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Abstract

Motivation: Functional genomics data are becoming clinically actionable, raising privacy concerns. However, quan-

tifying privacy leakage via genotyping is difficult due to the heterogeneous nature of sequencing techniques. Thus,

we present FANCY, a tool that rapidly estimates the number of leaking variants from raw RNA-Seq, ATAC-Seq and

ChIP-Seq reads, without explicit genotyping. FANCY employs supervised regression using overall sequencing statis-

tics as features and provides an estimate of the overall privacy risk before data release.

Results: FANCY can predict the cumulative number of leaking SNVs with an average 0.95R2 for all independent test

sets. We realize the importance of accurate prediction when the number of leaked variants is low. Thus, we develop

a special version of the model, which can make predictions with higher accuracy when the number of leaking var-

iants is low.

Availability and implementation: A python and MATLAB implementation of FANCY, as well as custom scripts to

generate the features can be found at https://github.com/gersteinlab/FANCY. We also provide jupyter notebooks so

that users can optimize the parameters in the regression model based on their own data. An easy-to-use webserver

that takes inputs and displays results can be found at fancy.gersteinlab.org.

Contact:mark@gersteinlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the surge of genomics data and the decreasing cost of sequenc-
ing (Sboner et al., 2011), genome privacy is an increasingly important
area of study. Traditional DNA sequencing, functional genomics
(Harmanci and Gerstein, 2018) and molecular phenotype (Harmanci
and Gerstein, 2016; Schadt et al., 2012) datasets create quasi-
identifiers, which in turn can be used to re-identify or characterize
individuals without their consent. The surge in widely available func-
tional genomics data increases correlations between phenotype and
genotype datasets, which amplifies the possibility of re-identification
and characterization of the individuals who participate in these stud-
ies. Functional genomics data allow for a detailed characterization of
disease states and susceptibility, and broad dissemination of this data
can promote key scientific advances. Unlike DNA sequencing, func-
tional genomics experiments are not performed for genotyping pur-
poses (rather, for understanding phenotypes and basic biology). Yet,
they still yield next-generation sequencing reads containing a substan-
tial amount of patients’ variants, which raises privacy concerns.
Thus, there is a trade-off between utility and privacy when it comes

to sharing functional genomics data. This trade-off can be difficult

for scientists to navigate. For example, scientific funding agencies’
data-sharing and privacy policies about controlled-access can prevent

the release of data, sometimes as late as after the relevant article has
published (NIH, 2018).

In contrast to DNA sequencing-based data, such as genome-wide

association study (GWAS), few tools currently exist to assess the
risk of privacy loss from functional genomics data. In order to pro-

tect patient privacy while promoting scientific progress through
data-sharing, it is essential that we develop robust methods for mak-

ing these assessments. Such assessments may bolster informed con-
sent and empower scientists to plan functional genomics

experiments with patient privacy in mind. Previous studies suggest
that 30–80 independent single nucleotide polymorphisms (SNPs)

can be enough to re-identify an individual (Lin et al., 2004).

Although the majority of genome-wide functional genomics datasets
will likely contain more than 80 SNPs, the number of required SNPs

to re-identify individuals are highly dependent on the number of
individuals sequenced in other databases. It is envisioned that more

individuals will be sequenced moving forward and more SNPs will
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be needed to re-identify individuals in these databases. Therefore,
estimating the number of SNPs leaked in omics datasets is important
for understanding the risk of privacy. In addition, another privacy
risk to the participants is the risk of characterization, i.e. the risk of
inferring stigmatizing phenotypes by using the genotype–phenotype
relationship. Clearly, the more variants leaked, the greater the chan-
ces of being characterized (e.g. through GWAS overlap). In this
sense, knowing the number of variants that leak in a given function-
al genomics dataset helps us to understand the loss of privacy.

