connectivity issues to planning future bandwidth allocation. Here, we use
network flows to identify and mitigate security issues.

Monitoring network flows can provide insights into how a network operates, its
overall utilization, application usage, potential bottlenecks, anomalies that can signal
security threats, etc. Several different standards and formats are used in monitoring



Sensors 2022, 22, 2895 12 of 24

network flows, including NetFlow [44], sFlow [45], and Internet Protocol Flow Information
Export (IPFIX) [46].

The adoption of a solution to generate network flows is encouraged by the benefits
of detecting anomalous traffic and other threats to network security. The information
in the IP packet header provides the basis for generating network flows. The amount
of data processed by the flow-based intrusion detection system is less, as it contains
summary information. Another factor contributing to the decision to use network flows
for analysis is the number of network applications that use end-to-end encryption. Since
flow-based inspection only works with statistical features extracted from the packet header,
this approach raises fewer privacy concerns than packet-based inspection because user
information is protected from any intermediate scans.

Despite the benefits, flow-based intrusion detection also has some limitations. For
example, the network flows represent a snapshot of summarized network traffic at a specific
time. Therefore, it might be more difficult to distinguish some attack types [47].

4.4. Central Security Assistant (CSA)

The CSA aims to provide services that collaborate with the performance of the activities
by the HSUs. The CSA can be provided by Internet Service Providers (ISPs) or by service
providers interested in providing an adequate structure for the management of security in
residential environments.

The flexibility in CSA positioning allows the architecture to be employed in the smart
home context and in different IoT environments such as smart grid, healthcare, and others.
However, it is necessary to evaluate, among other things, the number of devices deployed
on the network and the traffic generated by them to define the hardware resources needed
to meet the environment. One of the benefits of installing CSA on an ISP or cloud is the
ability to sell security services to customers as models for detecting threats.

Figure 5 presents the data flow performed by the CSA, in which the notification
process receives notifications provided by the HSU and saves them as notifications in the
notification store. The CSA also runs the statistics process, which is responsible for creating
metrics based on notifications received by the HSU. In addition to notifications, the CSA
maintains the anomaly detection models used by HSUs.

Figure 5. Communication between CSA components.
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Thus, the model building process is responsible for building these models and saving
them in the repository. The update manager process can perform queries to check the
models for updates and send messages notifying the HSU if there are any updates.

The architecture’s conceptual design aims to detect anomalies, allowing for the man-
agement of heterogeneous IoT devices deployed in smart home environments, and also
focuses on the analysis of activities generated in the network. Therefore, a multi-layer
structure was adopted that allows for the independent development of the components.
Section 4.5 describes the logical layers of the FamilyGuard architecture.

4.5. FamilyGuard Layers

FamilyGuard is organized into four layers: Device layer, Network layer, Detection
layer, and Management layer, depicted in Figure 6. The HSU and SDN controller operate
at the Network and Detection layers. The Management layer hosts (i) the CSA, which
helps different HSUs to perform their tasks, and (ii) applications, which help to control and
configure local services that exist in residential environments. The structures of each layer
are described below:

Figure 6. FamilyGuard layers and their relationship with HSU and CSA.

• Device Layer: represents all devices that can communicate in home environments,
including laptops, smartphones, and smart devices such as sensors (temperature
and presence) and actuators (light switches). There are several smart devices on the
market, created by different manufacturers; therefore, residential environments are
heterogeneous and complex for risk and threat management.

• Network Layer: has the ability to handle multiple protocols and receive/transmit data
through the Devices layer, so that data packets are transferred over the data link, such
as Wi-Fi, Ethernet, Wireless Sensor Network (WSN), and Machine- to-Machine (M2M).

• Detection Layer: performs anomaly detection (primary function) through well-defined
services, from network traffic reception to notification, for layer management, by
classifying a given flow as anomalous.

• Management Layer: is responsible for monitoring and controlling the settings of the
residential environment through CSA and home control apps; the CSA collaborates
so that HSUs can perform their functions through services that are essential for the
functioning of the environment.

5. Validation

The validation consists of assessing some of the FamilyGuard functionalities described
in Section 4. The idea here is to evaluate how FamilyGuard can cope with the major issues
identified in the state-of-the-art solutions (Section 3): (i) network monitoring, (ii) machine
learning models to mitigate threats, and (iii) deployment of the solution. With this in mind,
we conducted some experiments using a version of FamilyGuard implemented in Python
programming language and available at https://github.com/pedrodamaso/FamilyGuard.
git (accessed on 30 March 2022), and also an exploratory investigation about the impact of
FamilyGuard in some critical smart-home security operations. We empirically evaluated
three aspects of FamilyGuard:

https://github.com/pedrodamaso/FamilyGuard.git
https://github.com/pedrodamaso/FamilyGuard.git
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1. Implementation of HSU functionalities in a low-cost hardware—here, we want to
answer some questions such as: is our architecture easy to adopt for heterogeneous
residential environments? Is the deployment cost low? What hardware is needed to
deploy the architecture components?

