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Abstract

Data association-based multiple object tracking (MOT)

involves multiple separated modules processed or optimized

differently, which results in complex method design and re-

quires non-trivial tuning of parameters. In this paper, we

present an end-to-end model, named FAMNet, where Fea-

ture extraction, Affinity estimation and Multi-dimensional

assignment are refined in a single network. All layers in

FAMNet are designed differentiable thus can be optimized

jointly to learn the discriminative features and higher-order

affinity model for robust MOT, which is supervised by the

loss directly from the assignment ground truth. In addition,

we integrate single object tracking technique and a dedi-

cated target management scheme into the FAMNet-based

tracking system to further recover false negatives and in-

hibit noisy target candidates generated by the external de-

tector. The proposed method is evaluated on a diverse set

of benchmarks including MOT2015, MOT2017, KITTI-Car

and UA-DETRAC, and achieves promising performance on

all of them in comparison with state-of-the-arts.

1. Introduction

Tracking multiple objects in videos is critical for many

applications, ranging from vision-based surveillance to

autonomous driving. A current popular framework to

solve multiple object tracking (MOT) uses the tracking-by-

detection strategy where target candidates generated from

an external detector are associated and connected to form

the target trajectories across frames [1, 15, 22, 35, 38, 49,

52, 54]. At the core of tracking-by-detection strategy lies

the data association problem, which is usually treated as

three separate parts: feature extraction for candidate rep-

resentation, affinity metric to evaluate the reliability of each

association hypothesis and association algorithm to find the

optimal association. These parts involve multiple individ-

ual data-processing steps and are optimized differently from
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each other, which results in a complex method design and

extensive tuning parameters to adapt different target cate-

gories and tracking scenarios.

Recently, deep neural network (DNN) has been investi-

gated intensively to learn the association cost function in a

unified architecture combining both feature extraction and

affinity metric [11, 27, 46]. Through training, the task and

scenario prior can be automatically adapted by the candi-

date representation and estimation metric without manu-

ally tuning the hyper-parameters. However, the associa-

tion algorithm still stands outside the network, which re-

quires dedicated affinity samples to be manually fabricated

from ground truth association for the training process. It

is not guaranteed that training and inference phases share

the same data distribution; consequently it may lead to the

degraded generalizability of the trained model. Moreover,

crowded targets, similar appearance and fast motion impose

great ambiguity for the association only considering pairs of

neighboring frames. Successful association requires global

optimization across multiple frames, where higher-order

discriminative clues such as appearance changes over time

and motion context could be included. Learning the robust

representation and affinity criteria without the cooperation

from the association procedure in this circumstance is even

more complicated.

Our objective in this paper is to formulate an end-to-end

model for MOT: the Feature representation, Affinity model

and Multi-dimensional assignment (MDA) are refined in a

single deep network named FAMNet, which is optimized

jointly to learn the task prior. In particular, feature sub-

network is used to extract features for candidates on each

frame, after which an affinity sub-network estimates the

higher-order affinity for all association hypothesis. With the

affinity, the MDA sub-network is to optimize globally and

obtain the optimal assignments. By all layers in FAMNet

designed differentiable, the feature and affinity sub-network

can be trained directly referring to the assignment ground

truth. To realize it, we make the following novel contribu-

tions in the FAMNet-based tracking system:

• We design an affinity sub-network that fuses discrim-
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Figure 1. Overview of our FAMNet based tracking system. The sub-networks inside the yellow background consist the FAMNet. Fik is a

set of features extracted from each frame as detailed in Sec. 4.1 and L is for the total loss.

inative higher-order appearance and motion informa-

tion into the affinity estimation.

• We propose an MDA sub-network, in which a modi-

fied rank-1 tensor approximation power iteration is de-

signed differentiable and adapted for the deep learning

architecture.

• We integrate single object tracking into the data

association-based MOT. Detections and tracking pre-

dictions are merged and selected optimally through

MDA to construct the target trajectories.

• We employ a target management scheme where a ded-

icated CNN network is used to refine the target bound-

ing box to eliminate the noisy candidates generated by

external detector.

To show the effectiveness of the proposed approach, it is

evaluated on popular multiple pedestrian and vehicle track-

ing challenge benchmarks including MOT2015, MOT2017,

KITTI-Car and UA-DETRAC. Our results show promising

performance in comparison with other published works.

