
 
 
 

University of East London Institutional Repository: http://roar.uel.ac.uk  
 
This paper is made available online in accordance with publisher policies. Please 
scroll down to view the document itself. Please refer to the repository record for this 
item and our policy information available from the repository home page for further 
information. 
 
To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription.  

 
Author(s): Beydoun, Ghassan; Low, Graham; Henderson-Sellers, Brian; 
Mouratidis, Haralambos; Gomez-Sanz, Jorge; Pavón, Juan; Gonzalez-Perez, Cesar. 

Article Title: FAML: a generic metamodel for MAS development  
Year of publication: 2009 
Citation: Beydoun, G. et al (2009) ‘FAML: a generic metamodel for MAS 
development’, IEEE Transactions on Software Engineering 35 (6) 841-863 

Link to published version: 
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.34 

DOI: 10.1109/TSE.2009.34 

 
Information on how to cite items within roar@uel: 
http://www.uel.ac.uk/roar/openaccess.htm#Citing  
 
 

http://roar.uel.ac.uk/
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.34
http://www.uel.ac.uk/roar/openaccess.htm#Citing


FAML: A Generic Metamodel
for MAS Development

Ghassan Beydoun, Graham Low, Brian Henderson-Sellers, Haralambos Mouratidis,

Jorge J. Gomez-Sanz, Juan Pavón, and Cesar Gonzalez-Perez

Abstract—In some areas of software engineering research, there are several metamodels claiming to capture the main issues.

Though it is profitable to have variety at the beginning of a research field, after some time, the diversity of metamodels becomes an

obstacle, for instance to the sharing of results between research groups. To reach consensus and unification of existing metamodels,

metamodel-driven software language engineering can be applied. This paper illustrates an application of software language

engineering in the agent-oriented software engineering research domain. Here, we introduce a relatively generic agent-oriented

metamodel whose suitability for supporting modeling language development is demonstrated by evaluating it with respect to several

existing methodology-specific metamodels. First, the metamodel is constructed by a combination of bottom-up and top-down analysis

and best practice. The concepts thus obtained and their relationships are then evaluated by mapping to two agent-oriented

metamodels: TAO and Islander. We then refine the metamodel by extending the comparisons with the metamodels implicit or explicit

within five more extant agent-oriented approaches: Adelfe, PASSI, Gaia, INGENIAS, and Tropos. The resultant FAML metamodel is a

potential candidate for future standardization as an important component for engineering an agent modeling language.

Index Terms—Modeling, metamodel, multiagent systems.

Ç

1 INTRODUCTION

THE advances of Model-Driven Development have
motivated the application of modeling techniques to

different fields. This has been seen by some researchers as
an opportunity to embody the knowledge of particular
aspects of their research in the form of metamodels. As a
result, there are a number of metamodels developed for
similar or overlapping domains of software engineering.
For instance, there are various metamodels for aspect-
oriented programming (e.g., [1], [2], [3]), software architec-
tures (e.g., [4], [5], [6]), and multiagent systems (MASs)
(main focus of this paper) (e.g., [7], [8]). It would be useful if
the different metamodels within the same domain of

software engineering (e.g., domain of MAS) could be
combined into one, or at least be subsumed by one,
metamodel. This clearly requires an assumption that
metamodels share a number of common concepts, although
they may not be expressed in exactly the same way.

For any given domain, the benefits of metamodel
unification may include: Domain concepts are easier to
apply for newcomers (concepts would be present in the
single metamodel instead of having to look for them in a
dispersed collection of extant ones); increased portability of
models across supportive modeling tools (they would refer
to the same metamodel); better communication between
researchers (they could use the same frame of reference, i.e.,
the unified metamodel); and research could focus on
improving and/or realizing the unified metamodel instead
of being spread across a number of extant metamodels.

Synthesizing a unified metamodel from extant metamo-
dels for a given domain is a challenge: Various extant
metamodels may contain an apparent disparate variety of
concepts. Certain concepts in one metamodel may be
contradictory to concepts used in another as researchers
may be biased to concepts supporting their particular view
which is reflected in their own. Hence, a unified metamodel
is forced to take into account as many of these issues as
possible while maintaining internal consistency. While this
is extremely difficult, we hypothesize that considerations of
ambiguity, generality, and extensibility can help solve most
of these problems.

Ambiguity permits a researcher (or developer) to
interpret a model in the most convenient way and to deal
with a degree of contradiction. Ambiguity here refers to
inevitable variations in interpreting natural language
definitions of metamodel concepts, be it in FAML or other
existing metamodels, i.e., it is implicit that many of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009 1

. G. Beydoun is with the School of Information Systems and Technology,
Faculty of Informatics, University of Wollongong, NSW 2522, Australia.
E-mail: ghassan@uow.edu.au.

. G. Low is with the School of Information Systems, Technology and
Management, Australian School of Business, University of New South
Wales, Sydney 2052, Australia. E-mail: g.low@unsw.edu.au.

. B. Henderson-Sellers is with the School of Software, Faculty of Engineering
and Information Technology, University of Technology, Sydney,
PO Box 123, Broadway 2007, Australia. E-mail: brian@it.uts.edu.au.

. H. Mouratidis is with the School of Computing and Technology,
University of East London, Docklands Campus, 4-6 University Way,
E16 2RD, Room Number EB.G.25., London. E-mail: haris@uel.ac.uk.

. J.J. Gomez-Sanz and J. Pavón are with the Ingenieria del Software e
Inteligencia Artifical, Facultad de Informatica UCM, Universidad
Complutense de Madrid, Madrid 28040, Spain.
E-mail: jjgomez@sip.ucm.es, jpavon@fdi.ucm.es.

. C. Gonzalez-Perez is with the Heritage Laboratory (LaPa), Spanish
National Research Council (CSIC), Instituto de Estudios Gallegos Padre
Sarmiento, San Roque 2, Santiago de Compostela, Galici 15704, Spain.
E-mail: cesar.gonzalez-perez@iegps.csic.es.

Manuscript received 31 Mar. 2008; revised 20 Jan. 2009; accepted 9 Feb. 2009;
published online 15 May 2009.
Recommended for acceptance by R. Laemmel, A. Winter, and D. Gasevic.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2008-03-0121.
Digital Object Identifier no. 10.1109/TSE.2009.34.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society



extant metamodels are inherently ambiguous since their
semantics are expressed in natural language. While ambi-
guity is useful in reconciling multiple and disparate sources
into a hybrid definition, aiming for consistency and
generality in the end result may often be more efficacious.
Generality permits specialization of a concept to be more
relevant to a specific line of research. In other words, a
(general) concept can stand for many things, including
those that interest a particular researcher. Thus, generality
provides extensibility to the metamodel. It permits re-
searchers willing to use the unified metamodel an ability to
extend concepts to incorporate their specific issues. Any
new concepts would be considered for inclusion in
revisions of the unified metamodel when their utility for a
number of researchers is demonstrated. Therefore, using
generality and extensibility, it is possible to iteratively
construct a new unified metamodel from a combination of
existing metamodels.

In the synthesis of our metamodel, we solely focus on the
metamodel elementofmodeling languages (togetherwith the
abstract syntax—a.k.a. semantics—that any suchmetamodel
defines) in the context of software agents and multiagent
systems (MASs). Agents are highly autonomous, situated,
and interactive software components. They autonomously
sense their environment and respond accordingly. In a given
MAS, coordination and cooperation between agents that
possess diverse knowledge and capabilities facilitate the
achievement of global goals that cannot be otherwise
achieved by a single agent working in isolation. Indeed,
MASs have been shown to be highly appropriate for the
engineering of open, distributed, or heterogeneous systems
such as market simulations and e-commerce trading envir-
onments [9], as well as for building computational models of
human societies in order to study emergent behavior [10].

In the MAS literature, MAS metamodels have tradition-
ally been the subject of study of MAS methodologies. MAS
methodological approaches are typically made of, inter alia,
a process-focused portion and a modeling language (to
describe intermediate and final workproducts1). A selection
of these approaches can be found in [11]; notable examples
include Gaia [12], Adelfe [13], Prometheus [14], INGENIAS
[15], PASSI [16], and Tropos [17]. This variety of methodol-
ogies has brought benefits in terms of research, since several
ways of developing MAS have been investigated. However,
it has caused difficulties. The most evident is making it
harder for developers to use MAS technology as they have
to choose from the large number of extant agent-oriented
methodologies—often requiring the necessary acquisition
of new skills to understand the methodology and its
associated unique modeling language. Each specific appli-
cation domain can actually be thought of as being
circumscribed by a modeling language delimiting the
domain of MAS development.

Assuming that there are indeed common concepts in
MAS development relating to input and output work-
products, the paper shows how a relatively generic

metamodel (and hence, a modeling language) for agents
can be built. This metamodel would be as relevant to agent
modeling as the UML metamodel has been for object-
oriented modeling. Since a blind merge will almost
inevitably create major semantic problems [18]; here, we
aim to create a unifying metamodel by identifying common
concepts in an iterative cycle consisting of both a bottom-up
and a top-down analysis: Identifying common elements in
existing modeling languages provides the bottom-up per-
spective, complemented by the top-down semantic evalua-
tion of necessary agent-focused concepts, and aided by an
intelligent use of generality. As such, it is a domain-specific
(i.e., agents) application of software language engineering.

