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Abstract—The machine recognition of speech spoken at a
distance from the microphones, known as far-field automatic
speech recognition (ASR), has received a significant increase
of attention in science and industry, which caused or was
caused by an equally significant improvement in recognition
accuracy. Meanwhile it has entered the consumer market
with digital home assistants with a spoken language interface
being its most prominent application. Speech recorded
at a distance is affected by various acoustic distortions
and, consequently, quite different processing pipelines have
emerged compared to ASR for close-talk speech. A signal
enhancement front-end for dereverberation, source separa-
tion and acoustic beamforming is employed to clean up
the speech, and the back-end ASR engine is robustified
by multi-condition training and adaptation. We will also
describe the so-called end-to-end approach to ASR, which
is a new promising architecture that has recently been
extended to the far-field scenario. This tutorial article gives
an account of the algorithms used to enable accurate speech
recognition from a distance, and it will be seen that, although
deep learning has a significant share in the technological
breakthroughs, a clever combination with traditional signal
processing can lead to surprisingly effective solutions.

Index Terms—Automatic speech recognition, speech en-
hancement, dereverberation, acoustic beamforming, end-to-
end speech recognition

I. INTRODUCTION

FAR-field, also called distant ASR is concerned with

the machine recognition of speech spoken at a dis-

tance from the microphone. Such recording conditions

are common for applications like voice-control of digital

home assistants, the automatic transcription of meetings,

human-to-robot communication, and several other more.

In recent years far-field ASR has witnessed a great

increase of attention in the speech research community.

This popularity can be attributed to several factors. There

is first the large gains in recognition performance en-

abled by Deep Learning (DL), which made the more

challenging task of accurate far-field ASR come within

reach. A second reason is the commercial success of

speech enabled digital home assistants, which has become

possible through progress in various fields, including

signal processing, ASR and natural language processing

(NLP). Finally, scientific challenges related to far-field

noise and reverberation robust ASR, such as the REVERB
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challenge [1], the series of CHiME challenges [2]–[5],

and the ASpIRE challenge [6] exposed the task to a

wide research audience and met with a lot of publicity.

Conversely, those challenges have also helped to get a

clearer picture as to which techniques and algorithms are

helpful for far-field ASR.

The reason why far-field ASR is more challenging than

ASR of speech recorded by a close-talking microphone

is the degraded signal quality. First, the speech signal

is attenuated when propagating from the speaker to the

microphones, resulting in low signal power and often

also low Signal-to-Noise Ratio (SNR). Second, in an

enclosure, such as the living or a meeting room, the source

signal is repeatedly reflected by walls and objects in the

room, resulting in multi-path propagation, which causes

a temporal smearing of the source signal called reverber-

ation, much like multi-path propagation does in wireless

communications. Third, it is likely that the microphone

will capture other interfering sounds, in addition to the

desired speech signal, such as the television or HVAC

equipment. These sources of acoustic interference can be

diverse, hard to predict, and often nonstationary in nature

and thus difficult to compensate for. All these factors have

a detrimental impact on ASR recognition performance.

Given these signal degradations, it is not surprising

that quite different processing pipelines have emerged

compared to ASR for close-talk speech. There is, fore-

mostly, the use of a microphone array instead of a single

microphone for sound capture. This allows for multi-

channel speech enhancement, which has proven very

successful in noisy reverberant environments. Second,

the speech recognition engine is trained with data which

represents the typical signal degradations the recognizer

is exposed to in a far-field scenario. This robustifies

the acoustic model (AM), which is the component of

the recognizer which translates the speech signal into

linguistic units. The following examples demonstrate the

power of enhancement and acoustic modeling:

• The REVERB challenge data consists of recordings

of the text prompts of the Wall Street Journal (WSJ)

data set, respoken and rerecorded in a far-field

scenario with a distance of 2-3 m between speaker

and microphone array [1]. The challenge baseline

ASR system, defined in 2014, which operates on a

single channel microphone signal, achieved a Word
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Error Rate (WER) of 49%. Using a strong AM based

on DL, the WER could be reduced to 22.2% [7]–

[9], while the addition of a multi-microphone front-

end and strong dereverberation brought the error rate

down to 6.14% [10].

• The data set of the CHiME-3 challenge consists

of recordings of the WSJ sentences in four differ-

ent noise environments (bus, street, cafe, pedestrian

area) [11]. The data was recorded using a tablet

computer with six microphones mounted around the

frame of the device. The baseline system reached

a WER of 33%, while a robust back-end speech

recognizer achieved 11.4% [12]. Finally, the multi-

microphone front-end processing brought the error

rate down to 2.7% [12].

• CHiME-5/6 consists of recordings of casual conver-

sations among friends during a dinner party. The

spontaneous speech, reverberation, and the large por-

tion of times where more than one speaker is speak-

ing simultaneously results in a WER of barely below

80% achieved by the baseline system. Using a strong

back-end, approximately 60% WER is achieved [13],

while the addition of multi-microphone source sep-

aration and dereverberation results in a WER of

43.2% [13]. Improvements in both front-end and

back-end resulted in 30.5% WER in the follow-up

CHiME-6 campaign [14].

The progress in ASR brought about by DL is well doc-

umented in the literature [15]–[17]. In this contribution

we therefore concentrate on those aspects of acoustic

modeling that are typical of far-field ASR. But those

aspects, although improving the error rate a lot, proved

to be insufficient to cope with high reverberation, low

SNR and concurrent speech, as is typical of far-field ASR.

This is because common ASR feature representations

are agnostic to phase (a.k.a. spatial) information and are

vulnerable to reverberation, i.e., the temporal dispersion

of the signal over multiple analysis frames, and because it

is difficult for a single AM to decide which speech source

to decode, if multiple are present. Therefore, front-end

processing for cleaning up the signals has been developed,

including techniques for acoustic beamforming [18,19],

dereverberation [20,21], and source separation/extraction

[22]. All of those have been shown to significantly

improve speech recognition performance, as can be seen

in the examples above.

In the last years, neural networks (NNs) have chal-

lenged the traditional signal processing based solutions

for speech enhancement [23]–[25], and achieved excel-

lent performance on a number of tasks. However, those

advances come at a price. The networks are notorious for

their computational and memory demands, often require

large sets of parallel data (clean and distorted version

of the same utterance) for training, which have to be

Array

Enhancement
Sec. III

ASR
Sec. IV

In addition...

The profit...

Fig. 1. Typical far-field ASR system. Here, exemplarily with M = 3
sensors, I = 2 sources and additive noise.

matched to the test scenario, and are “black box” systems,

lacking interpretability by a human. In multi-channel

scenarios, it is furthermore not obvious how to handle

phase information. As a consequence researchers tried to

combine the best of both worlds, i.e., to blend classic

multi-channel signal processing with deep learning.

The purpose of this tutorial article is to describe the

specific challenges of far-field ASR and how they are

approached. We will discuss the general components of an

ASR system only as much as is necessary to understand

the modifications introduced in the far-field scenario. The

organization of the paper is oriented along the processing

pipeline of a typical far-field ASR as shown in Fig. 1.

First, the signal is captured by an array of M micro-

phones. The signal model, which describes the typical

distortions encountered, is given in Section II. Although

recently good single-channel dereverberation [21] and

source separation techniques have been developed [24,26,

27], the use of an array of microphones instead of a single

one has the clear advantage that spatial information can

be exploited, which often leads to a much more effective

suppression of noise and competing audio sources, as well

as to better dereverberation performance. Dereverberation,

acoustic beamforming and source separation/extraction

techniques will be discussed in Section III.

Once the signal is cleaned up it is forwarded to

the ASR back-end, whose task it is to transcribe the

audio in a machine readable form. In far-field ASR it

is particularly important to make the acoustic model

robust against remaining signal degradations. We will

explain in Section IV how this can be achieved by so-

called multi-style training and by adaptation techniques.

Section V discusses end-to-end approaches to ASR. In

this rather new approach, the recognizer consists of a

monolithic neural network, which directly models the

posterior distribution of linguistic units given the audio.

This paradigm has recently been extended to the far-field

scenario, as we explain in that section.

We conclude this tutorial article with a summary and

discuss remaining challenges in Section VI. We further

provide pointers to software and databases in Section VII

for those who want to gain some hands-on experience.

This article primarily focuses on speech recognition

accuracy, a.k.a. word error rate (WER), in far-field con-

ditions as a criterion for success. Factors such as al-
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gorithmic latency or computational efficiency are only

touched on in passing, although they are certainly of

pivotal importance for the success of a technology in the

market.

II. SIGNAL MODEL AND PERFORMANCE METRICS

A. Signal model

In a typical far-field scenario the signal of interest is

degraded due to room reverberation, competing speakers,

and ambient noise. Assuming an array of M microphones,

the signal at the mth microphone can be written as

follows:

ym[ℓ] =

I∑

i=1

(
a(i)m ∗ s(i)

)
[ℓ] + nm[ℓ], (1)

where ∗ is a convolution operation, a
(i)
m [ℓ] is the acoustic

impulse response (AIR) from the origin of the ith speech

signal s(i)[ℓ] to the mth microphone, and nm[ℓ] is the

additive noise. Depending on the application, we might

only be interested in one of the I signals, say s(i)[ℓ], while

the remaining ones are considered unwanted competing

audio signals.

In the following we assume that the AIR is time

invariant, although it is well-known that movements of

the speaker or changes in the environment, and even

room temperature changes, cause a change of the AIR.

Nevertheless, time invariance is a common assumption in

ASR applications, justified by the fact, that an utterance,

for which the AIR is assumed to be constant, is only a

few seconds long.

However, the nonstationarity of the speech and noise

signals has to be taken into account. When moving to a

frequency domain representation we therefore have to use

the Short-Time Fourier Transformation (STFT), i.e., apply

the DFT to windowed segments of the signal. Typical

window, also called frame, lengths are 25 – 128ms and

frame advances are 10 – 32ms.
When expressing the signal model of Eq. (1) in the

STFT domain, it is important to note that, in a common

setup, the AIR is much longer than the length of the

analysis window. In a typical living room environment

it takes 0.3 – 0.7 s for the AIR to decay to −60 dB of

its initial value, which is considerably longer than the

aforementioned window length. Then the convolution in

Eq. (1) no longer corresponds to a multiplication in the

STFT domain, but instead to a convolution over the frame

index. To a good approximation [28,29], Eq. (1) can be

expressed in the STFT domain as

ym,t,f =

I∑

i=1

L−1∑

τ=0

a
(i)
m,τ,fs

(i)
t−τ,f + nm,t,f , (2)

where a
(i)
m,t,f is a time-frequency representation of the

AIR, called acoustic transfer function (ATF); s
(i)
t,f and

nm,t,f are the STFTs of the ith source speech signal

and of the noise at microphone index m, frame index

t, and frequency bin index f . Furthermore, L denotes

the length of the ATF in number of frames. Note that

we used, in an abuse of notation, the same symbols for

the time domain and frequency domain representations.

