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Abstract. We classify Fano fivefolds of index two which are blow-ups of smooth man-
ifolds along a smooth center.

1. Introduction. A smooth complex projective variety X is called Fano if its anti-
canonical bundle −KX is ample; the index rX of X is the largest natural number m such that
−KX = mH for some (ample) divisor H on X, while the pseudoindex iX is the minimum
anticanonical degree of rational curves on X.

By a theorem of Kobayashi and Ochiai [15], rX = dimX + 1 if and only if (X,L) �
(P dimX,OP (1)), and rX = dimX if and only if (X,L) � (Q dimX,OQ(1)), where Q dimX

is a quadric hypersurface in P dimX+1. Fano manifolds of index equal to dimX − 1 and to
dimX−2, which are called del Pezzo and Mukai manifolds respectively, have been classified,
mainly by Fujita, Mukai and Mella (see [11, 18, 17]). In case of index equal to dimX− 3, the
classification has been completed for Fano manifolds of Picard number ρX greater than one
and dimension greater or equal than six (see [29]).

For Fano manifolds of dimension five and index two it was proved in [1] that the Picard
number is less than or equal to five, equality holding only for a product of five copies of P 1.
Then, in [9], the structure of the possible Mori cones of curves of those manifolds, i.e., the
number and type of their extremal contractions, was described. A first step in going from the
table of the cones given in [9] to the actual classification of Fano fivefolds of index two has
been done in [19], where ruled Fano fivefolds of index two, i.e., fivefolds of index two with a
P 1-bundle structure over a smooth fourfold, were classified.

In this paper we classify Fano fivefolds of index two which are blow-ups of smooth
manifolds along smooth centers. In Section 3 we recall the structure of the cones of curves
of these manifolds, as described in [9], and we summarize the known results. Using previous
results we are reduced to the following cases:

ρX = 2 and the two extremal rays of NE(X) correspond respectively to the blow-up of a
smooth variety X′ along a smooth surface S and to a fiber type contraction ϑ : X → Y .

ρX = 3. In this case NE(X) has three extremal rays: one of them is associated to
the blow-up of a smooth variety along a smooth surface, one corresponds to a fiber type
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contraction, and the last one is associated either to another blow-up contraction or to another
fiber type contraction.

The hardest case, which is the heart of the paper and is dealt with in Section 4, is when
ρX = 2. In this case it is easy to show that the pseudoindex of X′ is equal either to six or to
four: if iX′ = 6 then X′ � P 5 by results in [14], and the classification of S follows observing
that S cannot have proper trisecants. In case iX′ = 4 we prove that also rX′ = 4, i.e., that X′
is a del Pezzo manifold and that S is a del Pezzo surface. The classification of (X′, S) then
follows studying the possible conormal bundles N∗

S/X′ .
In Section 5 we study the case ρX = 3; apart from one case, the target of the birational

contraction is a Fano manifold, which is either a product with P 1 as a factor or a P 3-bundle
over a surface; the classification of the center follows.

Our results are summarized in the following

THEOREM 1.1. LetX be a Fano fivefold of index two which is the blow-up of a smooth
variety X′ along a smooth subvariety S. Then (X′, S) is as in Table 1, where, in the last
column, F denotes a fiber type extremal ray, Di denotes a birational extremal ray whose
associated contraction contracts a divisor to an i-dimensional variety and S denotes a ray
whose associated contraction is small.

In [4], Fano manifolds X obtained by blowing up a smooth variety Y along a center T
of dimension dimT ≤ iX − 1 were classified; the results in this paper show that the case
dimT = iX will be far more complicated.

2. Preliminaries.
2.1. Fano-Mori contractions and rational curves. Let X be a smooth Fano variety

of dimension n and KX its canonical divisor. By Mori’s Cone Theorem the cone NE(X)
of effective 1-cycles, which is contained in the R-vector space N1(X) of 1-cyles modulo
numerical equivalence, is polyhedral; a face τ of NE(X) is called an extremal face and an
extremal face of dimension one is called an extremal ray. To every extremal face τ one can
associate a morphism ϕ : X → Z with connected fibers onto a normal variety; the morphism
ϕ contracts those curves whose numerical class lies in τ , and is usually called the Fano-
Mori contraction (or the extremal contraction) associated to the face τ . A Cartier divisor D
such that D = ϕ∗A for an ample divisor A on Z is called a supporting divisor of the map
ϕ (or of the face τ ). An extremal ray R is called numerically effective, or of fiber type, if
dimZ < dimX, otherwise the ray is non nef or birational. We usually denote with E =
E(ϕ) := {x ∈ X | dimϕ−1(ϕ(x)) > 0} the exceptional locus of ϕ; if ϕ is of fiber type then
of course E = X. If the exceptional locus of a birational ray R has codimension one, the ray
and the associated contraction are called divisorial, otherwise they are called small.

DEFINITION 2.1. An elementary fiber type extremal contraction ϕ : X → Z is called
a scroll (resp. a quadric fibration) if there exists a ϕ-ample line bundle L ∈ Pic(X) such
that KX + (dimX − dimZ + 1)L (resp. KX + (dimX − dimZ)L) is a supporting divisor
of ϕ. An elementary fiber type extremal contraction ϕ : X → Z onto a smooth variety Y is
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TABLE 1.

ρX No. X′ S NE(X)

2 (a1) P 5 a point 〈F,D0〉

(b1) P 5 a linear P 2 〈F,D2〉
(b2) P 5 the complete intersection of three quadrics 〈F,D2〉
(b3) P 5 P 1 × P 1 embedded by O(1,2) 〈F,D2〉
(b4) P 5 F 2 embedded by C0 + 3f 〈F,D2〉

(b5) P 5 the blow-up of P 2 in four points x1, . . . , x4 such that
the line bundle O

P2 (3)− ∑
Ei is very ample

〈F,D2〉

(b6) P 5 the blow-up of P 2 in seven points x0, . . . , x6 such that
the line bundle O

P2 (4)− 2E0 − ∑6
i=1 Ei is very ample

〈F,D2〉

(b7) Vd (*) the complete intersection of three general members of |OVd
(1)| 〈F,D2〉

(b8) V3 P 2 with (OV3
(1))|P 2 � O

P2 (1) 〈F,D2〉
(b9) V4 P 2 with (OV4

(1))|P 2 � O
P2 (1) 〈F,D2〉

(b10) V4 Q2 with (OV4
(1))|Q � OQ(1) 〈F,D2〉

(b11) V5 a plane of bidegree (1, 0) (**) 〈F,D2〉
(b12) V5 a quadric of bidegree (1, 1) 〈F,D2〉
(b13) V5 a surface F 1 of bidegree (2, 1) not contained in a G(1, 3) 〈F,D2〉

(c1) P 5 a Veronese surface 〈D2,D2〉
(c2) P 5 F 1 embedded by C0 + 2f 〈D2,D2〉
(c3) V5 a plane of bidegree (0, 1) 〈D2,D2〉

(d1) P 5 Q2 with (OP (1))|Q � OQ(1) 〈D2, S〉

3 (e1) P 1 × Q4 P 1 × l with l a line in Q4 〈F,F,D2〉
(e2) P 1 × Q4 P 1 × Γ with Γ ⊂ Q4 a conic not contained in a plane Π ⊂ Q4 〈F,F,D2〉
(e3) X′ ∈ |O

P 2×P4 (1, 1)| P 2, a fiber of the projection X′ → P 4 〈F,F,D2〉

(e4) X′ ∈ |O
P 2×P4 (1, 1)| F 1, the complete intersection of X′ and three general

members of the linear system |O
P2×P 4 (0, 1)| 〈F,F,D2〉

(f1) P
P 2 (O ⊕ O(1)⊕3) P 2, a section corresponding to the surjection O ⊕ O(1)⊕3 → O 〈F,D2,D2〉

(f2) Blπ (P 5) (***) P 2, a non trivial fiber of Blπ (P 5) → P 5 〈F,D2,D2〉
(f3) Blp(P 5) F 1, the strict transform of a plane in P 5 through p 〈F,D2,D2〉
(f4) Blπ (P 5) P 2, the strict transform of a plane in P 5 not meeting π 〈F,D2,D2〉

4 (g1) P 1 × P 1 × P 3 P 1 × P 1 × {p} 〈F,F,F,D2〉

(*) Vd denotes a del Pezzo fivefold of degree d.
(**) V5 is a hyperplane section of G(1, 4). The bidegree of S is the bidegree of S in G(1, 4).
(***) Blπ (P 5) (resp. Blp(P 5)) denotes the blow-up of P 5 along a 2-plane π (resp. along a point p).
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called a P -bundle if there exists a vector bundle E of rank dimX− dimZ+ 1 on Z such that
X � PZ(E); every equidimensional scroll is a P -bundle by [10, Lemma 2.12].

DEFINITION 2.2. Let Ratcurvesn(X) be the normalized space of rational curves in
X in the sense of [16]; a family of rational curves will be an irreducible component V ⊂
Ratcurvesn(X). Given a rational curve f : P 1 → X we call a family of deformations of
f any irreducible component V ⊂ Ratcurvesn(X) containing the equivalence class of f .

We define Locus(V ) to be the subset of points inX which belong to a curve parametrized
by V ; we say that V is a dominating family if Locus(V ) = X. Moreover, for every point
x ∈ Locus(V ), we will denote by Vx the subscheme of V parametrizing rational curves
passing through x.

DEFINITION 2.3. Let V be a family of rational curves on X. We say that V is unsplit
if it is proper and that V is locally unsplit if every component of Vx is proper for the general
x ∈ Locus(V ).

PROPOSITION 2.4 ([16, IV. 2.6]). Let X be a smooth projective variety, V a family of
rational curves and x ∈ Locus(V ) such that every component of Vx is proper. Then

(a) dimX −KX · V ≤ dim Locus(V )+ dim Locus(Vx)+ 1;
(b) −KX · V ≤ dim Locus(Vx)+ 1.

In case V is the unsplit family of deformations of a minimal extremal rational curve,
Proposition 2.4. gives the fiber locus inequality:

PROPOSITION 2.5 ([13, 30]). Let ϕ be a Fano-Mori contraction ofX andE its excep-
tional locus. Let F be an irreducible component of a (non trivial) fiber of ϕ. Then

dimE + dimF ≥ dimX + l − 1

where l = min{−KX ·C | C is a rational curve in F }. If ϕ is the contraction of a ray R, then
l is called the length of the ray.