Since the concepts needed for agent-oriented software
engineering extend and modify those for object-oriented
software engineering, it is generally agreed that a direct,
simple use of UML as an AO modeling language is
inappropriate [19], [20], [21], [22]. This paper therefore does
not pursue a UML-based modeling language such as a UML
profile, as done effectively in AUML [23], [24] and AML [25].
Semantic problems appear when the basic element in Agent-
oriented Software Engineering (AOSE), i.e., the agent, is
constrained to be a subtype of the UML standard’s Class
construct [26]—although future work will evaluate the
possibility of agent being a subtype of (UML) Component
[27] or of Classifier [28].2 The concrete proposal of this paper
is the metamodel FAML (FAME3 Agent-oriented modeling
Language),4 which was initially described in an early
prototype in [18]. Later work [29] added some concepts
specifically for security (not part of the relatively generic
metamodel discussed here). The future goal is to create a
complete modeling language (including concrete syntax,
i.e., a notation) based on this metamodel that can describe
the basic features of agents in an MAS. Our expectation is
that, when this language is available, it will be usable to
describe any workproduct produced by any methodology
(since all methodologies aim to produce an MAS that is
based on those needed workproducts).

The paper is structured as follows: Section 2 describes
the actual process creating the initial version of our
metamodel and illustrates it in terms of runtime and
design-time concepts for both agent internal and agents’
situational aspects. Section 3 describes the metamodel
validation and shows how it can be used to generate other
extant approaches, providing external validation and
refinement of the metamodel leading to the final version
described in Section 4. Section 5 discusses related work on
agent modeling languages. Section 6 concludes the paper
with a discussion of our findings and future work.

2 CREATING THE INITIAL FAML METAMODEL

The FAML creation process started with an abstract
representation of what may generally be expected from

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

1. Workproducts are artefacts of interest to the endeavor. For example,
these artifacts may be inputs or outputs of the processed focused portion of
the methodology. They may be described graphically or textually, thus,
requiring a variety of languages such as English (natural language), AUML
(modeling language), and C# (implementation language).

2. The proposal expounded in [28] is most interesting, but unfortunately
was only published after we had received reviewers’ comments on our
original submission. An integration of that work on MAS-ML and our work
on FAML must, therefore, be a topic for future work.

3. Framework for Agent-Oriented Method Engineering (FAME) is the
project name under which FAML has been developed.

4. Although FAML was named initially as a modeling language, the
derivation of the important metamodel MUST, in our opinion, be completed
before a notation is added. Here, we focus on that metamodel as a prelude
to future work on notation derivation.



MASs (e.g., [30], [31]) and continued with the study of their
generic common features. Where the MAS required an
agent feature that was outside the scope of the three
essential definitional properties (autonomy, situatedness, and
interactivity) or that was not commonly used, such a feature
was considered as methodology-specific and outside the
scope of FAML. The incorporation of these concepts,
however, would still be possible for interested researchers
if an extension mechanism, perhaps akin to the notion of
profiles or metamodel extensions that are possible with
UML, were to be used. Researchers could continue with
their individual research while using the FAMLmetamodel.
Workproducts in any methodology can be successfully
generated using the metamodel, even if it requires addi-
tional, nondefinitional concepts (e.g., Adelfe, which as-
sumes adaptive agents [13], or the security concerns
discussed in [29]). In the creation process of FAML, internal
consistency was guaranteed by ensuring that the semantics
of the concepts were consistent. This sometimes required
sacrificing coverage and generality, i.e., the definition of
some concepts was narrowed to ensure internal consis-
tency. In some cases, coverage and generality are opposing
and trade-off decisions had to be made.

2.1 Metamodel Creation

To construct FAML, the set of concepts to be used was first
determined. This described frequently occurring concepts
in any MAS and the relationships among them. These
concepts and their definitions were rooted in the existing
literature related to MAS and MAS methodologies. Because
of the sheer size of this literature, it was not possible to
ensure that the initial set was comprehensive. There was a
continuous incorporation of new references during the
metamodeling process. Thus, the metamodel creation
process was iterative. Using these iterations between top-
down and bottom-up perspectives, we identified commonly
used concepts that developers often use and methodologists
agree upon. The FAML creation process, which was the
main concern in [18], consisted of the following steps
undertaken (iteratively):

Step 1: The set of general concepts relevant to any MAS
and its model was determined. As noted earlier, some
problem-specific concepts were omitted, e.g., terms specific
to robots (e.g., actuators) or to single-agent systems were
excluded. They could be included by specializing more
general FAML concepts. Literature from the following areas
was relevant: agent software engineering (e.g., [16], [26],
[32], [33]), AI (e.g., [34], [35], [36]), distributed AI (e.g., [37],
[38], and cognitive science (e.g., [39]). The output of this
step was a list of concepts pending succinct definition.

Step 2: Candidate definitions were short-listed. Sources
with a clear definition were given greater weight than those
with only an implicit definition that can be subject to
personal interpretation. Widespread occurrence of any
particular definition was also taken into account leading
to adopting a set concepts grounded in what other people in
the agent community widely agreed. This output was a
short list of candidate definitions corresponding to the list
of concepts selected in Step 1.

Step 3: Differences between definitions were reconciled
to ensure an internally consistent set of metamodel terms.

Definitions were chosen based on consistency with earlier
choices when possible; otherwise, hybrid definitions cre-
ated from multiple sources were introduced. Where contra-
dictory use of concepts between two or more sources
occurred, the solution was to select the usage that was most
coherent with the rest of the set of chosen concepts trying at
all times to maintain generality. For example, “Task” had
been defined as a set of behaviors in [39] and as “behavior but
with the significance of atomic part of the overall agent
behavior” in [40]. The definition decided for FAML is
“specification of a piece of behavior that the MAS can
perform,” which is a hybrid definition that encompasses
both interpretations since nothing is stated about atomicity.
The “Task” concept in FAML includes the possibility of
decomposing a task if required. Conversely, researchers
requiring that a “Task” be atomic would not use task
decomposition. The final output of this step was a
refinement of the list of concepts obtained in Step 1 with
their corresponding definitions modified (if necessary) to
ensure internal consistency.

Step 4: Chosen concepts were designated into two sets:5

design-time concepts and runtime concepts. We recognize
that it is intuitive to model the “system as developed” by the
software engineers as well as the “system as being executed”
inside the computer. For example, in OO software develop-
ment using UML [29], classes are the focus of the design
activities and created by the developer whereas objects come
to exist inside the computer at runtime. When using UML,
the runtime elements (the objects) that occur inside the
computer when the program is executed are less tightly
defined because of the inbuilt bias toward classes rather than
objects. In FAML,wewant to go beyond this OO limitation in
modeling runtime objects and provide explicit support for
both design-time artefacts (the “classes”-equivalent in
AOSE, i.e., agent definitions) and runtime artifacts (the
“objects”-equivalent in AOSE, i.e., agents themselves). This
differentiation,6 perhaps considered arbitrary by some, can
also add some indication of which stage in the development
lifecycle a particular concept is likely to be useful—in
comparison with an all-embracing modeling language
(ML) like UML [29], which tends to confuse developers
simply because it does not give any stage indication of its
utility. Concepts in each of the two sets were further
designated into two scopes, agent-external and agent-
internal-related scopes, since a key differentiator for AOSE
is the tight coupling between the software entity (here
“agent”) and its environment [42]. This allowed the separate
modeling of the internal aspects of agents ensuring their
successful functioning as single entities, and the modeling of
aspects of an MAS that relate to interactions of individual
agents within a collaborative system. Agent-internal con-
cepts cover various types of existing agents. However, agent-
external concepts coverMAS common concepts including all
those that can be attributed to the essential features of agents
(situatedness, interactivity, and autonomy). Less common

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 3

5. While one reviewer recommended splitting analysis from design by
adding a third layer, this needs careful thought and testing beyond the
constraints imposed for this current paper.

6. Effectively, we discriminate between conceptual versus machine-
dependent; thus, design could be said to include “analysis,” as is often done
in AO methodologies (see, e.g., [41]).



system concepts specific to certain types of MAS were
omitted. For instance, adaptivity is a nondefinitional property
of agents in that not all MASs require this property. Thus,
some concepts describing an MAS in Adelfe’s metamodel
are deemed too specific to be included in the FAML
metamodel—Adelfe’s [13] adaptive system design requires
learning agents.

The four designated categories are depicted in Fig. 1. The
final output of this step was four categories of concepts,
although the relations between concepts in each of the
categories and between the categories were yet to be fully
identified (see Step 5).

Step 5: Relationships within both the design-time and
runtime sets and relationships interfacing the categories,
fromStep 4,were identified. This led to the initialmetamodel.

Steps 1-5 are generic, i.e., they do not depend on the
particularities or nature of any specific agent-oriented
methodology. Their output represents the initial agent-
oriented metamodel, which is then subjected to further
evaluation and validation (Section 3).

2.2 Initial FAML Metamodel

The intention is that FAML will provide a set of generic
concepts useful to a modeling language, while not
necessarily providing all required details demanded by
every specific agent-oriented ML. Some details are left to
each individual methodology-specific ML case to be
included using, for instance, specializations of FAML
concepts or making an intelligent use of cardinalities. For
example, if a given methodology is geared toward simula-
tion systems composed of reactive agents, then a concept
such as Plan would not be needed. This is supported with
the optional (0..1) cardinalities seen in the metamodel
diagrams. Instead of Plan, the association between events
and actions can be utilized. This association is possible since
an Action Specification includes references to preconditions
and postconditions, which ultimately refer, among others,
to the events produced in the system.

In connecting all filtered and synthesized concepts into a
coherent metamodel, it is ensured that the set of terms is self-
contained. Concepts have relationships only to other con-
cepts within the same set. At the system level, only relations
and concepts that apply due to the definitional properties of
agents (autonomous, situated, and interactive) are included.
As noted before, each of the two layers of FAMLmetamodel,
the design-time and runtime layers (Fig. 1), may have two

scopes: an agent-external or agent-internal scope. Four
information categories exist within FAML: system level
(design-time, agent-external), agent definition level (design-
time, agent-internal), environment level (runtime, agent-
external), and agent level (runtime, agent-internal). FAML is
thus presented using four different views to clearly group
classes into these four different areas of concern: design-time
agent-external classes, design-time agent-internal classes,
runtime agent-external (environment) classes, and runtime
agent-internal classes.