2. The ability of machine learning models to detect potential threats in HAN—the
following questions guide this step: Is it possible to use unsupervised models to
detect threats in the home environment? Does the traffic mixture between IoT and
Non-IoT devices add additional complexity to the models? Do the benefits achieved
with the models to provide additional protection mechanisms for the residential
environment justify the adoption of the architecture?

3. HSU performance during the anomaly detection process—here, we consider some
questions such as: How long, on average, does the HSU take to process a network
flow and issue a decision on it? Is this time reasonable for decision making?

We also discuss the impact of FamilyGuard in dealing with the following situations:

4. We analyzed the risk of machine learning models becoming outdated and not pro-
viding an efficient threat detection rate because of changes in the environment, such
as the addition of new devices and changes in network traffic behavior over time.
Thus, we highlight some essential questions to mitigate this risk: How does one add
or update the models used by the architecture? Who will provide these models? How
will the model be made available?

5. We explore existing threat points in the residential environment that could impact the
functioning of the FamilyGuard architecture.

Next, we will detail each of the aspects analyzed in FamilyGuard.

5.1. Implementation of HSU Functionalities in a Low-Cost Hardware

The components described in Sections 4.1–4.4 were deployed on a Raspberry Pi3
Model B Quadcore 1.2ghz, with 1GB of RAM and a 32 Gigabyte memory card, running
on the Raspberry Pi OS. To deploy SDN on HAN, we used a TP-LINK TL-WR1043ND v3
router, with OpenWrt 18.06 and Open vSwitch 2.8.2 plug-ins. That way, when the HSU
identified anomalies, it could proactively act, sending messages to the controller, to block
the infected device. Figure 7 shows our deployment of FamilyGuard.

Figure 7. Experimental deployment of a home area network. The HSU is depicted as a junction of a
TL-WR1043ND router and a Ryu controller.
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With this kind of deployment, our architecture can be used, at low cost, in several
home environments. However, before determining whether the architecture is capable of
providing additional protection for the home environment, we first need to evaluate the
performance of the components installed on the Raspberry Pi. To do this, we monitored
the memory and processor using RPi-Monitor tools while analyzing 78,836 network traffic
flows to classify them into anomaly/non-anomaly flows using the OSVM classifier.

Figure 8 shows the average CPU load from the beginning of the execution of the
architecture components to its completion. Figure 9 shows the amount of available memory,
free memory, and swap. It is possible to notice that the CPU usage remains constant
throughout the execution. Regarding the available memory, it is possible to observe that
the y-axis of Figure 9 initially had about 690 MB of available memory. However, when
bootstrapping the HSU module and loading the machine-learning models, the memory
decreased to around 300 MB and remained constant until the end of the experiment.

Figure 8. CPU performance during analysis of network flows.

For the analyzed example, the Raspberry Pi3 Pi 3 Model B supported the tests; however,
if it were necessary to load new models, it is likely that their performance would not be
satisfactory. Therefore, we recommend using Raspberry Pi 4 Model B with 4GB RAM as a
minimum requirement to deploy the FamilyGuard architecture.

Figure 9. Memory and swap usage during analysis of network flows.
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This experiment evaluated the performance of FamilyGuard components deployed on
a Raspberry Pi3 Pi 3 Model B. In this way, we show that the architecture has a low imple-
mentation cost, minimal hardware configurations for the deployment of the architecture
in the residential environment, and ease of use. However, we need to validate whether
machine learning models can detect threats present in the environment. Section 5.2 details
the analyzed algorithms.

5.2. Using Machine Learning to Detect Smart-Home Anomalies

The first step is to acquire network traffic information to portray the home environment.
Data comprises traffic from IoT smart home devices and personal computers (PCs), such
as mobile devices and laptops (non-IoT). The second step is to constitute traffic streams
from packet capture files (PCAP), which are data files created using a program with packet
data from a network. Third, network flows are decomposed into test cases to equate them
with smart home environment scenarios. The last step corresponds to building the traffic
classification model using unsupervised learning. We used three classic unsupervised
learning algorithms (OCSVM, LOF, and IF) that have been applied in several anomaly
detection applications [48,49]. After gathering all the PCAP files containing the captured
network packets, the CICFlowmeter [50,51] tool was used to generate bidirectional flows.

