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Positron emission tomography/computed tomography (PET/CT) with 18F-
fluorodeoxyglucose (18F-FDG) is currently a standard imaging examination used in
clinical practice, and plays an essential role in preoperative systemic evaluation and
tumor staging in patients with tumors. However, 18F-FDG PET/CT has certain limitations in
imaging of some tumors, like gastric mucus adenocarcinoma, highly differentiated
hepatocellular carcinoma, renal cell carcinoma, and peritoneal metastasis. Therefore, to
search for new tumor diagnosis methods has always been an important topic in
radiographic imaging research. Fibroblast activation protein (FAP) is highly expressed in
many epithelial carcinomas, and various isotope-labelled fibroblast activation protein
inhibitors (FAPI) show lower uptake in the brain and abdominal tissues than in tumor,
thus achieving high image contrast and good tumor delineation. In addition to primary
tumors, FAPI PET/CT is better than FDG PET/CT for detecting lymph nodes and
metastases. Additionally, the highly selective tumor uptake of FAPI may open up new
application areas for the non-invasive characterization, staging of tumors, as well as
monitoring tumor treatment efficacy. This review focuses on the recent research progress
of FAPI PET/CT in the application to abdominal and pelvic tumors, with the aim of
providing new insights for diagnostic strategies for tumor patients, especially those
with metastases.

Keywords: 68Ga-FAPI-04, 18F-FDG, positron emission tomography computed tomography (PET/CT), abdominal
tumors, pelvic tumors, radiotherapy
1 INTRODUCTION

In recent years, tumor morbidity and mortality have increased rapidly. According to the statistics,
19.3 million new cancer cases and nearly 10 million cancer deaths occurred in 2020 (1). In the
abdominal and pelvic cavity, colorectal cancer, liver cancer, gastric cancer, and prostate cancer all
have high morbidity and mortality (2–5). Therefore, a large amount of clinical and basic research is
needed to improve the detection and treatment of tumors (6). Early diagnosis and accurate
assessment of tumors have important implications for treatment decisions and prognosis (7).

“Tumors” comprise cancer cells and stromal cells: cancer cells are undifferentiated, while stromal
cells consist of fibroblasts, vascular endothelial cells, and immune cells (8). At present, PET/CT is a
commonly used imaging method for the preoperative systemic evaluation and staging of malignant
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tumors and the glucose analog, fluorodeoxyglucose (FDG) is the
most commonly used radioactive tracer for detecting malignant
tumors on PET/CT (9–14). However, FDG has weak efficacy for
tumor delineation and the identification of metastatic lesions (15,
16, 17), making it difficult to distinguish between inflammation
and malignancy on FDG PET/CT (7, 18–20).

Recently, the tumor microenvironment (TME) has attracted
increasing attention as a target for tumor therapy. The TME
occupies a significant fraction of the tumor volume. For example,
in pancreatic cancer, TME can form up to 80% of tumor blocks
(21). Cancer-associated fibroblasts (CAFs), existing in most of the
stroma of solid tumors, are essential components of the TME (22,
23). CAFs are thought to originate from various cells, including
fibroblasts, adipocytes, and epithelial cells (24, 25). Fibroblast
activation protein (FAP) was initially discovered in the
malignant cells of many sarcomas by Rettig et al. in 1988 (26).
FAP is a serine protease that is barely expressed in the matrix of
healthy tissues (27, 28). However, in many epithelial cancers,
particularly connective tissue, ovarian, pancreatic, and
hepatocellular cancers, CAF is observed to show high expression
(22, 29–32). CAFs differ from normal fibroblasts in that they show
a relatively higher tumor-specific expression of FAP, which is
expressed in over 90% of human epithelial carcinomas but is
almost absent in normal adult tissues (33–35). Hypoxia is an
influential factor in the induction of FAP expression in CAF (36).
Currently, fibroblast activation protein inhibitors (FAPI) have
been developed as anticancer agents (37), and most tumors
show high uptake rates and image contrast on FAPI PET/CT
(38–41), which is helpful for non-invasive qualitative analysis of
tumor, staging examinations, and radioligand therapy (18, 19, 42–
45). Therefore, in this review article, we focus on the recent
progress of FAPI PET/CT for the examination of abdominal
and pelvic tumors.
2 ORGANS OF THE ABDOMINAL CAVITY