The central FAML concept at design-time is System (i.e.,
an agent-oriented system), whereas the central concept at
runtime is Environment (i.e., the context where agents reside).
The concept of Agent also plays a central role, especially in
marking the boundary between agent-internal concepts and
agent-external concepts. Some classes in FAML are related to
the internals of agents, while others are related to their
externals. Agent-external aspects at design-time are called
system level, they belong to the overall system rather than a
specific agent. Agent-external aspects at runtime are called
environment level, they belong to the overall environment
rather than a specific agent. At the same time, and since
Agent is a runtime concept, agents only exist at design-time
as AgentDefinitions (i.e., specifications of the contents of
agents), and therefore, agent-internal aspects at design-time
are called agent definition level while agent-internal aspects
at runtime are simply called agent level.

2.2.1 Design-Time Aspects

At design-time, the concept of System (i.e., an agent-oriented
system) plays a central role (Fig. 2—see also Table 1). To
start with, a system satisfies the requirements, which can be
functional or nonfunctional. Tasks are derived from require-
ments. The initial metamodel used in this paper differs
slightly from that originally proposed in [18] in that tasks
are derived from requirements (both functional and non-
functional) and not just from functional requirements as
proposed in [18]. The restriction that nonfunctional require-
ments are derived from performance measures is removed
as this was regarded as being too restrictive.

Roles also define a system—they can be related to each
other directly to specify that a role specializes from another
role, or indirectly to specify different kinds of relationships
such as incompatibilities. Each role can be related to
different tasks in the context of either being responsible
for the task or simply as a collaborator.

The agents that will exist at runtime are described with
agent definitions (Fig. 2 linked to the details shown in
Fig. 3—see also Table 1). To initialize the concept
AgentDefinition, the metamodel provides an attribute
(InitialState). The agent definition has both a system generic
function, which serves to initialize all the agents related to
the system, and a role-specific function, which serves to
initialize an agent when it joins a particular role at runtime.

A system is also composed of facet7 definitions, i.e.,
definitions of aspects of the environment with which agents
can interact. A facet definition can also be associated with

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

Fig. 1. The 2� 2 matrix that is used to define four typical FAML
metalevel diagrams (after [29]).

7. “Facet” may or may not be the best name to be used to identify
environment-related concepts in the metamodel. It has the unique
advantage of being a shorter word than “environment-related.”



each role to specify whether agents playing that role may
sense or change that facet. Importantly, the environment
may change independently of the agent system [54]. Facets
should not be expected to remain constant between agent
interactions. In fact, we envisage facets as behaving very

much like variables of a physical environment, which often
fluctuate from one moment to the next, with each
individual measurement of them yielding different results.
For instance, consider an MAS for community-based Web
searching [31] in which an example of facets is details of
records in the database of history of Webpage hits (at an
individual Web node). These facets can change indepen-
dently of the system (e.g., Webpages being removed) and
are sensed by some agents depending on their roles. For
example, an agent playing the role of a history manager will
be able to access these, whereas an agent playing the role of
a facilitator may not be able to access them.

At the Agent Definition level, an agent definition consists
of an initial state plus a number of plan specifications (Fig. 3).
Each plan specification is composed of a number of action

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 5

Fig. 2. Design-time agent-external classes adapted from [18]. (The
diamond notation is used here to denote a generic whole-part
relationship.)

TABLE 1
Initially Identified Design-Time Concepts and Their Definitions

Fig. 3. Design-time agent-internal classes [18].



specifications, which can be facet action specifications

(which specify how to change a facet of a given kind) or

message action specifications (which specify how to send a

message using a given schema). Note that the term “action”

is used in the context of a single agent, while the term “task”

is used (see above) in the context of the complete system.

2.2.2 Runtime Aspects

At runtime, the environment is the central concept (Fig. 4—see

also Table 2), which is tightly coupled with the design of the

system. An environment is essential for agents to exist and

function [42]. Environments host agents and have facets

(specific aspects with which the agents can interact). The

recognition of the environment as an explicit abstraction

with facets as points of interactions is consistent with recent

findings and emerging views articulated in [43], [44].

Additionally in FAML, an environment always has an

environment history, composed of all the events that have

ever occurred in that environment. Events, in turn, can be

message events (i.e., events corresponding to a message

being sent) or facet events (i.e., events corresponding to a

facet being changed).
Looking at the agent-internal (Fig. 5—also Table 2), an

agent may play a number of roles at any point in time. In

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

Fig. 4. Runtime agent-external classes adapted from [18].

TABLE 2
Initially Identified Runtime Concepts and Their Definitions



this version of FAML [24], an agent is shown to hold a
collection of beliefs, desires, and intentions, including basic
concepts supporting a BDI approach. This approach is not
compulsory, since agents can exist without having any
beliefs, desires, and/or intentions.8 An agent can have a
plan, which is, in turn, composed of actions. These can be
facet actions (this results in a facet changed) or message
actions (this results in a message sent). Agents may send
messages to each other. A message always has a single
sender, but can have multiple recipients.

3 VALIDATION OF FAML METAMODEL

This phase is concerned with external consistency and
completeness of the metamodel. This ensures external
consistency with the concepts promoted by extant meth-
odologies and that FAML can generate the majority of the
modeling language components promoted in each different
extant AO methodology. Generally, internal consistency (as
ensured in Step 3 of the FAML creation process—Section 2)
is a strong indicator of external consistency as demon-
strated and highlighted in [45]. However, the goal of this
validation is to undertake an external consistency check
against the explicit and implicit metamodels of methodol-
ogies available in the literature. The validation phase has
the following steps:

Step 1: We revisit an initial validation (reported in [18])
against two extant explicit metamodels, TAO [46] and
Islander [47], and improve the coverage of the metamodel
by adding concepts from both of these, which were chosen
for our initial validation since, at the time of writing, their

authors were among only a handful able to provide explicit
descriptions of their underpinning metamodels that can be
easily examined outside the context of a methodology.
Moreover, they are proved metamodels that were used to
lead to modeling actual, deployed, and commercial MASs.
Resulting enhancements introduced into the FAML meta-
model are described in Section 3.1.

Step 2: Crosscheck FAML concepts from Step 1 to ensure
coverage of key modeling concepts included in the feature
analysis framework for AOSE developed by [48],9 which
also reports an evaluation of the support offered by GAIA,
TROPOS, Passi, Adelfe, INGENIAS, MAS-CommonKADS,
Prometheus, MaSE, RAP, and MESSAGE for those key
modeling concepts. This validation step refines key FAML
concepts from Step 1 and is detailed in Section 3.2.

Step 3: Crosscheck FAML concepts from Step 2 against
the complete metamodels of three well-known, yet differing
methodologies: Gaia [50], PASSI [51], and Adelfe [52]. This
validates and refines key FAML concepts from Step 2.
Details of this step are given in Section 3.3.

Step 4: Empirically test the metamodel from Step 3 by
attempting to generate the ML component of INGENIAS
and TROPOS. This may also result in further enhancement
of FAML. Details of this step are given in Section 3.4.

As we progress through the steps of the validation
process, the expected decrease in the number of refinements
of FAML will be a strong indicator of its completeness.
While actually assessing the coverage of our metamodel in
the validation steps, we examine how and to what extent

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 7

Fig. 5. Runtime agent-internal classes [18].

8. This apparent BDI emphasis is removed during the validation phase
(see Section 3.2).

9. This work takes and extends the feature analysis validation reported
in [49], which considered the original FAML metamodel and not the
enhanced metamodel from validation step 1, nor did it suggest how the
additional concepts might be implemented.



FAML accommodates the semantics of major corresponding
concepts in the target metamodel, taking note of the
following:

. Only general concepts relevant to modeling the large
majority of MAS are included. Some methodology-
specific concepts are omitted from FAML (as shown
in Section 2).

. It is not mandatory to utilize every element of
FAML. Hence, not all aspects of our metamodel are
needed for every methodology-specific ML.

Comparisons between concepts of FAML and those of
different metamodels underlying various agent-oriented
methodologies are clearly difficult. Wherever possible, we
adopt a holistic approach to any comparison, noting that
different metamodels may have different ways to express
the same concept or may even use the same name for
different concepts.

3.1 Validation Step 1: Using Metamodels from TAO
and Islander to Validate and Refine FAML

We iteratively revisit an initial validation of FAML from
[18], using Islander10 [47] and TAO [46]11 and add to FAML
newly identified concepts to better describe TAO and
Islander. The additional concepts enhance FAML’s cover-
age and permit more detailed description about interagent
relations, including relationships between roles and orga-
nizations of agents.