Sivanathan et al. [52] suggested an environment with twenty-eight mechanisms con-
taining cameras, lights, plugs, motion sensors, devices, and health monitors. They provided
the PCAP files among the released data, including the raw network packets. Available
traffic spans both IoT and non-IoT device communications. Therefore, we remove all
non-IoT devices to match the IoT dataset. The withdrawn devices included traffic from an
HP printer, Android smartphone, laptops, iPhone, Samsung Galaxy Tab, and a PIX-STAR
Photo-frame.

To portray traffic from non-IoT devices, we chose the dataset provided by the Canadian
Institute for Cybersecurity (CIC) [50], encompassing the different types of traffic and
applications known by the dataset: browsing, email, chat, streaming, file transfer, VoIP,
and P2P.

For the clustering of non-IoT data, samples of distributed denial-of-service (DDoS)
attacks provided by [53] were used. We introduced the following types of attacks into
our dataset: Distributed Reflection-Based Denial of Service (DDoS) using NETBIOS, SYN
Flood, and UDP Flood. In summary, for anomalous IoT traffic, we used data provided
by the Stratosphere Research Laboratory (SRL) [54] and selected network traffic related to
CoinMiner, Muhstik, and Mirai botnets.

We created three datasets, or test cases (TCs), to evaluate our experiments. The first
one, TC1, mixes IoT and non-IoT device traffic. The second, TC2, is derived from TC1,
containing only the examples referring to non-IoT devices traffic. Finally, in the third one,
TC3, only the IoT device samples were taken from the first test case. Our goals with these
experiments include: evaluating the feasibility of using unsupervised learning algorithms
to detect anomalies in the residential environment; verifying whether the mixture of IoT
and Non-IoT network flows might harm the anomaly detection process; and assessing
the HSU performance during the anomaly detection process (experiments described in
Section 5.3). Table 2 summarizes the test cases, the type of traffic that constitutes each one,
and the number of flows used in the training and testing phase.

We selected the following metrics to evaluate the performance of models:

• True Positive Rate (TPR), sensitivity or recall is the part of positive examples that the
model correctly predicted.

• True Negative Rate (TNR) is the portion of negative test examples that the model
predicts without errors.

• Error Rate (ER) is the part of the test suite examples that the model erroneously predicts.
• Precision is related to the test examples that the model correctly predicts.
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• Computing Field Under AUC corresponds to how much the model can differentiate
between classes. The more considerable the measure, the better the model predicts
negative classes like anomalies and positive classes like regular traffic.

Table 2. Evaluation of the classification models installed on the HSU.

Test Case Traffic Type Training Training Oversampling Test

TC 1

Non-IoT Normal 161,579 272,539 35,907
NetBIOS Anomaly - - 1196

SYN Anomaly - - 1196
UDP Anomaly - - 1196
IoT Normal 290,347 272,539 35,764

Muhstik Anomaly - - 1193
Mirai Anomaly - - 1192

Coinminer Anomaly - - 1192

TC 2

Non-IoT Normal 161,579 272,539 35,907
NetBIOS Anomaly - - 1196

SYN Anomaly - - 1196
UDP Anomaly - - 1196

TC 3

IoT Normal 290,347 272,539 35,764
Muhstik Anomaly - - 1193

Mirai Anomaly - - 1192
Coinminer Anomaly - - 1192

This subsection presents the evaluation of three classifiers in three test cases depicting
different home network scenarios. Our objective is to assess whether OCC algorithms
are enabled to provide additional protection for the residential environment by detecting
anomalies using network traffic flows. Table 3 summarizes our results. The Ref field.
alludes to the reference of the related algorithm.

Table 3. Summary of results.

Classifier Refs Test Case TPR TNR ER ACC AUC

OCSVM [55]
TC1 0.4527 0.9007 0.1399 0.8600 0.6767
TC2 0.8667 0.8985 0.1043 0.8956 0.8826
TC3 0.3958 0.8993 0.1464 0.8535 0.6476

LOF [56]
TC1 0.9157 0.8684 0.1272 0.8727 0.8920
TC2 0.9693 0.8561 0.1335 0.8664 0.9127
TC3 0.8660 0.8980 0.1048 0.8951 0.8820

IF [57,58]
TC1 0.4654 0.9004 0.1391 0.8608 0.6829
TC2 0.9200 0.9005 0.0976 0.9023 0.9102
TC3 0.3936 0.8979 0.1478 0.8521 0.6457

The results presented in Table 3 suggest that some algorithms may perform better than
others, but statistical tests need to be conducted to confirm this. We also conclude that it is
possible to use unsupervised models to detect threats in the residential environment, and
the combination of traffic from IoT and non-IoT devices adds complexity to identifying
anomalous behaviors. Through the experiments, we highlight that the models can provide
additional protection mechanisms that justify the adoption of the architecture.