2. Related Work

Multiple object tracking (MOT) has been an active re-

search area for decades, and many methods have been inves-

tigated for this topic. Recently, the most popular framework

for MOT is the tracking-by-detection. Traditional meth-

ods primarily focus on solving the data association prob-

lem using such as Hungarian algorithm [3, 16, 20], network

flow [13, 58, 60] and multiple hypotheses tracking [6, 24]

on various of affinity estimation schemes. Higher-order

affinity provides the global and discriminative informa-

tion that is not available in pairwise association. In or-

der to utilize it, MOT is usually treated as the MDA prob-

lem. Collins [12] proposes a block ICM-like method for

the MDA to incorporate higher-order motion model. The

method iteratively solves bipartite assignments alternatively

while keeping other assignments fixed. In [45, 44], MDA

is formulated as the rank-1 tensor approximation problem

where a dedicated power iteration with unite ℓ1 normaliza-

tion is proposed to find the optimal solution. Our work is

closely related to the MDA formulation, especially [44].

Recently, deep learning is explored with increasing pop-

ularity in MOT with great success. Most recent solutions

rely on it as a powerful discriminative technique [1, 10,

28, 46, 61]. Tang et al. [47] propose to use DNN based

Re-ID techniques for affinity estimations. They include lift

edges that connect two candidates spanning multiple frames

to capture the long-term affinity. In [41], recurrent neu-

ral networks (RNN) and long short-term memory (LSTM)

are adapted to model the higher-order discriminative clue.

Those methods learn the networks in a separate process with

the manually fabricated affinity training samples.

Some recent works have gone further to tentatively solve

MOT in an entirely end-to-end fashion. Ondruska and Pos-

ner [36] introduce the RNN for the task to estimate the can-

didate state. Although this work is demonstrated on the

synthetic sensor data and no explicit data association is ap-

plied, it firstly shows the efficacy of using RNN for an end-

to-end solution. Milan et al. [32] propose an RNN-LSTM

based online framework to integrate both motion affinity es-

timation and bipartite association into the deep learning net-

work. They use LSTM to solve the data association target

by target at each frame where the constrains in data associ-

ation are learned from training data. For both works, only

the occupancy status of targets are considered, the informa-

tive appearance clue is not utilized. Different from their

methods, we propose an MDA sub-network which handles

both the data association and the constrains, and our affinity

fuses both the appearance and motion clue for better dis-

criminability.

3. Overview

In this section, we first formulate the multiple object

tracking (MOT) problem as a multi-dimensional assign-

ment (MDA) form, and then provide an overview of our
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FAMNet-based tracking system (overview in Fig. 1).

3.1. Problem Formulation

Following the notation in [44], the input for MOT is de-

noted by O = {O(k)}Kk=0, which contains K + 1 target

candidate sets from K + 1 frames. For frame k, O(k) =

{o
(k)
ik

}Ikik=1 is the set of Ik candidates to be matched or as-

sociated, where o
(k)
ik

represents the status of the candidate

such as its center coordinate on the image frame.

With the input candidate set O, MOT is to find a multi-

dimensional association that maximizes the overall affinity

subject to the association constrains. In detail, ci0:iK
.
=

ci0i1...iK ≥ 0 denotes affinity for one possible associa-

tion, or in term of MOT, one hypothesis trajectory ti0:iK

composed by candidates
{

o
(0)
i0

,o
(1)
i1

, ...,o
(K)
iK

}

. We use

zi0:iK
.
= zi0i1...iK to indicate whether a hypothesis trajec-

tory is true (zi0:iK = 1) or not (zi0:iK = 0). If we further

denote tensor C = (ci0:iK ) and Z = (zi0:iK ), MOT can be

formulated as following MDA problem to solve Z given C:

argmax
{zi0:iK

}

∑

i0:iK

ci0:iKzi0:iK = argmax
Z

‖C ◦ Z‖1, (1)

s.t.







∑

i0:iK/{ik}

zi0:iK = 1, ∀k = 0, 1, ...,K

zi0:iK ∈ {0, 1}, ∀ik = 1, 2, ..., Ik

(2)

where ◦ denotes the element-wise product, ‖ · ‖1 is the ma-

trix 1-norm, and
∑

i0:iK/{ik}
stands for summation over all

subscripts i0 : iK except for ik.

To solve Eq. 1, we follow the Rank-1 Tensor Approxi-

mation (R1TA) framework [44]. The multi-dimensional as-

signments Z are first decomposed as the product of a se-

rials of local assignments X(k) = (x
(k)
ik−1ik

) which repre-

sent the assignments between candidates in adjacent frames,

i.e. O(k−1) and O
(k). If we further rewrite the local as-

signment matrix into vector form x(k) = (x
(k)
jk

) where

jk = (ik−1 − 1) × Ik + ik,1 optimization problem defined

in Eq. 1 can be rewritten as follow:

argmax
X

A×1 x
(1) ×2 x

(2) · · · ×K x(K), (3)

where A = (aj1:jK ) is the reshaped affinity tensor from the

(K + 1)-th order C tensor to a K-th order tensor follow-

ing the rules defined in [44] and ×k is the k-mode tensor

product, X =
{

x(1),x(2), ...,x(K)
}

is the set of local as-

signment vectors which we are optimizing for.