2.1 Canal Organs
2.1.1 Stomach
Globally, gastric cancer is one of the most common
malignancies, with more than one million new cases and an
estimated 769 000 deaths in 2020, and is in fifth place for global
morbidity and fourth for mortality (1). The risk factors for
gastric cancer include Helicobacter pylori infection, age, high
salt intake, and low intake of fruit and vegetables (1, 46). Early
detection and early prevention are essential measures to reduce
mortality from gastric cancer, and are very important for its
treatment and prognosis (4, 46, 47). 18F-FDG PET/CT has
poor diagnostic ability for gastric signet-ring cell carcinoma,
gastric mucus adenocarcinoma, and non-interstitial diffuse gastric
cancer (12), which is because these histological types of gastric
cancer can show significant differences in 18F-FDG uptake (10, 48).
Studies comparing FAPI and FDG PET/CT in the same cohort of
primary gastric adenocarcinoma patients showed that all
primary gastric tumors were FAPI positive (100% detection
rate), but that only half of the tumors were FDG positive (50%
Frontiers in Oncology | www.frontiersin.org 2
detection rate) (49). In a study of 38 gastric cancer patients
including 31 adenocarcinomas and seven signet-ring cell
carcinomas, the sensitivities of 68Ga-FAPI-04 PET/CT and 18F-
FDG PET/CT for the diagnosis of primary gastric cancer were
100% and 82%, respectively. Four cases of adenocarcinoma and
three cases of signet-ring cell carcinoma were missed by 18F-FDG
PET/CT (4). These studies suggested that the FAPI detection rate
for primary gastric cancer was better than that of FDG. This may
be because of the high intake rate of FDG in the intestinal wall
and other abdominal organs (50). Furthermore, the study also
found that 68Ga-FAPI-04 PET/CT had certain advantages for
detecting lymph node metastasis and peritoneal metastasis in
gastric cancer (49, 51, 52). Previous studies have shown that
18F-FDG PET/CT had a low sensitivity to metastasis in
gastrointestinal tumors (53–56). In a subgroup analysis, FAPI
outperformed FDG in detection and assessment of the extent of
poorly differentiated gastric signet-ring cell carcinoma combined
with peritoneal cancer metastasis (57). FDG was particularly
poor in this subgroup; in contrast, FAPI was very useful, with
higher uptake and minimal or no background activity in diffuse
peritoneal metastasis (58). Jiang et al. found that the sensitivities
of 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT for 10 regional
lymph node metastases and distant metastases were 6/10 and
5/10, respectively (4). Guo et al. examined a 63-year-old man,
and found enhanced uptake of 68Ga-FAPI in the stomach wall
and more lesions in the mesentery and omentum than shown on
FDG PET/CT. The patient subsequently underwent a
histopathological examination to confirm the diagnosis of
peritoneal metastasis from gastric adenocarcinoma (59). In a
41-year-old woman recently diagnosed with gastric signet-ring
cell carcinoma, 68Ga-FAPI PET/CT was performed 2 days after
18F-FDG PET/CT. The MIP image of 68Ga-FAPI PET/CT
showed a significantly higher number of abnormal foci in
different parts of the body than that of 18F-FDG PET/CT,
suggesting gastric signet-ring cell carcinoma had extensive
peritoneum, lymph node, and bone metastasis (44). However,
some studies have found that inflammation-induced fibrosis may
cause false-positive uptake of 68Ga-FAPI. In a 78-year-old man
who was newly diagnosed with gastric adenocarcinoma, a benign
Schmorl node in the inferior endplate of the T5 vertebra showed
enhanced uptake of 68Ga-FAPI-04, which was not FDG avid.
Two months after radical gastrectomy of gastric cancer, a follow-
up CT showed that the Schmorl node in the T5 vertebra
remained unchanged. This node was suspected to be caused by
bone marrow fibrosis and sclerosis after prominent medulla
vertebrae (60). In the patients described by Pang et al., false-
positive uptake of 68Ga-FAPI was observed in those with
inflammatory diseases, granulomatous disease, and other
diseases where fibrosis was active (16).

These studies indicate that 68Ga-FAPI PET/CT has
advantages over 18F-FDG PET/CT in displaying primary
gastric cancer, lymph node metastasis, and peritoneal
metastasis of gastric cancer (Figures 1 and 2). Largely because
of the relatively high physiological background uptake of 68Ga-
FAPI in the stomach wall and other abdominal organs, it has
better tumor-to-background contrast and provides a more
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FIGURE 1 | A 65-year-old woman diagnosed with poorly differentiated gastric adenocarcinoma underwent 18F-FDG PET/CT (A) and 68Ga-FAPI-04 PET/CT
examination (B) respectively, showing a FAPI-positive, FDG-negative primary tumor (SUVmax 11.8 and 2.3, respectively) and a perigastric lymph node (SUVmax 2.3
and 0.3, respectively). With permission from Kuten et al. (49).