DEFINITION 2.6. We define a Chow family of rational curves V to be an irreducible
component of Chow(X) parametrizing rational and connected 1-cycles. If V is a family of ra-
tional curves, the closure of the image of V in Chow(X) is called the Chow family associated
to V .

DEFINITION 2.7. Let X be a smooth variety, V1, . . . ,Vk Chow families of rational
curves on X and Y a subset of X. We denote by Locus(V1, . . . ,Vk)Y the set of points x ∈ X
that can be joined to Y by a connected chain of k cycles belonging respectively to the families
V1, . . . ,Vk.We denote by ChLocusm(V1, . . . ,Vk)Y the set of points x ∈ X that can be joined
to Y by a connected chain of at most m cycles belonging to the families V1, . . . ,Vk .

DEFINITION 2.8. Let V 1, . . . , V k be unsplit families on X. We will say that
V 1, . . . , V k are numerically independent if their numerical classes [V 1], . . . , [V k] are linearly
independent in the vector space N1(X). When moreover C ⊂ X is a curve, we will say that
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V 1, . . . , V k are numerically independent from C if the class of C in N1(X) is not contained
in the vector subspace generated by [V 1], . . . , [V k].

LEMMA 2.9 ([1, Lemma 5.4]). Let Y ⊂ X be a closed subset and V an unsplit family.
Assume that curves contained in Y are numerically independent from curves in V, and that
Y ∩ Locus(V ) = ∅. Then for a general y ∈ Y ∩ Locus(V )

(a) dim Locus(V )Y ≥ dim(Y ∩ Locus(V ))+ dim Locus(Vy);
(b) dim Locus(V )Y ≥ dimY −KX · V − 1.

Moreover, if V 1, . . . , V k are numerically independent unsplit families such that curves con-
tained in Y are numerically independent from curves in V 1, . . . , V k , then either
Locus(V 1, . . . , V k)Y = ∅ or

(c) dim Locus(V 1, . . . , V k)Y ≥ dimY + ∑
(−KX · V i)− k.

DEFINITION 2.10. We define onX a relation of rational connectedness with respect to
V1, . . . ,Vk in the following way: x and y are in rc(V1, . . . ,Vk)-relation if there exists a chain
of rational curves in V1, . . . ,Vk which joins x and y, i.e., if y ∈ ChLocusm(V1, . . . ,Vk)x for
somem. If all the points ofX are in rc(V1, . . . ,Vk)-relation we say thatX is rc(V1, . . . ,Vk)-
connected.

To the rc(V1, . . . ,Vk)-relation we can associate a fibration, at least on an open subset of
X (see [16, IV.4.16]); we will call it rc(V1, . . . ,Vk)-fibration.

DEFINITION 2.11. Let V be the Chow family associated to a family of rational curves
V . We say that V is quasi-unsplit if every component of any reducible cycle in V is numeri-
cally proportional to V .

NOTATION. Let T be a subset ofX. We writeNX
1 (T ) = 〈V 1, . . . , V k〉 if the numerical

class in X of every curve C ⊂ T can be written as [C] = ∑
i ai[Ci], with ai ∈ Q and

Ci ∈ V i . We write NEX(T ) = 〈V 1, . . . , V k〉 (or NEX(T ) = 〈R1, . . . , Rk〉) if the numerical
class in X of every curve C ⊂ T can be written as [C] = ∑

i ai[Ci ], with ai ∈ Q≥0 and
Ci ∈ V i (or [Ci] in Ri ).

PROPOSITION 2.12 ([1, Corollary 4.2], [9, Corollary 2.23]). Let V be a family of ra-
tional curves and x a point in Locus(V ).

(a) If V is quasi-unsplit, then NEX(ChLocusm(V )x) = 〈V 〉 for every m ≥ 1;
(b) if Vx is unsplit, then NEX(Locus(Vx)) = 〈V 〉.

Moreover, if τ is an extremal face of NE(X), F is a fiber of the associated contraction and V
is unsplit and independent from τ, then

(c) NEX(ChLocusm(V )F ) = 〈τ, [V ]〉 for every m ≥ 1.

2.2. Fano bundles.

DEFINITION 2.13. Let E be a vector bundle on a smooth complex projective variety
Z. We say that E is a Fano bundle if X = PZ(E) is a Fano manifold. By [27, Theorem 1.6]
if E is a Fano bundle over Z then Z is a Fano manifold.
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M. Szurek and J. Wiśniewski have classified Fano bundles over P 2 ([26, 28]) and Fano
bundles of rank two on surfaces [28]. What follows is a characterization of Fano bundles of
rank r ≥ 2 over del Pezzo surfaces, which generalizes some results in [28].

PROPOSITION 2.14. Let Sk be a del Pezzo surface obtained by blowing up k > 0
points in P 2, and let E be a Fano bundle of rank r ≥ 2 over Sk; then, up to twist E with a
suitable line bundle, the pair (Sk, E) is one of the following:

(i) (Sk,⊕O⊕r );
(ii) (S1, θ

∗(OP 2(1)⊕ O⊕(r−1)
P 2 ));

(iii) (S1, θ
∗(TP 2(−1)⊕ O⊕(r−2)

P 2 )),

where θ : S1 → P 2 is the blow-up of P 2 at one point.

PROOF. Let E be a Fano bundle of rank r ≥ 2 over Sk and let X = P Sk (E); by [19,
Proposition 3.4] there is a one-to-one correspondence between the extremal rays of NE(Sk)
and the extremal rays of NE(X) spanning a two-dimensional face with the rayRE correspond-
ing to the projection p : X → Sk . Let Rθ1 ⊂ NE(Sk) be an extremal ray of Sk associated
to a blow-up θ1 : Sk → Sk−1, and call Eθ1 the exceptional divisor of θ1; let Rϑ1 be the
corresponding ray in NE(X), with associated extremal contraction ϑ1 : X → X1. By [19,
Lemma 3.5] ϑ1 is birational and has one-dimensional fibers, hence by [3, Theorem 5.2] we
have that X1 is smooth and ϑ1 is the blow-up of a smooth subvariety of codimension two in
X1; moreover, by [19, Lemma 3.5] and dimensional computations, Exc(Rϑ1) = p−1(Eθ1).
The divisor Eϑ1 := Exc(Rϑ1) has two projective bundle structures: a P 1-bundle structure
over the center of the blow-up and a P r−1-bundle structure over Eθ1 ; by [24, Main theorem]
we have that Eϑ1 � P 1 × P r−1. It follows that E |Eθ1 � O⊕r , hence by [2, Lemma 2.9] there
exists a vector bundle of rank r on Sk−1 such that E = θ∗

1 E1. It is now easy to prove that
the induced map P Sk (θ

∗
1 E1) = X → P Sk−1(E1) is nothing but ϑ1, hence X1 = P Sk−1(E1).

Since NE(Eϑ1) = 〈RE , Rϑ1〉, the divisor Eϑ1 cannot contain the exceptional locus of another
extremal ray of X; it follows that X1 is a Fano manifold by [30, Proposition 3.4].

We iterate the argument k times, until we find a Fano bundle Ek over P 2 such that,
denoted by θ and ϑ the composition of the contractions θi and ϑi respectively, E = θ∗Ek . We
have a commutative diagram

P Sk (E) = X
ϑ ��

p

��

Xk = PP 2(Ek)

pk

��
Sk

θ
�� P 2

Up to considering the tensor product of Ek with a suitable line bundle, we can assume
that 0 ≤ c1(Ek) ≤ r − 1; by [26, Proposition 2.2] we have that Ek is nef.

Let l be a line in P 2; the restriction of Ek to l decomposes as a sum of nonnegative line
bundles, hence we can write (Ek)|l � ⊕r−1

i=0 O(ai), with a0 = 0 and ai ≥ 0. Let l̃ be the strict
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transform of l in Sk ; since θ |l̃ : l̃ → l is an isomorphism we have E |l̃ � (Ek)|l ; let C0 ⊂ X be
a section of p over l̃ corresponding to a surjection E |l̃ → O → 0; we have

(1) 0 < −KX · C0 = ra0 −KSk · l̃ −
r−1∑
i=0

ai = −KSk · l̃ − c1(Ek) .

Now if l passes through a point blown up by θ , by equation (1) we have c1(Ek) ≤ 1. In
this case, by the classification in [26], either Ek is trivial, or Ek � O(1) ⊕ O⊕(r−1), or Ek �
TP 2(−1)⊕ O⊕(r−2).

Assume that k ≥ 2 and let l be a line in P 2 joining two of the blown-up points; again by
equation (1) we have c1(Ek) = 0, so only the first case occurs. �

PROPOSITION 2.15. Let E be a Fano bundle of rank r ≥ 2 over P 1 × P 1; then, up to
twist E with a suitable line bundle, E is one of the following:

(i) O⊕r ;
(ii) O(1, 0)⊕ O⊕(r−1);
(iii) O(1, 1)⊕ O⊕(r−1);
(iv) O⊕(r−2) ⊕ O(1, 0)⊕ O(0, 1);
(v) a vector bundle fitting in the exact sequence

0 → O(−1,−1) → O⊕(r+1) → E → 0.
In all cases the cone of curves of X = P (E) is generated by the ray corresponding to the
bundle projection and by two other extremal rays; in case (i) the other rays are of fiber type,
in case (ii) one of them is of fiber type and the other corresponds to a smooth blow-up, while
in cases (iii)–(v) both the other rays correspond to smooth blow-ups.

PROOF. We will show the result by induction on r , the case r = 2 having been estab-
lished in [28, Main Theorem]. Let X = P (E); first of all we prove that NE(X) is generated
by three extremal rays. Let RE ⊂ NE(X) be the extremal ray corresponding to the projection
p : X → P 1 × P 1; since ρX = 3 it is enough to prove that any other extremal ray of NE(X)
lies in a two-dimensional face with RE .

Let Rϑ be another extremal ray of X with associated contraction ϑ and let F be a non-
trivial fiber of ϑ . We claim that dimF = 1: in fact, since curves contained in F are not
contracted by p, we have dimF ≤ 2, and, if dimF = 2, we would have X = p−1(p(F ))

and NE(X) = 〈R,RE 〉 by Proposition 2.12 (c), against the fact that ρX = 3. In particular, by
Proposition 2.5., ϑ cannot be a small contraction.