3.2. Architecture Overview and Tracking Pipeline

For each association batch, the FAMNet based tracking

system takes the K+1 image frames and corresponding de-

tections provided by an external detector as input. Detection

1For notational convenience, the same symbol is used for elements in

X
(k) and x

(k) with double subscripts and a single subscript respectively.

candidates are first used to generate the hypothesis trajecto-

ries. Image patches of target candidates together with the

trajectory hypothesis are passed into FAMNet to compute

the set of local assignments as shown in Fig. 1. Inside FAM-

Net, features of candidate patches are extracted through a

feature sub-network. The affinity sub-network then calcu-

lates the affinity for all hypothesis trajectories on those fea-

tures to form the affinity tensor as described in Sec. 4.1.

With the affinity tensor, the optimal multi-dimension as-

signments are estimated by the MDA sub-network as ex-

plained in Sec. 4.2 and 4.3.

During training, the assignment ground truth is directly

compared with the network output to compute the loss. The

loss signal then back-propagates throughout the network to

the feature and affinity sub-networks for learning, which is

illustrated as the red paths in Fig. 1 and detailed in Sec. 4.4.

In tracking phase, the output assignments together with sin-

gle object tracking (SOT) predictions are used to update the

trajectories of tracked targets through the target manage-

ment scheme as described in Sec. 4.5 and 4.6.

We design our method in the online tracking framework

intended for more casual applications. Under the constant

velocity assumption, three frames are the minimum tempo-

ral span to calculate the motion affinity. Therefore, in the

rest of paper, K = 2 with two frames overlapping between

association batches is used to balance the computation cost

and the sufficient depth of association to include the higher-

order discriminative clues.

4. FAMNet

4.1. Affinity SubNetwork

The affinity sub-network takes the features of candidates

and hypothesis trajectories as input, and generates the affin-

ity tensor as output.

For each association batch, the feature sub-network,

which is a Siamese-style network, is first used to extract

spatially aligned feature for the candidates from all frames

in the batch. The candidates in the middle frame of the batch

are treated as anchor candidates, and the middle frame is

referred as anchor frame. E.g., for K = 2, the anchor

frame refers to the frame k = 1. For each anchor candidate

o
(1)
i1

, three features are extracted respectively from the three

frames, denoted as Fi1 = {f
(0)
i1

, f
(1)
i1

, f
(2)
i1

}. These features

are all centered at the same location of o
(1)
i1

on frame k = 1,

as illustrated on the left of Fig. 2. This way, features in Fi1

share the same coordinate origin thus can encode motion

clue when concatenated along a channel. Spatial dimension

of f
(1)
i1

is determined by the bounding box of o
(1)
i1

, while

others are the multiples of f
(1)
i1

in order to include enough

candidates on adjacent frames into the same view. Note

that, hypothesis trajectories sharing the same anchor candi-
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date have the same set of Fi1 . Therefore, 3I1 features are

extracted for each association batch.

Two levels of affinities are calculated for each hypothesis

trajectory using the extracted feature set, as shown in Fig. 2.

In detail, the affinity tensor is calculated as following:

ci0i1i2 =































ϕ
(

Fi1 ,b
(0)
i0

,b
(2)
i2

)

+φ
(

f
(0)
i1

∣

∣

o
(0)
i0

, f
(1)
i1

)

+φ
(

f
(2)
i1

∣

∣

o
(2)
i2

, f
(1)
i1

)

,

ti0i1i2 ∈ T

0, ti0i1i2 /∈ T,

(4)

where T is the set of valid hypothesis trajectories, b
(k)
ik

is

the bounding box associated with o
(k)
ik

, φ(·) calculates the

pair-wise affinity and ϕ(·) evaluates the long-term affinity

of a hypothesis trajectory, f
(0)
i1

|
o
(0)
i0

is a spatial subset of f
(0)
i1

centered at o
(0)
i0

with the same spatial dimension as f
(1)
i1

.

The actual center coordinates of o
(0)
i0

in f
(0)
i1

need to be con-

verted accordingly. We use o
(0)
i0

here for convenience.