A B C

FIGURE 2 | Another 78-year-old male diagnosed with poorly differentiated gastric adenocarcinoma, 68Ga-FAPI-04 PET/CT (A, D) and 18F-FDG PET/CT scans
(B, E) revealed highly uptake of FAPI in the primary tumor and peritoneal carcinomatosis compared with FDG (primary tumor SUVmax 23 and 6.8; primary tumor
tumor-to-background ratio;11.5 and 3.8; peritoneal-carcinomatosis SUVmax 7.5 and 2.3, respectively). The 68Ga-FAPI-04 PET/CT examination after 4 months of
chemotherapy (C, F) showed the disease progression of this patient. The results demonstrated that 68Ga-FAPI-04 PET/CT was superior to 18F-FDG PET/CT in
detecting primary gastric adenocarcinoma and peritoneal carcinomatosis with a gastric cancer origin. With permission from Kuten et al. (49).
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detailed profile of the tumor. However, when the tumor invades
other tissue, a fibrotic reaction may occur, leading to severe
fibrosis and the possible false-positive uptake of 68Ga-FAPI. As
inflammation may occur concurrently with malignant disease,
we should refer to other imaging manifestations and clinical data
to avoid misdiagnosis, rather than just using the uptake level of
68Ga-FAPI.

Since the studies mentioned here used head-to-head
comparison, the imaging protocols used were largely
consistent. PET/CT (Biograph mCT, Siemens Healthineers,
Germany; Ingenuity TF, Philips Healthcare, USA; uMI510,
United Imaging, China, etc.) scanners were used in these
studies. The median time between the FDG and the FAPI
scans was 1–23 days. The injection dose of each tracer was
adjusted by weight (3.7-5 MBq/kg for FDG and 1.8-3 MBq/kg for
FAPI-04). Before FDG PET/CT, patients were instructed to fast
for at least 4–5h and avoid exercise for 24h. All patients should
underwent blood glucose testing to ensure normal blood glucose
levels (<150 mg/dl). PET scans were obtained 1h after injection
of the radiotracer. Appropriate hydration was ensured before all
scanning procedures, and patients were instructed to urinate
immediately before imaging acquisition. After low-dose CT
scans (tube voltage of 110-120 KeV, current of 80-120 mA,
and slice thickness of 3.75 mm), PET scans were collected in 3D
mode. Then emission data were corrected, and reconstruction
was performed. After correction for the corresponding emission
data, the reconstructed images were generated.

2.1.2 Gut
From 1993 to 2013, the incidence of colorectal cancer increased
by approximately 2% annually in people younger than 50 years
old (6). In 2020, there were over 1.9 million new cases of
colorectal cancer (including the anus) and 935 000 deaths,
accounting for around one-tenth of cancer cases and deaths.
Colorectal cancer ranks third in terms of incidence and second in
terms of mortality (1). Because 18F-FDG PET/CT has low
sensitivity for lymph node staging, it has limited applicability
for intestinal tumor staging and surgical planning (61). In a male
patient with a biopsy-confirmed peritoneal metastatic
adenocarcinoma, 18F-FDG PET/CT showed no abnormal
abdominal and pelvic activity. On the maximum density
projection and axle graph, 68Ga-FAPI maximum intensity
projection and axial fusion images showed lesions with
increased 68Ga-FAPI uptake in the peritoneal, mesenteric,
omentum, and ileum intestinal wall. 68Ga-FAPI PET/CT signs
suggested appendix mucinous carcinoma with lymph node
metastasis and extensive peritoneal carcinomas (62). Koerber
and others performed 68Ga-FAPI PET/CT on 22 patients. FAPI
tracer had the highest uptake rate in metastatic liver cancer and
anal cancer, with maximum specific uptake values (SUVmax) of
9.1 and 13.9, respectively. In untreated patients, 50% experienced
TNM changes. In comparison, 47% of patients developed new
findings with metastases (3). In a 23-year-old woman with
sigmoid colon signet-ring cell carcinoma, 68Ga-FAPI-04 PET/
CT showed strong uptake by lesions in the sigmoid colon,
retroperitoneal lymph node, left supraclavicular lymph node,
and pelvic peritoneum. Compared with 18F-FDG, 68Ga-FAPI-04
Frontiers in Oncology | www.frontiersin.org 4
showed clearer and more foci (63). Many studies have confirmed
the advantages of 68Ga-FAPI for discovering and delineating
primary and metastatic cancer foci in colorectal cancer (3, 64,
65). Furthermore, some studies found that 68Ga-FAPI had
certain advantages for showing inflammation associated with
intestinal disease. A 65-year-old woman with rectal cancer
showed enhanced 68Ga-FAPI uptake in her sacroiliac and
costal joints, suggesting that she had sacroiliac arthritis and
spondylitis, while 18F-FDG PET/CT found no abnormal lesions
on the bone (66). MIP images of a 49-year-old male patient
showed increased FAPI intake in the middle abdomen, which
was followed by a pathological diagnosis of benign enteric
inflammatory myofibrolastoma (67). Scholars have also found
that FAPI-guided radiation therapy may reduce selective lymph
node irradiation, thereby avoiding tumor recurrence and
improving overall survival. Preliminary data suggest that as a
complementary treatment for conventional radiotherapy, FAPI-
guided radiotherapy can significantly improve treatment
outcomes (3).