The dialogical framework of Islander offers an evolved
role specification mechanism that allows various relation-
ships between roles to be expressed, including authority
relationships. To allow FAML to describe these, we add to it
a new concept, Role Dependency, which can be refined into
various authority relationships between roles. We also add
to FAML a new concept of Role Compatibility to describe any
association relationship between roles available in Islander.
We deem other evolved expressive concepts of Islander as
too domain specific. For instance, Islander performative
structures specify interactions at a level of detail not
available in FAML. These are specific to Electronic Institu-
tion MASs (e.g., Auction Websites) targeted by Islander.
Hence, their inclusion in FAML would not serve our
motivation to create a methodology-independent metamo-
del of an agent-oriented ML as discussed before. The TAO12

refinement of the FAML concept, FunctionalRequirement,
centers on the notion of Organization. Every TAO organiza-
tion (Fig. 6) owns some agents and is coupled with a set of
roles played by the agents. Each TAO organization has also
goals that are decomposed into agent goals allocated to
roles. The initial version of FAML [18] had an association
between tasks and roles, as well as an association between
roles and agent definitions. That version did not explicitly

specify which agents cooperate in a given task. To rectify
this, the concepts of Organization (Fig. 14) (and its associated

Organization Definition (Fig. 12)) are added to FAML in order
to specify which collection of agents cooperates toward a

system goal. The new FAML concept, SystemGoal, can be
subdivided and related to organizations, and these, in turn,

have agents belonging to them. The inclusion of system

goals (and tasks) in the design-time system-level classes also
provides support for those methodologies that utilize a goal-

oriented approach such as i* [54] to requirements elicitation.
Similar to TAO, FAML has now a link between organization

definitions and roles. Although a difference remains in
TAO, the notion of organization additionally contains

refinements of our notions of Task, which remains in FAML
associated with SystemGoals and indirectly associated with

our notion of OrganizationDefinition.
The new FAML concept, OrganizationDefinition, also

better captures the concept of Dialogical Framework in

Islander, which describes the roles and their relationships
as a set of cooperative units that may involve a number of

agents. Islander and TAO’s support for the revised FAML
concepts after this validation stage is shown in Tables 3 and

4, respectively.

3.2 Validation Step 2: Using Feature Analysis

Tran and Low [48] developed an evaluation framework
using various feature analysis frameworks applied to

evaluating AOSE methodologies [55], [56], [57], [58], identi-
fying and integrating four categories of evaluation criteria:

Process-Related, Technique-Related, Supportive Features-Related,
and Model-Related. Only concepts represented by Model-

Related Criteria refer to the workproducts of a methodology.
They examine capabilities and characteristics of a methodo-

logy’s models and notational components as well as their
support for agent characteristics. We use features only from

the Model-Related Criteria (considered by Tran and Low
[48]) to examine the coverage of FAML for key modeling

concepts since FAML aims to support the workproducts
rather than processes or techniques involved in creating

them (Table 5). Tran and Low [48] reported their evaluation
of the support offered by GAIA, TROPOS, Passi, Adelfe,

INGENIAS,MAS-CommonKADS, Prometheus, MaSE, RAP,
and MESSAGE for these key modeling concepts. This

validation step refines key FAML concepts from Step 1.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

Fig. 6. TAOmetamodel showing MAS-ML abstractions and relationships.

10. The Islander metamodel is not explicitly described in any published
diagrams. The metamodel information used here was from personal
communications with the author of Islander [53] and the graphical software
interface of the metamodel editor.

11. MAS-ML [28], as an extension to TAO, was published much later
(September 2008) and was, therefore, not able to be analyzed in detail for
this current paper.

12. The TAO metamodel retains object-oriented design concepts along
with its agent-oriented design concepts. In our past and current analyses,
we are concerned only with the agent-oriented features of TAO.



We find that the extended FAML after validation step 1
(Section 3.1) supports most of the features, however, all
10 methodologies analyzed in [48] distinguish between
System Goals and Agent Goals and FAML does not. To
ensure its broader applicability, and at the same time, its
comprehensibility for developers who are not familiar
with BDI, we add to FAML a new concept, AgentGoal, and
delete both Desire and Intention of an agent (shown in
Fig. 15). This new concept can if necessary be used to
implement a BDI agent architecture by using an attribute
“Committed.” If a goal is committed, it can correspond to
an intention, an uncommitted goal can correspond to a
desire. This notion of commitment is in accordance with
the goal and task metamodel of [59]. It makes the concept
Obligations, shown in Fig. 5, redundant as replaced by the
state of commitment of an agent to achieve certain states.
Hence, we delete Obligations.

FAML was also found deficient with respect to services
provided by agents, support for interaction protocols,
system architecture, and use cases (Table 5). Support for
services and interaction protocol was added. However,
support for system architecture and workproducts from
specific requirements elicitation techniques (e.g., use cases)
was regarded as methodology-specific and outside the
general scope of FAML. Particularly, the Requirements class
in FAML can be used to describe requirements from various
elicitation techniques.

3.3 Validation Step 3: Using Adelfe, PASSI, and
Gaia

This validation step is prompted by an integration paper
proposing an MAS metamodel unification based on three
AO methodologies—Adelfe, Gaia, and PASSI [60]. Our
metamodel FAML is compared with each metamodel of
those three methodologies, leading to its further refinement
and modification. As it turns out, many concepts of the
three methodologies are already available in FAML; we
only discuss features that are missing or those that
eventually lead to some modification of FAML.

The Adelfe methodology is tailored toward building
adaptive MASs (Fig. 7), by designing agents with a
cooperation-driven social attitude [60]. Agents in adaptive
MAS, as targeted by Adelfe, pursue local internal goals
(Agent Goals in FAML) and try to cooperate with other
agents. The concept of cooperation is embedded within its
metamodel. Each Adelfe agent has a set of cooperation rules
that allows the agent to detect and resolve noncooperative
situations (exceptions) such as incomprehension, ambigu-
ity, incompleteness, unproductiveness, concurrency, con-
flict, and uselessness. In contrast, FAML accommodates
cooperative behavior through shared system goals between
agents. The high level of cooperation between Adelfe agents
is not found in most methodologies [7]. Adelfe constrains
an agent behavior with a cooperative attitude [52] and it
deliberately omits a number of concepts. For instance,
Adelfe does not support System Goal and Organization
included in FAML. Adelfe uses a modified form of the
common Belief-Desire-Intention (BDI) architecture for in-
dividual agents, where Aptitude, Skill, and Representation
combine the planning intention of an agent with its desire to
take an action as well as a description of beliefs about the
world. Basic beliefs are captured in characteristics of an
agent. This analysis of Adelfe suggests adding to FAML a
high-level concept, MentalState, which supports this mod-
ified BDI architecture, but at the same time, remaining
consistent with the available support for a traditional BDI
architecture through beliefs and agent goals (see Section 3.2

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 9

TABLE 3
Islander Support for Revised FAML Concepts (After Step 1)

TABLE 4
TAO Support for Revised FAML Concepts (After Step 1)



for more details). The addition of MentalState (and its
associated initial MentalStateSpecification) may also accom-
modate other deviations from the BDI architecture, e.g.,
Gaia or PASSI [60].

In PASSI, agents are implemented with an FIPA-
compliant platform, allowing PASSI to focus on the Problem
and Agency Domains, leaving the Solution Domain to the
FIPA infrastructure. The Problem Domain considers the
problem in terms of functional requirements, scenarios,
ontology, and resources while the Agency Domain considers
the elements of the agent solution: agent, role, task, and
communication (see Fig. 8). PASSI adopts use cases to
express functional requirements. As already noted in
Section 3.2, workproducts from specific requirements

elicitation techniques (e.g., use cases) are regarded as
methodology specific and are not explicitly included in
FAML (they are captured in the FAML Requirements class).
Scenarios are used to describe the sequence of interactions
between actors (roles) and the system. PASSI agents have
roles that “are portions of the agent’s social behavior
characterized by some specificity such as a goal, or providing
a functionality/service, and in so doing, it can also access
some resources” [7]. Communications between roles are
composed of a number of messages. PASSI provides a
service to the agent society (or organization in FAML) using
resources. To enable FAML to model this, the concepts
Resource and ResourceSpecification are added to FAML.

Gaia was originally developed to handle small-scale,
closed agent systems [61]. It modeled agents, roles, and
interactions without considering their social aspects. It was
later extended to model social aspects such as social goals,
social tasks, and social organizational rules [62] (see Fig. 9).
Gaia does not consider the requirements elicitation phase.
Hence, the metamodel does not support a Requirements class
(or equivalent) as seen in the FAML. The official extension
of Gaia [62] emphasizes the social aspects of agent with the
organization having organizational rules and these govern
the communication between roles and form an organization
structure. In FAML, we distinguish between the two
concepts: Organization (the collection of agents) and the
OrganizationDefinition. To enable FAML Policies to directly
describe the organizational rules of Gaia, we add a link
between OrganizationDefinition and Policy. This allows a
modeler to express the same information expressed by
organizational rules and organization structure in Gaia by
OrganizationDefinition and associated Policies, respectively.

Metamodels of all three (Adelfe, PASSI, and Gaia)
support the concept of communication representing a
higher level of abstraction than the Message concept in

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

TABLE 5
Support of Concepts by FAML Metamodel

Fig. 7. Multiagent system metamodel for Adelfe [7].



FAML. Communication is a domain-related interaction
between agents abiding by an interaction protocol. It is
knowledge exchanged and is normally composed of one or
more messages each associated with a performative
(Message Schema in FAML). InteractionProtocol was added
previously (in Section 3.2). To further support communica-
tion modeling, we add the concept Communication.

3.4 Validation Step 4: by Instantiation against
INGENIAS and TROPOS

This validation step describes how FAML can be used to
generate the metamodels of two well-known methodolo-
gies, INGENIAS [7] and Tropos [63]. This has been under-
taken collaboratively with the corresponding cocreators of

the metamodels (authors of this paper as well) and provides
an excellent vehicle for a further and in-depth validation
and analysis.

3.4.1 Validation against the INGENIAS Metamodel

FAML successfully derives all key concepts in the meta-
model of INGENIAS (Fig. 10) in the requirement, analysis,
and design phases.

Not all of FAML was used to derive the INGENIAS
metamodel, as expected. Details of the INGENIAS deriva-
tion from FAML are shown in Tables 6 and 7 and discussed
further in this section, with particular emphasis on aspects
that required subtle considerations.