For pair-wise affinity, the cross-correlation operation is

used, such as

φ
(

f
(0)
i1

∣

∣

o
(0)
i0

, f
(1)
i1

)

= f
(1)
i1

∗ f
(0)
i1

∣

∣

o
(0)
i0

= φ
(

f
(0)
i1

, f
(1)
i1

)
∣

∣

o
(0)
i0

,

(5)

where ∗ is the convolution operation. Due to the fact that

hypothesis trajectories sharing the same anchor candidates

have the same set of Fi1 , we can calculate f
(1)
i1

∗ f
(0)
i1

first

then take the value at o
(0)
i0

from the cross-correlation result,

which is referred as φ(·)|
o
(0)
i0

.

We use convolutional neural network (CNN) with spatial

attention to evaluate the higher-order affinity of hypothesis

trajectory. For this purpose, features f
(0)
i1

and f
(2)
i1

are mul-

tiplied with spatial masks generated from b
(0)
i0

and b
(2)
i2

as

shown in Fig. 2. In particular, we create a binary mask of

the same spatial size with f
(0)
i1

or f
(2)
i1

for each candidate. In-

side each mask, the region within b
(k)
ik

is set to 1 otherwise

is 0. Each time, the actual position of b
(k)
ik

in the mask is

converted from the image frame to the coordinates centered

at anchor candidates. After encoding the spatial-temporal

information, features in Fi1 are concatenated along chan-

nel to form the input of a CNN to estimate the long-term

affinity. The final affinity for a hypothesis trajectory is the

summation of two levels of affinity according to Eq. 4.

4.2. R1TA Power Iteration Layer

With the affinity tensor, we use R1TA power iteration to

estimate the set of optimal assignments in Eq. 3. Solving

the global optimum for MDA often requires NP-hard prob-

ing. A sub-optimal approximation is usually guaranteed by

a power iteration algorithm which can be expressed in the

pure mathematic format.

In order to fit this process into the deep network frame-

work, we adapt a different iteration scheme than the one

in [44] where the row/column ℓ1 normalization is applied

to X after each iteration to enforce the constrain defined in

Eq. 2. The tensor power iteration and row/column normal-

ization are separated into two independent layers in our de-
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sign. It avoids cumulating too deep operations in a single

layer and alleviate the potential gradient vanishing. Down-

side of this scheme is that we could not expect the same con-

vergence property as in [44]. However, benefited from the

end-to-end training, it can be compensated by the learned

more discriminative feature and affinity metric.

In detail, the optimal solution to Eq. 3 subject to Eq. 2 is

approximated iteratively by:

Forward pass. At the (n + 1)-th iteration, the elements in

x(1)(n+1) is calculated from2

x
(1)(n+1)
j1

=
x
(1)(n)
j1

C(n)

∑

j2

aj1j2x
(2)(n)
j2

, (6)

where C(n) =
∑

j1,j2
aj1j2x

(1)(n)
j1

x
(2)(n)
j2

is the ℓ1 normal-

ization factor. At initialization, elements in all local assign-

ment vectors x(k)(0) are set to 1.

Backward pass. The R1TA power iteration layer com-

putes the loss gradient of affinity tensor A, denoted by

∂L/∂aj1j2 , as backward output. The input of the backward

pass is the loss gradient of all local assignment vectors at

the last iteration, e.g. ∂L/∂x(k)(N), where N is the total

number of iterations performed in the forward pass. The

gradient output is calculated as follow:

∂L

∂aj1j2
=
∑

n

x
(1)(n)
j1

x
(2)(n)
j2

C(n)

×
∑

k

(

i
(k)
jk

− x(k)(n+1)
)⊤ ∂L

∂x(k)(n+1)
,

(7)

where i
(k)
jk

is a unit vector of the same dimension as x(k) and

has elements equal to 1 only at jk and otherwise 0. In or-

der to calculate Eq. 7 for all iterations, the loss gradients of

assignment vectors at each iteration are also needed, which

follows:

∂L

∂x
(1)(n)
j1

=
x
(1)(n+1)
j1

x
(1)(n)
j1

[

(

i
(1)
j1

− x(1)(n+1)
)⊤ ∂L

∂x(2)(n+1)

−
(

x(2)(n+1)
)⊤ ∂L

∂x(2)(n+1)

]

+
1

C(n)

∑

j2

aj1j2
∂L

∂x
(2)(n)
j2

,

(8)

4.3. ℓ1 Normalization Layer

To satisfy the constrains defined in Eq. 2 required by

MDA, row/column ℓ1 normalization is applied to the re-

sult X. The assignment vectors from the R1TA power iter-

ation layer are reshaped back to their matrix form such that

X(k) = (x
(k)
ik−1ik

) ∈ R
Ik−1×Ik . Then, the ℓ1 normalization

2The second superscript indicates the round of iteration. Moreover,

derivation in this subsection is on x
(1)
j1

, but is the same for x
(2)
j2

.