This should not lead to confusion, because time domain

signals have an argument, as in y[ℓ], while frequency

domain variables have an index, as in yt,f . The model

of Eq. (2) strongly contrasts with the model for a close-

talking situation, where yt,f = st,f +nt,f , or where even

the noise term can be neglected.

When trying to extract s
(i)
t,f from ym,t,f , it comes

to our help that multi-channel input is available, i.e.,

m ∈ [1, . . . ,M ]. Defining the vector of microphone

signals yt,f =
[
y1,t,f . . . , yM,t,f

]T
, we can write

yt,f =

I∑

i=1

L−1∑

τ=0

a
(i)
τ,fs

(i)
t−τ,f + nt,f , (3)

where a
(i)
t,f and nt,f are similarly defined as yt,f .

Fig.2 displays a typical AIR: it consists of three parts,

the direct signal, early reflections and late reverberation

caused by multiple reflections off walls and objects in

the room. The early reflections are actually beneficial both

for human listeners and for ASR. Its intelligibility is even

better than that of the “dry” line-of-sight signal. After the

mixing time, which is in the order of 50ms, the diffuse

reverberation tail begins. This late reverberation degrades

human intelligibility and also leads to a significant loss

in recognition accuracy of a speech recognizer. Thus, we

split the ATF in an early and a late part:

yt,f =

I∑

i=1

d
(i)
t,f +

I∑

i=1

r
(i)
t,f + nt,f , (4)

where the early-arriving speech signals are given by

d
(i)
t,f =

∆−1∑

τ=0

a
(i)
τ,fs

(i)
t−τ,f ≈ h

(i)
f s

(i)
t,f , (5)

and the late-arriving speech signals are given by

r
(i)
t,f =

L−1∑

τ=∆

a
(i)
τ,fs

(i)
t−τ,f . (6)

Here, ∆ is the temporal extent of the direct signal and

early reflections, which is typically set to correspond to

the mixing time. For example, ∆ is set at 3 when a frame

advance is set at 16 ms. In Eq. (5), the desired signal is

approximated by the product of a time-invariant (non-

convolutive) ATF vector h
(i)
f with the clean speech s

(i)
t,f ,

disregarding the spread of the desired signal over multiple

analysis frames. Other works have tried to overcome

this approximation by employing a convolutive transfer

function model for the desired signal [30,31].
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Fig. 2. An acoustic impulse response consists of the direct sound, early
reflections and late reverberation.

Considering Eq. (4), the tasks of the enhancement stage

can be defined as follows:

• Dereverberation (also known as deconvolution) aims

at removing the late reverberation component from

the observed mixture signal.

• The goal of source separation is to disentangle the

mixture into its I speech components,1 while

• Beamforming aims at extracting a target speech sig-

nal, which can be any of the I sources, by projecting

the input signal to the one-dimensional subspace

spanned by the target signal, thereby diminishing

signal components in other subspaces.

We will discuss each of the above tasks in detail in

Section III.

B. Performance metrics

Clearly, the ultimate performance measure depends on

the application. For a transcription task it is the word

error rate, while it is the success rate (high precision and

recall) for an information retrieval task. However, when

developing the speech enhancement front-end it is very

helpful to be able to assess the quality of the enhancement

with an instrumental measure which is independent of the

ASR or a downstream NLP component. This will give

not only smaller turnaround times in system development,

but also gives more insight in how to improve front-end

performance.

Clearly, speech quality and intelligibility is most infor-

matively assessed by human listening experiments. But

because these are too expensive and time consuming there

is a whole body of literature devoted to how to measure

speech quality or intelligibility by an “instrumental” mea-

sure. Measures, which have been originally developed to

evaluate speech communication systems and which have

found widespread use in speech enhancement are Percep-

tual Evaluation of Speech Quality (PESQ) [32] for speech

quality and Short-Time Objective Intelligibility (STOI)

1where in some approaches, the noise is treated like an additional,
(I + 1)st component.

for speech intelligibility [33]. Note that both measures are

“intrusive”, which means that a clean reference signal is

required. Please do also note that those measures are only

moderately correlated with ASR performance, as has been

empirically observed, e.g., in [12]. They are still useful in

system development, but for a definite assessment of the

benefits of an enhancement system for ASR, recognition

experiments are indispensable.

For the evaluation of source separation performance the

most common measure is the Signal-to-Distortion Ratio

(SDR) [34]. It measures the ratio of the power of the

signal of interest to the power of the difference between

the signal of interest and its prediction (obtained by the

source separation algorithm). Today, values of more than

10 dB are not uncommon.

III. MULTI-CHANNEL SPEECH ENHANCEMENT

We now discuss enhancement techniques to address

the aforementioned signal degradations. While linear and

non-linear filtering approaches are developed for speech

enhancement, the linear filtering has empirically been

shown to be advantageous to estimate the desired signal

d
(i)
t,f in Eq. (3) from the observation yt,f in terms of WER

reduction of far-field speech recognition [1,2,13]. This

linear filtering leverages information the AM typically

does not have access to, while not introducing time-

dependent artifacts such as musical tones. On the other

hand, the non-linear filtering approach has been shown

to be useful for estimating statistics of signals, such as

time-frequency dependent variances and masks of signals

[23,35], which are effectively used for estimating a linear

filter.

A very general form of a (causal time-invariant) linear

filter can be represented by a convolutional beamformer

[30,31,36,37]. It is defined as

d̂
(i)
1,t,f =

Lw−1∑

τ=0

(
w

(i)
τ,f

)H
yt−τ,f , (7)

where d̂
(i)
1,t,f is an estimate of d

(i)
t,f at the 1st microphone2,

w
(i)
τ,f = [w

(i)
1,τ,f , . . . , w

(i)
M,τ,f ]

T ∈ C
M×1 is a coefficient

vector of the convolutional beamformer to be optimized

for the estimation of d̂
(i)
1,t,f , Lw is the length of the convo-

lutional beamformer, and (·)H denotes transposition and

complex conjugation. While many techniques have been

developed for optimizing a convolutional beamformer

[30,31,36], an approach decomposing it into a multi-

channel linear prediction (MCLP) filter and a beamformer

is widely used as a frontend for the far-field ASR. With

2Without loss of generality, we here declare the first microphone as
the reference microphone.
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∆ = 1 and by applying the distributive property, Eq. (7)

can be rewritten as

d̂
(i)
1,t,f =

(
w

(i)
0,f

)H

︸ ︷︷ ︸
Beamformer

(
yt,f −

Lw−1∑

τ=∆

(
C

(i)
τ,f

)H
yt−τ,f

)

︸ ︷︷ ︸
MCLP filter

, (8)

where C
(i)
τ,f ∈ C

M×M is a MCLP coefficient matrix

satisfying C
(i)
τ,fw

(i)
0,f = −w

(i)
τ,f . Equation (8) highlights

that a convolutional beamformer that estimates d̂
(i)
1,t,f

can be decomposed into two consecutive linear filters:

A MCLP filter [38] corresponding to the terms in the

parentheses, and a (non-convolutional) beamformer w
(i)
0,f

[39,40]. As will be discussed later, the MCLP filter can

perform reduction of late reverberation, namely derever-

beration. The beamformer, on the other hand, can perform

reduction of noise, i.e., denoising, and extraction of a

desired source from other competing sources, i.e., source

separation.

The factorization in Eq. (8) allows us to use a cascade

configuration for speech enhancement, i.e., dereverbera-

tion followed by denoising and source separation. This is

advantageous because we can decompose the complicated

enhancement problem into sub-problems that are easier

to handle. Furthermore, it is shown that, under certain

moderate conditions, even when we separately optimize

dereverberation and beamforming, the estimate obtained

by the cascade configuration is equivalent to (or can be

even better than) that obtained by direct optimization of

the convolutional beamformer in Eq. (7) [41].

Although both dereverberation and beamforming are

well-known concepts from antenna arrays [39,42], acous-

tic signal processing in a non-stationary acoustic envi-

ronment requires additional efforts, such as estimation

of time-varying statistics of temporally-correlated desired

sources and noise, and “broadband” processing in the

time-frequency domain [43,44]. For this purpose, many

techniques have been developed:

• For dereverberation, estimation and subtraction of

the spectrum of the late reverberation has been

employed, e.g., [45]. Also, MCLP filtering with de-

layed prediction and a time-varying Gaussian source

assumption have been developed and shown effective

for both single and multiple desired source scenarios

[46,47].

• For denoising, techniques for effectively estimating

the time-varying statistics of the desired signal and

the noise have been developed based on estimation

of a time-frequency dependent mask. [18,48].

• For source separation, sophisticated techniques for

estimating masks of multiple competing sources

have been developed. Modern techniques are even

able to handle multiple sources in single-channel

input [25,26,49].

While these techniques are well established in classical

signal processing areas [20,50]–[52], recently purely deep

learning based solutions have challenged those solutions,

e.g. [23,35]. The advantage of the deep learning-based

solutions is their powerful capability of modeling source

magnitude spectral patterns over wide time frequency

ranges, which were very difficult to handle by classi-

cal signal processing approaches. The deep learning ap-

proaches, however, are also notorious for being resource

hungry and hard to interpret. Their training for speech

enhancement tasks requires parallel data, i.e., a database

which contains each speech utterance in two versions,

distorted and clean, one serving as input to the network,

and the other as training target. Reasonably, this can only

be obtained by artificially adding the distortions to a

clean speech utterance, leaving an unavoidable mismatch

between artificially degraded speech in training and real

recordings in noisy reverberant environments during test.

Classical signal processing solutions are typically much

more resource efficient and do not have this parallel

data training problem. We will show for each of the

three enhancement tasks how “neural network-supported

signal processing” or “signal processing supported neural

networks” can combine the advantages of both worlds,

achieving high enhancement performance, being resource

efficient and rendering parallel data unnecessary [53]–

[59].

A typical processing pipeline for dereverberation, sep-

aration, and extraction is illustrated in Fig. 3.

A. Dereverberation

The goal of dereverberation is to reduce the late rever-

beration r
(i)
t,f from the observation yt,f in Eq. (4) while

keeping the desired signal d
(i)
t,f unchanged. Based on the

decomposition in Eq. (8), we here highlight a technique

based on MCLP filtering, referred to as Weighted Predic-

tion Error (WPE) dereverberation [21,46]. In the follow-

ing, we first explain WPE dereverberation in the noiseless

single source case, i.e., assuming yt,f = d
(i)
t,f + r

(i)
t,f , and

then explain its applicability to the noisy multiple source

case at the very end of this section.

The core idea of WPE dereverberation is to predict

the late reverberation of the desired signal from past

observations. This late reverberation is then subtracted

from the observed signal to obtain an estimate of the

desired signal. Just as Eq. (8) indicates which past ob-

servations are used for prediction, Fig. 4 visualizes the

past observations, the prediction delay and which frame

of late reverberation is predicted. A unique characteristic

of WPE is the introduction of the prediction delay ∆,

which corresponds to the duration of the direct signal and

early reflections in Eq. (5). It avoids the desired signal

being predicted from the immediately past observations,

because this would destroy the short-time correlation
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Fig. 3. Overview of the enhancement system consisting of a neural network supported dereverberation module and a neural network supported
or spatial clustering model supported beamforming module. The MCLP coefficient matrix Cτ,f as well as the time-varying variance λt,f are
speaker-independent as argued in the last paragraph of Sec. III-A. The BF filtering block may contain additional postfiltering to compensate for
potential artifacts the beamformer may have produced.
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Fig. 4. WPE estimates a filter to predict the late reverberation in the
current observation from the past observations (skipping ∆−1 frames).
The late reverberation is then subtracted from the current observation.

typical of a speech signal. Thanks to this, the WPE can

only predict the late reverberation and keep the desired

signal unchanged.