According to previous studies, 68Ga-FAPI PET/CT has
several advantages over 18F-FDG PET/CT in the identification
of primary intestinal and metastatic tumors. These are likely due
to high levels of fibroblast-activated protein expression in
tumors. 68Ga-FAPI PET/CT also improves the delineation of
target areas in patients receiving radiotherapy. In addition to
various malignancies, 68Ga-FAPI can be taken up by various
non-malignant diseases such as benign enteric inflammatory
muscle fibroblastoma and various intestinal inflammations.
68Ga-FAPI has been introduced as an imaging radiotracer,
which will help to develop new treatment strategies such as
FAPI-guided radiotherapy, although more research is needed to
confirm the effectiveness of the treatment.

2.1.3 Biliary System
Gallbladder cancer is the most common cancer of the biliary
system, ranking among the top six gastrointestinal tumors
worldwide (68–71). Gallbladder cancer is not easy to detect in
the early stage, and is therefore usually diagnosed in the late
stage. It regularly metastasizes and causes biliary obstruction
(72). Cholangiocarcinoma is a digestive tumor with a low
incidence and poor prognosis (73). It originates from
malignant tumors of the bile duct cells arranged on the biliary
tree. Anatomically, it can be divided into three subtypes:
intrahepatic, perihilar, and distal subtypes. It is a highly
malignant tumor with poor prognosis. Approximately 50% of
untreated patients die within 3-4 months of developing
symptoms (74–76). Very few clinical studies have examined
the role of FAPI in the diagnosis of biliary system
malignancies. Studies have demonstrated that factors
associated with improving the long-term survival of patients
with malignancies of the biliary system are the ability to achieve
negative surgical margins and the pathological stage (i.e., lymph
node metastasis) (77–79). Therefore, it is essential to improve the
accuracy of early diagnosis and postoperative review. Kratochwil
et al. used 68Ga-FAPI PET/CT to evaluate 80 patients with 28
different tumor entities, and found one of the highest SUV values
in cholangiocarcinoma (mean SUVmax > 12), which showed
January 2022 | Volume 11 | Article 797960
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significantly-high uptake rates and image contrast on FAPI PET/
CT (19). Cholangiocarcinoma is a tumor with hyperplastic
connective tissue and rich stroma, and the number of CAFs is
usually several times that of actual cholangiocarcinoma cells, and
thus 68Ga-FAPI-04 has high sensitivity for the detection of
cholangiocarcinoma (80, 81). Similarly, 68Ga-FAPI PET/CT
has also been successfully applied to benign lesions of the
biliary system. A contrast-enhanced CT scan of a 47-year-old
male patient revealed hilar bile duct stenosis with intrahepatic
bile duct dilation, and 18F-FDG PET/CT showed only mild FDG
uptake in the hepatic phylum, whereas 68Ga-FAPI PET/CT
showed intense radioactivity in the same region of the hepatic
portal vein. A final laparotomy resulted in a diagnosis of portal
vein biliary lesions caused by cavernous portal degeneration. In
this case, the uptake rate of portal cholangiopathy caused by
cavernous portal degeneration was higher on 68Ga-FAPI PET/
CT than on 18F-FDG PET/CT (82). A 57-year-old man with a
history of colon cancer resection showed enhanced FAPI uptake
in the gallbladder wall with a central area of reduced signal on
68Ga-FAPI PET/CT. The pathology revealed asymptomatic
chronic cholecystitis (83).
2.2 Parenchymal Organs
2.2.1 Liver
In 2020, hepatic cell carcinoma (HCC) was ranked fifth for global
male morbidity and second for male mortality. Approximately
906 000 new cases occurred, and the death toll was 830 000 (1).
The risk factors for liver cancer include chronic hepatitis B and
C, alcohol abuse, metabolic liver disease, and exposure to dietary
toxins such as aflatoxin (84, 85). In addition to primary HCC, the
incidence of liver metastases is very high. The liver accounts for
75.7% of all synchronous metastatic cancers, and the rate of liver
metastasis is higher in men than in women. The prospects for
patients with untreated liver metastases are poor with less than
5% survive for five years (2, 86). Early hepatocellular carcinomas
are candidates for potential radical treatment, including local
ablation, surgical resection, and liver transplantation (87).
Therefore, liver cancer monitoring and early detection increase
the chance of potential cure (85). Experiments demonstrated that
68Ga-FAPI-04 PET/CT has high sensitivity in the detection of
primary liver cancer (81, 88–90). Shi et al. detected 28
intrahepatic malignant lesions in 16 patients with suspected
liver cancer, with 75% of HCC lesions (n=6) showing
significant FAP expression (81). One study has also shown that