𝐨𝐨 𝐨𝐨 𝐨𝐨
𝐨𝐨𝐨𝐨 𝐨𝐨 𝐨𝐨𝐨𝐨
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1

2 2 3

1 1

2

Figure 3. Hypothesis trajectory generation. It shows all hypothesis

trajectories passing through candidate o
(1)
2 . The color of nodes

indicates the ground truth associations.

is performed row and column alternatively through multiple

iterations.

Forward pass. For each pair of iterations, we start from

row normalization. In the (n+ 1) and (n+ 2)-th iteration:

X(k)(n+1) =
[

X(k)(n)1Ik

]−1
X(k)(n)

X(k)(n+2) = X(k)(n+1)
[

1⊤
Ik−1

X(k)(n+1)
]−1

,
(9)

where 1Ik ∈ R
Ik is a vector with all elements being 1, [x]

here and below represents the diagonal matrix with x as

diagonal elements.

Backward pass. Given a starting gradient ∂L/∂X(k)(n+2),

we iteratively compute the gradients as:

∂L

∂X(k)(n+1)
=

∂L

∂X(k)(n+2)

[

1⊤
Ik−1

X(k)(n+2)
]−1

− 1Ik−1

· diag
(

[

1⊤
Ik−1

X(k)(n+2)
]−2(

X(k)(n+2)
)⊤ ∂L

∂X(k)(n+2)

)⊤

∂L

∂X(k)(n)
=

[

X(k)(n+1)1Ik

]−1 ∂L

∂X(k)(n+1)

− diag
(

[

X(k)(n+1)1Ik

]−2 ∂L

∂X(k)(n+1)

(

X(k)(n+1)
)⊤

)

1⊤
Ik
.

Our ℓ1 normalization layer is similar to but differs from

that in [59], in that our implementation allows partial

row/column normalization to handle real and virtual can-

didates differently as detailed in Sec. 4.5.

4.4. Training

During the training, the total loss L is measured by

the binary cross entropy between all predicted assignments
(

x
(k)
ik−1ik

∈ [0, 1]
)

and assignment ground truth
(

x̄
(k)
ik−1ik

∈

{0, 1}
)

, which is written as

L=
∑

k

∑

ik−1ik

x̄
(k)
ik−1ik

log x
(k)
ik−1ik

+(1−x̄
(k)
ik−1ik

) log(1−x
(k)
ik−1ik

).
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Algorithm 1 Target Management

1: Input: Assignment matrix X(k) = (x
(k)
ik−1ik

) ∈ R
Ik−1×Ik .

2: Output: Tracked target trajectories.

3: Discretize X(k) using graph multicut [21].

4: for ik−1 = 1, . . . , Ik−1 do

5: if o
(k−1)
ik−1

not tracked

and CNNBBE

(

b
(k−1)
ik−1

)

> 0.5 then

6: add new target trajectory starting with b
(k−1)
ik−1

7: end if

8: if o
(k−1)
ik−1

assigned to a real candidate, e.g. o
(k)
jk

then

9: if IoU
(

p
(k−1)
ik−1

, b
(k)
jk

)

< tdif

and CNNBBE

(

b
(k)
j

)

< 0.5 then

10: update target trajectory of o
(k−1)
ik−1

using p
(k−1)
ik−1

11: continue

12: end if

13: update target trajectory of o
(k−1)
ik−1

using b
(k)
jk

14: else

15: ⊲ bF is the bounding box of image frame.

16: if IoU
(

p
(k−1)
ik−1

,bF

)

< texit then

17: exit target trajectory of o
(k−1)
ik−1

18: else

19: update target trajectory of o
(k−1)
ik−1

using p
(k−1)
ik−1

20: end if

21: end if

22: end for

With the total loss, gradients are calculated throughout the

network back to the affinity and feature sub-networks.

We use each association batch containing three frames

as one mini-batch during training and tracking. For each

batch, three consecutive frames and target candidates on

each frame provided by an external detector serve as the

input. The candidate set is first used to generate the hypoth-

esis trajectories {ti0:i2}. We set a bound for the hypothesis

trajectory generation where two candidates from two con-

secutive frames can be connected only when they are spa-

tially close to each other and have the similar bounding box

size. We set adaptive thresholds for this strategy. In de-

tail, if a candidate cannot connect with any candidate at a

threshold, it re-searches using degraded thresholds for the

possible connection. This strategy allows the connections

for both fast and slow movement targets, and meanwhile

rejects naive false positive connections. Hypothesis trajec-

tories are generated greedily by iterating through all valid

connections to form trajectories starting with candidates in

O
(0) and terminating in O

(2). Generated trajectories are

sorted by their anchor candidates and together with image

frames fed into our networks for training and tracking.