Let Vϑ be a family of rational curves of minimal degree (with respect to some fixed ample
line bundle) among the families which dominate the exceptional locus of Rϑ and whose class
is in Rϑ . Such a family is quasi-unsplit by the extremality of Rϑ and locally unsplit by the
assumptions on its degree. We claim that Vϑ is horizontal and dominating with respect to p.
This is clear if the contraction ϑ associated to Rϑ is of fiber type. Assume that ϑ is divisorial,
with exceptional locusE: we cannot haveE ·RE = 0, otherwiseE = p∗D for some effective
divisor D in P 1 × P 1; but every effective divisor on P 1 × P 1 is nef and so E would be nef,
against the fact that E · Rϑ < 0. It follows that E · RE > 0, so E dominates P 1 × P 1 and
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thus Vϑ is horizontal and dominating with respect to p, and the claim is proved. We can now
apply [9, Lemma 2.4] and conclude that [Vϑ ] and RE lie in a two-dimensional extremal face
of NE(X).

We have thus proved that every extremal ray different fromRE lies in a two-dimensional
face with RE ; therefore NE(X) is generated by three extremal rays. We will call Rϑ1 and Rϑ2

the two rays different from RE , i.e., NE(X) = 〈RE , Rϑ1 , Rϑ2〉.
By [19, Proposition 3.4], for every i = 1, 2 we have a commutative diagram

X
ϑi ��

ψi

���
��

��
���

��
��

�

p

��

Zi

��
P 1 × P 1

θi

�� P 1

where ψi is the contraction of the face of NE(X) spanned by RE and Rϑi .
Let x ∈ P 1 and let f ix be the fiber of θi over x; since we can factor ψi as ψi = θi ◦ p,

the fiber of ψi over x is P (E |f ix ). By the smoothness of ψi and adjunction, P (E |f ix ) is a Fano

manifold, hence either E |f ix � O(a)⊕r or E |f ix � O(a + 1) ⊕ O(a)⊕(r−1). Since the degree

of E does not change as x varies in P 1 we have that, for a fixed i = 1, 2, the splitting type of
E along the fibers of θi is constantly (a, . . . , a) or (a + 1, a, . . . , a). Up to twist E with a line
bundle we can assume that its splitting type along the fibers of θi is constantly (0, . . . , 0) or
(1, 0, . . . , 0)

If for some i = 1, 2 the splitting type of E on the fibers of θi is (0, . . . , 0) then E � θ∗
i E ′,

with E ′ a vector bundle on P 1; hence E is decomposable and we are in case (i) or (ii).
Assume now that the splitting type of E on the fibers of θi is (1, 0, . . . , 0) for i = 1 and

i = 2, and thus c1(E) = (1, 1). We claim that in this case the contractions ϑi : X → Zi are
birational. Assume by contradiction that for some i, say i = 1, the contraction ϑ1 is of fiber
type. Let x ∈ P 1 be a general point; the fiber of Z1 → P 1 has dimension strictly smaller
than the dimension of ψ−1

1 (x). It follows that both the restrictions of ϑ1 and p to ψ−1
1 (x) are

of fiber type, yet ψ−1
1 (x) � BlP r−2(P r ), so it has only one fiber type contraction.

We have already proved that the nontrivial fibers of the contractions ϑi are one dimen-
sional, hence for every i = 1, 2 the variety Zi is smooth and ϑi is the blow-up of a smooth
subvariety of codimension two in Zi by [3, Theorem 5.2]. Consider one of the birational con-
tractions of X, say ϑ1 : X → Z1, and let E1 be its exceptional locus. For every fiber fx of
θ1 the restriction of E1 to P fx (E |fx ) is a non nef divisor, hence it is the exceptional divisor of
the contraction P fx (E |fx ) → P r . In particularE1 ·RE = 1 and E1 does not contain any fiber
of p. By [10, Lemma 2.12] the restriction of p makes E1 a projective bundle over P 1 × P 1,
that is E1 = PP 1×P 1(E ′) with E ′ a rank r − 1 vector bundle over P 1 ×P 1. We will now split
the proof in two cases, depending on the sign of the intersection number of E1 with Rϑ2 .

Case 1. E1 · Rϑ2 ≤ 0.
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In this case the line bundle −KX − E1 is ample on X; therefore its restriction to E1 is
ample,E1 is a Fano manifold and E ′ is a Fano bundle of rank r−1 over P 1×P 1. Note also that
E1 has a fiber type contraction different from the bundle projection onto P 1 × P 1, coming
from the blow-up contraction ϑ1, so, by induction, either E ′ is trivial or E ′ � O(1, 0) ⊕
O⊕(r−2). The injection P P 1×P 1(E ′) ↪→ PP 1×P 1(E) gives an exact sequence of bundles on
P 1 × P 1

0 → O(a, b) → E → E ′ → 0 ,

with E1 = ξE +p∗O(−a,−b). Computing the intersection numbers of E1 with Rϑ1 and Rϑ2

and recalling the splitting type of E we have the following possibilities:

0 → O(0, 1) → E → O⊕(r−2) ⊕ O(1, 0) → 0 ;

0 → O(1, 1) → E → O⊕(r−1) → 0 .

Both these sequences split, so we are in cases (iii) or (iv).
Case 2. E1 · Rϑ2 > 0.
By [30, Proposition 3.4] Z1 is a Fano manifold. Z1 has a fiber type elementary con-

traction onto P 1. For a general x ∈ P 1 the fiber ψ−1
1 (x) = P (E |f ix ) is isomorphic to

BlP r−2(P r ), hence the fiber of Z1 → P 1 over x is isomorphic to P r . It follows that Z1

has a projective bundle structure over P 1 (cfr. [19, Lemma 2.17]), so either Z1 � P 1 × P r

or Z1 � BlP r−1(P r+1).
The second case cannot happen: in fact, let ψ : X → P r+1 be the contraction of the face

spanned by Rϑ1 and Rϑ2 . Denoting by E the exceptional divisor of the contractionZ1 → P r ,
by Ẽ its strict transform in X, and applying twice the canonical bundle formula for blow-ups
we have

KX = ϑ∗
1KZ1 + E1 = ψ∗KP r+1 + ϑ∗

1E + E1 = ψ∗KP r+1 + Ẽ + kE1 .

SinceKX ·Rϑ2 = −1 andψ∗KP r+1 ·Rϑ2 = 0 we have Ẽ ·Rϑ2 < 0. This implies that Ẽ = E2,
and thus Ẽ · Rϑ2 = −1, yielding E1 · Rϑ2 = 0, a contradiction.

Note that the minimal extremal curves contracted by ϑi are the minimal sections (those
corresponding to the trivial summands) of p : P (E |f ix ) → P 1 along the fibers of θi ; therefore
ξE ·Rϑi = 0 for i = 1, 2. Being trivial on the face spanned byRϑ1 and Rϑ2 and positive onRE
the line bundle ξE is nef. Let ψ be the contraction of the face spanned by Rϑ1 and Rϑ2 ; this
contraction factors throughZ1 � P 1 ×P r and therefore is onto P r , since it does not contract
curves in RE . The line bundle ξE restricts to O(1) on the fibers of p, hence ξE = ψ∗OP r (1).
Therefore ξE (and so E) is spanned and we have an exact sequence on P 1 × P 1:

0 → O(a, b) → O⊕(r+1) → E → 0 ,

Computing the first Chern class we have a = −1, b = −1 and we are in case (v). In this case
X = P (E) is a divisor in the linear system O(1, 1, 1) in PP 1×P 1(O⊕(r+1)) � P 1 ×P 1 ×P r .

�
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2.3. Surfaces in G(1, 4). Let G(r, n) be the Grassmann variety of projective r-spaces
in P n, embedded in PN via the Plücker embedding. We will denote a point in G(r, n) by a
capital letter, and the corresponding linear space in P n by the same small letter.

Consider the Schubert cyclesΩ1 := Ω(0, 1, . . . , r−1, r+2) andΩ2 := Ω(0, 1, . . . , r−
2, r, r + 1); the cohomology class of a surface S ⊂ G(r, n) can be written as αΩ1 + βΩ2.
Recalling that the class of an hyperplane section of G(r, n) is the class of the Schubert cycle
ΩH := Ω(n − r − 1, n − r, . . . , n − 2, n), we obtain that the degree of S as a subvariety of
PN is given by

deg(S) = αΩ1Ω
2
H + βΩ2Ω

2
H = α + β .

The integer α is the number of linear spaces parametrized by S which meet a general (n −
r − 2)-space in P n, as one can see intersecting with the Schubert cycleΩ(n− r − 2, n− r +
1, n − r + 2, . . . , n); it is called the order of S and denoted by ord(S). The integer β is the
number of linear spaces parametrized by S which meet a general n− r space in a line, as one
can see intersecting with the Schubert cycleΩ(n− r− 1, n− r, n− r+ 2, . . . , n); it is called
the class of S and denoted by cl(S).

DEFINITION 2.16. The bidegree of S is the pair (ord(S), cl(S)). By the discussion
above we have that degS = ord(S)+ cl(S).

REMARK 2.17. A 2-planeΛ2
π in G(1, 4)which parametrizes the family of lines which

are contained in a given 2-plane π ⊂ P 4, classically called a ρ-plane, has bidegree (0, 1).
Moreover, given a point L ∈ G(1, 4) there exists a line in G(1, 4) joining Λ2

π and L if and
only if the corresponding line l ⊂ P 4 has nonempty intersection with π .

REMARK 2.18. The family of lines through a given point p in P 4 is parametrized
by a three-dimensional linear space Λ3

p ⊂ G(1, 4), classically called a Σ-solid. A two-
dimensional linear subspace of aΣ-solid, classically called a σ -plane, parametrizes the family
of lines through a given point in P 4 which lie in a given hyperplane H , and has bidegree
(1, 0); we will denote it byΛ2

p,H . Given a σ -planeΛ2
p,H and a point L ∈ G(1, 4) there exists

always a line in G(1, 4) joining Λ2
p,H and L. This is clear if L is contained in the Σ-solid

Λ3
p; otherwise, let π be the plane ⊂ P 4 spanned by l and p and let q be l ∩H if l ∈ H or any

point of l if l ⊂ H : the pencil of lines in π with center q is represented by a line in G(1, 4)
passing through L and meeting Λ2

p,H .