5.3. Hsu Performance during the Anomaly Detection Process

To assess whether the models can identify a threat in a viable time so that it is possible
to take some preventive action, we analyzed three test cases. We monitored how long
the models took to make their predictions. That is, the time it takes HSU to analyze the
network traffic flow.
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Figure 10 shows the average time taken, from flow arrival to prediction. In TC1, 78.836
flows were analyzed, in TC2, 39.495 flows were analyzed, and in TC3, 39.341 flows were
analyzed. Details about each of the test cases are presented in Section 5.2.

Figure 10. Average prediction time on test cases TC1, TC2, and TC3.

It is possible to notice that the average time for the prediction is between 0.37 and
0.55 s by network flow. Considering that we use low-cost equipment, this can be seen as a
relatively short time.

We consider that the time obtained satisfies the needs of home users; for example,
upon receiving a DDoS attack to make some service unavailable in the environment, our
architecture is able to identify and react proactively by sending a rule to the SDN controller
to block the threat in a relatively short time.

Therefore, we evaluated the ability of the Raspberry Pi3 Pi 3 Model B to support
the architectural components and the response time that the models take to perform a
prediction. In that way, we conclude that the time spent is enough to make decisions to
mitigate the identified threats. However, another factor of great importance is providing a
residential environment with a better level of security and privacy, which means the ability
to deal with changes in each domain. An example of this is adding a known device to the
network. In this way, the validation in Section 5.4 seeks to describe the solution proposed
by our architecture.

5.4. Process of Updating Machine Learning Models in HSU

To deal with the inclusion of new devices and the placing of new protocols in het-
erogeneous residential environments, the HSU relies on the help of the CSA specified in
Section 4.4, which aims to assist a group of HSUs in the detection of anomalies.

To determine if a flow is anomalous, the models used by the HSU are not trained or
updated based on the residential traffic that they control, so there is no risk of learning
from malicious traffic existing in the monitored environment.

Another reason for outsourcing the creation of detection models is that they demand
a lot of computational power, making it impossible to use a low-cost device, such as the
Raspberry Pi3. In this way, we transfer the responsibility for training the model to SPPs.
SSPs can provide the CSA, which has the role of creating the machine learning models and
making them available on the HSU with anomalous traffic. The creation of models is under
the responsibility of specialized security service providers, as the definition must be free
from anomalies.

Suppose a residential environment has an anomaly detection model for IoT devices.
This environment has three devices (e.g., Amazon Echo, Netatmo Welcome, and Belkin
Wemo motion sensor); however, based on the needs of the residents of the residential
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environment, a new IoT device needs to be added, for example, a smart baby monitor. The
detection model needs to be updated to prevent this new traffic from being classified as
an anomaly.

The user (resident) can contact the service provider and request a suitable model,
including all the devices he has in his residence. The service providers can offer models
based on the identification of residential traffic, making this process automatic. For example,
when identifying a new device on the network, the service provider already makes an
updated model for the environment. In this way, we present how the models are updated
and made available to the architecture and how the CSA contributes to this process.

5.5. Threats Targeting the HSU and Devices Present in the Residential Environment

The FamilyGuard architecture provides additional security mechanisms for residential
environments; thus, it is necessary to analyze threats that intruders can exploit. Based
on [59,60], we define five threat points. Figure 11 illustrates these points. At threat point 1,
“Attacker A” can exploit the following threats:

Figure 11. Threat points that can compromise the security of home area network.

• Eavesdropping: monitoring network traffic without the authorized users knowing
about it. Communication may contain sensitive data that home users do not want to
be discovered by unauthorized users.

• Masquerading: an attacker can acquire certain unauthorized advantages by justifying
being an alternate legitimate user (e.g., guest). The attacker can impersonate an unau-
thorized home user and remotely access the smart home’s internal network system,
considering that the ultimate goal is to gather confidential data or acquire services.

• Replay attack: an attacker first receives messages that are legitimately exchanged
between two parties and then re-transmits them as an authorized party.

• Message modification: can occur when attackers intend to hijack communications
between two factual parties, for example, by modifying the software to make it act
maliciously or changing values in the data.