HCC could be identified from multiple liver tumors using
dynamic FAPI PET combined with kinetic modelling,
suggesting that dynamic FAPI PET imaging had potential for
the accurate non-invasive diagnosis of liver malignancies (91).
68Ga-FAPI-04 PET/CT also has advantages in the detection of
metastatic liver cancer (Figure 3). Sahin et al. set diagnostic
criteria for identifying 98 liver metastases in 31 patients with
gastrointestinal tumors. Among them, 92 lesions were 68Ga-
DOTA-FAPI positive, and 65 were 18F-FDG positive (92).
Another study found that 68Ga-FAPI-04 PET/CT showed
multiple metastatic liver lesions that were not detected on
68Ga-DOTATE PET/CT (93). Another 45-year-old male
Frontiers in Oncology | www.frontiersin.org 5
patient, who had a history of hepatitis A but was cured,
underwent a CT scan and found space-occupying lesions in
the liver. The patient subsequently underwent 18F-FDG PET/CT
that showed no abnormalities foundings. The next day, the
patient underwent a 68Ga-FAPI-04 PET/CT scan, which
showed not only strong and high uptake at the tail of the
pancreas but also increased uptake in the low background of
the liver. Subsequently, postoperative pathology confirmed
hepatic metastasis of pancreatic G2 NETs (94). These cases
suggest a great potential of 68Ga-FAPI-04 in diagnosing liver
metastases. However, a 60-year-old female patient with a history
of resection of IgG4-related sclerosing cholangitis underwent
18F-FDG PET/CT during follow up, and a hypermetabolic lesion
with a high-density suture was found on the left edge of the
residual liver. Further inspection on 68Ga-FAPI PET/CT showed
diffuse intense FAPI activity throughout the liver due to
histopathological features of “storiform” fibrosis, and
ultimately the patient was diagnosed with liver fibrosis on
ultrasound transient elastography (95). Kreppel et al. found
that tissue remodelling by cirrhosis led to fibroblast activation
and FAPI uptake. FAPI PET may be useful for detecting the
progression of activity in cirrhosis (96). According to the study,
liver metastasis is closely associated with the burden of liver
fibrosis, with 80%–90% of liver metastasis occurring in fibrosis or
cirrhosis (97). Therefore, the examination results of 68Ga-FAPI-
04 PET/CT should be comprehensively judged as malignant
tumor or fibrosis based on the condition and other auxiliary
examinations. Furthermore, FAPI PET/CTmay contribute to the
planning of radiotherapy for liver tumors because FDG PET has
high background signal in the liver, which hinders definition of
the target area volume. FAPI PET/CT may also play a role in
future checkpoint inhibitor treatment programs for HCC
because activated fibroblasts regulate immune cell function in
the tumor stroma (89, 96).
2.2.2 Pancreas
The number of deaths from pancreatic cancer (466 000) is almost
the same as that of new pancreatic cancer patients (496,000).
Pancreatic cancer with a very poor prognosis has been the
seventh leading cause of cancer death (1). The risk factors for
pancreatic cancer include obesity, diabetes, and excessive alcohol
consumption. Because patients rarely show specific symptoms at
an early stage, the current early diagnosis of pancreatic cancer
depends on imaging (98). PET/CT is more accurate and sensitive
for the diagnosis of pancreatic primary and metastatic tumors
than contrast-enhanced CT, magnetic resonance imaging (MRI)
and MR pancreatic cholangiography (99). The current
commonly used clinical examination is 18F-FDG PET/CT.
However, it has some limitations such as when pancreatic
cancer patients are accompanied by hyperglycaemia, in which
case 18F-FDG can be competitively inhibited resulting in low
uptake and the possibility of false negatives. Additionally, 18F-
FDG PET/CT has low sensitivity and specificity in the diagnosis
of pancreatic cancer (100–103), While FAPI PET/CT was found
to show high tumor background contrast, and could visualize
CAF density and crucial biological information on FAP
January 2022 | Volume 11 | Article 797960
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FIGURE 3 | A 53-year-old male diagnosed with moderately-differentiated HCC, 18F-FDG PET/CT images did not detect intrahepatic positive findings (A), and 68Ga-
FAPI-04 PET/CT showed a strongly FAPI positive lesion in the right lobe of the liver (B). In PET/CT images of another 53-year-old male diagnosed I with recurrent
HCC and extensive peritoneal diffusion, a small metastatic lesion was not detected in 18F-FDG PET/CT (C), which was found with increased uptake in 68Ga-FAPI-04
PET/CT (D). Therefore, 68Ga-FAPI-04 PET/CT was more sensitive than 18F-FDG PET/CT in the detection of HCC and peritoneal metastatic carcinoma. With
permission from Wang et al. (45).