EXAMPLE 2.19. If Λ2
π is a 2-plane of bidegree (0, 1) (a ρ-plane) then the blow-up

of G(1, 4) along Λ2
π is a Fano manifold whose other contraction is the blow-up of P 6 along

a cubic threefold contained in a hyperplane (see [25, Theorem XLI]). If else Λ2
p,H is a 2-

plane of bidegree (1, 0) (a σ -plane) the linear system |OG(1)⊗ IΛ2
p,H

| defines a rational map

G ��� P 6 whose image is a quadric cone in P 6 with zero-dimensional vertex; the blow-up
of G(1, 4) along Λ2

p,H is a Fano manifold whose other contraction is of fiber type onto this
quadric cone. This can be checked by direct computation.
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LEMMA 2.20. Let S be a surface in G(1, 4). If ord(S) = 0, then S is a plane of
bidegree (0, 1), while if cl(S) = 0, then S is contained in a Σ-solid.

PROOF. Let I ⊂ G(1, 4)× P 4 be the incidence variety. Denote by p1 : I → G(1, 4)
and p2 : I → P 4 the projections and let Locus(S) = p2(p

−1
1 (S)). If ord(S) = 0, then the

general line of P 4 does not meet Locus(S); therefore Locus(S) is two-dimensional. Moreover,
since p−1

1 (S) is irreducible, also Locus(S) is irreducible. Therefore Locus(S) is an irreducible
surface in P 4 which contains a two-parameter family of lines. It is easy to prove that Locus(S)
is a plane, hence S is the ρ-plane which parametrizes the lines of Locus(S).

Assume now that cl(S) = 0. Since we can identify G(1, 4) with the Grassmannian
G(2, 4) of planes in the dual space P 4∗

, S can be viewed as a surface which parametrizes a
two-dimensional family of planes in P 4∗

. The duality exchanges order and class, so S, as a
subvariety of G(2, 4), has order zero, i.e., through a general point of P 4∗

there are no planes
parametrized by S. Denote by I∗ ⊂ G(2, 4) × P 4∗

the incidence variety, by p∗
1 : I∗ →

G(2, 4) and p∗
2 : I∗ → P 4∗

the projections and define Locus∗(S) = p∗
2(p

∗
1
−1(S)). Then

dim Locus∗(S) ≤ 3. Therefore Locus∗(S) ⊂ P 4∗
is an irreducible threefold which contains a

two-parameter family of planes. It is easy to prove that in this case Locus∗(S) is a hyperplane
of P 4∗

. It follows that S parametrizes a family of planes in P 4∗
contained in a hyperplane,

and hence, by duality, S parametrizes a two-dimensional family of lines passing through a
point of P 4, and it is therefore contained in a Σ-solid. �

LEMMA 2.21. Let S be a surface in G(1, 3) ⊂ P 5. If ord(S) ≥ 2 or cl(S) ≥ 2, then
there exist proper secant lines of S which are contained in G(1, 3).

PROOF. Let p ∈ P 3 be a general point. The order of S is the number of lines
parametrized by S which pass through p. Hence, if ord(S) ≥ 2, there exist at least two
lines l1, l2 parametrized by S containing p. The pencil of lines generated by l1 and l2 cor-
responds to a line in G(1, 3) joining the points L1, L2 ∈ S. Since p is general, the general
member of the pencil is not a line parametrized by S, and hence the corresponding secant is
not contained in S.

Let π ⊂ P 3 be a general plane; the class of S is the number of lines parametrized by S
contained in π . So if cl(S) ≥ 2 there exist l1, l2 ⊂ π , and the pencil of lines generated by l1
and l2 corresponds to a line in G(1, 3) joining the points L1 and L2. Since π is general, the
general member of the pencil is not a line parametrized by S, and hence the corresponding
secant is not contained in S. �

COROLLARY 2.22. If S ⊂ G(1, 3) and deg S ≥ 3 then there exist proper secant lines
of S which are contained in G(1, 3).

PROPOSITION 2.23. Let Q ⊂ G(1, 4) ⊂ P 9 be a two-dimensional smooth quadric
such that no proper secant of Q is contained in G(1, 4); then Q is contained in a G(1, 3) and
has bidegree (1, 1). In particular, Q parametrizes the family of lines which lie in a hyperplane
H ⊂ P 4 and meet two skew lines r , s ⊂ H .
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PROOF. We have 2 = deg(Q) = ord(Q) + cl(Q); by Lemma 2.20 we cannot have
ord(S) = 0. If ord(S) = 2 then cl(S) = 0 and the same Lemma yields that Q is contained in
a Σ-solid, and in this case all the lines in the Σ-solid meet Q and are contained in G(1, 4).
Therefore ord(Q) = 1 and the statement follows by [22, Main Theorem]. �

PROPOSITION 2.24. Let S ⊂ G(1, 4) be a surface of degree three such that no proper
secant of S is contained in G(1, 4); then the bidegree of S is (2, 1) and S is not contained in
any G(1, 3).

PROOF. We have 3 = deg(S) = ord(S)+ cl(S); we cannot have ord(S) = 0 by Lemma
2.20. By the same lemma, if ord(S) = 3 then S is contained in a Σ-solid, and in this case all
the lines in the Σ-solid are secant to S and lie in G(1, 4). If S ⊂ G(1, 3) then S has proper
secants contained in G(1, 3) by Lemma 2.21. Moreover if ord(S) = 1 then S ⊂ G(1, 3) by
[22, Main Theorem]. �

PROPOSITION 2.25. Let S ⊂ G(1, 4) be a surface of bidegree (2, 1) not contained in
a subgrassmannian G(1, 3). Then S parametrizes lines which are contained in a family F1 of
planes of a quadric cone C ⊂ P 4 with zero-dimensional vertex and meet a given linem which
lies in a plane πm ∈ F2, where F2 is the other family of planes of C.

PROOF. Identifying G(1, 4) with the Grassmannian G(2, 4) of planes in the dual space
P 4∗

, S can be viewed as a surface which parametrizes a two-dimensional family of planes in
P 4∗

. The duality exchanges order and class, so S, as a subvariety of G(2, 4), has bidegree
(1, 2). We apply [22, Main Theorem] and we have the following description of S:

Let β : BlM∗(P 4∗
) → P 4∗

be the blow-up of P 4∗
along a plane M∗ ⊂ P 4∗

. We
can write BlM∗(P 4∗

) = P P 1(E), where E := O3
P 1 ⊕ OP 1(1); denote by p the projection

BlM∗(P 4∗
) → P 1. Let F be a quotient of E with rk(F) = degF = 2 and denote by

p0 := p|P (F).
BlM∗(P 4∗

)

p

���
��

��
��

��
β

����
��

��
��

�

P 4∗
P 1

Then

S = S(M∗,F) := {π ∈ G(2, 4) | β(p−1
0 (x)) ⊂ π ⊂ β(p−1(x)) for some x ∈ P 1} .

Since E is nef also F is, so F = OP 1(a) ⊕ OP 1(b) with a, b ≥ 0 and a + b = 2.
Therefore two cases can occur:

(i) a = 1, b = 1, i.e., P (F) � P 1 × P 1. In this case the tautological bundle ξE
restricts to F as O(1, 1), so the image β(P (F)) ⊂ P 4∗

is a smooth quadric Q. The planeM∗
contains a line in one ruling of the quadric, and S(M∗,F) parametrizes planes in P 4∗

which
intersect M∗ along this line and contain a line belonging to the other ruling of Q. Passing to
the dual we have the claimed description of S, where m is the dual line to the planeM∗.



FANO FIVEFOLDS OF INDEX TWO WITH BLOW-UP STRUCTURE 483

(ii) a = 0, b = 2, i.e., P (F) � F 2. In this case the tautological bundle ξE restricts
to F as C0 + 2f , so the image β(P (F)) ⊂ P 4∗

is a quadric cone whose vertex is a point
h∗ ∈ M∗, therefore all the planes parametrized by S pass through h∗. It follows that all
the lines parametrized by S ⊂ G(1, 4) are contained in the hyperplane H , dual to h∗; in
particular, S is contained in GH(1, 3). This contradicts our hypothesis and thus exclude this
case. �

3. Getting started.

REMARK 3.1. LetX be a Fano fivefold with Picard number ρX ≥ 2 and index rX = 2;
then X has pseudoindex two. In fact, by [1], the generalized Mukai conjecture

ρX(iX − 1) ≤ dimX

holds for a Fano fivefold, hence we have that iX cannot be a multiple of rX = 2.

LEMMA 3.2. Let X be a Fano fivefold of index two and σ : X → X′ a birational
extremal contraction of X which contracts a divisor to a surface. Then σ is a smooth blow-
up.

PROOF. Let Rσ be the extremal ray in NE(X) corresponding to σ . From the fiber locus
inequality we have l(Rσ ) = 2, since the general fiber of σ is two-dimensional. Let A′ be
a very ample line bundle on X′; the line bundle A = H ⊗ σ ∗A′ is relatively ample and
KX + 2A = 2σ ∗A′ is a supporting divisor for σ . We can thus apply [5, Corollary 5.8.1] to
get that σ is equidimensional and the statement then follows from [3, Theorem 5.2]. �

PROPOSITION 3.3. Let X be a Fano fivefold of index two which is the blow-up of a
smooth variety X′ along a smooth center T ; then the cone of curves of X is one among
those listed in the following table, where F denotes a fiber type extremal ray, Di denotes a
birational extremal ray whose associated contraction contracts a divisor to an i-dimensional
variety and S denotes a ray whose associated contraction is small:

ρX R1 R2 R3 R4

2 F D0 (a)
F D2 (b)
D2 D2 (c)
D2 S (d)

3 F F D2 (e)
F D2 D2 (f)

4 F F F D2 (g)

PROOF. The result will follow from the list in [9, Theorem 1.1], once we have proved
that X has no contractions of type D1. Let σ : X → X′ be the blow-up of X′ along T , let E
be the exceptional divisor and let l be a line in a fiber of σ . Let H be the fundamental divisor
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of X; from the canonical bundle formula

−2H = KX = σ ∗KX′ + (codimT − 1)E

we know that −2H · l = (codimT − 1)E · l, so the codimension of T is odd. It follows that
either T is a surface or T is a point. �

In this paper we will deal with cases (b), (e) and (f), since the other cases have already
been classified; in particular:

• in case (a) X′ � P 5 by [8, Théorème 1].
• As noted in the introduction of [9], for a Fano fivefold of pseudoindex 2 possessing a

quasi-unsplit locally unsplit dominating family of rational curves is equivalent to have a fiber
type elementary contraction, so, in cases (c) and (d), we can apply [9, Theorem 1.2] and see
that either X′ � P 5 and T is

(c1) a Veronese surface,
(c2) PP 1(O(1)⊕O(2)) embedded in a hyperplane of P 5 by the tautological bundle (a

cubic scroll),
(d1) a two-dimensional smooth quadric (a section of O(2) in a linear P 3 ⊂ P 5),

or X′ is a del Pezzo manifold of degree five and T is a plane of bidegree (0, 1). This corre-
sponds to case (c3) which arises as the other extremal contraction of case (c2); for a detailed
description see [9, Section 3, Example e1].