Before the release of data from a functional genomics experiment,
it is essential to be able to rapidly quantify the number of leaking var-
iants. This is particularly important as different assays target different
regions of the genome with different coverage profiles [e.g. RNA
sequencing (RNA-Seq) targets expressed exons, whereas H3K27ac
chromatin immunoprecipitation sequencing (ChIP-Seq) targets the
non-coding genome on the promoter and enhancer regions] and depth
profiles (i.e. some assays have spread out peaks while others are more
punctuated). The quantification of the number of leaking variants is
possible by genotyping the raw sequences and overlapping them with
gold-standard genotypes (e.g. those obtained from whole-genome
sequencing). The use of a gold-standard is necessary because function-
al genomics data alone provides a less reliable picture of an individu-
al’s genotypes, and may lead to false positives due to the targeted
nature of the assays. For example, it has been shown that the variants
called using RNA-Seq data of 432 individuals from the gEUVADIS
project (Lappalainen et al., 2013) have a precision of �10% (Gursoy
et al., 2019). The limitations of directly genotyping the functional
genomics dataset are (i) the large resources required for genotyping-in
principle, it is possible to genotype the raw reads with current geno-
typing tools, but an average variant calling pipeline would need to be
radically re-parameterized to suit different assays, as traditional geno-
typing software are typically optimized for whole-genome sequencing
and (ii) the need for a gold-standard genotype dataset belonging to
the patient to check the correctness of the called variants, which may
not be readily available in every case.

In this study, we developed FANCY, a supervised learning
method to infer the number of leaking single nucleotide variants
(SNVs) from reference-aligned functional genomics data. Our pri-
mary goal was to quantify the SNV leaks in raw sequences without
needing genotyping or a gold-standard genotype list. We built a
Gaussian Process Regression (GPR) model that takes the assay type,
sequencing features, such as mean depth (d) and breadth (b) of the
coverage, and the statistical properties of the depth distribution, such
as standard deviation(r), skewness (6s) and kurtosis(k) as input, and
predicts the cumulative number of leaking SNVs. FANCY can separ-
ately estimate the number of rare and common variants, and outputs
each estimated number with a predicted upper and lower bound in
the 95% confidence level. In addition to estimating privacy risk,
FANCY can be used to plan functional genomics experiments; for a
target number of SNVs, one can back-calculate the required sequenc-
ing statistics. The privacy risk assessment is of critical value when the
number of leaking variants is low, as in critical ranges, leakage of a
few additional variants can change the status of the privacy risk from
‘can be shared’ to ‘cannot be shared’. Therefore, we also trained our
model with data that has SNV leakage fewer than 1000 variants to
obtain more accurate results in the lower ranges. This model is called
FANCYlow. A user can first predict the leakage with FANCY. If the
number of predicted SNVs is below 1000, the user can then use
FANCYlow to fine-tune the accuracy of the prediction.

In addition to FANCY, we also developed a Random Forest classi-
fier plug-in that predicts the type of assay [RNA-Seq versus Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-Seq) ver-
sus ChIP-Seq] used to obtain a given dataset by using the sequencing
statistics as features. This kind of reverse identification of data may be
useful to the community for samples with missing metadata.

2 Materials and methods

2.1 FANCY details
FANCY is a two-step method. The first step is a regression frame-
work that uses a GPR model with a Matern kernel (Rasmussen and

Williams, 2006). We obtained the features as follows: we first

aligned the raw functional genomics reads to the reference genome

[bwa (Li and Durbin, 2009) is used for ChIP and ATAC-seq data;

STAR (Dobin et al., 2013) is used for RNA-Seq data]. We then cal-

culated the depth per base pair using samtools (Li et al., 2009) and

calculated the following statistics: depth (d) and breadth (b) of the

coverage, and the statistical properties of the depth distribution,

such as standard deviation(r), skewness (6s) and kurtosis(k)

(Fig. 1a). For the true number of SNVs, we used GATK (DePristo

et al., 2011; Van der Auwera et al., 2013) (with appropriate param-

eterization for each assay type) to call the SNVs. After filtering low-

quality SNVs as suggested by the GATK Best Practices (DePristo

et al., 2011; Van der Auwera et al., 2013), we overlapped the

remaining SNVs with the gold-standard SNVs generated from

whole-genome sequencing data to obtain the true number of leaking

SNVs (Fig. 1c). The second step is the estimation of rare versus com-

mon variants. We divided the 1000 Genomes data (The 1000

Genomes Project Consortium, 2010) into rare and common catego-

ries based on minor allele frequency of the SNVs. For each individ-

ual in the 1000 Genomes Project (The 1000 Genomes Project

Consortium, 2010), given an assay, we found the rare variant dens-

ity and used the mean density of all individuals with the predicted

number of total leaking variants to estimate the number of rare ver-

sus common variants.
FANCYlow uses the same regressor with the same set of features.

However, the training data used in FANCYlow contains leaking

SNVs up to 1000 to increase the accuracy when the number of leak-

ing variants is low.