4.5. Tracking by Integrating Detection and SOT

In the tracking phase, predictions using SOT techniques

are included to recover missing candidates from the exter-

nal detector. We add a virtual candidate to each candidate

set to represent missing candidates and allow it to connect

with any candidate in consecutive frames as shown in Fig. 3.

Both real and virtual candidates are used to generate trajec-

tory hypothesis. When calculating affinity, we choose the

location maximizing the affinity in Eq. 5 as the center of the

virtual candidates for each anchor candidate such that

argmax
ô
(2)
I2+1

φ
(

f
(2)
i1

, f
(1)
i1

)

=
(

f
(1)
i1

∗ f
(2)
i1

)∣

∣

ô
(2)
I2+1

. (10)

Therefore, if an anchor candidate misses its detection in

consecutive frame, it will connect with the virtual candi-

date which represents the location most similar to it in that

consecutive frame, or, in terms of SOT, its tracking predic-

tion. Each anchor candidate may have a different location

predicted by SOT. We use ô
(2)
I2+1 in Eq. 10 to refer to the vir-

tual candidate, its center coordinates may vary on different

anchor candidates.

To prevent MDA from always choosing the virtual can-

didates since their affinity are no smaller than any real can-

didate, a coefficient α ∈ (0, 1) is used to scale down their

affinity. The virtual candidates are handled specially in the

ℓ1 normalization layer: for the row (column) in X(k)(n+1)

representing a virtual candidate, only column (row) ℓ1 nor-

malization is applied. This way, each real candidate can

be assigned to only one candidate in consecutive frame in-

cluding the virtual ones, while a virtual candidate can be

assigned to multiple candidates. During optimization, if the

affinities of real candidates are smaller than that of the vir-

tual candidates, which represent tracking predictions, the

anchor candidates will be automatically associated with the

tracking predication. This way, our tracking system inte-

grates the detection and SOT naturally.

4.6. Target Management

On receiving the assignment results, target management

handles target entering, exiting and updating. In assignment

results, if multiple anchor candidates choose to associate

with a virtual candidate, new candidates will be added into

candidate sets accordingly. For a virtual candidate not as-

sociated with any anchor candidate in assignment results, it

will be dropped from the candidate set. Furthermore, if the

virtual candidate associated with an anchor candidate in this

batch appears as an anchor candidate in the next batch, the

appearance feature of the anchor candidate is reused in the

next batch in case that the missing detection is caused by

occlusion. This SOT process will continue until a confident

real candidate is associated.

For anchor candidates associated with real candidates,

we train a CNN network to further refine their bounding

boxes. During MDA, associations are made mainly based

on the object center of each candidate. Most MOT tasks

concern the actual bounding box enclosure of targets. When

an anchor candidate is assigned to a real candidate, two
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Table 1. Tracking Performance on the MOT2015 benchmark test