Yang et al. FAPI PET/CT in Tumors
expression (104). Röhrich et al. performed 68Ga-FAPI PET/CT
in 19 patients with pancreatic ductal carcinoma, and the
68Ga-FAPI PET/CT results altered the TNM stage in 10 out of
the 19 patients, resulting in changes in tumor treatment in seven
patients (105). Studies were also performed on a 65-year-old
male patient with suspected pancreatic cancer using 18F-FDG
and 68Ga-FAPI PET/CT. The uptake intensity of 68Ga-FAPI
PET/CT was higher than that of 18F-FDG in the head of the
pancreas and the 10th rib on the right side, and the patient was
eventually diagnosed with pancreatic cancer (106). These studies
showed that 68Ga-FAPI PET/CT was better than 18F-FDG PET/
CT for diagnosing pancreatic cancer (107). In a male patient
Frontiers in Oncology | www.frontiersin.org 6
considered to have an IgG4-related disease, 68Ga-FAPI PET
showed inflammation throughout the pancreas and bile duct
trees, whereas 18F-FDG PET did not. Therefore, 68Ga-FAPI is
not only a good tumor tracer, but also a good tracer for
fibroblast-mediated inflammatory responses (108). However,
inflammation-induced non-specific fibrosis may also lead to
positive 68Ga-FAPI-04 uptake and may thus be mistaken as an
indicator of tumor recurrence (109–113). Fortunately, 68Ga-
FAPI-04 PET/MR has the potential to avoid misdiagnosis of
certain pancreatic lesions (114). Fibroblast activator proteins are
highly expressed in pancreatic cancer tissues, and most strongly
so next to the carcinoma. FAPI has also been taken to establish
January 2022 | Volume 11 | Article 797960
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FIGURE 4 | A 47-year-old woman diagnosed with ovarian cancer, 18F-FDG PET/CT showed the omental-cake-pattern of peritoneal carcinomatosis with low-to-
moderate activity throughout the entire abdomen and pelvis (A). However, there were more details in 68Ga-FAPI-04 PET/CT images, we could find that higher uptake
was observed in the omental and peritoneal surfaces, especially around the liver and small bowel mesenterium (B). Subsequent pathological findings were consistent
with 68Ga-FAPI-04 PET/CT findings. 68Ga-FAPI-04 PET/CT showed superiority over 18F-FDG PET/CT in the display of peritoneal metastatic carcinoma. With
permission from Chen et al. (88).
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the radioligand for pancreatic cancer treatment (115, 116).
Between June 2020 and March 2021, nine patients with
metastatic soft tissue or osteosarcoma (N=6) or pancreatic
cancer (N=3) received 90Y-FAPI-46 treatment; four of these
patients had hepatotoxic side reactions, including the most
common one of thrombocytopenia, whereas three patients
showed controlled disease with a low incidence of attributable
adverse events. This indicated that FAP targeting radiotherapy
using 90Y-FAPI-46 was well tolerated, and a 90Y-FAPI-46 repeat
cycle was feasible (117). Studies have also evaluated the
biodistribution and theranostic effect of 225Ac-and 64Cu-
labelled FAPI in pancreatic cancer lesions, with 64Cu-FAPI-04
dynamic imaging showing rapid renal clearance, slow tumor
clearance, and a significant increase in accumulation levels in
tumor. 225Ac-FAPI-04 showed significant inhibition of tumor
growth and no significant effect on body weight. Thus, 64Cu-
FAPI-04 and 225Ac-FAPI-04 can be used as a pair radioligands
for theranostic of FAP-expressing pancreatic cancer (118). We
also understand that radioligands bearing radionuclides with a
short half-life and b+ or g emission could be used for diagnosis,
while those with a longer half-life and b- or a decay for therapy
(119, 120). However, the clinical data remain sparse, and more
extensive trials are needed to determine the efficacy and toxicity
of other radionuclides.

2.2.3 Kidney
Renal cell carcinoma (RCC) is the 14th ranked malignant disease
worldwide, with a peak incidence at 60-70 years-of-age (121).
Other identified risk factors include obesity, smoking, and
hypertension (122). Transparent cell carcinoma, papillary
carcinoma, and chromophobe renal cell carcinoma (CRCC) are
Frontiers in Oncology | www.frontiersin.org 7
the most common solid RCCs, accounting for 85%-90% of all
malignant kidney tumors (123). Because of the low expression of
glucose transporter-1 in RCC and the physiological excretion of
18F-FDG from the kidney, there may be reduced contrast
between kidney disease and normal tissue, which may conceal
kidney disease. Therefore, the applications of 18F-FDG PET/CT
to RCC are limited (9, 13, 14, 124). Pang et al. studied a 71-year-
old male patient whose imaging showed multiple 68Ga-FAPI
active lesions in the cervical and lower thoracic spine, with
another high-uptake lesion being observed at the right lower
renal pole. Renal biopsy resulted in a diagnosis of CRCC, and
68Ga-FAPI PET/CT showed higher activity than 18F-FDG in
bone metastases (125). In addition to kidney cancer, chronic
kidney disease is clinically prevalent. Risk factors for chronic
kidney disease include diabetes, hypertension, obesity, and old
age. Current clinical treatments can only delay the progression of
disease, and may ultimately lead to irreversible nephron loss and
end-stage renal disease (ESRD) (126). Kidney fibrosis is a
pathological state occurring during the progression of chronic
kidney disease, and a strategy targeting activated myofibroblasts
and collagen-degrading enzymes may decrease or even reverse
kidney fibrosis (127). Zhou et al. performed 68Ga-FAPI-04 PET/
CT imaging on 13 patients with renal fibrosis, and the
examinations indicated that almost all patients (12/13) showed
increased radiotracer uptake. The SUVmax of the patients with
mild, moderate, and severe fibrosis were 3.92 ± 1.50, 5.98 ± 1.6
and 7.67 ± 2.23, respectively. Thus, in comparison with
renopuncture examinations, 68Ga-FAPI-04 PET/CT showed
bilateral kidneys more quickly and sensitively, which can, in
turn, help assess disease progression, diagnosis, and treatment
planning (67).
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3 PELVIC ORGANS