2.2 Gaussian process regression
GPR is a supervised learning method that is based on learning fitting

functions to a given set of training data. In comparison, traditional

regression models learn the parameters of a given function. GPR is a

non-parametric method used to calculate the probability distribu-

tion over all functions that fit the data instead of calculating the

probability distribution of a specific function’s parameters. The ad-

vantage of using GPR is its ability to provide uncertainty estimations

at a given confidence level. The disadvantage of this method is the

computational complexity, which makes it infeasible for large data-

sets. Since the sequencing statistics relate to the number of inferred

variants differently in different regimes and for different assays

(Fig. 1c), the relationship between features and the number of leak-

ing variants cannot be modeled by general mathematical

approaches, such as generalized linear models (Fig. 2). A Gaussian

process can be defined by its mean and covariance functions as
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Fig. 1. Details of FANCY. (a) The schematic of the features of FANCY: average

depth; breadth, i.e. number of nucleotides represented with at least one read; first,

second and third moment of the depth distribution (SD, skewness and kurtosis). If

the distribution is skewed to the right-hand side of the mode (mean is larger than

the mode), the skewness is positive. It is negative if the mean is smaller than the

mode. (b) The schematic of inputs and outputs of FANCY. (c) The process of deter-

mining true number of leaking variants from functional genomics reads. (d) The

regions represented by each assay type. The reads of RNA-Seq are concentrated on

the gene bodies, H3K27ac ChIP-Seq is concentrated on the non-coding genome

(enhancers and promoters), and because ATAC-Seq covers the open chromatin, the

reads are concentrated on both coding and non-coding regions
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f ðxÞ � ðlðxÞ;
X

ðxÞÞ:

A Gaussian process assumes that the distribution of the values of
functions pðf ðx1Þ; f ðx2Þ; . . . ; f ðxNÞÞ at a set of points ðx1;x2; . . . ;xNÞ
is jointly Gaussian with a mean lðxÞ and covariance

P
ðxÞ, whereP

ij ¼ kðxi;xjÞ. K is a kernel function, which determines the similar-
ity between data points xi and xj. If these points are deemed similar
by the kernel, we expect the output of the functions at these points
to be similar as well. For each xi, yi in our training dataset, we can
write a function f ðxiÞ such that

yi ¼ fiðxiÞ þ �i;

where �i � Nð0;r2Þ. Therefore, for any input vector ðx1; x2; . . . ; xNÞ,
f(x) has a joint Gaussian distribution. The covariance (kernel) func-
tion k is generally taken as Gaussian (i.e. squared exponential ker-
nel). However, in this application, we found that a Matern kernel
performs better. We used 5-fold cross-validation to avoid over-
fitting and a separate test dataset to validate our model. We tried
other regression models, such as linear regression with and without
interactions, different regression trees, neural networks and support
vector machine (SVM) regression models. GPR outperformed other
models in training [both in terms of root-mean-squared error
(RMSE) and R2, P-value <10�2; see Table 1 for results and
Supplementary Tables S1 and S2 for statistics]. We have also com-
pared the training times of different regression models in
Supplementary Table S3.

2.3 Dataset
We used RNA-Seq data from 432 individuals generated by the
gEUVADIS project (Lappalainen et al., 2013), H3K27ac ChIP-Seq
data from 100 individuals generated by the PsychENCODE
Consortium (Wang et al., 2018), ATAC-Seq data from 344 individu-
als generated by the BrainGVEX project(Wang et al., 2018) and
ATAC-Seq data from 288 individuals generated by the
PsychENCODE Consortium (Wang et al., 2018). We then used the
GATK Best Practices from RNA-Seq and DNA data (DePristo et al.,
2011; Van der Auwera et al., 2013) to call SNVs and small

insertions and deletions (Fig. 3). We treated each chromosome sep-
arately, which resulted in 25 152 data points. In total, we had
13 537 data points from ATAC-Seq, 9456 data points from RNA-
Seq and 2159 from ChIP-Seq. We randomly divided the entire data-
set in half to use as training and test sets, which preserved the ratio
of each assay type in training and test sets. We used 5-fold cross-
validation while training on the training dataset to prevent over-
fitting. We also separately validated our model by using 308 data
points from the RNA-Seq study by Kilpinen et al. (2013). Since there
is an imbalance in the number of datapoints coming from different
assays, we wanted to understand if such imbalance is affecting our
model selection. To this end, we repeatedly sub-sampled 2159 data
points from the RNA-Seq and ATAC-Seq categories (to match it to
the most under-represented category of ChIP-Seq) and trained mul-
tiple regression models. We found that GPR is still the best regres-
sion model with the smallest RMSE in each case (P-value <10�2;
see Table 2 for results and Supplementary Tables S4 and S5 for
statistics).