To deal with the time-varying characteristics of speech

in the MCLP framework, WPE estimates the coefficient

matrix C
(i)
τ,f based on maximum likelihood estimation.

It is assumed that the desired signal d
(i)
t,f follows a zero-

mean circularly-symmetric complex Gaussian distribution

with the unknown channel-independent time-varying vari-

ance λ
(i)
t,f of the early-arriving speech signal:

p
(
d
(i)
t,f

)
= NC

(
d
(i)
t,f ;0, λ

(i)
t,fIM

)
, (9)

where d
(i)
t,f is obtained from MCLP filtering in Eq. (8)

and IM is an M ×M -dimensional identity matrix. With

this model, the objective to minimize becomes

L(ψf ) = −
∑

t

log p
(
d
(i)
t,f ;ψf

)

=
∑

t

||yt,f −
∑Lw−1

τ=∆

(
C

(i)
τ,f

)H
yt−τ,f ||

2
2

λt,f

+
∑

t

M log λt,f + const. (10)

where ψf is a set of parameters to be estimated at

frequency f , composed of Cτ,f and λt,f for all τ and

t, and || · ||2 denotes the Euclidean norm. Variations of

the objective have also been proposed for better derever-

beration performance by introducing sparse source priors

[60,61].

The minimization of the above objective leads to an

iterative algorithm which alternates between estimating

the time-varying variance λ
(i)
t,f and the coefficient matrix

C
(i)
τ,f . The steps can be summarized as follows:

Step 1) λ
(i)
t,f =

1

(δ + 1 + δ)M

t+δ∑

τ=t−δ

∑

m

|d
(i)
m,τ,f |

2,(11)

Step 2) R
(i)
f =

∑

t

ȳt−∆,f ȳ
H
t−∆,f

λ
(i)
t,f

∈ C
MK×MK , (12)

P
(i)
f =

∑

t

ȳt−∆,fy
H
t,f

λ
(i)
t,f

∈ C
MK×M , (13)

C̄
(i)
f =

(
R

(i)
f

)−1

P
(i)
f ∈ C

MK×M , (14)

where ȳt−∆,f ∈ C
MK×1 is the stacked observation

vector as depicted by the box on the left hand side of

Fig. 4 and δ defines a temporal context.

In the variance estimation step in Eq. (11), λ
(i)
t,f is

updated dependent on the previous estimate of C
(i)
τ,f , i.e.,

it is estimated as the variance of the signal dereverberated

with C
(i)
τ,f according to the MCLP filter in Eq. (8). Often,

smoothing by averaging over neighboring frames with a

left context of δ and a right context of δ is introduced to

reduce the variance of this variance estimate.

In the filter matrix estimation step in Eqs. (12)–(14),

fixing λ
(i)
t,f at its value estimated in the previous step

makes Eq. (10) a simple quadratic form, and thus we

can reach a global minimum by a closed-form update.

Here, R
(i)
f can be interpreted as an auto-correlation

matrix of normalized stacked observation vectors. Further,

K = Lw−∆ is the number of filter taps. Finally, Eq. (14)

computes the stacked filter matrix

C̄
(i)
f =

[(
C

(i)
∆,f

)T
, . . . ,

(
C

(i)
Lw−1,f

)T]T
(15)

using the Wiener-Hopf equation.

This iterative algorithm may be started by initializing

the time-varying variance λ
(i)
t,f with that of the observa-

tion. Although this is a rather crude approximation, it

typically converges within three iterations.
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The use of a neural network further allows to esti-

mate the time varying variance λ
(i)
t,f within a single step

avoiding the iterative estimation, and eases the transition

towards online processing [56,58]. In [56] a neural net-

work is trained with a Mean Squared Error (MSE) loss to

predict (the logarithm of) the time-varying variance λ
(i)
t,f

and applied to offline and block-online processing, while

[58] extends this to frame-online processing.

In order to handle noisy multi-source cases, we slightly

revise the goal of the WPE dereverberation to estimate a

single set of coefficient matrices Cτ,f that can reduce the

late reverberation r
(i)
t,f for all i at the same time, rather

than estimating a different set of matrices C
(i)
t,f separately

for dereverberation of each source i. Existence of such a

set of coefficient matrices is guaranteed by the multiple-

input/output inverse theorem (MINT) [62] when M ≥ I ,

nt,f = 0, and the acoustic transfer functions share no

common zeros. The coefficient matrices can be estimated

based on the objective of the WPE in Eq. (10), by setting

λt,f to represent the variance of the mixture of all d
(i)
t,f .

Although nt,f = 0 is usually not satisfied within the far-

field setting, due to the inherent robustness of the MCLP

filtering, WPE works well with such additive noise.

While we discussed here WPE in some detail, because

it has found widespread use in the ASR community, this is

by no means the only approach to dereverberation. Instead

of estimating the direct signal and early reflections, one

can estimate the power spectral density of the late rever-

beration and subtract it from the observed signal, thereby

achieving a dereverberating effect [45,63]. Also, neural

networks trained to estimate the nonreverberant signal

from the observed reverberant one are very successful

[10].

B. Beamforming

Beamforming aims at reducing additive noise and

residual reverberation from the observation. As in the

decomposition in Eq. (8), a spatial filter w
(i)
0,f (commonly

referred to as beamformer) is used to obtain an estimate of

the desired signal from the output of the WPE dereverber-

ation. Consequently, we here define new variables which

describe the signal components after WPE processing. Let

us define the input of the beamformer as

ỹt,f = d
(1)
t,f + · · ·+ d

(I)
t,f + ñt,f = d

(i)
t,f + ñ

(i)
t,f , (16)

where ñt,f contains all residual reverberation and noise,

and where ñ
(i)
t,f collectively represents all the interference

signal components from the viewpoint of speaker i: these

are the remaining reverberation, the source signals other

than the desired signal, ambient noise, and possible other

deviations from d
(i)
t,f . In other words, Eq. (16) shows the

decomposition from the perspective of speaker i and not

for all speakers. Then, the beamforming step is meant

to remove all interferences ñ
(i)
t,f from ỹt,f while keeping

d
(i)
t,f unchanged.

Most statistical beamforming approaches rely on esti-

mated second order statistics, namely the spatial covari-

ance matrices of the desired signal Φ
(i)
dd,f and that of the

interference Φ
(i)
ññ,f . A beamforming algorithm is derived

by defining an optimization criterion. A widely used

approach is Minimum Variance Distortionless Response

(MVDR) beamforming which minimizes the expected

variance of the resultant interference subject to a dis-

tortionless constraint involving the ATF vector h
(i)
f in

Eq. (5). It is defined as

w
(i)
0,f = argmin

w

wHΦ
(i)
ññ,fw s.t. wHh

(i)
f = h

(i)
1,f , (17)

where Φ
(i)
ññ,f is the spatial covariance matrix of all

interferences, assumed to be time-invariant, and h
(i)
1,f is

the 1st microphone element of h
(i)
f . Thanks to the dis-

tortionless constraint, the beamformer keeps the desired

signal unchanged, while reducing the additive distortions.

The optimization problem in Eq. (17) results in

w
(i)
0,f =

(
Φ

(i)
ññ,f

)−1

h̃
(i)

f

(
h̃
(i)

f

)H (
Φ

(i)
ññ,f

)−1

h̃
(i)

f

, (18)

where h̃
(i)

f is a relative transfer function (RTF) [64,65]

defined as the ATF vector normalized by its 1st micro-

phone component, i.e., h̃
(i)

f = h
(i)
f /h

(i)
1,f . The RTF is a

widely used representation to avoid scale ambiguity of

ATF vector estimation.

Techniques for estimating the RTF vector h̃
(i)

f have

been developed, which in general require an estimate of a

spatial covariance matrix Φ
(i)
dd,f of the desired signal d

(i)
t,f

[18,40]. Alternative objectives can also be used for beam-

forming, such as likelihood maximization with a time-

varying Gaussian source assumption, similar to WPE,

resulting in the weighted Minimum Power Distortionless

response (wMPDR) beamformer [41], and maximization

of expected output SNR resulting in maximum SNR

beamformer (also called Generalized Eigenvalue Decom-

position (GEV) beamformer) [66].

One way to estimate these covariance matrices is to

select time frames in which just one signal component

is active, e.g., the beginning of a recording where only

noise is active. This approach is appropriate under the

assumption that the corresponding signals are stationary.

However, a better and more fine-grained approach is to

use a time-frequency mask, γ
(i)
t,f , to decide for each time-

frequency (TF) bin how well it corresponds to the target

speaker or the interference. This leads to a covariance
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matrix calculation with time- and frequency-dependent

masks γ
(i)
t,f :

Φ̂
(i)

dd,f =
∑

t

γ
(i)
t,f ỹt,f ỹ

H
t,f

/∑

t

γ
(i)
t,f , (19)

Φ̂
(i)

ññ,f =
∑

t

∑

i′ 6=i

γ
(i′)
t,f ỹt,f ỹ

H
t,f

/∑

t

∑

i′ 6=i

γ
(i′)
t,f . (20)

Conceptually, assuming that the selected TF bins in-

deed only contain the desired signal, Φ̂
(i)

dd,f ∈ C
M×M

approximates the covariance matrix of d
(i)
t,f , and on a

similar assumption, Φ̂
(i)

ññ,f ∈ C
M×M approximates the

covariance matrix of all interferences ñ
(i)
t,f .

Depending on the acoustic environment, the a priori

knowledge for the given utterance, the number of speakers

in the recording, and the available training data different

ways to estimate the masks for each speaker are possible.

The two predominant approaches for mask estimation

are unsupervised spatial clustering and neural network-

based mask estimation and are explained in the following

section.

C. Mask estimation for denoising, single source extrac-

tion, and source separation

The goal of a mask estimator is to estimate a presence

probability mask for each speaker and for noise. This

section first describes unsupervised spatial clustering ap-

proaches for single- and multi-speaker scenarios and then

continues with neural network-based approaches again for

single- and multi-speaker scenarios.

1) Unsupervised spatial clustering: Unsupervised spa-

tial clustering is a technique used to assign each TF bin to

a particular class based solely on spatial cues, i.e., phase

and level differences between microphone channels that

provide information about the direction of sound with

respect to the microphone array. A class then models the

different speakers characterized by different locations or

noise with more diffuse characteristics. Assuming that the

speakers speak from different locations, it is possible to

separate the microphone signals into speech signals of the

different speakers by clustering the spatial cues [67].