3.1 Uterus
The most common malignant tumors in the uterus are those
from cervical cancer and uterine body cancer. Cervical cancer is
the fourth most commonly diagnosed cancer and the fourth
leading cause of cancer death in women, with an estimated 604
000 new cases globally and 342 000 deaths in 2020 (1). Human
papillomavirus (HPV) is the primary cause of cervical cancer.
Cervical cancer is a preventable disease for which screening tests
can be used to detect precancerous lesions (128, 129). Body
cancer (mainly endometrial cancer) ranks sixth most common
among women worldwide. There were 417 000 new cases in 2020
and 97 000 deaths (1). The risk factors for endometrial cancer
include early menarche, late menopause, infertility, and obesity
(130). Studies have found that the endometrium has a
physiological uptake of FDG, which may lead to a false-
positive or false-negative diagnosis. A 44-year-old woman with
newly diagnosed gastric adenocarcinoma by gastroscopy
underwent 18F-FDG PET/CT, which showed strong uptake in
the uterine area. Physiologic uptake of endometrium was initially
suspected but eventually proved to be mucinous adenocarcinoma
originating from the stomach (131). In addition, there was also a
physiological uptake of FAPI in the endometrium. Dendl et al.
assessed the biodistribution and tumor uptake of multiple
gynaecological tumors. In eight primary tumors, the uptake
rate of all primary lesions was highest in endometrial cancer
(mean SUVmax = 18.4), followed by cervical cancer (mean
SUVmax = 15.22). However, in studies of normal hormone-
responsive organs, there was a significant difference in the
uptake of the endometrium (11.7 vs 3.9; p<0.0001) and breast
(1 .8 vs 1.0 ; p=0.004) between premenopausal and
postmenopausal patients; therefore, increased endometrial
FAPI uptake does not necessarily imply tumor infiltration into
the uterus. FAPI accumulates in the tissue during remodelling,
suggesting that the postmenopausal endometrium remains active
and in a quiescent state, rather than truly atrophic (132). This
was further evidenced by Dendl et al. in another study on a 29-
year-old female patient with adenoid cystic carcinoma. In
addition to the high uptake of 68Ga-FAPI-46 by the adenoid
cystic carcinoma, the parenchyma of both breasts was well
depicted, with SUVmax of 4.1 on the right and 3.5 on the left.
The SUVmax of the endometrium was 25.7. This case suggests
that the expression of FAP in hormone-sensitive organs such as
the breast and uterus may undergo a physiological increase after
pregnancy and during lactation (133). The latest study by
Christine E. Mona et al. showed that the highest 68Ga-FAPI-46
PET signal in the normal organ was the bladder due to the
urinary bladder due to urinary excretion and the uterus due to
normal myometrial FAP expression (134).