2.4 Random Forest details
Random Forest was used as a plug-in to FANCY in order to predict
the assay type of the data from the sequencing statistics in the case
that metadata is missing. Random Forest classifiers combine several
decision trees that use multiple subsets of data from a training sam-
ple to produce better predictive performance than that of a single de-
cision tree. The advantage of a Random Forest classifier is that it
handles high dimensionality in data, as well as missing values. It
works via the following principles: assume we have an observation
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Fig. 2. Relationship between sequencing statistics and number of leaking variants.

Overall, breadth of the coverage has the highest correlation with the number of

leaking variants, while other statistics still show a decent correlation

Table 1. Comparison of different regression model performances

on training dataset

Model RMSE R2

Linear regression 8066.467.03 0.96

Decision tree 5559.0690.82 0.98

Boosted tree 66518.868.19 0.98

Bagged tree 5148.4637.86 0.98

SVM 5754.5613.96 0.99

NeuralNet 8190.76799.37 0.99

GPR 4302.3614.20 0.96
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ics data. We used the GATK Best Practices from RNA-Seq and DNA data to call
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yi and the feature associated with it is xi;j. Here, i ¼ 1; ::;N; j ¼
1; . . . ;M and N and M are the number of observations and features,
respectively. We first take a subset from N number of training data
randomly with replacement. We then take a subset of M features
randomly. We split the node iteratively by finding the feature associ-
ated with the best split. With this iteration, we grow the largest tree.
We then repeat these steps to aggregate n number of trees to create
our Random Forest. We generated 30 trees using a 5-fold cross-
validation and an independent test set to validate our model.

3 Results

Genotyping from DNA sequences is the process of comparing the
DNA sequence of an individual to that of the reference human gen-
ome. To be able to successfully genotype, one needs a substantial
depth of sequencing reads for each base pair. According to the
Lander–Waterman statistics for DNA sequencing, when random
chunks of DNA are sequenced repeatedly, the depth per base pair
follows a Poisson distribution with a mean that can be estimated
from the read length, number of reads and the length of the genome
(Lander and Waterman, 1988). For example, as RNA-Seq aims to
sequence expressed genes, one would expect that sequencing depth
per base pair does not follow Poisson statistics. Genotyping using
reads from RNA-Seq experiments is biased toward variants that are
in the exonic regions. Conversely, ChIP-Seq is biased against RNA-
Seq, as it targets non-coding genome, such as promoters and
enhancers (see Fig. 1d).

We hypothesized that the statistical properties of the depth per
base pair distribution are strong indicators of the number of variants
that can be inferred from functional genomics data. We used a total
of six sequencing features: (i) the average depth per base pair (d); (ii)
the total fraction of the genome that is represented at least by one
read [i.e. the breadth, b ¼

PN

i¼1

dðdiÞ, such that dðdiÞ ¼ 1 if di > 0,
b ¼ 0 otherwise and N is the total number of nucleotides in the gen-
ome]; (iii) the SD of the depth distribution; (iv) skewness (i.e.
whether the distribution is larger on the right or left side of the
mean); (v) kurtosis (i.e. whether or not the depth distribution has
big tails); and (vi) the type of the experiment (i.e. RNA-Seq, ATAC-
Seq or ChIP-Seq).

FANCY predicts the cumulative number of leaking SNVs with
an R2 of 0.99 for training (with 5-fold cross-validation) and 0.90 for
independent test RNA-Seq, 0.99 for independent test ATAC-Seq
and 0.99 for independent test ChIP-Seq datasets (Fig. 4 and
Table 3). We used mean squared error as our loss function in the re-
gression model (see Tables 1–3 for RMSE). Our predictions are in
strong agreement with the true number of leaking variants in all the
independent test datasets (Fig. 4a). To easily interpret the perform-
ance of our predictions, we calculated the deviation from the true
values by calculating d ¼ ðyp � yrÞ=yr, where yp is the predicted
value and yr is the real value of the number of SNPs. The negative
values indicate under-prediction (i.e. the number of predicted SNVs
is lower than the true number of leaking SNVs). On average, we had
8% prediction error for all of the independent test sets (Fig. 4b).