INGENIAS, similar toAdelfe, supports avariant of theBDI
internal agent architecture. Our new runtime concept
MentalState (added in Section 3.3) provides support for the
INGENIAS Mental State concept. In INGENIAS, mental
states aremodeled as goals, facts, andbeliefs [60]. INGENIAS
Agent goals at runtime correspond to committed agent goals
in FAML. INGENIAS deviates from standard BDI by not
differentiating between facts and beliefs. INGENIAS pre-
scribes to every concept associatedwith amental state a set of
specificmethods formental stateprocessing (seeFig. 10). This
level of details is not available in FAML and deemed as
INGENIAS-specific. The INGENIAS concept of Organiza-
tion is both a runtime and design-time concept. In
contrast, FAML differentiates between the design-time
concept OrganizationDefinition and the runtime concept
Organization. INGENIAS concepts describing deployment
and testing phases (e.g., definition of tests) are not currently
considered by FAML.

3.4.2 Validation against the Tropos Modeling

Metamodel

Tropos, similarly to otherAOSEmethodologies, supports the
analysis and design activities of the software development

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 11

Fig. 9. Multiagent system metamodel for Gaia [7].

Fig. 8. Multiagent system metamodel for PASSI [7].



process, employing an agent-oriented view. However,
Tropos is requirements driven and heavily draws on
concepts from the requirements engineering discipline such
as actors and goals. It was designed to be implementation
independent [17]. A number of agent platforms have been
used to implement its designs, including JACK [64] and
JADE [65]. It can be used independently of any specific
agent-oriented implementation (as presented in [9]).

Tropos supports four main stages: the Early Requirements
analysis, where the focus is on understanding the organiza-
tional setting in which the system-to-be will be situated,
identifying stakeholders and their intentions, the Late
Requirements analysis, where the focus is on understanding
the interactions and dependencies of the system and its
corresponding environment, expressed in a set of functional
and nonfunctional requirements, the Architectural Design,
where the focus is on the architectural specification of the
system, and the Detailed Design, where the focus is on
specifying in detail the various components (agents) of the
system. Tropos is supported by a modeling language that is
based on the i* framework [51], which facilitates goal
analysis, with a grammar consisting of concepts, such as
actor, goal, task, and agent as shown partially in the
metamodel in Fig. 11. The language is also supported by a
visual notation and a formal definition [66] of its grammar.

Our validation showed that FAML successfully gener-
ates the key concepts of Tropos [10] (see Table 8). In
generating the Tropos metamodel from FAML, we focus on
key aspects supported by Tropos such as Agent Structure
and Agent Interactions. For Agent Structure, Tropos
employs the concept of Actor as a generalization of an
agent with its behavior characterized by the concept of Role.
The concept of Position is employed to indicate a set of
roles. As such, a Tropos agent can occupy a position and
play a role. The Tropos concepts Actor and Position are not
directly supported by FAML. A Tropos Actor is at a higher
level of abstraction than an FAML agent. However, an actor

can be defined in an abstract way by combining the
concepts of AgentDefinition and Role and using the relation-
ship between them. Similar to Tropos, this in FAML does
not explicitly differentiate between “internal” and “exter-
nal” actors but it allows in the same way one to capture
either internal or external actors (similarly in Tropos).
FAML supports the Tropos concept Position via a specia-
lization of OrganizationDefinition.

A Tropos agent has intentional elements such as goals and
plans, beliefs, as well as capabilities that support the
achievement of the intentional elements (Table 8). The FAML
concept of PlanSpecifications, in association with AgentDefini-
tion, generates capabilities (assuming that a capability in
Tropos is provided by the complete or partial execution of a
plan). The new concept, MentalStateSpecification (added as a
result of the validation against Adelfe in Section 3.3), can be
used to describe basic structures and elements of runtime
mental states. This includes beliefs, similar to beliefs as used
in Tropos. For agent interactions, Tropos employs both UML
and AUML (Agent Unified modeling Language [24]) during
its detailed agent design. Capability, plan, and agent
interaction diagrams are used to model an agent’s goals,
beliefs, and capabilities, as well as communication acts
among the agents of an MAS. These are all generated by
FAML as discussed above. Moreover, at design-time, the
FAML metamodel defines a number of concepts such as the
FAML System, System Goal, and Task, which have similar
counterparts in the Tropos metamodel as MAS, Goal, and
Plan, respectively. A point of difference is that the Tropos
metamodel does not define the concept of Requirement, as in
FAML. Instead, Tropos supports the definition of functional
requirements, modeled as hard-goals, and nonfunctional
requirements, modeled as soft goals.

As mentioned before, Tropos is implementation inde-
pendent. Its metamodel does not define runtime concepts.
A validation of the FAML runtime concepts against Tropos
is not possible.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

Fig. 10. Multiagent system metamodel for INGENIAS [7].



4 THE RESULTANT, REVISED FAML METAMODEL

The final revised version of the FAML metamodel is shown

in Figs. 12, 13, 14, and 15. As noted before, FAML has two

layers: design-time and runtime layers. Each layer has two

scopes: an agent-external and an agent-internal scope.

FAML is presented in four different diagrams supplemen-
ted by two tables (Figs. 12, 13, 14, and 15, and Tables 9 and
10), which, together, clearly group metamodel classes into
the four categories: design-time agent-external, design-time
agent-internal, runtime agent-external (environment), and
runtime agent-internal classes (as per Fig. 1).

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 13

TABLE 6
INGENIAS Support for Design-Time Concepts and Their Definitions



Design-time agent-external classes (Fig. 12) are concerned
with features that can only be perceived by looking at the
whole systematdesign-time. These are typically at the “type”
level (as opposed to runtime instances of these concepts that
are individualistic). These include the following:

. requirements and their relationships with goals;

. roles, relationships between roles, relationships with
message schemata and services;

. tasks, together with their relationships with roles
and goals;

. agent definitions and their relationships with roles
and organization definitions;

. use of ontologies to define domain application
semantics; and

. environment access points and their relationships
with roles.

In contrast to the initial version of the metamodel (Fig. 2),
classes have been added for RoleRelationship (two subtypes),

SystemGoal, MentalStateSpecification, OrganizationDefinition,

Service, and InteractionProtocol. Other small changes have

been made as detailed in the validation phase (Section 3).

The metamodel now also explicitly shows that the environ-

ment may change independently of the agent system [54]

(via the addition of the attribute CanChange to the

FacetDefinition concept).13

Fig. 13 shows the classes related to the agent internals at

design-time.

. Plan specification (if any), which uses a plan
resource specification.

. Action specification, which can be a facet action or a
message action specification.

. How action specification relates to facet definitions
and message schemas.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

TABLE 7
INGENIAS Support for Runtime Concepts and Their Definitions

13. As a result of reviewer comment.



The main modification made as a result of the research
reported in this paper is the addition of the classes,
PlanResourcesSpecification and ResourcesSpecification (cf.,
Fig. 3). PlanSpecification is also further detailed to include
“GoalCondition,” “FailureCondition,” and “SuccessCondi-
tion” attributes. The first attribute characterizes the goals
for which the plan may be applicable. This is a plan-level
test that applies before any of the preconditions of actions
are used (shown in ActionSpecification). The second new
attribute aims to express when a plan will be unable to
attain the intended goal. Success condition describes when
a plan can be considered to have successfully attained the
goal. The use of the information contained within these
attributes depends on the chosen agent behavior paradigm.
For instance, a failure condition may be satisfied before a
plan is finished. Hence, it may make sense to abort the
current plan and try another. Using the success condition
has similar considerations, e.g., the selected agent behavior
paradigm may require a time-out before checking the
success of a plan. This would be required if the effects of
actions in the environment took some time to be noticed.
Details of further development of these attributes are left to
designers and may depend on the methodology.

Fig. 14 shows the classes related to the environment in
which agents “live” (at runtime). These classes are also at
the “type level” and coexist with instances of design-level
“types” (for instance, as shown in Figs. 12 and 13 and
discussed above). Runtime environment-related classes are

concerned with MAS features that exist only at runtime in
the environment.

Runtime artifacts supported by FAML are as follows:

. environment history of totally ordered instantaneous
events including a message log;

. events of different kinds;

. system access points and relationships with events,
resources, and organizations; and

. relationships between agents and the above concepts.

Improvements to the original metamodel (Fig. 4) are the
inclusion of classes to represent Resource and Organization
(and its definition).

Finally, Fig. 15 shows the classes related to agent internals
at runtime. These classes can only be perceived by consider-
ing the internals of agents at runtime. These include:

. plans and actions;

. relationships among actions, messages, and message
schemata;

. communication and its relationship with messages
and interaction protocol;

. mental states and relationships with agent goals and
beliefs; and

. relationships between each of the above and the
environment.

Important changes (cf., Fig. 5) are: deemphasis of the BDI
architecture for MASs, replaced by classes for MentalState
and AgentGoal; the introduction of a more generic Commu-
nication class together with an InteractionProtocol class. Two
runtime corresponding attributes FailureCondition and
SuccessCondition are also introduced to Plan. The first
describes when a plan cannot attain the goal it is pursuing
and the second describes when a plan can be considered to
have successfully attained this goal. The evaluation of both
of these conditions depends on the designer and may also
depend on the methodology. Another attribute PlanDe-
scriptors is introduced to AgentGoal.14 This new attribute
specifies what plans may be suitable to be used toward the
goal. This acknowledges that many plans may be suitable
for a given goal and that the suitability of a particular plan
to a goal cannot be assured at design-time. These new
attributes can be used to model the behavior of a
deliberative agent at runtime in choosing and abandoning
plans as they fail or as goals change.