To do so, one typically formulates a statistical model

which consists of a class-dependent distribution for each

source i and an additional noise class which is here

indexed by i = I + 1:

p(ỹt,f ) =
I+1∑

i=1

p(ỹt,f |θ
(i))p(zt,f=i), (21)

where zt,f is the hidden class affiliation variable, and

θ
(i) summarizes the class-dependent parameters. Typical

class-dependent distributions are the complex Watson

distribution [68], complex Bingham distribution [69], or

the complex angular central Gaussian distribution [70].

The parameters and the masks are then obtained through

an Expectation-Maximization (EM) algorithm in which

the E-step and the M-step alternate. In the M-step, the

class-dependent parameters are updated. In the E-step,

the masks γ
(i)
t,f = p(zt,f=i|ỹt,f ), which here correspond

to posterior probabilities, are obtained using Bayes’ rule:

γ
(i)
t,f =

p(zt,f=i) p(ỹt,f |θ
(i))

∑I+1
i′=1 p(zt,f=i

′) p(ỹt,f |θ
(i′))

. (22)

In a single-speaker scenario, where one just wishes to

distinguish between target speaker and noise, one can use

spatial clustering with I = 1. To name an example, the

winning system of the CHiME 3 robust speech recogni-

tion challenge employed such an unsupervised clustering

approach with I = 1 successfully to single-speaker

recordings [71]. In case of a multi-source scenario, I has

to be set to the number of speakers in the mixtures, which

either has to be known a-priory, or estimated separately.

The consecutive steps, e.g., beamforming as in Fig. 3 are

then repeated for each speaker.

2) Neural network-based mask estimation: In contrast,

mask estimation networks are trained with a supervision

signal. To discuss neural network-based approaches, we

first introduce a neural mask estimator as used in neural

network-based beamforming in the following. We then

introduce SpeakerBeam as a speaker-informed mask es-

timator. Lastly, we introduce neural network-based blind

source separation approaches.

For neural network-based mask estimation, a supervi-

sion signal such as an ideal binary mask (IBM) [72] is first

extracted on each training mixture. To do so, one needs

access to the speech images and the noise image, i.e., each

individual speech component and the noise component at

the microphones, separately:

IBM
(i)
t,f =

{
1, for

∥∥d(i)
t,f

∥∥2
2
>
∥∥d(i′)

t,f

∥∥2
2
∀ i′ 6= i

0, otherwise,
(23)

where i corresponds to the source index. This definition

can be extended to an additional noise class by treating the

oracle noise signal as d(I+1) := ñt,f . Fig. 5 illustrates the

underlyinging signal components and the corresponding

IBM with an additional noise class. Further definitions

of oracle masks suitable for supervision can be found in,

e.g., [73,74].

Then, depending on the particular use-case, a neural

network can be trained with such a supervision signal.

The different use-cases are illustrated in Fig. 6.

a) Separate speech from noise: One can now train

a neural network with, e.g., log-amplitude spectrogram

features as input, to predict a speech mask and a noise

mask by providing noisy speech training data from vari-

ous speaker and the corresponding IBMs or clean speech

signals. Since speech and noise have different spectro-

temporal characteristics, a neural network can distinguish
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Fig. 5. Visualization of the spectrograms of the underlying images d
(1)
t,f

,

d
(2)
t,f

, and ñt,f on the left and the ideal binary masks IBM
(1)
t,f

, IBM
(2)
t,f

,

and IBM
(3)
t,f

on the right. Bright colors indicate higher values.

(a) Separate speech from noise (Sec. III-C2a)

(b) Extract a single speaker from a mixture (Sec. III-C2b)

(c) Separate multiple speakers from a mixture (Sec. III-C2c)

Mask
estimator
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yt,f
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t,f

d̂
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Fig. 6. Processing flow for different use-cases of a mask estimator. The
corresponding interference mask to calculate the interference covariance
matrix in Eq. (20) is not shown for brevity.

between these signals very well. An exemplary training

criterion is the binary cross entropy between the estimated

mask γit,f and the corresponding oracle IBM
(i)
t,f .

This mask estimation procedure with a subsequent

beamforming step led to dramatic WER reductions, e.g.,

in the CHiME 3/4 challenges [74,75]. Often, these masks

are estimated independently for each channel and then

pooled over all channels such that a single mask can be

used, e.g., in Eq. (20).

b) Extract a single speaker from a mixture: In

many practical applications one is interested in one target

speaker in a mixture, e.g., the speaker who is actually

interacting with the digital home assistant. While dealing

with speech mixtures, simply training a neural network

to extract the target speaker is not possible because both

the target speech and interference signal have similar

spectro-temporal characteristics. However, if additional

information about the target speaker is available, a neural

mask estimator can be informed about speaker-dependent

characteristics. These characteristics may stem from a

separate adaptation utterance or from the wake-up key-

word. In the SpeakerBeam framework [76,77] a sequence-

summarizing neural network [78] which captures the

speaker-dependent characteristics is jointly trained with a

mask estimation network which uses these characteristics

as additional features to estimate a target speaker mask

and an interference mask. VoiceFilter implements this

approach with a Convolutional Neural Network (CNN)

architecture [79].

c) Separate multiple speakers and noise: While, in

a single-speaker scenario, a mask estimator only needs

to distinguish between speech and non-speech time fre-

quency bins (compare Sec. III-C2a), source separation

approaches have to solve the following problem: given the

observation the algorithm should yield a mask for each

speaker as well as an additional noise mask. For quite

some time it has been complicated to do this with neural

networks due to the permutation problem: while the order

in which the speakers appear at the different output

channels of the system is unpredictable, a loss function

which assumes a particular order can result in misleading

gradients. While the spatial clustering model in Eq. (21) is

naturally permutation invariant (switching speaker indices

does not change the likelihood), permutation invariant

losses for neural networks appeared just recently.

Kolbaek et al. formulated a way to turn any loss

function, e.g., Cross Entropy (CE), into a permutation

invariant loss function [26]: the original loss is calculated

for every possible permutation. Then, only the minimal

loss is used for back-propagation, e.g.:

J = argmin
Π

I+1∑

i=1

CE
t,f

(
γ
(Π(i))
t,f , IBM

(i)
t,f

)
, (24)

where Π is a permutation of (1, . . . , I + 1). A neural

network with I + 1 mask outputs can now be trained

with such a Permutation Invariant Training (PIT) loss.

The estimated masks γ
(i)
t,f can then be used, e.g., for

beamforming. In its original formulation the network

architecture of a PIT system depends on the maximum

number of speakers expected in a mixture. The system

can be trained in such a way that some output channels

are empty when there are less speakers.

Fundamentally differently, Deep clustering, while pi-

oneering this area, used a neural network to calculate

embedding vectors for each time frequency bin [24]. The

loss, as any typical embedding loss, is designed in such

a way that the embedding vectors belonging to the same

class move closer together while the embedding vectors

of different classes move further apart. Naturally, such

a formulation is permutation invariant in itself. The em-

bedding vectors can then be used for clustering yielding

masks in a similar way as explained in the clustering
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approach before. Interestingly, at least the embedding

network is then independent of the number of speakers

in a mixture [24].

3) Comparison of spatial and spectral approaches

and integrations thereof: The main advantage of spatial

clustering models over neural network-based mask esti-

mation is the interpretability of the underlying stochastic

dependencies. Closely related, this interpretability allows

to incorporate a priori knowledge by modifying the pa-

rameter updates, e.g., [80] uses externally provided time

annotations for the CHiME 5 database. Due to the spatial

features, it exploits spatial selectivity and, as long as the

spatial properties of each source are distinct enough, is

able to produce meaningful separation results. Since no

training phase is involved, this unsupervised clustering

approach naturally generalizes well to unseen conditions.

One drawback of the spatial clustering approaches is,

that it is most suited for offline processing. Although

quite a few online or block-online clustering approaches

had been proposed, these did not find a lot of applica-

tion in far-field ASR challenges yet. Moving sources,

if no online algorithm is used, can only be handled to

some extent: small head movements can still be captured

in the class dependent parameters. Larger movements,

however, invalidate the underlying model assumptions.

Further, since clustering is often performed independently

across frequency bins, a frequency permutation problem

arises [81]: from one frequency bin to another the spatial

clustering solution may have resulted in switched speaker

indices. This frequency permutation problem is indepen-

dent of the aforementioned global permutation problem

when discussing PIT.

In contrast to the spatial clustering approaches, neu-

ral network-based approaches rely on spectral cues and

process all frequency bins jointly. Therefore, a frequency

permutation problem does not occur. Quite remarkably,

the neural network-based separation models learn rela-

tions from training databases and tend to perform better

with an ever increasing amount of training data.

However, alongside this comes their biggest limitation:

depending on the variability of the training data, the

models have limited generalizability to unseen conditions,

e.g., Yu et al. demonstrated that the performance already

degrades significantly when switching from English to

Danish [82]. The training corpus needs to contain the

mixed speech as well as access to the clean sources to

be able to compute gradients. A notable exception are

unsupervised approaches to train a neural network-based

source separator [83]–[85]. Further, most neural network-

based approaches are single-channel. Even when multi-

channel features are employed [86], in which way those

contribute to better separation performance is far from

understood.

By no means these approaches are mutually exclusive.

Judging by the aforementioned advantages and disadvan-

tages, both methods are highly complementary, e.g., [87]

proposed to combine neural network-based mask estima-

tion with spatial clustering for speech enhancement, while

[55,88] proposed an integration of Deep Clustering and

spatial clustering for multi-talker scenarios.

D. Front-end overview

The entire front-end system is now composed of dere-

verberation, mask estimation, and beamforming. An es-

tablished configuration is depicted in Fig. 3. The optimal

processing order, as demonstrated in [7] for conventional

beamforming and in [89] for neural network supported

beamforming turns out to be applying WPE on the multi-

channel signal first and then applying the beamforming

step on the dereverberated signal.

Spatial clustering based source separation approaches

profit in particular from a preceding WPE dereverber-

ation (experimental results in [80]) since the sparse-

ness assumption, which implies that different speakers

populate different TF bins, is much better fulfilled for

less reverberant speech. Further experiments also report

improved separation performance with neural network-

based separation methods [90]. However, it is worth

to acknowledge that a publication which clearly tracks

down the gains of better source separation due to better

dereverberation is still missing.

In Fig. 3 the variance estimation network and the

mask estimation network conceptually perform a similar

task (at least in the single-speaker scenario). Thus, it

might be worth investigating if both models can be fused

into a single model with two different outputs. Further,

for practical reasons, the mask estimation network often

operates on the observation signal yt,f to avoid needing

to train on dereverberation results.

From a machine learning perspective, it is worth

highlighting that the building blocks in Fig. 3 are very

differently motivated: the filtering blocks can be seen as

structural priors motivated by an a priori understanding of

field experts. The filter coefficient estimation blocks are

derived analytically from separate optimization criteria,

and the variance estimation neural network as well as the

mask estimation neural network are trained independently

with gradient descent on a separate training database.

More recently, it has been demonstrated that the neural

networks can also be trained with gradients from a

downstream task [57,59] (compare Sec. V).