• In case (g) X′ � P 1 × P 1 × P 3 and T � P 1 × P 1 × {p} by [19, Corollary 5.3].

4. Case (b). 4.1. Classification of X′. We will now prove that if X is as in case
(b) then X′ is either the projective space of dimension five or a del Pezzo manifold of degree
≤ 5.

Assume throughout the section that X is a Fano fivefold of index two with −KX = 2H
and Mori cone NE(X) = 〈Rϑ,Rσ 〉, where ϑ : X → Y is a fiber type contraction and
σ : X → X′ is a blow-down with center a smooth surface S ⊂ X′ and exceptional divisor
E. By [7, Theorem 1] we know that X′ is a smooth Fano variety with ρX′ = 1 and iX′ ≥ 2;
moreover by the canonical bundle formula

KX = σ ∗KX′ + 2E

we have that rX′ is even.

LEMMA 4.1. Let V ′ be a minimal dominating family for X′, V a family of deforma-
tions of the strict transform of a general curve in V ′ and V the Chow family associated to V .
Then E · V = 0, the family V is not quasi-unsplit and −KX′ · V ′ = 4 or 6.

PROOF. By [16, II.3.7], the general curve in V ′ does not intersect S, so E · V = 0. It
follows that

(2) −KX · V = −KX′ · V ′ ≤ dimX′ + 1 = 6 .

The family V is dominating and it is not extremal, otherwise E would be non positive on the
whole cone ofX. This implies by [9, Lemma 2.4] thatX is rcV-connected; in particular, since
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ρX = 2, the family V is not quasi-unsplit. Therefore −KX′ · V ′ = −KX · V ≥ 4 so, recalling
that rX′ is even, the lemma is proved. �

If the anticanonical degree of the minimal dominating family V ′ is equal to 6 = dimX′+
1 then X′ � P 5 by [14, Theorem 1.1] (Note that the assumptions of the quoted result are
different, but the proof actually works in our case since for a very general x ′ ∈ X′ the pointed
family (V ′)x ′ has the properties 1–3 in [14, Theorem 2.1]).

We are thus left with the case −KX′ · V ′ = 4, which requires some more work. First of
all we will analyze the families of rational curves on X; as a consequence we will prove that
the exceptional divisor E of the blow-up is a Fano manifold and that the fiber type extremal
contraction of X restricts to an extremal contraction of E with the same target Y . Using the
classification of Fano bundles over a surface, given in [26] and [28] and completed in Section
2.2 of the present paper, we will find a line bundle on Y whose pullback to X has degree one
on the fibers of the blow-up, and this implies the existence of a line bundle on X′ which has
degree one on the rational curves of minimal degree inX′. In this way we will be able to show
that X′ is a del Pezzo manifold.

LEMMA 4.2. Let D be an effective divisor ofX; thenD contains curves whose nume-
rical class is in Rσ .

PROOF. We can assume thatD = E, otherwise the statement is trivial. The image ofD
via σ is an effective divisor in X′, hence it is ample since ρX′ = 1; therefore σ(D) ∩ S = ∅
and so D ∩ E = ∅. Let x be a point in D ∩ E and let Fx be the fiber of σ through x; since
dimFx = 2 then D ∩ Fx contains a curve in Fx . �

LEMMA 4.3. Let W be an unsplit family of rational curves on X such that
Locus(W) ⊆ E; then [W ] ∈ Rσ .

PROOF. Let F be a fiber of σ such that F ∩ Locus(W) = ∅; we have Locus(W)F ⊆
Locus(W) ⊆ E. Assume that [W ] ∈ Rσ ; we can apply Lemma 2.9 to get dim Locus(W)F =
4, so in this case E = Locus(W)F = Locus(W) and NEX(E) = 〈[W ], Rσ 〉 by Proposition
2.12 (c). It follows that E contains two independent unsplit dominating families, and it is easy
to prove that their degree with respect to −KE is equal to three; we can therefore apply [20,
Theorem 1] and obtain that E � P 2 × P 2. The effective divisor E, being negative on Rσ ,
must be positive on Rϑ , so E dominates Y ; since P 2 × P 2 is a toric variety, by [21, Theorem
1] we have that Y � P 4. Moreover ϑ : X → P 4 is a P 1-bundle by [19, Corollary 2.15]; by
[19, Theorem 1.2] it must be X � P P 4(O ⊕ O(a)) with a = 1 or a = 3, and in these cases
X is not a blow-up along a surface, a contradiction. �

LEMMA 4.4. There does not exist on X any unsplit family of rational curvesW which
satisfies all the following conditions:

(i) −KX ·W = 2;
(ii) [W ] is not extremal in NE(X);
(iii) DW := Locus(W) has dimension 4;
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(iv) NEX(DW) ⊂ 〈Rσ , [W ]〉.
PROOF. Assume by contradiction that such a family exists. In this case we have DW ·

Rσ ≥ 0 (otherwise we would have DW = E and [W ] ∈ Rσ by Lemma 4.3, against assump-
tion (ii)) and DW · Rϑ > 0 (otherwise DW would contain curves in Rϑ , against assumption
(iv)); this implies that DW is nef, and that it possibly vanishes only on Rσ . By [19, Corollary
2.15] the contraction ϑ : X → Y is a P 1-bundle, i.e., X = P Y (E = ϑ∗H); by the classifica-
tion in [19, Theorem 1.3] (note that we are in case ρX = 2) this is possible only if Y is a Fano
manifold of index one and pseudoindex two or three; in fact in none of the other cases of [19,
Theorem 1.3] X is the blow-up of a smooth variety along a (smooth) surface.

Let VY be a family of rational curves on Y with −KY · VY = iY and let ν : P 1 → Y

be the normalization of a curve in VY ; the pull-back ν∗E splits as OP 1(1) ⊕ OP 1(1) in case
iY = 2, and as OP 1(1)⊕ OP 1(2) in case iY = 3. We have a commutative diagram

S := P (ν∗E) ν̄ ��

p

��

X

ϑ

��
P 1

ν
�� Y

Let C ⊂ S be a section corresponding to a surjection ν∗E → OP 1(1) → 0, and let VC
be the family of deformations of ν̄(C); since H · ν̄(C) = OP (ν∗E)(1) · C = 1 the family VC
has anticanonical degree two and is unsplit.

We claim that the numerical class of W lies in the interior of the cone spanned by [VC]
and Rϑ ; this is trivial if [VC] ∈ Rσ , so we can assume that this is not the case. The cone of
curves of S is generated by the numerical class of a fiber and the numerical class of C, i.e.,
NE(S) = 〈[C], [f ]〉. The morphism ν̄ induces a map N1(S) → N1(X) which allows us to
identify NE(S) with the subcone of NE(X) generated by [VC] and Rϑ . The divisor DW is
positive on this subcone, hence the effective divisor Γ = ν̄∗DW is ample on S. It follows that
Γ lies in the interior of NE(S), hence ν̄(Γ ), which is a curve inDW , lies in the interior of the
cone generated by [VC] and Rϑ . Therefore also [W ] lies in the interior of the cone generated
by [VC] and Rϑ by assumption (iv), and we can write

[W ] = a[Cϑ ] + b[VC] with a, b > 0 ,

where Cϑ is a minimal curve in Rϑ . Intersecting with H we get a + b = 1, and intersecting
with −ϑ∗KY we have

−ϑ∗KY ·W = biY < iY ;
therefore if CW is a curve in W we have −KY · ϑ∗(CW ) < iY , a contradiction. �

PROPOSITION 4.5. Let V ′ be a minimal dominating family for X′, V a family of de-
formations of the strict transform of a curve in V ′ and V the Chow family associated to V .
Assume that −KX′ · V ′ = 4. Then any irreducible component of a reducible cycle in V which
is not numerically proportional to V is a minimal extremal curve.
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PROOF. Let Γ = ∑
Γi be a reducible cycle in V with [Γ1] = λ[V ]; since rX = 2, Γ

has exactly two irreducible components. Denote byW and W̄ their families of deformations,
which have anticanonical degree two and so are unsplit. Since by Lemma 4.1 E · V = 0, we
can assume that E ·W < 0, hence by Lemma 4.3 we have that [W ] ∈ Rσ .

As a consequence, note that if Γ ′ = Γ ′
1 + Γ ′

2 is another reducible cycle in V , then either
Γ ′

1 and Γ ′
2 are numerically proportional to V or, denoted by W ′ and W̄ ′ their families of

deformations, we can assume that [W ′] = [W ] and [W̄ ′] = [W̄ ].
We claim that [W̄ ] is extremal.
Case 1. V is not locally unsplit.
Let {W̄ i}i=1,...,n be the families of deformations of the irreducible components of cycles

in V such that [W̄ i] = [W̄ ]; since V is not locally unsplit, for some index i the family W̄ i is
dominating. We can then apply [9, Lemma 2.4].

Case 2. V is locally unsplit.
Assume by contradiction that [W̄ ] is not extremal. By the argument in the proof of

Case 1 we have that W̄ i is not dominating for every i. By inequality 2.4 (a) we have that
dim Locus(W̄ i) = 3 or 4; we distinguish two cases:
(i) There exists an index i such that dim Locus(W̄ i) = 4.