5 RELATED WORK

While there are many elements of an agent-oriented
modeling language in the literature, many of these are
implicit by being described in methodology-focused papers,
e.g., well-known methodologies such as Gaia [12], [62] and
Prometheus [14]. This means that only the notation and the
suite of associated diagrams are described without an
explicit metamodel. However, concepts described in these
methodologies have all been considered and taken into
account in our original synthesis of concepts [18]. In

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 15

Fig. 11. Multiagent system metamodel for TROPOS. (a) Part of the
Tropos metamodel focusing on the actor concept [63]. (b) Part of the
Tropos metamodel focusing on the Goal and Plan concepts [63].

14. While we observed similar attributes in Mental States of Agents in the
methodology Ingenias, we construed them as too methodology specific.
However, a reviewer’s comment triggered this addition as well as the
attributes of PlanSpecification for agent-internals at design-time.



addition, an excellent summary of the methodology-

implicit modeling language/metamodel is given in [22]

and therefore not repeated here.
For those papers that discuss the metamodel element

of a modeling language, there are a number of
approaches that offer an agent-oriented extension to

UML [23], [24], [25] and others, like in this paper, that
eschew this route, arguing that UML is an inappropriate
basis for an AO modeling language [19], [20]. There is no
agreement as to whether “agent-oriented concepts can
readily be defined in terms of object-oriented ones” ([67,
p. 121]) or whether “to properly support agent-based

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

TABLE 8
Tropos Support for Design-Time Concepts and Their Definitions



modeling, it would be necessary to add new concepts and
notations in the UML core metamodel” and that “a
stereotyped object is still an object” [20]. “The Class

metaclass provided by the UML Specification could not
be used to define agents” [22].

Authors who offer a UML profile generally do so for
pragmatic reasons. Since UML is well accepted, they argue
that this is reason enough to base an agent modeling
language on the UML metamodel. Although there are two
extension mechanisms offered in the UML documentation
(metamodel extension or a UML profile based on stereo-
types), only that of a “profile” is encouraged by OMG. The
alternative (a “variant”) involves extending the metamodel
itself, as has been done in the object-oriented context [68],
and more recently, the agent-oriented context [22]. These
latter authors argue that, while introducing new ideas is
easier from a previously understood base [69], the short-
comings of using the profile extension mechanism of UML
cannot deal directly with the necessary agent-oriented
concepts directly [22]. Consequently, their MAS-ML agent-
oriented modeling language [22] introduces agent concepts
as additional classes that extend the UML metamodel itself
(rather than the indirect extension mechanism of stereotypes

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 17

Fig. 12. Design-time agent-external classes. (Note that the duplication of the Role class is only to simplify the layout.)

Fig. 13. Design-time agent-internal classes.



within a profile). Fig. 16 shows these as five subtypes of
UML’s Classifier—suggesting a possible future research
topic for FAML, perhaps merging its major concepts of
Agent, AgentDefinition, Role, Organization, etc., with those
of MAS-ML, as shown in Fig. 16.

As well as MAS-ML, which balances original agent-
focused classes with the pragmatic advantages of integrat-
ing these within the UML metamodeling framework, other
independent AO MLs are ANote [20] and the metamodel of
the CAMLE approach [70]. ANote has some similarities to
FAML but offers less coverage and less detail overall (see
Fig. 17, cf., Figs. 12, 13, 14, and 15). CAMLE’s metamodel is
described only partially in [70] and is focused on the
original notion of the “caste”—a set of interactive agents: a
concept introduced in [71].

Of comparable scope to FAML is the work of Azaiez
et al. [8]. They, too, seek a generic metamodel, having

recognized the incompleteness and overspecificity of ear-
lier, particularly methodology-linked, metamodels. Their
metamodel (Fig. 18) does not discriminate between design-
time and runtime but does partition the conceptual basis
between a number of so-called perspectives: environment,
agent, action, interaction, and organization. They include a
number of concepts purposefully excluded in FAML, such
as subtypes of SimulatedEnvironment (itself a subtype of
Environment) (their Fig. 2) as well as modeling both
reactive and cognitive agents. Nevertheless, their metamo-
del has many similarities—which we intend to explore both
collaboratively and in the context of the recent Request for
Proposals for an Agent modeling Language and Profile
from the Object Management Group [72].

6 SUMMARY, DISCUSSION, AND FUTURE WORK

This paper has introduced the application of a process for
synthesizing a new metamodel from extant metamodels in
a concrete domain. The process included an extensive
validation process and should be of interest to researchers
in other domains with a diversity of metamodels.

The main conclusion of the synthesis process is the high
degree of knowledge of the area required to produce the
FAML metamodel and the number of iterations needed to
produce something meeting the needs of the researchers.
While it is not possible to prove that we have reached
completeness in the validation, the decreasing number of
new concepts added at each validation stage, with no new
concepts identified from the INGENIAS and Tropos valida-
tion step, indicates that we are approaching completeness
against existing metamodels. However, we intend to con-
tinue this validation process against other metamodels—
FAML may require modification as new metamodels are

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

Fig. 14. Runtime agent-external classes.

Fig. 15. Runtime agent-internal classes.



considered. Thus, it is an evolving metamodel whose goal is
to include as many agent research concepts as possible while
keeping internal consistency (among FAML concepts) and
external consistency (between FAML and other metamo-
dels). Another concern within each validation step was how
different concepts were going to be integrated in the final
metamodel. This paper solved this by resolving ambiguities
in published definitions by using generality to deal with
concepts with a certain degree of contradiction.

Focusing more on FAML, there are other lessons that are
worth noting. Taking as reference the last published version
of FAML and after the four-step validation, 3 runtime
concepts and associated relations are deleted, and 10 design-
time, 5 runtime concepts, and associated new relations have
been added to FAML as follows:

. Step 1: Preliminary detailed evaluation against the
two modeling language metamodels, TAO and
Islander, leads to adding five design concepts and
one runtime concept. They are, respectively, the
following: SystemGoal, RoleRelationship, RoleDepen-
dency, RoleCompatibility, OrganizationDefinition and
Organization.

. Step 2: Broad cross check against 10 AOSE
methodologies leads to adding the following two
design concepts and one runtime concept: Service,

InteractionProtocol and AgentGoal. This step also
leads to deleting three runtime concepts: Intention,
Desire, and Obligation.

. Step 3: Detailed check of metamodels of three
methodologies, Adelfe, PASSI, and Gaia, leads to
adding three design concepts and three runtime
concepts. They are, respectively, the following:
ResourceSpecification, PlanResourceSpecification, Men-
talStateSpecification and Resource, Communication, and
MentalState.

. The final step successfully generates concepts for the
Tropos and INGENIAS metamodels without requir-
ing any further additions to FAML. As anticipated,
the rate of adding new concepts dwindles as the
validation evolves (see also [73]).

Of the new concepts, we note that a large proportion of
the new concepts (7/15) includes container concepts that
are formed by composing existing FAML concepts. The
composition was deemed important and common enough
in the analysis phase of existing methodologies to warrant
their addition to FAML. For example, InteractionProtocol (a
new concept) is a pattern of Communication (a new concept),
which, in turn, is a sequence of Messages (which is an old
FAML concept). This suggests that, while we originally
succeeded in developing a general model of agent design
concepts, we achieved that generality at the expense of

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 19

TABLE 9
Design-Time Concepts and Their Definitions Used in the FAML Metamodel



omitting intermediate abstractions. Our validation and the
new concepts have fixed this deficiency.

Another proportion of the new concepts (5/15) is added
to describe features of classes of some modern and well-
known MASs. The new FAML concepts describe services
and nonagent resources. The fact that we originally omitted
these important features suggests that, while we aimed for
having the system-level concepts capture the commonalities
between all methodologies, the coverage suffered. Our
validation and the new concepts have rectified this
deficiency. A remaining small proportion of the new
concepts (3/15) is added to refine our role relationships in
a way that is common to many MAS reflecting hierarchical
human organizations: RoleRelationship, RoleDependency, and
RoleCompatibility.

In addition, it is illustrative to analyze the result of the
validation of FAML, as reflected in the number of new

concepts to each of its four metalevels: system at design-
time, agent at design-time, system at runtime, and agent at
runtime. The validation produced most changes to the
design-time agent-external classes metalevel of FAML,
adding eight new concepts. In comparison, the validation
added two or three new concepts to each of the other
metalevels of FAML. Almost half of the new concepts are
added to one metalevel. This is most likely due to two
factors: First, the focus of the current agent-oriented
methodologies is on analysis and design of MASs. Second,
there is broad agreement within the AOSE community as to
what an agent is capable of doing, since AOSE builds on the
view of single agent from AI.

With the extensions to FAML, we expect that its
current version is capable of representing metamodels of
most existing MAS methodologies. This is evidenced by
our successful generation of the metamodels of two
important methodologies, Tropos and INGENIAS, without
any alterations to FAML. This is an important contribu-
tion in developing an agent-oriented metamodel capable
of supporting the workproducts produced or consumed in
a software development endeavor and facilitating a

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

TABLE 10
FAML Runtime Concepts and Their Definitions

Fig. 17. Conceptual metamodel for ANote (after [20]).

Fig. 16. MAS-ML’s metamodel showing five new metaclasses to be

added to the UML metamodel (after [22]).



model-driven architecture for AOSE. In a parallel effort, to

appear in [29], we are adding security concepts to FAML

that are not covered by the current validation, being not

sufficiently “generic.” As well as extending the current

validation for our security concepts, our future work will

extend FAML to cover mobile agents and associated

features. The final phase of this project will create a

notation (concrete syntax) to complement this FAML

metamodel (abstract syntax).

REFERENCES

[1] C. Chavez and C. Lucena, “A Metamodel for Aspect-Oriented
Modeling,” Proc. Aspect Oriented Modeling with UML Workshop,
2002.