set. Best in bold.
Method MOTA IDF1 MT ML↓ FP↓ FN↓ IDS↓

O
ffl

in
e

CEM [33] 19.3 0.0 8.5% 46.5% 14180 34591 813

R1TA [44] 24.3 24.1 5.5% 46.6% 6664 38582 1271

SCNN [28] 29.0 34.3 8.5% 48.4% 5160 37798 639

DAM [24] 32.4 45.3 16.0% 43.8% 9064 32060 435

JMC [22] 35.6 45.1 23.2% 39.3% 10580 28508 457

O
n

li
n

e

RNN [32] 19.0 17.1 5.5% 45.6% 11578 36706 1490

oICF [23] 27.1 40.5 6.4% 48.7% 7594 36757 454

SCEA [56] 29.1 37.2 8.9% 47.3% 6060 36912 604

AP [7] 38.5 47.1 8.7% 37.4% 4005 33203 586

proposed 40.6 41.4 12.5% 34.4% 4678 31018 778

Table 2. Tracking Performance on the MOT2017 benchmark test

set. Best in bold.
Method MOTA IDF1 MT ML↓ FP↓ FN↓ IDS↓

O
ffl

in
e

IOU17 [4] 45.5 39.4 15.7% 40.5% 19993 281643 5988

bLSTM [25] 47.5 51.9 18.2% 41.7% 25981 268042 2069

TLMHT [42] 50.6 56.5 17.6 % 43.4% 22213 255030 1407

jCC [47] 51.2 54.5 20.9% 37.0% 25937 247822 1802

eHAF17 [43] 51.8 54.7 23.4% 37.9 % 33212 236772 1843

O
n

li
n

e GMPHD [26] 39.6 36.6 8.8% 43.3 % 50903 284228 5811

DMAN [61] 48.2 55.7 19.3% 38.3 % 26218 263608 2194

MOTDT [8] 50.9 52.7 17.5% 35.7% 24069 250768 2474

proposed 52.0 48.7 19.1% 33.4% 14138 253616 3072

bounding boxes will be associated with it: one from the real

candidate itself denoted by b
(k)
ik

and the other from the SOT

predication of the anchor candidate p
(k−1)
ik−1

. If the bounding

box Intersection over Union (IoU) between b
(k)
ik

and p
(k−1)
ik−1

is smaller than a threshold tdif, a CNN is used to evaluate

the quality of b
(k)
ik

. In detail, a CNN-based binary classi-

fier CNNBBE is trained to decide whether a bounding box

has IoU larger than a threshold, e.g. 0.5, with the category

target. The detailed procedure of the target management is

listed in Alg. 1.

5. Experiment

We conduct experiments on four popular MOT datasets:

MOT2015 [29] and MOT2017 [31] for pedestrian tracking,

KITTI-Car [18] and UA-DETRAC [51] for vehicle track-

ing. All datasets are provided with referred detections from

real detectors.

5.1. Experiment Setting

The proposed approach is implemented in PyTorch and

runs on a desktop with CPU of 6 cores@3.60GHz and

a Titan X GPU. We adapt the SiamFC proposed in [41]

as our feature sub-network and use their weights as pre-

trained model which is trained on the ILSVRC15 dataset

for object detection in video. The CNN ϕ(·) to esti-

mate long-term affinity is constructed with three convolu-

tional layers to map the concatenated spatial aligned fea-

ture into affinity score. A ResNet-101 with binary output is

adapted for CNNBBE, the pre-trained weights from MaskR-

CNN [19] on COCO dataset is used for initialization. Pro-

posed method runs average 0.6 fps on MOT2017 dataset in

tracking phase.

For each test sequence in MOT2015 and MOT2017, fol-

lowing their protocol, one or more similar sequences in the

training set are used to train a different set of FAMNet and

CNNBBE to best adapt the scenario prior. Sequences in the

KITTI and UA-DETRAC dataset are all recorded in a simi-

lar setting, therefore all training sequences in their datasets

are used together to train one set of networks for all test

sequences. To train the FAMNet, ground truth bounding

boxes are used as input target candidates. Therefore, no

virtual candidate or SOT process is enabled during train-

ing. When training the CNNBBE, the training samples are

collected from both the external detection and ground truth

bounding box after random shift and scale. The IoU of

bounding boxes with ground truth larger than 0.5 are se-

lected as positive samples while smaller than 0.4 are for

negative samples.

To evaluate the performance of the proposed method,

the widely accepted CLEAR MOT metrics [2] are reported,

which include multiple object tracking precision (MOTP)

and multiple object tracking accuracy (MOTA) that com-

bines false positives (FP), false negatives (FN) and the iden-

tity switches (IDS). Additionally, we also report the per-

centage of mostly tracked targets (MT), the percentage of

mostly lost targets (ML). For MOT2015 and MOT2017, we

also report the IDF1 scores [40].

5.2. Evaluation Results

MOT2015. MOT2015 [29] contains 11 different indoor and

outdoor scenes of public places with pedestrians as the ob-

jects of interest, where camera motion, camera angle and

imaging condition vary greatly. The dataset provides detec-

tions generated by the ACF-based detector [14]. The nu-

merical results on its test set are reported in Tab. 1. Our

approach achieves clearly the state-of-the-art performance.

In particular, our method achieves better performance in

most metrics than the RNN based end-to-end online meth-

ods due to our discriminative higher-order affinity and the

optimization method adapted. Our method also surpasses

the same R1TA-based method which is with hand-crafted

features and affinity metrics.

MOT2017. Similar to MOT2015, MOT2017 [31] contains

seven different sequences in both training and test datasets

but with higher average target density (31.8 vs 10.6 on the

test set), thus is more challenging. MOT2017 also focuses

on evaluating the tracker performance on different detec-

tion quality. It provides three different detection inputs from

DPM [17], Faster-RCNN [39] and SDP [55], ranked in as-

cending order by AP. We train seven different sets of net-
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Table 3. Tracking Performance on the KITTI-Car benchmark test

set. Best in bold.
Method MOTA MOTP MT ML↓ FP↓ FN↓ IDS↓

O
ffl

in
e DCO-X [34] 68.1 78.9 37.5% 14.1% 2588 8063 318

R1TA [44] 71.2 79.2 47.9 % 11.7% 1915 7579 418

LP-SSVM [48] 77.6 77.8 56.3% 8.5% 1239 6393 62

NOMT [9] 78.1 79.5 57.2% 13.2% 1061 6421 31

O
n

li
n

e RMOT [57] 65.8 75.4 40.2% 9.7 % 4148 7396 209

mbodSSP [30] 72.7 78.8 48.8% 8.7% 1918 7360 114

CIWT [37] 75.4 79.4 49.9% 10.3 % 954 7345 165

proposed 77.1 78.8 51.4% 8.9% 760 6998 123

works according to different scenes, without further fitting

on the different detections. The numerical results are re-

ported in Tab. 2. The performance of our method is better

than or on par with other published state-of-the-art methods.