Let D = Locus(W̄ i); if D · V = 0 then D is negative on an extremal ray of NE(X),
hence on Rσ , but this implies D = E, against Lemma 4.3. Therefore D · V > 0, hence
D ∩ Locus(Vx) = ∅ for a general x ∈ X. Since we are assuming that V is locally unsplit,
we have that dim Locus(Vx) ≥ 3 and NEX(Locus(Vx)) = 〈V 〉 by Proposition 2.12 (b), so
dim Locus(W̄ i)Locus(Vx) ≥ 4 by Lemma 2.9 (b) and D = Locus(W̄ i)Locus(Vx). It follows by
[20, Lemma 1] that every curve in D can be written as aCV + bCW̄ i with a ≥ 0, CV a curve
contained in Locus(Vx) and CW̄ i a curve in W̄ i . Therefore NEX(D) ⊂ 〈Rσ , [W̄ i ]〉, but this
is excluded by Lemma 4.4.
(ii) For every i we have dim Locus(W̄ i) = 3.

By inequality 2.4 (a) we have dim Locus(W̄ x) = 3 for every x ∈ Locus(W̄ ). Let

Ω =
⋃
i

(Locus(Wi) ∪ Locus(W̄ i)) = E ∪
⋃
i

Locus(W̄ i) ,

and take a point y outside Ω ; since X is rcV-connected we can join y and Ω with a chain of
cycles in V . Let C be the first irreducible component of these cycles which meets Ω . Clearly
C cannot belong to any family Wi or W̄ i because it is not contained in Ω , so it belongs
either to V or to a family λV which is numerically proportional to V ; by [1, Lemma 9.1]
we have that either C ⊂ Locus(Vz) for some z such that Vz is unsplit or C ⊂ Locus(λV ).
Moreover, since E · V = 0 the intersection C ∩ Ω is contained in Ω \ E. Let t be a point
in C ∩Ω and let Ωj = Locus(W̄ j ) be the irreducible component of Ω which contains t . If
C ⊂ Locus(Vz) we have dim(Locus(Vz) ∩ Ωj) ≥ 1, against the fact that NX1 (Vz) = 〈[V ]〉
and NX1 (Ωj) = 〈[W̄ j ]〉. If else C ⊂ Locus(λV ) we have that dim Locus(λV )Ωj ≥ 4 by
Lemma 2.9 (b) and that NEX(Locus(λV )Ωj ) ⊂ 〈[λV ], Rϑ 〉 by [20, Lemma 1]; this is clearly
impossible if Locus(λV )Ωj = X, and it contradicts Lemma 4.2 if dim Locus(λV )Ωj = 4.
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Finally, since −KX ·Wi = −KX · W̄ i = 2 we also have that the curves of Wi and W̄ i

are minimal in Rσ and Rϑ respectively. �

COROLLARY 4.6. In the assumptions of Proposition 4.5, denoting as usual by Cσ and
Cϑ minimal rational curves in the rays Rσ and Rϑ , we have, in NE(X), [V ] = [Cσ ] + [Cϑ ];
in particular we haveH · Cϑ = 1.

PROPOSITION 4.7. Let V ′ be a minimal dominating family for X′, let V be a family
of deformations of the strict transform of a curve in V ′ and assume that −KX′ ·V ′ = 4. Then
E is a Fano manifold and X′ is a del Pezzo manifold.

PROOF. By Lemma 4.1 we have E ·V = 0, hence E ·Cϑ = −E ·Cσ = 1 by Corollary
4.6; It follows that

(−KX − E) · Cσ = 2 + 1 = 3

(−KX − E) · Cϑ = 2 − 1 = 1 ,

hence −KX − E is ample on X by Kleiman criterion. By adjunction −KE = (−KX − E)|E
is ample on E and E is a Fano manifold.

We note that E contains curves of Rϑ : otherwise the fiber type contraction ϑ would be
a P 1-bundle by [19, Lemma 2.13], and since E ·Cϑ = 1 it follows that E would be a section
of ϑ , against the fact that ρY = 1 and ρE = ρS + 1 ≥ 2. Consider the divisor D = H − E:
it is nef and vanishes on Rϑ , so it is a supporting divisor for ϑ . The restrictionD|E is nef but
not ample, since E contains curves of Rϑ , so D|E is associated to an extremal face of NE(E)
and to an extremal contraction ϑE : E → Z and we have a commutative diagram:

E ��

ϑ |E
��

��
�

���
��

��
ϑE

��

X

ϑ

��
Z �� Y

We will prove that, for everym ∈ N , the restriction map H 0(X,mD) → H 0(E,mD|E)
is an isomorphism, hence ϑ|E = ϑE and Z = Y . Consider the exact sequence

0 → OX(mD − E) → OX(mD) → OE(mD|E) → 0 .

Since E is not contracted by ϑ we have that h0(mD − E) = 0; moreover, we can write

mD − E = KX + (m− 1)D + 3H − 2E .

By Kleiman criterion 3H − 2E is ample on X and, being (m − 1)D nef, the divisor (m −
1)D + 3H − 2E is ample, too. By the Kodaira Vanishing Theorem h1(mD − E) = 0. We
have proved that E is a Fano manifold, and we know that it has a P 2-bundle structure over S,
i.e., E � P S(E) with E a Fano bundle of rank three over S. This implies that S is a del Pezzo
surface.

Let LY be the ample generator of Pic(Y ); by Proposition 2.14, Proposition 2.15 and
the classification in [26], the pull-back of LY has degree one on the fibers of the P 2-bundle.
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The line bundle H − E has degree two on the fibers of the P 2-bundle and is trivial on the
fibers of ϑ , hence H − E = 2ϑ∗LY and so H − ϑ∗LY is trivial on the fibers of σ , i.e.,
H − ϑ∗LY = σ ∗HX′ for some HX′ ∈ Pic(X′). By the canonical bundle formula we have

(3) −σ ∗KX′ = −KX + 2E = 2(H + E) = 4H − 4ϑ∗LY = 4σ ∗HX′ ,

i.e., rX′ = 4 and so X′ is a del Pezzo fivefold. �

COROLLARY 4.8. By the classification of del Pezzo manifolds given by Fujita [11],
denoting by d := H 5

X′ the degree of X′ and recalling that ρX′ = 1, we have the following
possibilities:
(i) If d = 1 then X′ � V1 is a degree six hypersurface in the weighted projective space
P (3, 2, 1, . . . , 1);
(ii) if d = 2 then X′ � V2 is a double cover of P 5 branched along a smooth quartic
hypersurface;
(iii) if d = 3 then X′ � V3 is a cubic hypersurface in P 6;
(iv) if d = 4 then X′ � V4 is the complete intersection of two quadrics in P 7;
(v) if d = 5 then X′ � V5 is a linear section of the grassmannian G(1, 4) ⊂ P 9.

4.2. Classification of S.

THEOREM 4.9. If X′ � P 5 then S is as in Theorem 1.1, cases (b1)–(b6).

PROOF. Let H be a hyperplane of P 5, let H̃ ⊂ X be its strict transform via σ and let
H = σ ∗H . We know that H̃ is an effective divisor different from E, hence it is nef; moreover
if S ⊂ H we can write H̃ = H − kE with k > 0. Let Γ be a proper bisecant of S, and let Γ̃
be its strict transform; if S ⊂ H we have

0 ≤ H̃ · Γ̃ ≤ 1 − 2k ;
it follows that S has no proper bisecants, i.e., S is a linear subspace of P 5 and we are in case
(b1). If else S is not contained in any hyperplane, note that S cannot be the Veronese surface,
since the blow-up of P 5 along a Veronese surface has two birational contractions; therefore
the secant variety of S fills P 5.

Let l be a line in P 5 not contained in S and l̃ its strict transform; we have

−KX · l̃ = σ ∗OP 5(6) · l̃ − 2E · l̃ = 6 − 2(�(S ∩ l)) > 0 ;
therefore if l is a proper bisecant of S we have −KX · l̃ = 2; moreover S cannot have (proper)
trisecant lines. In the notation of [6], the condition on the trisecants is equivalent to the fact
that the trisecant variety of S (which consists of all lines contained in S and of the proper
trisecants) is contained in S, so by the description in [6] (see in particular Theorem 7, Section
4 and Appendix A2) we have the possibilities (b2)–(b6).

We now show that in all these cases the blow-up of X′ along S is a Fano manifold
with the prescribed cone of curves. The linear system L = |OP 5(2) ⊗ IS | of the quadrics
in P 5 containing S has S as its base locus scheme (see [12]), so σ ∗L defines a morphism
ϑ : X → P (L). Since 2H − E is nef and vanishes on the strict transforms of the bisecants
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of S, it follows that the numerical class of these curves is extremal in NE(X), and since −KX
is positive on these curves, we can conclude that X is a Fano manifold. Moreover since S is
neither degenerate nor the Veronese surface, the bisecants to S cover P 5 and so ϑ is of fiber
type. �

LEMMA 4.10. Assume that X′ is a del Pezzo fivefold. Let HX′ = OX′(1) and HS =
(HX′)|S . Then

(i) If dimY = 2 then H 2
S = degX′ = −KS ·HS .

(ii) If dimY = 3 then degX′ = −KS ·HS and degX′ −H 2
S ≥ 2.

(iii) If dimY = 4 then degX′ > −KS ·HS .

PROOF. Denote by N the normal bundle of S in X′ and by N ∗ the conormal bundle;
let C = detN ∗ ∈ Pic(S). Recall that E = P S(N ∗) and that −E|E = ξN ∗ . Let H = σ ∗HX′ ;
we have

H5 = (HX′)5 = degX′ =: d ,
and since the intersection of three or more sections of a very ample multiple of HX′ does not
meet S, we have also

H4E = H3E2 = 0 .

Then we have
KS = (KX′ + detN )|S = −4HS − C ,

H2E3 = (H2E2)|E = H 2
S ,

HE4 = (HE3)|E = (−Hξ3
N ∗)|E = −C ·HS .

Let L := H − E; from the above equalities it follows that

(4) L4H = H5 − 4H2E3 + HE4 = d +KS ·HS ;

(5) L3H2 = H5 − H2E3 = d −H 2
S .

By Corollary 4.6 we have thatH ·Cϑ = 1; then equation (3) yields that H ·Rϑ = E ·Rϑ = 1,
hence L is trivial on the fibers of ϑ and therefore L = ϑ∗LY .

(i) If dimY = 2 we have L4H = L3H2 = 0, so it follows from (4) and (5) that

0 = d +KS ·HS = d −H 2
S .

(ii) If dimY = 3 then L4H = 0, and so by (4) we have

d +KS ·HS = 0 .