[2] T. Cottenier, A.v.d. Berg, and T. Elrad, “Modeling Aspect-
Oriented Compositions,” Proc. Int’l Conf. Model Driven Eng.
Languages and Systems Satellite Events, pp. 100-109, 2005.

[3] L. Fuentes and P. Sanchez, “A Generic MOF Metamodel for
Aspect-Oriented Modelling,” Proc. Workshop Model-Based Develop-
ment of Computer-Based Systems and Model-Based Methodologies for
Pervasive and Embedded Software, pp. 10-30, 2006.

[4] P. Kruchten, “Software Architecture—a Rational Metamodel,”
Proc. Second Int’l Software Architecture Workshop and Int’l Workshop
Multiple Perspectives in Software Development on SIGSOFT ’96
Workshops, pp. 5-7, 1996.

[5] M.H. Kacem, A.H. Kacem, M. Jmaiel, and K. Drira, “Describing
Dynamic Software Architectures Using an Extended UML
Model,” Proc. 2006 ACM Symp. Applied Computing, 2006.

[6] O. Topçu, M. Adak, and H. Oguztüzün, “A Metamodel for
Federation Architectures,” ACM Trans. Modeling and Computer
Simulation, vol. 18, no. 3, pp. 1-29, 2008.

[7] C. Bernon, M. Cossentini, and J. Pavon, “Agent-Oriented Software
Engineering,” The Knowledge Eng. Rev., vol. 20, no. 2, pp. 99-116,
2005.

[8] S. Azaiez, M.P. Huget, and F. Oquendo, “An Approach for Multi-
Agent Metamodelling,” Multiagent and Grid Systems, vol. 2, no. 4,
pp. 435-454, 2006.

[9] J.A. Rodriguez, “On the Design and Construction of Agent-
Mediated Electronic Institutions,” Artificial Intelligence Research
Inst., UAB—Universitat Autonòma de Barcelona, 2003.

[10] G. Tidhar, C. Heinze, S. Goss, G. Murray, D. Appla, and I. Lloyd,
“Using Intelligent Agents in Military Simulation or “Using Agents
Intelligently”,” Proc. 11th Conf. Innovative Applications of Artificial
Intelligence Papers, pp. 829-837, 1999.

[11] B. Henderson-Sellers and P. Giorgini, Agent-Oriented Methodolo-
gies. Idea Group Publishing, 2005.

[12] M. Wooldridge, N.R. Jennings, and D. Kinny, “The Gaia
Methodology for Agent-Oriented Analysis and Design,” Autono-
mous Agents andMulti-Agent Systems, vol. 3, no. 3, pp. 285-312, 2000.

[13] C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard,
“ADELFE, a Methodology for Adaptive Multi-Agent Systems
Engineering,” Eng. Societies in the Agents World, Springer, 2002.

[14] L. Padgham and M. Winikoff, Developing Intelligent Agent Systems:
A Practical Guide, vol. 1. J. Wiley & Sons, 2004.

[15] J. Pavon, J. Gomez-Sanz, and R. Fuentest, “The INGENIAS
Methodology and Tools,” Agent-Oriented Methodologies, B.
Henderson-Sellers and P. Giorgini, eds., pp. 236-276, Idea
Group Publishing, 2005.

[16] M. Cossentino and C. Potts, “A CASE Tool Supported Methodol-
ogy for the Design of Multi-Agent Systems,” Proc. Int’l Conf.
Software Eng. Research and Practice, 2002.

[17] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A.
Perini, “TROPOS: An Agent Oriented Software Development
Methodology,” J. Autonomous Agents and Multi-Agent Systems,
vol. 8, no. 3, pp. 203-236, 2004.

[18] G. Beydoun, C. Gonzalez-Perez, B. Henderson-Sellers, and G.C.
Low, “Developing and Evaluating a Generic Metamodel for
MAS Work Products,” Software Eng. for Multi-Agent Systems IV:
Research Issues and Practical Applications, A. Garcia, R. Choren, C.
Lucena, P. Giorgini, T. Holvoet, and A. Romanovsky, eds.,
pp. 126-142, Springer-Verlag, 2006.

[19] V.T. da Silva, A. Garcia, A. Brandão, C. Chavez, C. Lucena, and P.
Alencar, “Taming Agents and Objects in Software Engineering,”
Software Engineering for Large-Scale Multi-Agent Systems, pp. 1-26,
Springer-Verlag, 2003.

[20] R. Choren and C. Lucena, “The ANote Modeling Language for
Agent Oriented Specification,” Proc. Int’l Workshop Software Eng.
for Large Scale Multi Agent Systems 2004, pp. 198-212, 2005.

[21] D. Dori, “What UML Should Be: Why Significant UML Change Is
Unlikely,” Comm. ACM, vol. 45, no. 11, pp. 82-85, 2002.

[22] V.T. da Silva, R. Choren, and C. Lucena, “MAS-ML: A Multi-
Agent SystemModeling Language,” Int’l J. Agent-Oriented Software
Eng., vol. 2, no. 4, pp. 381-421, 2008.

[23] J. Odell, H. Van Dyke Parunak, and B. Bauer, “Extending UML for
Agents,” Proc. Agent-Oriented Information Systems Workshop, 17th
Nat’l Conf. Artificial Intelligence, pp. 3-17, 2000.

[24] B. Bauer, J.P. Muller, and J. Odell, “Agent UML: A Formalism for
Specifying Multiagent Interaction,” Agent-Oriented Software Eng.,
P. Ciancarini and M. Wooldridge, eds., pp. 91-103, Springer, 2001.

[25] R. Cervenka and I. Trencansky, AML: The Agent Modeling
Language. A Comprehensive Approach to Modeling Multi-Agent
Systems. Birkhäuser, 2007.

[26] V.T.D. Silva and C.J.P.D. Lucena, “From a Conceptual Framework
for Agents and Objects to a Multi-Agent System Modeling
Language,” Autonomous Agents and Multi-Agent Systems, vol. 9,
nos. 1/2, pp. 145-189, 2004.

[27] J. Odell, “Metamodelling: Future Work,” personal comm., 2008.
[28] V. Torres da Silva, R. Choren, and C.J.P. De Lucena, “MAS-ML: A

Multi-Agent System Modeling Language,” Int’l J. Agent-Oriented
Software Eng., vol. 2, no. 4, pp. 381-421, 2008.

[29] G. Beydoun, G. Low, H. Mouratidis, and B. Henderson-Sellers, “A
Security-Aware Metamodel for Multi-Agent Systems,” Information
and Software Technology, 2008, doi:10.1016/j.infsof.2008.05.003.

[30] P. Verstraete, B.S. Germain, P. Valckenaers, H.V. Brussel, J. Belle,
and H. Hadeli, “Engineering Manufacturing Control Systems
Using PROSA and Delegate MAS,” Int’l J. Agent-Oriented Software
Eng., vol. 2, no. 1, pp. 62-89, 2008.

[31] T. Mine, D. Matsuno, A. Kogo, and M. Amamiya, “Design and
Implementation of Agent Community Based Peer-to-Peer Infor-
mation Retrieval Method,” Proc. Workshop Cooperative Information
Agents, pp. 31-46, 2004.

[32] J. Odell, M. Nodine, and R. Levy, “A Metamodel for Agents,
Roles, and Groups,” Proc. Int’l Workshop Agent-Oriented Software
Eng., J. Odell et al., eds., pp. 78-92, 2005.

[33] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J.
Mylopoulos, “A Knowledge Level Software Engineering Metho-
dology for Agent Oriented Programming,” Proc. Int’l Conf.
Autonomous Agents, 2001.

[34] M. Wooldridge, Reasoning about Rational Agents. MIT Press, 2000.
[35] G.F. Luger, Artificial Intelligence: Structures and Strategies for

Complex Problem Solving. Addison Wesley, 2002.

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 21

Fig. 18. Final metamodel for the agent perspective proposed by Azaiez

et al. (from [8]).



[36] S. Russell and P. Norvig, Artificial Intelligence, A Modern Approach.
Prentice Hall, 2002.

[37] J. Ferber and A. Drogoul, “Using Reactive Multi-Agent
Systems in Simulation and Problem Solving,” Distributed
Artificial Intelligence: Theory and Praxis, L.G.N.M. Avouris, ed.,
Kluwer, 1992.

[38] E. Durfee and V. Lesser, “Negotiating Task Decomposition and
Allocation Using Partial Global Planning,” Distributed Artificial
Intelligence, L. Gasser and M. Huhns, eds., vol. 2, pp. 229-244,
Morgan Kaufmann, 1989.

[39] R. Pfeifer and C. Sheier, Understanding Intelligence. MIT Press,
2001.

[40] FIPA, Methodology Glossary—FIPAMG, http://www.pa.icar.
cnr.it/~cossentino/FIPAmeth/glossary.htm, 2003.

[41] S. DeLoach, L. Padgham, A. Perini, A. Susi, and J. Thangar-
ajah, “Using Three AOSE Toolkits to Develop a Sample
Design,” Int’l J. Agent-Oriented Software Eng., vol. 3, 2009.

[42] J.J. Odell, H.V.D. Parunak, M. Fleischer, and S. Brueckner,
“Modeling Agents and Their Environment,” Proc. Int’l Workshop
Agent-Oriented Software Eng., F.G. et. al., eds., pp. 16-31, 2003.

[43] E. Platon, M. Mamei, N. Sabouret, S. Honiden, and H.V.D.
Parunak, “Mechanisms for Environments in MAS: Survey and
Opportunities,” J. Autonomous Agents and Multi-Agent Systems,
vol. 14, no. 1, pp. 31-47, 2007.

[44] P. Valckenaers, J. Sauter, C. Sierra, and J.A. Rodriguez, “Applica-
tions and Environments for MAS,” J. Autonomous Agents and
Multi-Agent Systems, vol. 14, no. 1, pp. 61-85.