IV. ASR BACK-END

To achieve high ASR performance in a far-field sce-

nario, we need not only employ a powerful speech

enhancement front-end but also design carefully the ASR

back-end. The ASR back-end used for far-field ASR has

essentially the same structure as a general back-end used

for recognition of clean speech. Those interested can find
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Fig. 7. Schematic diagram of a general ASR back-end.

an overview of legacy ASR systems in [91], while [15]–

[17] describe general ASR in the era of deep learning.

However, several elements need careful consideration

when dealing with far-field ASR. In this section, we will

first briefly review a general ASR back-end and then

emphasize the key components and design choices that

are most relevant for far-field ASR.

A. Overview of a general ASR back-end

The goal of the ASR back-end is to find the most

likely word sequence, v̂, given a sequence of observed

speech features O. Here for generality, the speech features

can be derived either from clean speech, microphone

observations or enhanced speech, as described in Section

III. The task of ASR is formulated with the Bayes

decision theory as

v̂ = argmax
v∈V

p (v|O) , (25)

where O = (o1, . . . ,ot, . . . ,oT ) is a sequence of speech

features, ot ∈ R
D, is a feature vector for frame t, v =

(v1, . . . , vj , . . . , vJ) is a J-length word sequence, vj ∈ V
is a word at position j, and V is the set of possible words,

called vocabulary. Since it is complex to deal with p(v|O)
directly, the problem is usually rewritten using the Bayes

theorem as,

v̂ = argmax
v∈V

p (O|v) p(v), (26)

where the likelihood function p(O|v) is called the acous-

tic model (AM) and the prior distribution p(v) is the

language model (LM) [92]. Note that some recent end-to-

end ASR systems described in Section V aim at directly

modeling p(v|O).
Fig. 7 depicts a general ASR back-end with its main

components, i.e., the feature extraction module, the AM

and the language model, which are briefly described

below.

1) Feature extraction: The first component of an ASR

back-end is a feature extraction module that converts the

time domain signal d̂1[l] into speech feature ot more

suitable for ASR. There has been a lot of research on

designing robust features for ASR. However, the simple

log-Mel filterbank (LMF) coefficients are widely used

both for general and far-field ASR. LMF coefficients

are obtained by computing the power spectrum of the

time-domain signal using a STFT, then applying a Mel

filter to emphasize low-frequency components of the

spectrum. Finally, the dynamic range is compressed using

the logarithm operation as,

ot,ν = Feat
(
[d̂t,1, . . . , d̂t,f , . . . , d̂t,F ]

T
)
,

= MVN

(
log
(∑

f

bν,f |d̂t,f |
2
))

, (27)

where Feat denotes the feature extraction process. Further,

d̂t,f is the STFT coefficient of the enhanced speech,

F is the number of frequency bins, bν,f represents the

Mel filterbank associated with the ν-th channel, and

MVN(·) represents the mean and variance normalization

(MVN) operation. Note that in general the parameters of

the STFT (window type, length and overlap) used for

speech enhancement and recognition differ. Therefore,

the speech enhancement front-end usually converts the

signals back to the time domain before doing feature

extraction for ASR. The features are often normalized

with MVN to have zero-mean and unit variance using

statistics computed either for each utterance or over the

whole training data set.

2) Acoustic model: The AM employs phonemes as a

basic unit of speech sounds. In this section, we focus

our discussion on Hidden Markov Model (HMM) based

AMs, where each phoneme is associated with a HMM

that models the dynamic evolution of speech within that

phoneme [92,93].3 An HMM representing the whole word

sequence is constructed from several phoneme HMMs

using a pronunciation dictionary to map each word to

a phoneme sequence. HMM based AMs make the con-

ditional independence assumption, according to which an

observed feature vector only depends on the current state

and is independent of neighboring HMM states. This

gives the following expression for the likelihood,

p (O|v) = aσ0,σ1
p(o1|σ1)

T∏

t=2

p(ot|σt)aσt−1,σt
, (28)

where σt is an HMM state at time t, aσt,σt+1
is the

transition probability between state σt and σt+1, aσ0,σ1
is

the initial state probability, and p(ot|σt) is the emission

probability.

In legacy systems, the emission probability was mod-

eled with a Gaussian Mixture Model (GMM). More

recent systems use a Deep Neural Network (DNN) instead

and are called DNN-HMM hybrid systems. Let g(ot;θ)
be the Σ-dimensional softmax output vector of a DNN

AM with parameters θ, where Σ is the total number of

HMM states, and gσ(ot;θ) is the output associated with

HMM state σ. gσ(ot;θ) can be interpreted as a posterior

3Note that other types of AMs such as Connectionist Temporal
Classification (CTC)-based AM are also becoming widely used [94,95].
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probability p(σ|ot), which can be be converted into a

pseudo likelihood using Bayes rule as [15]

p(ot|σ) ∝
p(σ|ot)

p(σ)
,

=
gσ(ot;θ)

p(σ)
, (29)

where a prior probability p(σ) is derived from the statis-

tics of the training data set.

There has been much research on designing appropriate

network architectures for gσ(ot;θ). The choice for a

specific architecture foremostly depends on latency con-

straints during inference time and the amount of available

training data. It is a fast-evolving research field with

new results claiming state-of-the-art performance due to

often only slight modifications of the architecture being

published almost on a weekly basis. Equally important

is the choice of training hyperparameters and schemes.

Both need extensive tuning for a fair comparison among

architectures but this is often not possible due to a limited

compute budget. In general, a solid baseline architecture

are time delay neural networks (TDNNs) [96] or con-

volutional neural networks in general (e.g. [97]) possibly

followed by some (bi-directional) Long-Short Term Mem-

ory (LSTM) layers [98]. Variants of this architecture have

been employed successfully in the latest CHiME chal-

lenges. Recently, architectures with self-attention [99],

often referred to as transformers, have shown competitive

results on several benchmark tasks [100,101].

3) Language model: The language model (LM) pro-

vides the prior probability of a word sequence. There

exist N-gram LMs and neural LMs such as Recurrent

Neural Network (RNN) LM [102]. The LM is trained

on a large text corpus, and, unlike the other components

of the ASR back-end, it is not affected by the acoustic

conditions such as noise or reverberation. It can thus be

very effective to improve the performance of far-field

ASR when the language is well constrained such as for

read speech tasks [71,103]. However, for conversational

situations, it is more difficult to model the speech content

and thus the LM appears less effective [104].

4) Training procedure: Building an ASR back-end

requires training the AM with speech training data and

the associated transcriptions. The goal of the training is

finding the DNN parameters, θ, which optimize a training

criterion as,

θ̂ = argmax
θ

∑

u

C (g(Ou;θ),vu) , (30)

where C(·) is an objective function, Ou and vu are the

sequence of feature vectors and words associated with the

uth utterance of the training set, respectively. By abuse

of notation, g(Ou;θ) refers to the sequence of output

vectors of the DNN AM with Ou at its input. The model

parameters θ are learned by backpropagation.

Various criteria can be used for training the AM. The

most basic criterion is the CE, which is given as [16],

CCE =
∑

u

∑

t

Σ∑

σ=1

p(σ) log(gσ(ot;θ))

=
∑

u

∑

t

log(gσ̃u,t
(ot;θ)), (31)

where (σ̃u,τ )
T
τ=1 is the HMM-state label sequence asso-

ciated with the reference word sequence vu. Because we

use hard HMM-state labels, p(σ) = δσ,σ̃u,t
where δi,j is

the Kronecker Delta. Thus, the CE takes the expression

of the log-likelihood in Eq. (31) [16]. Besides, the sign

of CCE is opposite to the CE loss [16] because we defined

the training as a maximization problem in Eq. (30). The

HMM-state label sequence can be obtained from the

transcription using forced alignment (see section IV-B2).

CE is a frame level criterion, that does not consider the

whole context of the sequence in the loss computation and

thus differs from what is performed by the ASR decoding

in Eq. (26).

Alternatively, sequence-level criteria have been pro-

posed to better match the ASR decoding scheme, such as

maximum mutual information (MMI) or segmental Min-

imum Bayes-Risk (sMBR) [16,105]. For example MMI

aims at directly maximizing the posterior probability,

CMMI =
∑

u

log(p(vu|Ou;θ))

=
∑

u

log

(
p(Ou|vu;θ)p(vu)∑
v′ p(Ou|v′;θ)p(v′)

)
. (32)

The numerator represents the likelihood of the observed

speech given the correct word sequence. It can be ob-

tained from forced alignment as for CE. The denominator

represents the total likelihood of the observed speech

features obtained over all possible word sequences (i.e.

all word sequences that could be obtained by recognizing

the training utterance using the acoustic and language

models). MMI is a sequence discriminative criterion that

offers the possibility to make correct word sequences

more likely by maximizing the numerator, while making

all other word sequences less likely by minimizing the

denominator. MMI and other sequence discriminative cri-

teria have shown to improve performance over CE [105].

However, the summation in the denominator makes MMI

computationally complex. Recently, an efficient way to

implement MMI called lattice-free MMI has been pro-

posed [106]. It has become the standard for ASR and is

also widely used for far-field ASR [104,107].

B. Practical considerations for far-field ASR

1) Multi-condition training data: To train the ASR

back-end, we need training speech data and their cor-

responding word transcriptions. Training the ASR back-

end on clean speech would expose it to too little variation
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of the acoustic conditions, which may severely affect its

performance when exposed to far-field conditions. Indeed,

the speech enhancement front-end cannot completely

remove acoustic distortions caused by the environment.

Therefore, to make the ASR back-end robust, it is usually

trained with multi-condition data that cover many acoustic

conditions, including various types and levels of noise,

reverberation, etc.

It is very costly to collect and transcribe a large

amount of speech data in various real environments.

Consequently, it is common to resort to simulation to

create far-field speech data. If we have access to a clean

speech training corpus, creating far-field speech signals

can be easily done by convolving clean speech signals

with acoustic impulse responses and adding noise, as

shown in the signal model of Eq. (1). The procedure to

create multi-condition data is thus as follows:

1) Prepare a set of clean speech training data STrain,

noise samples N and AIRs A,

2) For each clean training speech signal sTrain ∈ STrain,

create noisy and reverberant speech as,

yTrain
m [ℓ] =

(
am ∗ sTrain

)
[ℓ] + nm[ℓ],

where (a1, . . . , am, . . . , aM ) ∼ A,

(n1, . . . , nm, . . . , nM ) ∼ N . (33)

It is thus possible to create any amount of distant speech

data by varying the AIRs and the type and level of noise.

The AIRs can be obtained from databases of AIRs

measured in real environments [108]–[110] or artificially

generated using the image method which is a simple

model of sound propagation in an enclosure [111,112].

With the image method, it is simple to generate far-

field speech data in various rooms with different rever-

beration time and microphone/speaker positions. To add

background noise, we can use several noise recordings

datasets [113], and increase the acoustic variations by

changing the SNR.

The above data augmentation techniques affect only

the acoustic environment. It is also possible to modify

the speech signal itself by, e.g., modifying the speed of

the audio signal [114].