The contraction ϑ is a quadric fibration (see Definition 2.1) and H|F = OF (1) for a general
fiber F of ϑ ; hence L3H2 = (L3

Y )(H2
F ) ≥ 2, and (5) yields that

d −H 2
S ≥ 2 .

(iii) Finally, if dimY = 4 the general fiber F of ϑ is one-dimensional and H · F = 1,
hence L4H = L4

Y > 0; again by (4) we have that

d+KS ·HS > 0 . �
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LEMMA 4.11. If dimY > 2 then S is P 2, a smooth quadric Q or the ruled surface
F 1, i.e. the blow-up of P 2 at a point.

PROOF. By Proposition 4.7 E is a Fano manifold and, by the proof of the same Propo-
sition, we know that the restriction ϑ|E : E → Y is an extremal contraction of E. Moreover,
by the classification in Proposition 2.14 we know that for every del Pezzo surface Sk with
k ≥ 2 the exceptional divisor E is isomorphic to Sk × P 2, and in this case E has no maps on
a variety with Picard number one and dimension greater than two. �

THEOREM 4.12. If X′ is a del Pezzo fivefold then the pairs (X′, S) are as in Theorem
1.1, cases (b7)–(b13).

PROOF. The contraction ϑ : X → Y is supported by H − E, and is the resolution of
the rational map θ : X′ ��� Y defined by the linear system L := σ∗|ϑ∗LY |, where LY is
the ample generator of Pic(Y ); since |ϑ∗LY | is base point free we have BsL ⊆ S; on the
other hand L ⊆ |HX′ ⊗ IS |, therefore BsL ⊇ S and so BsL = S. It follows that the strict
transforms of curves of degree one with respect to HX′ which meet S are contracted by ϑ .
Moreover, since H−E is nef, no curves of degree one with respect toHX′ and not contained
in S can meet S in more than one point.

• If dimY = 2 then ϑ is equidimensional and by [5, Corollary 1.4] we have that Y is
smooth; moreover ρY = 1 and Y is dominated by a Fano manifold, so Y � P 2. Therefore
dimL = 3, so S is the complete intersection of three general sections in |HX′ | and we are in
case (b7).

• In case dimY = 3, if S � P 2 then HS � OP 2(a), with a > 0. By Lemma 4.10 (ii)
we have d = −KP 2 ·HP 2 = 3a; recalling that d ≤ 5 we find HS = OP 2(1) and d = 3 (case
(b8)). If S � P 1 ×P 1 thenHS � OP 1×P 1(a, b), with a, b > 0. By Lemma 4.10 (ii) we have
d = −KP 1×P 1 ·HP 2 = 2a+ 2b; recalling that d ≤ 5 we findHS = OP 1×P 1(1, 1) and d = 4
(case (b10)). For S � F 1 we have −KF 1 · C ≥ 5 for every ample C ∈ Pic(F 1), equality
holding if and only if C = C0 +2f ; hence, by Lemma 4.10 (ii) we have d = −KF 1 ·HF 1 = 5
and HS = C0 + 2f . Since all the bisecants of S which are contained in G(1, 4) are also
contained in a linear section V5, it follows by Proposition 2.24 that S is as in case (b13).

• Finally, in case dimY = 4 we can apply Lemma 4.10 (iii) and get: if S � P 2 then
HS = O(1) and H 2

S = 1, so d = 4 (case (b9)) or d = 5; in the latter case, being ϑ of fiber
type, we exclude the case of a plane of bidegree (0, 1) in view of Remark 2.19 and we are in
case (b11). If S � P 1 ×P 1 the bound −KS ·HS ≥ 4 givesHS = O(1, 1) andH 2

S = 2, hence
d = 5; in this case S has bidegree (1, 1) by Proposition 2.23 and we are in case (b12). The
center of the blow-up cannot be F 1 since −KF 1 · HF 1 ≥ 5, which contradicts Lemma 4.10
(iii).

We show now that in all these cases the blow-up of X′ along S is a Fano manifold with
the prescribed cone of curves. Let (X′, S) be a pair as in the theorem and denote by HX′ the
fundamental divisor of X′. We claim that the linear system |HX′ ⊗ IS | has S as its base locus
scheme; this is clear apart from cases (b10), which is described in Proposition 4.13, and (b12)
and (b13), which are treated in Proposition 4.14. Therefore the linear system |σ ∗HX′ − E|
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defines a morphism ϑ : X → P (|σ ∗HX′ − E|). Since σ ∗HX′ − E is nef and vanishes on the
strict transforms of the rational curves of degree one in X′ which meet S, it follows that the
numerical class of these curves is extremal in NE(X). Being −KX positive on these curves,
we can conclude that X is a Fano manifold. Finally, since the curves of degree one with
respect to HX′ which meet S cover X′, we have that ϑ is a fiber type contraction. �

PROPOSITION 4.13. Let Q be a smooth two-dimensional quadric in V4 ⊂ P 7. Then
Q is the intersection of V4 and the hyperplanes of P 7 which contain Q.

PROOF. Let Q be a smooth two-dimensional quadric in V4 = Q ∩ Q′ ⊂ P 7, and let
Λ3
Q be the three-dimensional linear subspace of P 7 which contains Q. We claim that Λ3

Q is
contained in one of the two quadrics Q, Q′. From [23, Proposition 2.1] we know that the
intersection of two quadrics is smooth if and only if there exist coordinates in P n such that

Q =
{∑

x2
i = 0

}
, Q′ =

{∑
λix

2
i = 0

}

with λi = λj for every i = j . So assume by contradiction that Λ3
Q ⊂ Q ∪ Q′; in this case

Λ3
Q ∩ Q = Λ3

Q ∩ Q′ = Q, so it must be
(∑

(1 − λi)x
2
i

) ∣∣
Λ3

Q
≡ 0 .

But there is at most one index i such that λi = 1, so the kernel of the quadratic form∑
(1 − λi)x

2
i is at most one-dimensional and we reach a contradiction. �

PROPOSITION 4.14. Let S be a smooth two-dimensional quadric of bidegree (1, 1) or
a surface of bidegree (2, 1) not contained in a G(1, 3), in V5 ⊂ P 8. Then S is the intersection
of V5 and the hyperplanes of P 8 which contain S.

PROOF. Since V5 is an hyperplane section of G(1, 4) we will show that S ⊂ G(1, 4) ⊂
P 9 is the intersection of G(1, 4) and the hyperplanes of P 9 which contain S, by finding
explicitly its equations. By Proposition 2.23, if S is a quadric of bidegree (1, 1), then it
parametrizes lines in P 4 which meet two given skew lines r , s. Up to a change of coordinates
in P 4, we can assume that r and s have equations

r : x0 = x1 = x2 = 0 , s : x0 = x3 = x4 = 0 ,

so H is the hyperplane of equation x0 = 0; in this case the equations of S in G are{
y0 = · · · = y4 = y9 = 0
y5y8 = y6y7

and S is the intersection of G with the three-dimensional linear subspace Λ3 ⊂ P 9 of equa-
tions

y0 = · · · = y4 = y9 = 0 .

Let now S ⊂ G be a surface of bidegree (2, 1) not contained in a G(1, 3), as described
in Proposition 2.25. Up to a coordinate change in P 4, assume that C is the cone of vertex
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(0 : 0 : 0 : 0 : 1) on the quadric of equations

x0x2 = x1x3 , x4 = 0 ,

and that m is the line of equations x0 = x1 = x4 = 0. The two families of planes contained
in C have equations

F1 =


λx0 = µx1

λx3 = µx2 ,
F2 =



λx0 = µx3

λx1 = µx2 ,

andm lies in the plane πm ∈ F2 of equations x0 = x1 = 0. The equations of the scroll S ⊂ G

are 


y0 = y3 = y6 = y7 = 0
y1 = y5

y2
1 = y2y4
y1y8 = y4y9
y1y9 = y2y8 .

In particular, S is the intersection of G with the four-dimensional linear spaceΛ4
S of equations

y0 = y3 = y6 = y7 = 0, y1 = y5. �

5. Cases (e)–(f). Setup. Throughout the section, let X be a Fano fivefold whose
cone of curves is as in cases (e)–(f), and let σ : X → X′ be an extremal contraction of X
which is the blow-up of X′ along a smooth surface.

PROPOSITION 5.1. LetX be as above. Then eitherX = P P 2×P 2(O⊕O(1, 1)) orX′
is a Fano manifold of even index.

PROOF. LetE be the exceptional locus of σ ; by [30, Proposition 3.4]X′ is a Fano man-
ifold unless E contains the exceptional locus of another extremal ray; this is clearly possible
only if X has another birational contraction, i.e., in case (f). Note that in this case both the
birational contractions of X are smooth blow-ups by Lemma 3.2. Let σ̄ be the other blow-up
contraction of X, denote by Rσ and Rσ̄ the extremal rays corresponding to σ and σ̄ and by
Rϑ the extremal ray corresponding to the fiber type contraction ϑ : X → Y . Let F be a
fiber of σ ; by Lemma 2.9 (a) we have dim Locus(Rσ̄ )F ≥ 4, hence E = Locus(Rσ̄ )F and
NEX(E) = 〈Rσ ,Rσ̄ 〉 by Proposition 2.12. Moreover E · Rσ < 0 and E · Rσ̄ < 0, hence
E · Rϑ > 0 and ϑ is a P 1-bundle by [19, Corollary 2.15]. We can thus apply [19, Theorem
1.1], noting that the only Fano manifold in the list given in that result with two birational
contractions with the same exceptional locus isX = PP 2×P 2(O⊕O(1, 1)). The claim about
the index of X′ follows from the canonical bundle formula for σ . �

LEMMA 5.2. Let X be a Fano fivefold whose cone of curves is as in case (f ); denote
byRσ andRσ̄ the divisorial extremal rays of NE(X), byRϑ the fiber type extremal ray and by
E (resp. Ē) the exceptional locus of Rσ (resp. Rσ̄ ). Then either E · Rϑ > 0, or Ē · Rϑ > 0.

PROOF. Consider a minimal horizontal dominating family V for ϑ .
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CLAIM. The numerical class of V belongs to a two-dimensional extremal face of
NE(X) which contains Rϑ .