We also assessed the performance of our model on RNA-Seq
data that was obtained using different experimental protocols. We
were able to test FANCY on poly-A minus, poly-A plus and total

RNA-Seq data obtained by different labs. The selection of these test
datasets was limited by the number of available functional genomics
datasets with accompanying WGS data (required for the validation
of our model). We found that our model works equally well with in-
dependent datasets obtained using different protocols than those
used to obtain the training data (R2 0.97–0.98, see Fig. 5).

If a functional genomics experiment is leaking more than 1000
variants, the associated privacy risk for re-identification and charac-
terization is at the maximum, regardless of the absolute value of the
number of variants. However, re-identification might require a
lower number of leaking variants than characterization. Thus, the
risk assessment for re-identification can be more valuable for experi-
ments that are leaking a low number of variants, as mis-predicting
these values only slightly may result in the release of private data.
Thus, we developed another regression model (see Section 2) that
aims to predict the leakage more precisely when the number of leak-
ing variants is low. This second model had an RMSE of 75.64, 74.8
and 74.0 for independent test RNA-Seq, ATAC-Seq and ChIP-Seq
datasets, respectively, in which the maximum number of leaking
variants is 1000 (Figs 6). We also calculated the number of under-
predicted (predicted value is lower than true value) leaking variants
and found that we have no under-predicted leaking variants when
the total number of leaking variants is lower than 400, and only
three under-predicted leaking variants when the total number of
leaking variants is between 400 and 500. Moreover, both FANCY
and FANCYlow can also output the number of leaking variants with-
in 95% confidence interval (Fig. 7).

To further understand the role of the features on the prediction
performance, we did a ‘leave one feature out’ test and found that the
mean depth (d) and breadth (b) of the coverage had the greatest ef-
fect on the performance of the predictor (Fig. 8a) 8. We then created
predictors by using only (i) mean depth, (ii) breadth and (iii) mean
depth and breadth as the features. However, these predictors per-
formed worse than the original model (Fig. 8a). These results show
that although breadth is the highest contributing feature, all of our
features contributed to the final model; indeed, the RMSE is the
lowest when we use all of the features (Fig. 8a, see Supplementary
Table S6 for the statistics). We further changed the depth cut-off
used for defining the breadth of the coverage from 1 to 2, 4 and 8
and re-trained a model using the 9456 data points from RNA-Seq
data. We found that although overall performance of the regression
slightly improved, the best performance was still obtained when we
used all of the features (Supplementary Fig. S1). This is likely be-
cause the correlation between the breadth (feature) and the number
of SNPs (outcome) is only slightly improved when we use different

Table 2. Comparison of different regression model performances

when the training data are sub-sampled

Model RMSE R2

Linear regression 6714.5621.74 0.95

Decision tree 7133.86121.86 0.94

Boosted tree 6708.1653.98 0.95

Bagged tree 6923.66135.39 0.95

SVM 7903.86197.08 0.93

NeuralNet 8376.16973.26 0.92

GPR 5474.1665.74 0.97
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thresholds (Supplementary Fig. S2). In addition to estimating priv-
acy risk, FANCY can also be used to plan functional genomics
experiments (i.e. for a target number of callable SNVs, one can
back-calculate the required sequencing statistics). This can be done
by using the empirical depth distribution of available data from dif-
ferent assays and calculating the required number of reads to reach
the desired statistical properties, such as mean depth, skewness and
kurtosis. Moreover, we also developed a Random Forest classifier as
a plug-in that predicts the type of the assay (RNA-Seq versus ATAC-
Seq versus ChIP-Seq) by using the sequencing statistics as features,
which can be broadly useful to the community for characterizing
samples with missing metadata. This classifier has an average accur-
acy of 96.8%, precision of 94.9%, recall of 90.2% and F1 score of
93.3% (Fig. 8b).

4 Discussion

How can we quantify the privacy risk that accompanies collection
and sharing of functional genomics data? In this study, we addressed
this question with FANCY, a model using GPR followed by rare

versus common variant estimation to predict the number of total
leaking variants in a functional genomics dataset. We showed that
this prediction can be generated with high accuracy without relying
on genotyping or a gold-standard genotype list, which requires sig-
nificant resources to obtain and may not always be obtainable for
every individual. We determined that the depth and breadth of
sequencing coverage had the greatest influence on the predictor, and
that using all of the features yielded the most accurate prediction.
Not only does FANCY quantify the risk of privacy leaks from an
existing dataset, but it also allows experimentalists to design func-
tional genomics sequencing experiments, before collecting data,
with the goal of obtaining a desired number of variants.