Although simulation data can be used to create various

acoustic conditions, some aspects cannot be well simu-

lated such as, e.g., head movements, the Lombard effect4

etc. It is thus usually beneficial to augment the training

data with some amount of real recordings. Moreover,

if multi-microphone recordings are available, using each

microphone recording as separate training samples can

also help increase the acoustic variation [71].

Besides these data augmentation techniques that rely on

physical models of speech or the room acoustics, there

4The Lombard effect describes the phenomenon that speech is artic-
ulated differently when uttered in heavy noise.

have been a number of approaches proposed recently

to artificially augment training data without relying on

physical models by e.g. generating adversarial training

examples [115]–[118]. Moreover, the recently proposed

Spectral Augmentation (SpecAug) technique [119] has

also been employed to increase the robustness of acoustic

models for far-field ASR tasks [14,120]. It can also be

combined with physically motivated augmentation yield-

ing significant improvements even for large scale data

sets [119].

The usefulness of multi-condition training data cov-

ering various acoustic conditions has been demonstrated

in various tasks and challenges [7,71,104], and in the

development of commercial products [95]. Note, however,

that using simulation to create such data can only increase

the acoustic context seen during training but not the actual

speech content (spoken words), which can be a limitation

if the clean speech training corpus used as a basis for

simulation is too small.

In theory, the impact of noise and reverberation on ASR

could be largely mitigated by training acoustic models

with a very large amount of training data that would cover

the acoustic variety seen during application. In such a

case, the speech enhancement front-end could eventually

become unnecessary. However, in many scenarios, the

acoustic conditions can be so diverse that it would require

a prohibitively large amount of transcribed training data.

This is especially true if multiple microphones are avail-

able. There are a few studies that investigate the impact

of data augmentation on far-field ASR with and without

any front-end, but currently it remains unclear how much

data would be sufficient to address a general far-field

scenario [7,121]–[124]. Most studies suggest that an ASR

back-end trained with data augmentation techniques alone

cannot solve the far-field ASR problem even when using

a large amount of training data. For example, for the

CHiME 5 challenge, a system trained with 4500 hours of

training data [107] was outperformed by systems using

10 times less data [13,104]. Moreover, even when using

a large amount of data to train the ASR back-end, higher

performance is usually achieved when is it combined with

a SE front-end, although for some systems the impact of

the front-end may become small [95,121].

2) HMM-state alignments: As mentioned in the de-

scription of the training procedure, training the AM re-

quires the HMM-state labels, (σ̃u,τ )
T
τ=1. Such labels can

be obtained by Viterbi forced alignment, which performs

Viterbi decoding on the HMM model constructed from

the reference word sequence to obtain for each observed

speech feature in the utterance the most likely HMM-

state, thus performing time-alignment of the input speech

and the HMM states [93].

Viterbi forced alignment can provide accurate align-

ments when using clean speech. However, when the

observed speech is corrupted by noise, reverberation or
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other persons’ voices, there may be alignment errors.

For example, when the observed speech also contains

speech of an interfering speaker, that speaker’s speech

may be mapped to HMM-states of the utterance of

the target speaker, which distorts the alignments [125].

Reverberation and noise also make it harder to correctly

identify phoneme boundaries.

These problems can be mitigated if clean speech is

available to compute the alignments, leading to more

accurate HMM-state labels. For example, when using

simulated far-field data, we can use the clean speech

signals used to generate the training data to perform the

alignment. With real recordings, it is sometimes possible

to use a headset or lapel microphone synchronized with

the distant microphone to obtain a cleaner version of the

target speaker’s speech that can provide more reliable

HMM-state labels. The training procedure is thus as

follows,

1) For each training utterance,

a) construct the utterance HMM from the word

labels and the pronunciation dictionary,

b) compute the HMM-state alignments

(σ̃clean
u,τ )Tτ=1 from clean speech and utterance

HMM using Viterbi decoding.

2) Train the AM using e.g. cross entropy criterion as

defined in Eq. (31),

CCE =
∑

u

∑

t

log(gσ̃clean
u,t

(onoisy
t ;θ)), (34)

where o
noisy
t is the noisy speech training sample

and σ̃clean
u,t is computed from the clean training

utterances.

Simply using clean speech for computing the align-

ments instead of the microphone signals can improve

ASR performance by up to 10% when using CE for

training [125,126]. Besides, using heuristics to filter out

training utterances that could not be properly aligned

can also be important [125]. Lattice-free MMI is less

sensitive than CE to alignment errors. Moreover, the state

alignment issue may not occur with other types of AM

such as CTC-based AM because they do not require

HMM-state labels for their training.

3) Adaptation of the ASR back-end to the speech en-

hancement front-end: The speech enhancement front-end

does not fully remove the acoustic interference and may

introduce artifacts, which causes a mismatch between the

input speech signal and the AM that is trained using

multi-condition training data. Several approaches can be

used to mitigate such a mismatch. For example, we can

process the far-field training data with the enhancement

front-end and add this processed speech data to the unpro-

cessed multi-condition training dataset, so that the AM is

exposed to some enhanced speech during training. Note

that in general using only enhanced speech for training the

AM may reduce the acoustic variation observed during

training and generate a weaker AM [127,128].

Alternatively, we can use the enhanced speech to adapt

an already trained AM. For example, we can obtain

an AM matched to the test conditions by retraining its

parameters with adaptation data that is similar to the test

conditions as

θ
adapt = argmax

θ

∑

u

C
(
g(Oadapt

u ;θ), v̂u

)
, (35)

where Oadapt
u is the sequence of feature vectors of the

u-th adaptation utterance, and v̂u is the word sequence

associated with the adaption utterance. We can use the

training data processed with the speech enhancement

front-end as adaptation data, in which case v̂u simply

corresponds to the transcriptions. Alternatively, if the

adaptation data has no transcriptions (as is the case in

unsupervised adaptation), v̂u can be obtained by a first

ASR decoding pass.

There may be much fewer adaptation data than training

data, which makes the process prone to overfitting. In

practice, overfitting can be mitigated by regularization

techniques, early stopping, or only updating some pa-

rameters of the AM such as the input layer [129,130].

Adaptation has been shown to consistently improve the

performance of top systems in recent challenges by 5 –

10% relative word error rate reduction [71,131].

4) Joint-training: The above adaptation technique only

adjusts the AM of the ASR back-end to the speech en-

hancement front-end. However, the speech enhancement

front-end is usually optimized for a criterion that is not

directly related to ASR. Recent works have explored a

tighter integration of the speech enhancement front-end

and ASR back-end, enabling optimization of the front-

end for the ASR criterion [59,132,133]. This is relatively

easy to realize because both the front-end and the back-

end use neural networks, and therefore it is possible to

combine them into a single neural network with learnable

and fixed computational nodes. Both systems can then be

jointly optimized with backpropagation as,

θ̂ = argmax
θ

∑

u

C
(
g
(

Feat
(

Enh(Yu;θ
enh)
)
;θam

)
,vu

)
,

(36)

where Enh(·) represents the processing of the enhance-

ment front-end, Yu represents the multi-channel STFT

coefficients for a training utterance, and θ = {θam,θenh}
are the model parameters of the AM and front-end,

respectively.

Fig. 8 shows an example of a joint-training scheme that

combines a beamforming based front-end with the AM

of the ASR back-end [59,132,133]. The mask estimation

DNN of the front-end and the DNN of the AM are the

learnable components of the system. They are intercon-

nected with fixed computational blocks that consist of
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Fig. 8. Schematic diagram of the joint training of the speech enhancement front-end and ASR back-end.

the beamformer computation (see Sec. III-B) and the

feature extraction (see Sec. IV-A1). The gradient can flow

from the AM to the speech enhancement front-end, which

enables optimization of the front-end for ASR.

We have discussed the joint-training scheme with

a beamforming front-end, but joint training has also

been used for dereverberation [57] and source separa-

tion/extraction [77]. Significant ASR gains have been

reported on several tasks with joint training schemes.

However, joint-training can sometimes lead to a perfor-

mance drop because it may weaken the AM [133].

One advantage of joint-training is that the whole system

can be optimized using only far-field speech and the

associated word transcriptions. Therefore, it alleviates the

need for parallel clean and far-field speech data to train

the speech enhancement front-end, which may be an

advantage when training or adapting systems with real

recordings.

V. TOWARD FAR-FIELD END-TO-END ASR

This section describes the recent efforts towards end-to-

end solutions which allow to optimize all components of

the front-end speech enhancement and back-end speech

recognizer jointly. This optimization is performed with

respect to our final objective, the Bayes decision rule, as

introduced in Eq. (25).

A. End-to-End ASR

End-to-end ASR approaches directly model the output

distribution p(v|O) over the character, subword, or word

sequence v = (v1, . . . , vJ), given the speech feature

sequence O = (o1, . . . ,oT ). This is quite different from

conventional approaches to ASR [92] composed of the

acoustic model p(O|v) and language model p(v), as

we discussed in IV-A. End-to-end models subsume all

of these components in a single neural network, which

greatly simplifies the model building process and also

enables joint training of the whole system. The end-to-end

neural speech processing has become a popular alternative

to conventional ASR, and several approaches have been

proposed including CTC [94], attention-based encoder-

decoder models [134,135], and their variants [136,137].

For example, attention-based methods start from the

Bayes decision theory, similar to Section IV, but do not

use any conditional independence assumption, and simply

factorize the posterior probability p(v|O) based on the

probabilistic chain rule and the attention mechanism, as

follows:

p(v|O) =
∏

j

p(vj |v1:j−1,O)

=
∏

j

p(vj |v1:j−1, cj ;θ
dec), (37)

where v1:j−1 = (v1, . . . , vj−1) is a subsequence of v

representing the word history before word vj . cj is called

a context vector obtained at each token position j, and

is extracted from the input speech feature O based on

the attention mechanism, which we will explain below.

p(vj |v1:j−1, cj ;θ
dec) is computed with a neural network

called a decoder network with its set of model parameters

θ
dec, which can generate a token sequence vj given the

history v1:j−1 and a context vector cj . The decoder

network is often represented as an LSTM model with

hidden state vector zj for each token position j.
To obtain context vector cj in Eq. (37), we first focus

on an input feature conversion based on an encoder

network. The encoder network takes the original speech

feature sequence O as input and converts it to high-

level hidden vector sequence Oenc = (oenc
1 , . . . ,oenc

T ′ ), as

follows:5

Oenc = Enc(O;θenc), (38)

where θ
enc is a set of model parameters in the encoder

network.

We often use bi-directional LSTM (BLSTM) or self-

attention models as an encoder network.