KITTI-Car. The KITTI dataset [18] contains 21 video se-

quences in the training set and 29 in the test set for multiple

vehicle tracking in street view, where videos are recorded

through a camera mounting in front of a moving vehicle.

Referred detections from the regionlet [50] detector are

used in our experiment. The numerical results on the dataset

of our method along with other methods using the same

detections are summarized in Tab. 3. Our method again

surpasses the hand-crafted feature-based R1TA method, de-

spite the fact that it uses a much larger association batch for

off-line tracking. It is worth mentioning that motion affinity

plays a more importance role in KITTI than in MOT2015

and MOT2017, since both targets and camera move faster

and more regularly in KITTI.

UA-DETRAC. UA-DETRAC dataset [51] is another mul-

tiple vehicle tracking dataset with 60 sequences for training

and 40 sequences for testing. All sequences are recorded

with static camera at a lift-up position near different drive

ways in various of weather conditions. We use referred

detection from CompACT [5] detector in our experiment.

UA-DETRAC reports the average of each MOT metric (PR-

) from a serials of results using different detection confi-

dence thresholds (from 0 to 1.0 with 0.1 step). Comparison

with other methods using the same detections are reported

in Tab. 4. Proposed method achieves state-of-the-art per-

formance among the published works. Our method also

surpasses the IOU tracker which is an offline method and

using a private detector.

5.3. Ablation Study

We justify the effectiveness of different modules in pro-

posed method through ablation study as shown in Tab. 5.

We conduct the study using the sequences ETH-Pedcross2

and ETH-Sunnyday for testing and ETH-Bahnhof for train-

ing. All sequences are from the training set of MOT2015.

We start from FAMNet with randomly initialized weights

whose tracking performance is referred as “No training”

in Tab. 5. Then the network is trained on sequence ETH-

Table 4. Tracking Performance on the UA-DETRAC benchmark

test set. Best in bold.

Method
PR-

MOTA

PR-

MOTP

PR-

MT

PR-

ML
↓

PR-

FP
↓

PR-

FN
↓

PR-

IDS
↓

CEM [33] 5.1 35.2 3.0% 35.3% 12341 260390 267

H2T [53] 12.4 35.7 14.8 % 19.4% 51765 173899 852

CMOT [1] 12.6 36.1 16.1% 18.6% 57886 167111 285

GOG [38] 14.2 37.0 13.9% 19.9% 32093 180184 3335
†IOU [4] 19.4 28.9 17.7% 18.4 % 14796 171806 2311

proposed 19.8 36.7 17.1% 18.2% 14989 164433 617

† Private detector used.

Table 5. Ablation study on sequences from MOT2015.

Method MOTA FP↓ FN↓ IDS↓

No training 35.5 240 4799 202

Training from scratch 44.1 281 4160 97

Without CNNBBE 40.5 518 4227 87

Without SOT 42.0 200 4412 99

Fine-tuning (proposed) 45.2 259 4105 87

Bahnhof. “Training from scratch” stands for the results in

this scheme. Training with the limited MOT sequences may

lead to overfitting of the feature and affinity sub-network.

To increase the generalizability and further boost the per-

formance, we use the weights trained on the ILSVRC15

dataset as initialization then perform fine-tuning on the

MOT sequence, which is referred as “Fine-tuning” and is

the scheme used in other experiments in this paper. “With-

out CNNBBE” shows the configuration where detection

score is used for bounding box quality estimation instead

of the dedicated CNNBBE. Target management without

CNNBBE cannot efficiently prevent FPs merging into the

tracking results. “Without SOT” in Tab. 5 stands for the

case that only detections from external detector are used for

association, no SOT prediction is included. By contrast,

in the proposed solution, though SOT predictions introduce

some FPs, it recovers much more missing candidates and

reduces FN greatly.

6. Conclusion

In this paper we proposed a novel deep architecture

for MOT, which learns jointly, in an end-to-end fashion,

features and high-order affinity directly from the ground

truth trajectories. During tracking, predictions from SOT

and a dedicated target management are include to further

boost tracking robustness. Experiments on the MOT2015,

MOT2017, KITTI-Car and UA-DETRAC datasets clearly

show the effectiveness of proposed approach.
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