Experimental data show that FAPI can increase
physiologically in the uterus during normal pregnancy and
lactation, and that this can affect the clinical discrimination of
uterine malignancies. However, there is currently little clinical
research on the application of FAPI in malignant uterine tumors.
The question of how to overcome the impact of false-positive
tumor uptake still requires clinical trials and innovative ideas.
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3.2 Ovary
Ovarian cancer is a significant cause of cancer morbidity and
mortality in women, and it is an aggressive epithelial tumor
(135). Integrated treatment by gynaecologists, medical
oncologists, pathologists, and radiologists is essential to
improve the prognosis of ovarian cancer (136). One study
found that CAF was associated with the stage of epithelial
ovarian cancer, lymph node metastasis, and omental metastasis
(137). 18F-FDG PET/CT can be used to detect the early
recurrence of ovarian cancer before lesions are observable on
CT or the onset of clinical symptoms, especially in patients with
elevated CA-125 levels. However, 18F-FDG accumulated in the
gut and was then excreted through the urinary tract. It may
therefore interfere with the optimal assessment of primary pelvic
tumors (11). 18F-FDG PET/CT had some limitations when used
for the detection of primary ovarian cancer tumors and
delineating masses for pre-treatment plans, which may have
implications for treatment approaches (138). FAP is
overexpressed on the CAFs of ovarian cancer (32, 139), and a
study showed that the SUVmax of 68Ga-FAPI-04 for ovarian
cancer was moderate (6–12), while FAPI showed low non-
specific intestinal/peritoneal uptake rates. This may mean a
better diagnosis of peritoneal cancer because peritoneal cancer
is the primary clinical challenge of advanced ovarian cancer
(Figure 4) (19). At the time of the literature study for this review,
no other teams had applied FAPI in ovarian cancer. More clinical
studies are needed to confirm whether FAPI has advantages in
the diagnosis and treatment of ovarian cancer.
3.3 Prostate
Prostate cancer is the second most common cancer in men and is
the fifth most common cause of death from cancer. In 2020, there
were nearly 1.4 million new cases of prostate cancer worldwide
and 375 000 deaths (1). A total of 93% of prostate cancers are
adenoid adenocarcinomas, while the remaining 7% are variants
of ductal adenocarcinoma, basal cell carcinoma, and
neuroendocrine tumors (140). Recent findings indicate that
177Lu-PSMA (prostate specific membrane antigen) may
provide an effective treatment option for patients with high
expression of PSMA (141). Although PSMA-targeted imaging
probes have been used for prostate cancer diagnosis, variable
expression in metastases and difficulties in detecting visceral
lesions have limited their application (142). Three male patients
with advanced castration-resistant prostate cancer or
neuroendocrine prostate cancer underwent 68Ga-FAPI-04
PET/CT examinations. The results revealed that FAP
expression increased significantly with disease progression. In
patients with advanced castration-resistant prostate cancer,
68Ga-FAPI-04 PET/CT was highly positive (143). Other
researchers found that FAP expression is significantly
increased in metastatic disease compared with primary
prostate cancer (144). However, in a study of a 76-year-old
man with a history of chronic prostatitis and left shoulder
osteoarthritis, 18F-FDG and 68Ga-DOTA-FAPI-04 PET/CT
examinations were similar, indicating that for prostate cancer,
68Ga-DOTA-FAPI-04 imaging may not be more tumor-specific
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than 18F-FDG imaging. The study also found that the shoulder
arthritis site showed higher tracer uptake than the tumor site.
This revealed that 68Ga-DOTA-FAPI-04 imaging was beneficial
for diagnosing inflammation, but that inflammation can cause
substantial interference in the diagnosis of tumors.

Combining the information from the above studies, we found
that the application value of 68Ga-FAPI-04 imaging in prostate
cancer is uncertain. The potential value of 68Ga-FAPI-04
imaging in inflammation may reduce its diagnostic specificity
in tumors. Is 68Ga-FAPI-04 PET/CT more tumor-specific than
18F-FDG imaging in prostate cancer, or does it have more
diagnostic and therapeutic effects? Does FAPI-targeted
radionuclide therapy have potential? These questions require
further clinical studies and more extensive clinical data.
4 CONCLUSION

In this review, we describe the current status of FAPI PET/CT in
abdominal and pelvic organ tumors, and list many
corresponding false-positive cases. Current clinical studies
demonstrate that molecular imaging with FAPI PET/CT has
good prospects for applications in abdominal and pelvic tumors.
It has advantages over 18F-FDG PET/CT in the diagnosis of
primary tumors and various metastases. Currently, FAPI-02 and
FAPI-04 were the commonly used ligands to synthesize imaging
agent. Previous studies have shown that FAPI-04 had a longer
half-life than FAPI-02, and had excellent stability in human
serum. In the lesions, FAPI-04 exhibited longer radiotracer
residence. Compared to the effective tumor uptake of FAPI‐02,
the effective tumor uptake of FAPI‐04 after 24 hours increased by
a hundred percent, which had significant benefits for therapeutic
application of the tracer. Therefore, FAPI-04 is more
advantageous. However, there are currently little clinical data
on the application of FAPI in malignant tumors of pelvic organs
such as the uterus, ovary, and prostate, and false-positive results
induced by inflammation may limit the application of FAPI PET/
CT. These problems also require systematic clinical studies with
large patient populations.

Tumor therapeutic strategies using FAPI are also worth
exploring. The low expression of FAP in normal tissues is a
significant advantage of targeted therapy with FAPI. For future
studies, radionuclides with suitable half-life and b- or a decay may
be the best option for radiotherapy. Combined with chemotherapy
and immunotherapy, it may produce synergistic results.
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Moreover, radiotherapy causes biological and molecular changes
in the tumor microenvironment, which can be observed by PET
tracers. The plan can be adjusted during treatment, and the
subsequent treatment plan can be personalized with this
information. The application of FAPI PET/CT to tumor
evaluation and restaging has been shown to be up-and-coming,
but the research is still in its infancy. With the deepening of
research and the constant maturity of technology, we believe that
FAPI PET/CT will be more widely used in clinical practice.
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