Given Oenc, an attention mechanism produces context

vector cj for each token vj as follows [134]:

cj = Att
(
Oenc, zj−1;θ

att
)
, (39)

where zj−1 is a hidden state vector introduced in the

decoder network. Att(·) is an attention network with a

set of model parameters θ
att, which first computes the

attention weight ζjt ∈ [0, 1] given the encoder output

vector oenc
t and the decoder hidden vector zj−1 obtained

in the previous output time step [134], as follows:

ζjt = f att(oenc
t , zj−1), (40)

5In general, the length of the encoder output sequence T ′ is shorter
than the length of the original sequence T , i.e., T ′ < T due to
subsampling.
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Fig. 9. The attention mechanism to compute the alignment between
input encoder vector oenc

t at frame t and output context vector cj at
token j. ζjt denotes the attention weight. The bold lines correspond to
the higher attention weights and the attention mechanism obtains the
soft alignment between these input and output vectors.

where f att(·) is a function to produce the attention weight,

which can be a dot product or neural network-based oper-

ations with trainable parameters. ζjt satisfies the sum-to-

one condition across the input frames, i.e.,
∑T ′

t=1 ζjt = 1.

Given the attention weight ζjt in Eq. (40), the context

vector cj is obtained as a weighted summation of encoder

output sequence Oenc, i.e.,

cj =
T ′∑

t=1

ζjto
enc
t . (41)

Note that Eq. (41) can perform a conversion between

two values with different time scales (input time t and

output time j) through the soft alignment based on

the weighted summation. For example, Fig. 9 depicts

the attention mechanism based on Eq. (41). The bold

lines correspond to the higher attention weights and the

attention mechanism obtains the soft alignment between

these input and output vectors. This is different from the

alignment process in conventional ASR, which is based

on HMMs, as discussed in Section IV-A2.

The forward computation of the attention-based end-

to-end ASR is processed as follows:

1) Encoder processing: Oenc = Enc(O;θenc)
2) For each j

a) compute cj = Att(Oenc, zj−1;θ
att)

b) obtain p(vj |v1:j−1, cj ;θ
dec).

Figure 10 shows an entire encoder-decoder neural net-

work with an attention mechanism. Note that the history

subsequence v1:j−1 can be obtained from the refer-

ence transcription during training and from prediction

results during decoding. All of these steps are differ-

entiable, and we can estimate the model parameters

θ = {θenc,θatt,θdec} by maximizing the following log-

likelihood, similar to Eq. (30),

θ̂ = argmax
θ

∑

u

log(p(vu|Ou;θ)). (42)

Thus, the attention-based encoder decoder network repre-

sents an entire ASR process with a single neural network,

and can be trained in an end-to-end manner unlike the

o1 o2 o3 o4 ... oT

BLSTM BLSTM BLSTM BLSTM ... BLSTM

o
enc

1
o
enc

2
o
enc

T ′

Attention

LSTM zj−1

cj−1

vj−1

LSTM zj

cj

vj

Decoder

Encoder

Fig. 10. Attention-based encoder decoder network. The attention is
controlled by the decoder LSTM state.

conventional HMM-based ASR system. Alternatively, a

transformer architecture, which is originally proposed in

neural machine translation [99] to replace RNNs with

self-attention networks, has been used as a variant of

attention based methods for ASR [100].

B. Multi-Channel End-to-End ASR

The straightforward extension of this methodology to

far-field speech recognition is to combine all speech

enhancement modules and ASR with a single neural net-

work to enable joint optimization [138,139]. This method

can be regarded as an extension of the joint-training meth-

ods [59,132,133] of multi-channel speech enhancement

and acoustic modeling as discussed in Section IV-B4.

By following Eq. (37), multi-channel end-to-end ASR

directly models the posterior distribution p(v|Y), given

the sequence of multi-channel (STFT) signals Y =
([yT

1,1, . . . ,y
T
1,F ], . . . , [y

T
t,1, . . . ,y

T
t,F ], . . . ):

p(v|Y) =
∏

j

p(vj |v1:j−1,Y) =
∏

j

p(vj |v1:j−1, Ô),

(43)

where

Ô = Feat(Enh(Y; θenh)). (44)

Enh(·) corresponds to the multi-channel enhancement

with a set of parameters θenh and Feat (·) denotes the

standard speech feature extraction to produce an enhanced

speech feature sequence, Ô. Both are introduced in the

joint training of speech enhancement and recognition in

Eq. (36).
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As an instance of the multi-channel enhancement

function, [138] uses BLSTM mask-based beamforming

[18,75], as described in Section III. This model is trained

with an end-to-end ASR objective (cross entropy given

the reference transcriptions vu for utterance u) as follows:

θ̂ = argmax
θ

∑

u

log(p(vu|Yu;θ)), (45)

where the model parameters θ consist of the parameters of

the enhancement, encoder, attention and decoder networks

as,

θ = {θenh,θenc,θatt,θdec}. (46)

Compared with the standard end-to-end ASR training in

Eq. (42), the multi-channel extension can jointly estimate

both ASR model parameters and the enhancement param-

eters θ
enh in an end-to-end manner. Note that this model

can be trained without requiring any parallel data (pairs of

clean and noisy speech data), as described in Section III or

any other intermediate HMM state/phoneme alignments

compared with standard acoustic model training described

in Eq. (34). End-to-end joint training thus allows training

the enhancement parameters with real far-field data, for

which clean reference signals are usually not available.

The only requirement is the availability of the transcrip-

tion of the far-field data, which is always required for

ASR training based on supervised learning.

There are several variants and extensions of multi-

channel end-to-end ASR including

• Attention-based channel/array selection [140,141]

• Incorporation of a dereverberation component [142]6

• Extension to multispeaker ASR [143]

• Extension to target speech extraction [144,145].

Although end-to-end approaches are promising, they do

not reach the performance of current state-of-the-art far-

field ASR systems. The main reason is that these solutions

tend to require larger amounts of training data, which, in

the case of multi-channel far-field recordings, may not

always be available. However, there has been a lot of

progress in end-to-end ASR including extensive investiga-

tions of training methods and architectures [146,147], ro-

bust training based on data augmentation [119], and new

architectures based on the transformer model [100,148].

VI. SUMMARY AND REMAINING CHALLENGES

A. Summary

This paper emphasizes that multi-channel speech en-

hancement is an essential component for far-field ASR,

and provides a comprehensive description of state-of-the-

art enhancement techniques in Section III. The combi-

nation of powerful signal processing with deep learning

significantly boosted the performance, compared to earlier

6This is implemented based on DNN-WPE [56] developed in https:
//github.com/nttcslab-sp/dnn wpe.

signal processing-only solutions. This trend of solving

a problem with signal processing supported by a neural

network is not so often seen in other applications of deep

learning. Consider, for example, computer vision, where

an entire signal processing pipeline has been replaced

with a very deep network. The main reason of this

unique approach in speech enhancement is that well-

established physical models exist, which can be viewed

as regularizers when devising a deep learning solution.

We can thus minimize the size of the neural networks

and can make multi-channel speech enhancement work

robustly with a relatively small amount of training data.

The main focus of the description of the back-end ASR

system in Section IV is on how to make use of deep

learning techniques in ASR acoustic models for the far-

field ASR scenario. This includes techniques like data

augmentation, refinement of supervisions, and adaptation.

Note that, unlike speech enhancement, ASR is not based

on a solid physical model describing human speech

perception and recognition, while at the same time single-

channel data in the order of thousands of hours have

become available also in an academic research setting.

This is why pure deep learning based solutions excel

at ASR. Overall, the fusion of neural network-supported

signal processing in the front-end and the massive use of

deep learning in the back-end has made far-field ASR so

reliable that it entered the consumer market with products

like digital home assistants.

This paper also introduced the new research paradigm

of jointly modeling front-end speech enhancement and

back-end ASR acoustic models in Section IV-B4. Section

V further extended this joint training scheme towards

the emergent end-to-end ASR framework. The underlying

idea of both approaches is to strictly follow the above

established far-field ASR pipeline, but to represent it

with a single neural network so that we can perform

back propagation to train both speech enhancement and

recognition jointly. Currently, joint training and end-to-

end approaches have not yet become as mainstream

as the pipeline approach due to their complex network

architecture and the lack of a sufficient amount of multi-

channel far-field training data. However, we believe that

these approaches have a lot of potential to provide further

breakthroughs in far-field ASR, and we put emphasis

on describing them as our most important on-going and

future research directions.

B. Remaining challenges

The following subsections list remaining challenges

in far-field ASR. For some of those, including voice

activity detection and speaker diarization, there exist well-

established solutions in a clean speech environment, while

they remain to be challenging in far-field ASR conditions.

https://github.com/nttcslab-sp/dnn_wpe
https://github.com/nttcslab-sp/dnn_wpe
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• Voice Activity Detection (VAD) (also called Speech

Activity Detection (SAD)) is an essential technique

to segment continuous audio signals in on-line

streaming ASR, or long audio recordings in off-line

ASR into utterances of manageable length (up to,

say, a dozen seconds). Traditionally, energy-based

VAD or likelihood based solutions [149] have been

used. However, these methods face significant degra-

dation in low SNR conditions. Learning based meth-

ods, especially RNN-based ones, combined with

data augmentation techniques as described in Sec-

tion IV-B1 have become popular [150,151], because

they can detect speech activity regions by non-linear

feature mapping even in the presence of low SNR.

There are also several challenge activities including

OpenSAD7. Further note that VAD-related challenge

activities are also included in the speaker diarization

challenge, see next item.

• Speaker diarization: Speaker diarization can be

regarded as an extension of VAD to multi-speaker

recordings, which provides speaker identities or

speaker cluster assignments for each utterance from

unsegmented audio signals, i.e., it provides infor-

mation about “who speaks when” [152]. Recently,

speaker diarization has received increased attention

because the focus of the ASR research community

is shifting more and more towards recognition of

multi-speaker recordings such as conversations or

meetings, The interest in diarization is boosted by

several challenge activities including DIHARD8 and

CHiME-6.9 There are two main technologies de-

pending on whether single-channel or multi-channel

data is available. When we have multi-channel au-

dio signals, source speaker locations can be es-

timated based on beamforming, and this can in

turn be exploited to provide diarization information

[152,153]. In the single-channel case, people use

speaker embeddings, such as the i-vector [154] or x-

vector [155], to map a speech utterance into a fixed

dimensional vector, and then perform clustering on

those obtained embedding vectors (e.g., agglomera-

tive hierarchical clustering (AHC) [156,157]). VAD

is used as an initial module in the speaker diarization

pipeline to segment the recordings into manageable

utterances. However, most single-channel techniques

cannot explicitly handle regions of speech, where

more than one speaker is active. But such overlap

regions are common in real conversations [4]. A

combination of speech separation, speaker counting,

and diarization based on neural networks [158] and

7https://www.nist.gov/itl/iad/mig/nist-open-speech-activity-detection-
evaluation

8https://coml.lscp.ens.fr/dihard/2018/index.html
9https://chimechallenge.github.io/chime6/

permutation-free neural diarization based on multi-

ple label classification [159] would be a promising

direction to tackle regions of overlapped speech.