[45] G. Beydoun, A. Hoffmann, J.T.F. Breis, R. Martinez-Béjar, R.
Valencia-Garcia, and A. Aurum, “Cooperative Modeling Eval-
uated,” Int’l J. Cooperative Information Systems, World Scientific,
vol. 14, no. 1, pp. 45-71, 2005.

[46] V.A. da Silva, C. Ricardo, and C.J.P. Lucena, “Using the MAS-ML
to Model a Multi-Agent System,” Proc. Workshop Software Eng. for
Multi-Agent Systems, 2003.

[47] M. Esteva, D. de la Cruz, and C. Sierra, “ISLANDER: An
Electronic Institutions Editor,” Proc. Int’l Conf. Autonomous Agents
and Multiagent Systems, pp. 1045-1052, 2002.

[48] Q.N.N. Tran and G.C. Low, “Comparison of Ten Agent-Oriented
Methodologies,” Agent-Oriented Methodologies, B. Henderson-Sell-
ers and P. Giorgini, eds., pp. 341-367, Idea Group Publishing, 2005.

[49] G.C. Low, G. Beydoun, B. Henderson Sellers, and C. Gonzalez-
Perez, “Towards Method Engineering for Multi-Agent Systems: A
Validation of a Generic Meta-Model,” Proc. Pacific Rim Int’l Conf.
Multi-Agents, 2007.

[50] M. Wooldridge, N.R. Jennings, and F. Zambonelli, “Multi-Agent
Systems as Computational Organizations: The Gaia Methodol-
ogy,” Agent-Oriented Methodologies, B. Henderson-Sellers and
P. Giorgini, eds., pp. 136-171, Idea Group Publishing, 2005.

[51] M. Cossentino, “From Requirements to Code with the PASSI
Methodology,” Agent-Oriented Methodologies, B. Henderson-Sellers
and P. Giorgini, eds., pp. 79-106, Idea Group Publishing, 2005.

[52] C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard, “Engineering
Adaptive Multi-Agent Systems: The ADELFE Methodology,”
Agent-Oriented Methodologies, B. Henderson-Sellers and P. Giorgi-
ni, eds., pp. 172-202, Idea Group Publishing, 2005.

[53] C. Sierra, “Communication about Islander Metamodel,” personal
comm., 2005.

[54] E. Yu, “Modelling Strategic Relationships for Process Reengineer-
ing,” Dept. of Computer Science, Univ. of Toronto, 1995.

[55] O. Shehory and A. Sturm, “Evaluation of Modeling Techniques
for Agent-Based Systems,” Proc. Fifth Int’l Conf. Autonomous
Agents, pp. 624-631, 2001.

[56] S.A. O ’Malley and S.A. DeLoach, “Determining When to Use an
Agent-Oriented Software Engineering Paradigm,” Proc. Second
Int’l Workshop Agent-Oriented Software Eng., 2001.

[57] L. Cernuzzi and G. Rossi, “On the Evaluation of Agent-Oriented
Modeling Methods,” Proc. Object Oriented Programming, Systems,
Languages and Applications Workshop Agent-Oriented Methodologies,
2002.

[58] A. Sabas, M. Badri, and S. Delisle, “A Multidimensional Frame-
work for the Evaluation of Multiagent System Methodologies,”
Proc. Sixth World Multiconf. Systemics, Cybernetics and Informatics,
pp. 211-216, 2002.

[59] B. Henderson-Sellers, N. Tran, and J. Debenham, “An Etymolo-
gical and Metamodel-Based Evaluation of the Terms ’Goals and
Tasks’ in Agent-Oriented Methodologies,” J. Object Technology,
vol. 4, no. 2, pp. 131-150, 2005.

[60] C. Bernon, M. Cossentino, M. Gleizes, P. Turci, and F. Zambonelli,
“A Study of Some Multi-Agent Meta-Models,” Proc. Fifth Int’l
Workshop Agent-Oriented Software Eng., J. Odell, P. Giorgini, and
J. Müller, eds., pp. 62-77, 2005.

[61] M. Wooldridge, N.R. Jennings, and D. Kinny, “A Methodology for
Agent-Oriented Analysis and Design,” Proc. Third Int’l Conf.
Autonomous Agents, pp. 69-76, 1999.

[62] F. Zambonelli, N. Jennings, and M. Wooldridge, “Developing
Multiagent Systems: The Gaia Methodology,” ACM Trans. Soft-
ware Eng. and Methodology, vol. 12, no. 3, pp. 417-470, July 2003.

[63] D. Bertolini, A. Perini, A. Susi, and H. Mouratidis, “The Tropos
Visual Language. A MOF 1.4 Compliant Metamodel,” AgentLlink
III AOSE TFG 2, 2005.

[64] M. Winikoff, “JACK (TM) Intelligent Agents: An Industrial
Strength Platform,”Multi-Agent Programming: Languages, Platforms
and Applications, R.H. Bordini, M. Dastani, J. Dix, and A. El Fallah,
eds., pp. 175-193, Springer, 2005.

[65] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, “JADE—A Java
Agent Development Framework,” Multi-agent Programming: Lan-
guages, Platforms and Applications, R.H. Bordini, ed., pp. 125-147,
Springer, 2006.

[66] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P.
Traverso, “Specifying and Analyzing Early Requirements in
Tropos,” Requirements Eng., vol. 9, no. 2, pp. 132-150, 2004.

[67] G. Caire, W. Coulier, F. Garijo, J. Gomez, J. Pavon, F. Leal, P.
Chainho, P. Kearney, J. Stark, R. Evans, and P. Massonet, “Agent
Oriented Analysis Using Message/UML,” Agent-Oriented Software
Engineering II, M.J. Wooldridge, G. Weiß, and P. Ciancarini, eds.,
pp. 119-135, Springer-Verlag, 2002.

[68] B. Henderson-Sellers, C. Atkinson, and D.G. Firesmith, “Viewing
the OML as a Variant of the UML,” UML ’99—The Unified
Modeling Language. Beyond the Standard, R. France and B. Rumpe,
eds., pp. 49-66, Springer-Verlag, 1999.

[69] F. Zambonelli and A. Omicini, “Challenges and Research
Directions in Agent-Oriented Software Engineering,” Autonomous
Agents and Multiagent Systems, vol. 9, no. 3, pp. 253-284, 2004.

[70] H. Zhu and L. Shan, “Agent-Oriented Modelling and Specification
of Web Services,” Proc. 10th IEEE Int’l Workshop Object-Oriented
Real-Time Dependable Systems (WORDS ’05), 2005.

[71] H. Zhu, “SLABS: A Formal Specification Language for Agent-
Based Systems,” Int’l J. Software Eng. and Knowledge Eng., vol. 11,
no. 5, pp. 529-558, 2001.

[72] OMG “Agent Metamodel and Profile (AMP): Request for
Proposal,” 2008.

[73] B. Henderson-Sellers, “Evaluating the Feasibility of Method
Engineering for the Creation of Agent-Oriented Methodologies,”
Proc. Fourth Int’l Central and Eastern European Conf. Multi-Agent
Systems (CEEMAS ’05), pp. 142-152, 2005.

Ghassan Beydoun received the degree in
computer science and the PhD degree in
knowledge systems from the University of New
South Wales. He is a senior lecturer at the
School of Information Systems and Technology
at the University of Wollongong and an adjunct
senior research fellow at the School of Informa-
tion Systems, Management and Technology at
the University of New South Wales. He has
authored 12 international journal papers and

45 conference papers and is currently working on a project sponsored
by an Australian Research Council Discovery Grant to investigate the
best uses of ontologies in developing methodologies for Multiagent
Systems (MASs) along with Graham Low and Brian Henderson-Sellers.
His other research interests include MAS applications, ontologies, and
knowledge acquisition.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009



Graham Low received the BE and PhD degrees
from The University of Queensland. He is a
professor of information systems in the School
of Information Systems, Technology and Man-
agement at the University of New South Wales.
His research program focuses on the imple-
mentation and adoption of new technologies.
This can take the form of new/modified ap-
proaches/techniques for information systems
development such as methodological ap-

proaches to agent-oriented information systems design; and manage-
ment of the information systems design and implementation process.

Brian Henderson-Sellers received the doctor
of science (DSc) degree from the University of
London in 2001 for his research contributions
in object-oriented methodologies. He is the
director of the Centre for Object Technology
Applications and Research and a professor of
information systems at the University of Tech-
nology, Sydney (UTS). He is the author or
editor of 31 books.

Haralambos Mouratidis is a principal lecturer in
the School of Computing, IT and Engineering at
the University of East London, where he is also
the field leader for the Secure Systems and
Software Development Field. His research inter-
ests are related to secure software engineering
and agent-oriented software engineering.

Jorge J. Gomez-Sanz received the degree in
software engineering and the PhD degree in
computer science from the Universidad Com-
plutense de Madrid (UCM), Spain. He is a
professor at the UCM and participates in
industrial technology transfer projects. His re-
search focuses on developing multiagent sys-
tems following software engineering practices.

Juan Pavón has been an associate professor
at the Universidad Complutense of Madrid since
1997, where he leads the Grasia Research
Group, with focus on the application of multia-
gent systems technology.

Cesar Gonzalez-Perez is an assistant professor
in the Heritage Laboratory (LaPa) at the Spanish
National Research Council (CSIC), where he
leads a research line on software engineering
applied to cultural heritage issues. His research
interests include conceptual modeling, metamo-
deling, and method engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BEYDOUN ET AL.: FAML: A GENERIC METAMODEL FOR MAS DEVELOPMENT 23


	IEEE 09 citation info
	TSESI-2008-03-0121-1