If V is unsplit, since ρX = 3 the claim follows from [9, Lemma 2.4].
Denote by Vϑ the family of deformations of a minimal curve in Rϑ . If V is not un-

split, for a general x ∈ Locus(V ) we have that dim Locus(Vx) ≥ 3 by Proposition 2.4,
NEX(Locus(Vx)) = 〈V 〉 by Proposition 2.12 and dim Locus(Vϑ, V )x ≥ 4 by Lemma 2.9 (c).
CallD = Locus(Vϑ, V )x ; then N1

X(D) = 〈Rϑ, V 〉 by [20, Lemma 1], soD is a divisor since
ρX = 3. It cannot be D · Rϑ > 0, otherwise we could write X = ChLocus(Vϑ, V )x and we
would have ρX = 2; so it must be D · Rϑ = 0. This implies that D is positive on a birational
ray, say Rσ , hence dim(D ∩ F) ≥ 1 for every fiber F of σ ; since N1

X(D) = 〈Rϑ, V 〉 and
NEX(F) = 〈Rσ 〉, the claim is proved.

It follows that E · Rϑ > 0. In fact, if E · Rϑ = 0 then E · V < 0, since curves of V are
not contracted by ϑ and so they do not belong to Rϑ . But then we would have Locus(V ) ⊂ E

and V would not be dominating for ϑ , a contradiction. �

PROPOSITION 5.3. Let X be a Fano fivefold whose cone of curves is as in cases (e)–
(f), and let σ : X → X′ be the blow-up of X′ along a smooth surface; assume that E is
positive on a fiber type extremal ray ofX. IfX′ is a Fano manifold, then eitherX′ � P 1×Q4,

and in this case either S � P 1 × l with l a line in Q4 or S � P 1 × Γ with Γ a conic not
contained in a plane π ⊂ Q4, or X′ is a P 3-bundle over P 2 and S dominates P 2 via the
bundle projection.

PROOF. Let Rϑ be the extremal ray on which E is positive, and let ϑ : X → Y be its
associated contraction; let ψ : X → W be the contraction of the face spanned by Rσ and Rϑ .
Then ψ factors through σ and a morphism θ : X′ → W , and we have a commutative diagram

X

σ

��

ψ

���
��

��
��

��
��

�
ϑ �� Y

��
X′

θ
�� W

The contractions σ and ψ have connected fibers, so the same is true for θ ; moreoverW
is a normal variety with ρW = ρX′ − 1 and dimW < dimX′. It follows that θ is an extremal
elementary fiber type contraction of the Fano manifold X′; denote by Rθ the corresponding
extremal ray in NE(X′).

Let V ′
θ be a dominating family of rational curves whose numerical class belongs to Rθ

and whose degree with respect to some ample line bundle is minimal among the degrees of
the families with this property. In particular, by the minimality assumption, such a family is
locally unsplit. Let V be the family of deformations of the strict transform in X of a general
curve in V ′

θ . Since curves of V are contracted by ψ , the numerical class of V in NE(X) lies
in the face spanned by Rσ and Rϑ . By [16, II.3.7], the general curve in V ′

θ does not intersect
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the center S of the blow-up, so E · V = 0; it follows that [V ] ∈ Rϑ . Clearly we cannot
have [V ] ∈ Rσ , being E · Rσ < 0, so the class [V ] does not generate an extremal ray of X.
In particular, since V is dominating and X has no small contractions, V cannot be unsplit in
view of [9, Lemma 2.29], hence

4 ≤ −KX · V = −KX′ · V ′
θ .

For a general x ∈ X′ we have, by Proposition 2.4 (b), that dim Locus(V ′
θ )x ≥ 3, so a general

fiber of θ is at least three-dimensional and dimW ≤ 2.
If dimW = 1 then the contraction of the extremal ray of X different from Rσ and Rϑ

is a P 1-bundle by [19, Corollary 2.15] (take a fiber of ψ for D). Now we apply [19, Lemma
4.1], to get that X is a product with P 1 as a factor; looking at the classification table in [19,
Appendix] we find that the only products with ρX = 3 and a blow-down contraction of type
D2 are X � P 1 × Bll (Q4) or X � P 1 × BlΓ (Q4); the description of X′ and S follows.

If dimW = 2 we claim that X′ is a P 3-bundle over P 2. We would like to use [19,
Lemma 2.18], but we do not know that the length of the ray Rθ is dimX′ − 1. However we
notice that, in the proof of the quoted result, the assumption on the length is used only to prove
that the general fiber of the contraction is a projective space, so we will prove in a different
way that this is the case in our situation.

Let x be a general point inX′ and denote by Fx the fiber of θ containing x; by Proposition
2.4 (b) we have dim Locus(V ′

θ )x ≥ 3, hence Fx = Locus(V ′
θ )x . Moreover, since V ′

θ is locally
unsplit, by Proposition 2.12 (b), we have ρFx = 1. Now we can conclude Fx � P 3 either
by the classification of Fano threefolds or by applying [14, Theorem 1.1] as in the proof of
Lemma 4.1.

Therefore, by the proof of [19, Lemma 2.18], X′ is a P 3-bundle over P 2; E is positive
on the fiber type ray Rϑ , so the image via σ of every curve in Rϑ is a curve contracted by θ
which meets S. Since ϑ is a fiber type contraction, we know that curves in Rϑ dominate X,
hence curves contracted by θ which meet S dominate X′. Therefore S dominates P 2. �

THEOREM 5.4. Let X be a Fano fivefold whose cone of curves is as in cases (e)–(f),
and let σ : X → X′ be the blow-up of X′ along a smooth surface S. Then the pairs (X′, S)
are as in Theorem 1.1, cases (e1)–(e4) or (f1)–(f4).

PROOF. By Proposition 5.1, either X � P P 2×P 2(O ⊕ O(1, 1)) and therefore (X′, S)
is as in case (f1) or we can apply Proposition 5.3: in fact, in case (e) the positivity of E on
a fiber type ray of NE(X) is trivial, otherwise it follows from Lemma 5.2. Therefore either
(X′, S) is as in cases (e1)–(e2) or, up to exchange σ with σ̄ , we have that X′ is a P 3-bundle
over P 2. In this case, the classification in [26] yields thatX′ is either the blow-up of P 5 along
a plane π1 or X′ � P P 2(TP 2(−1)⊕ O⊕2). Considering the exact sequence

0 → OP 2(−1) → O⊕5
P 2 → TP 2(−1)⊕ O⊕2

P 2 → 0 ,

we see that X′ = P P 2(TP 2(−1)⊕ O⊕2) embeds in P 2 × P 4 as a section of O(1, 1).
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Let l ⊂ X′ be a line in a fiber of the P 3-bundle not contained in S, and let l̃ ⊂ X be its
strict transform; by the canonical bundle formula

(6) −KX · l̃ = −σ ∗KX′ · l̃ − 2E · l̃ ≤ 4 − 2#(S ∩ l) ;
since X is Fano it must be #(S ∩ l) ≤ 1.

Let Rθ̄ ⊂ NE(X′) be the extremal ray of X′ not associated to the P 3-bundle contraction.
Let C be a minimal extremal curve in Rθ̄ not contained in S and let C̃ ⊂ X be its strict
transform. Again by the canonical bundle formula

−KX · C̃ = −σ ∗KX′ · C̃ − 2E · C̃ ≤ 2 − 2#(S ∩ C) ,
hence S ∩ C = ∅. Therefore, if S meets a two-dimensional fiber Fθ̄ of θ̄ then S = Fθ̄ .

• In case X′ � Blπ1(P
5), the map θ̄ is the blow-up map, so denoted by E′ the excep-

tional divisor of θ̄ we have that either S is a fiber of θ̄ and we are in case (f2), or S ∩ E′ = ∅;
in particular S cannot meet a fiber of the P 3-bundle in a curve. In the first case,X has another
blow-down contraction σ̄ : X → Blp(P 5), whose center is the strict transform of a plane
passing through p; this corresponds to case (f3). In fact, X can be described as follows: let Y
be the blow-up of P 4 along a line, let EY be the exceptional divisor, let HY be the pullback
of OP 4(1) and let E = (2HY + EY ) ⊕ (3HY + EY ). Then X = P Y (E), and the following
diagram shows the extremal contractions of X:

P 2 Blπ1(P
5)

θ��

θ̄

���
��

��
��

�

Bll (P 4)

��

��

X
ϑ

��

σ
		��������

σ̄ ���
���

��
�� P 5

P 4 Blp(P 5)��

		��������

In case S ∩E′ = ∅, equation (6) yields that S is a section of the P 3-bundle contraction ofX′;
therefore it corresponds to a surjection O3 ⊕ O(1) → O(1), the image of S in P 5 is a plane
π2 not meeting π1 and we are in case (f4). In this case X � PP 2×P 2(O(0, 1)⊕ O(1, 0)).

• IfX′ � P P 2(TP 2(−1)⊕O⊕2) the contraction θ̄ is of fiber type; it follows that S is the
union of all the fibers of θ̄ which have nonempty intersection with S itself. In particular, either
S is a two-dimensional fiber of θ̄ , i.e., a section corresponding to a surjection TP 2(−1) ⊕
O⊕2 → O, and we are in case (e3), or θ̄ is a P 1-bundle and S contains a one-parameter family
of fibers isomorphic to P 1. In this last case, the restriction of θ̄ to S is a morphism from S to a
curve, and therefore S � P 2; so S cannot be a section of the natural projection p : X′ → P 2.
By equation (6) the restriction of p to S is a birational morphism p|S : S → P 2, and the
only surface which is birational to P 2 and has a morphism on a curve all whose fibers are
isomorphic to P 1 is the Hirzebruch surface F 1. In particular, the exceptional curve of S is a
line in a fiber of p, therefore θ̄ (F 1) = θ̄ (C0) is a line l ⊂ P 4 and S is the intersection of the
pullback of three hyperplanes in P 4 meeting along l (case (e4)).
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To conclude, we prove the effectiveness of X in these last two cases: in case (e3) let Y
be a general member of |OP 2×P 3(1, 1)| and let E = OY (1, 1)⊕ OY (1, 2); then X � P Y (E),
as proved in [19, Proposition 7.3], and X is a P 1-ruled Fano manifold. In case (e4) X can
be realized as follows: let Z = Bll(P 4), and let HZ be the pullback of OP 4(1); then X is a
general section in the linear system |p∗

1OP 2(1)+ p∗
2H | in P 2 × Z, where p1 and p2 denote

the projections onto the factors. �
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