• Denial of Service: an attacker attempts to attack the availability of the network.
The attacker may send very large messages, or message bursts, to the smart home
networking system with the intention of overloading its services. In this way, genuine
users cannot obtain the services from the home network.
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At threat point 2, “Attacker B” has already gained authorized access to the environ-
ment and seeks to take down the additional protection service that identifies anomalous
flows; thus, the intruder can send a huge amount of messages to devices running the HSU
and controller connected to the Internet to restrict internal traffic transmitted by wired or
wireless networks inside the smart home.

Threat point 3, “Attacker B”, can deplete IoT device resources, making their use
unfeasible. To mitigate such threats, we use anomaly detection based on network traffic
flows. Therefore, experiments and analyses are presented in Section 5.2, which show the
possibility of dealing with possible threats with the support of artificial intelligence.

Finally, at point 4, compromised external devices can join the home network, causing
damage and exploiting flaws in the internal environment and, at point 5, an attacker can
listen to traffic outside the home to capture sensitive data or infer which internal devices
are present in the home or if there is communication at any given time.

6. Limitations

Although Section 5 showed the validation of several functionalities and discussed
how the proposed architecture advances the state of the art, it is important to highlight
some limitations and threats to validity.

In the first validation described in Section 5.1, we showed thethe simplicity of the ar-
chitecture by deploying it in low-cost hardware. We monitored the behavior of a Raspberry
Pi3 Model B during the analysis of 78,836 network traffic flows. Although we demonstrated
that using the architecture components with a low-cost device is possible, we cannot say
that this behavior will be the same as other models available on the market.

In the second validation presented in Section 5.2, we conducted experiments using
machine learning models to detect threats in the residential environment. In this experiment,
we used unsupervised models to detect threats. However, the number of threats in the
experiments is too small to determine if the model is still valid in a scenario with multiple
threats; further experiments and detailed study are required. Likewise, we can say that
separating IoT traffic from Non-IoT facilitates the identification of threats in the experiments
performed. Still, the number of threats and amount of data used in the study does not
guarantee the same behavior in a more complex scenario. The most critical point of this
validation was to use a model to detect threats in real time in the residential environment
to validate the communication between the architecture components. A severe limitation
found during this experimental validation was the lack of public datasets containing both
normal and attack samples from residential traffic. We circumvented this issue by creating
our own dataset. It is important to evaluate FamilyGuard architecture using other datasets.

The fourth validation described in Section 5.4 explores the foci of threats that are
harmful to the residential environment, that is, that try to harm the privacy of people living
in such an environment. It is possible to mitigate threats for the points described; however,
due to the dynamic environment and constant changes concerning the types of devices and
protocols, new threats arise over time. In this scenario, we also have the human factor and
the lack of technical knowledge about information security. Another factor contributing to
new threats is the lack of software and hardware updates. Based on all the threats cited,
security and availability of the architecture are concerns that will require detailed research.

Finally, as mentioned in the last validation presented in Section 5.5, the objective of
this experiment was to demonstrate how machine learning models are updated to handle
changes in the behavior of home network traffic caused by the addition of new devices
and protocols. Updating the models used by architecture is simple. However, the main
concern is about the quality of the models and whether they will be effective for the
residential environment. It was not presented in this article, but the components proposed
in the CSU and HSA architecture allow for the implementation of collaborative threat
detection models, a solution that can improve the quality of the models available to the
residential environments.
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7. Conclusions and Future Work

This work proposes FamilyGuard, a security architecture designed to manage residen-
tial environments efficiently and effectively by using low-cost hardware. We described and
evaluated a complete scenario for anomaly detection. Our results indicate that: (i) it is possi-
ble to deploy the architecture using a Raspberry Pi3 Model B; (ii) machine learning models
can provide additional protection to the residential environment; and (iii) machine learning
models installed on low-cost hardware can make predictions in a viable time frame to
mitigate identified threats. We also discussed how the proposed architecture deals with the
model update task and some of the threats that may exist in residential environments. We
contribute to the scientific community by presenting the design, implementation, testing,
and validation of a machine-learning-based security architecture for smart homes.

Future work will be directed to evaluating the performance of one-class algorithms
for several types of security threats and to identifying the best algorithms according to
different smart home scenarios. We also intend to explore the idea of building collaborative
models to improve threat detection. Although this work presents models for anomaly
detection based on network flows, this was just an experiment to validate the components
and the use of the architecture in a real environment. However, it is possible to explore
several possibilities that can improve the safety and comfort of people living in a given
environment, for example, models to optimize energy consumption, detect occupancy
within a certain room of the house to check the perimeter for intruders, recognize abnormal
activity or events to detect dangerous situations such as fire or flood, or monitor activities
of the elderly.
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