In this study, we used available data types from different proj-
ects, including RNA-Seq, ATAC-Seq and ChIP-Seq H3K27ac.
However, as sequencing costs decrease, we will soon have access to

Table 3. The maximum and minimum number of variants leaked in each experiment and the RMSE of our predictions in these test datasets

Assay Number of test Max. number Min. number Total number RMSE

data points of variants of variants of variants

RNA-Seq 4740 12 928 379 12 062 696 422.76

ATAC-Seq 6753 238 481 65 339 606 218 4503.10

ChIP-Seq 1082 210 567 2665 57 921 174 5381.22
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a surge of datasets from a wider range of experimental protocols
using large cohorts of individuals (e.g. 10x single-cell RNA-Seq, dif-
ferent ChIP-Seq targets, etc.). Therefore, we also provide users our
workflow and source code, which can be used as a base framework
to adapt prediction methods according to the ever evolving privacy
landscape.

FANCY can also be used to accelerate sharing of functional gen-
omics datasets. Functional genomics researchers may want to share
their data alongside their published results. However, funding agen-
cies’ data-sharing policies typically require extensive privacy risk
assessments before the data are released. These assessments can be
lengthy and costly, and can significantly delay data release (some-
times until after the relevant article has been published) (Mailman
et al., 2007). Our tool will allow for fast assessments of privacy risk
in functional genomics datasets, which will permit faster release of
data. After FANCY, further assessments may be done of the data
with significant risk.

If a functional genomics dataset leaks more than 1000 variants,
the risk of re-identifying an individual from that dataset is maxi-
mized. However, when the number of leaking variants is low, the
qualitative measurements of sharing risk commonly given in consent
documents may not be accurate and will not give the individual a
sense of the true risk of privacy loss. Therefore, we designed
FANCYlow, a specially modified version of FANCY with improved
precision just for a low number of leaking variants. Given that an
individual’s privacy is at stake, it was important to minimize under-
predictions of leaking variants as this could lead to a dataset being
labeled safe to share when it actually permits re-identification.

Privacy protection is the core goal of developing FANCY and
related tools, but they have other uses in genomics research. In cases
where whole-genome sequence data are missing, e.g. FANCY can
also be used to determine whether SNP calling is possible using a
particular dataset. Additionally, our Random Forest Classifier,
which we developed alongside FANCY, can be used to identify the
kind of experiment a dataset came from in the case of missing meta-
data. This latter tool does not protect privacy, but helps to maximize
data utility.

One limitation of the current version of FANCY is the lack of
joint predictions of the same sample from different assays. We envi-
sion that in the future multiple assays will be performed on samples
from the same individuals. In other words, a single data type may
not leak enough variants for privacy to be a concern, but a combin-
ation of different functional genomics data can pose significant priv-
acy risk. Some of these assays likely contain overlapping SNPs, but
such overlap can easily be estimated by using the overlapping signal
coverage and incorporated into the FANCY framework.

We understand that genome privacy is a complex issue and can
be discussed beyond the number of leaking SNVs. For example, data
from an experiment may leak a small number of SNVs, but when
overlapped with GWAS results can reveal sensitive information
about the individual, such as risk for a particular stigmatizing dis-
ease. Because the SNVs obtained from functional genomics experi-
ments are likely present in the functional regions of the genome, we
believe that quantifying the number of leaked SNVs will be a useful
initial assessment of the risk of privacy loss.

We also think that our training data will be useful to the commu-
nity. For example, even before mapping the reads to the genome,
one can look at the training data to see roughly how many reads in
an assay type lead to how much leakage in order to have a rough es-
timate and then perform the mapping and FANCY calculations if
more precision is needed.

The privacy risk associated with human DNA sequencing has
been acknowledged for years. Yet, as scientists have become increas-
ingly interested in a more diverse set of experimental human omics
data, it is critical to develop companion tools to assess the privacy
risk of those data. In this study, we contribute FANCY to the

toolbox. Importantly, these tools must be convenient for scientists
to use and easy for patients/individuals to understand. FANCY

requires only a few files and can be run easily from the command
line. Furthermore, we set up a simple web page, which allows users
to input statistics about their dataset and runs FANCY to output a

leakage prediction and qualitative privacy risk assessment. These
user-friendly components are a key benefit of FANCY, and require

no private information to be input to our servers, making it conveni-
ent for experimentalists to rapidly assess the risk of privacy before
they release the data.
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