• On-line processing: Another challenge of far-field

speech processing is on-line, low-latency process-

ing which is mandatory when used in a spoken

language interface. It also has some benefits in

dynamical environments, when, e.g., moving sources

have to be tracked, see the next bullet in this

list. Speech enhancement techniques often require

to estimate signal statistics across frames, such as

the spatial covariance matrix Φ for beamforming

used in Eq. (20) and the MCLP coefficient matrix

C for dereverberation, Eqs. (12) and (13). If low

latency is required, this statistics computation must

be performed in an on-line manner, often based on

recursive update equations, e.g., by a linear interpo-

lation between previously estimated statistics and the

current observations. Online processing for mask-

based beamforming is discussed in [160,161]. [95]

gives an overview of the development of the Google

Home device and describes several online techniques

[47], especially for dereverberation. [56,58] realizes

online WPE dereverberation with the help of DNN-

based time varying variance estimation.

• Dynamic environments: moving sensors and

sources: Acoustic environments are changing over

time due to nonstationary noise, moving sources

or moving sensors. For example, the participants

recorded in the CHiME-5 data set are moving from

room to room [4], and front-end processing has to

track such moving sources accordingly. In addition,

with wearable microphones and in moving robot

scenarios [162], we should also take moving micro-

phones into consideration. In these situations, on-

line processing as discussed above is necessary to

deal with adaptive estimation of enhancement filters

(beamforming, dereverberation). Recently, there has

been a challenge activity, the LOCATA Challenge

[163], on locating and tracking moving sources.

Although this challenge mainly focuses on acoustic

source localization and not on speech enhancement

and recognition, their designs of dynamic environ-

ments and the defined evaluation metrics for source

tracking would be a good reference for tackling far-

field speech recognition in dynamic environments.

• More natural conversations and spontaneous

speech. Our conversations are often spontaneous,

and speech characteristics are quite variable and

complex. For example, in the dinner party scenarios

of CHiME 5 [4] and the Santa Barbara corpus [164],

we often observe very different speaking durations,

volumes, and speaking styles during the conversa-

tion. Such variable speech characteristics make the
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statistical properties of source signals complex and

renders estimation of speech statistics harder. In

addition, the spoken contents are grammatically less

regular due to filler words, mispronunciation, stam-

mering, etc., which makes ASR quite challenging

from both acoustic and language model perspectives.

Finally, such conversations are challenging in terms

of the data collection and annotation perspectives,

because the preparation of precise transcriptions is

difficult.

• Improving signal extraction with semantic and

syntactic context information: A human’s ability

to track a conversation in acoustically adverse con-

ditions (e.g., in a cocktail party) can in part be

attributed to the use of context information about

the discussion topic, our “world knowledge” and

syntactic constraints we are aware of. Only few

works exist towards utilizing high-level guidance for

the low-level signal extraction tasks. In [165] the

speech separation is improved by feeding back deep

features extracted from an end-to-end ASR system

to cover the long-term dependence of phonetic as-

pects, while sound separation is improved in [166]

by utilizing sound classification results. Exploring

ways to support front-end processing with back-end

knowledge appears to be a promising way to improve

overall system performance.

• Distributed microphone setup: In many applica-

tion scenarios, including smart homes [4,167], wear-

able computing, and human-to-robot communication

[162], distributed microphones can be of an advan-

tage, compared to a single spatially concentrated

microphone array. However, the challenge of dis-

tributed microphones is that their spatial location

is often a priori unknown and may change over

time. Furthermore, the microphone characteristics

can be different, e.g., if both mobile phones and

desktop microphones are part of the network. Finally,

and most importantly, the sampling rates of the

microphones are not synchronized in general. These

properties often break important assumptions made

in conventional front-end processing, and thus stan-

dard beamforming and dereverberation techniques

cannot be straightforwardly applied. However, there

exist several studies to tackle the distributed mi-

crophone setup including [168]–[172] by solving

the synchronization problem to make beamforming

work in this setup. There are also many works

on distributed beamforming, e.g., [173]–[175], to

avoid collecting all signals at a central processing

node. Active microphone (subset) selection instead

of fusing the signals of multiple microphones is

another simple yet effective approach [176,177].

Also, late fusion techniques (acoustic model fusion

[103] or hypothesis fusion [107] in ASR) instead of

signal-level fusion can be a viable alternative thanks

to the relative insensitivity of acoustic models to

synchronization errors.

• Multimodality: A final challenges in far-field speech

recognition is the use of multimodal information in-

cluding videos, accelerometer, biosignals and so on.

Such information would be complementary to audio

signals, be robust against acoustic noise, and thus

the fusion can bring benefits. In particular, audio-

visual speech recognition gains a lot of attention as

the video channel can provide the speaker location

information for steering an acoustic beamformer.

Furthermore, visual features can complement the

audio features for noise robust speech recognition

[178]. However, the visual or other multimodal

data have their own distortions (e.g., brightness and

frame-out issues of the image), and synchronization

across different modalities is also another challenge.

VII. TO PROBE FURTHER

Open-source implementations are available for most of

the described techniques and provide a good starting point

for a more hands-on experience.

A Python implementation of the WPE algorithm de-

scribed in Sec. III-A based on Numpy and Tensorflow is

provided by NaraWPE [179].10 The Matlab implementa-

tion originally used in [21,46] is available as pcode11.

For beamforming as described in Sec. III-B, two dif-

ferent Python implementations are provided. NN-GEV12

focuses on neural network-based mask estimation and

subsequent beamforming while PB-BSS13 focuses on spa-

tial clustering-based Speech Presense Probability (SPP)

estimation. Other useful toolkits implementing derever-

beration and beamforming techniques include the BTK

toolkit14 and Pyroomacoustics [180].15 The latter one also

allows to simulate acoustic scenarios to generate data.

An overview of selected implementations is given in

Table II while databases are listed in Table I. To visualize

the comprehension of the effect of far-field speech and

prospective improvements for several acoustic scenarios,

Fig. 11 depicts the ASR performance transition of the

CHiME and REVERB challenges from the challenge

baseline at the challenge release period, the challenge

best system, and the challenge follow up studies. By

referring to Fig. 11 and corresponding acoustic scenarios

in Table I., we can monitor the prospective improvement

of various far-field ASR problems.

10https://github.com/fgnt/nara wpe
11http://www.kecl.ntt.co.jp/icl/signal/wpe/index.html
12https://github.com/fgnt/nn-gev
13https://github.com/fgnt/pb bss
14https://distantspeechrecognition.sourceforge.io/
15https://github.com/LCAV/pyroomacoustics

https://github.com/fgnt/nara_wpe
http://www.kecl.ntt.co.jp/icl/signal/wpe/index.html
https://github.com/fgnt/nn-gev
https://github.com/fgnt/pb_bss
https://distantspeechrecognition.sourceforge.io/
https://github.com/LCAV/pyroomacoustics
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Fig. 11. The WER transitions of far-field ASR systems based on
the REVERB and CHiME-3/4/5/6 challenge results from their baseline
systems, challenge best systems, and the follow-up studies.

Note that many of these ASR results can be repro-

duced by using publicly available toolkits. For a head-

start on ASR tasks, the Kaldi toolkit [181] provides

several recipes for the listed databases which include

some of the tools discussed above. The CHiME-6 recipe16

for example uses NaraWPE and PB-GSS17 while the

CHiME-3/4 recipe18 includes BeamformIt and NN-GEV.

ESPnet [182] also provides multichannel end-to-end ASR

for the REVERB19 and CHiME-420 data with the help of

DNN-WPE.
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TABLE I
RECENT NOISE ROBUST SPEECH RECOGNITION TASKS.

Task
Vocabulary

size
Amount of

training data
Realism Type of distortions

Number
of mics

Mic-speaker
distance

Ground
truth

ASpIRE [6] 100k N/A Real Reverberation 8/1 N/A N/A

AMI [183] 11k
∼ 107k utt.
(∼ 75 h)

Real
Multi-speaker conversations
Reverberation and noise

8 N/A Headset

CHiME-3/4 [2,3] 5k
8738 utt.
(∼ 18h)

Simu+Real
Nonstationary noise in
four public environments

6/2/1 0.5m
Clean/

close talk

CHiME-5/6 [4] 100k
∼ 80k utt.
(∼ 40h)

Real

Nonstationary noise,
multi-speaker conversations,
reverberation

32
0.5m
to 2m

Binaural
headset

REVERB [1] 5k
7861 utt.
(∼ 15h)

Simu+Real
Reverberation in different
living rooms

8/2/1
0.5m
to 2m

Clean/
headset

TABLE II
TOOLKITS

Name Affiliation Function Interface Back-end License Ref.
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NN-GEV UPB Neural mask-based beamforming Python NumPy, Chainer Custom [74]26
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PyRoomAcoustics EPFL30 Beamforming, RIR generation Python NumPy/C MIT [180]31

BeamformIt ICSI Delay-and-sum beamforming CLI, C++ C/C++ N/A [184]32

HARK HRI Source localization, separation CLI, Python C++ Custom hark.jp

delayed linear prediction,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 18, no. 7, pp. 1717–1731, 2010.

[22] S. Araki, M. Okada, T. Higuchi, A. Ogawa, and T. Nakatani,
“Spatial correlation model based observation vector clustering
and MVDR beamforming for meeting recognition,” in Proc. of

IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2016, pp. 385–389.

[23] B. Wu, K. Li, M. Yang, C.-H. Lee, B. Wu, K. Li, M. Yang, C.-H.
Lee, B. Wu, M. Yang, C.-H. Lee, and K. Li, “A reverberation-
time-aware approach to speech dereverberation based on deep
neural networks,” IEEE Transactions on Audio, Speech, and

Language Processing, vol. 25, no. 1, pp. 102–111, Jan. 2017.

[24] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep
clustering: discriminative embeddings for segmentation and sep-
aration,” in Proc. of IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 31–
35.

[25] Z. Chen, Y. Luo, and N. Mesgarani, “Deep attractor network for
single-microphone speaker separation,” in Proc. of IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(ICASSP), March 2017, pp. 246–250.

[26] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech
separation with utterance-level permutation invariant training of
deep recurrent neural networks,” IEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 25, no. 10, pp.
1901–1913, 2017.

[27] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time-
frequency magnitude masking for speech separation,” IEEE/ACM

Transactions on Audio, Speech, and Language Processing,
vol. PP, pp. 1–1, May 2019.

[28] Y. Avargel and I. Cohen, “On multiplicative transfer function
approximation in the short-time fourier transform domain,” IEEE

Signal Processing Letters, vol. 14, pp. 337–340, 2007.

[29] A. Gilloire and M. Vetterli, “Adaptive filtering in sub-bands
with critical sampling: analysis, experiments, and application
to acoustic echo cancellation,” IEEE Transactions on Signal

Processing, vol. 40, no. 8, pp. 1862–1875, 1992.

[30] R. Talmon, I. Cohen, and S. Gannot, “Convolutive transfer
function generalized sidelobe canceler,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 17, no. 7, pp.
1420–1434, 2009.

[31] X. Li, L. Girin, S. Gannot, and R. Horaud, “Multichannel speech
separation and enhancement using the convolutive transfer func-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 27, no. 3, pp. 645–659, 2019.

[32] “ITU-T recommendation p.862: Perceptual evaluation of speech
quality (PESQ): An objective method for end-to-end speech qual-
ity assessment of narrow-band telephone networks and speech
codecs,” http://www.itu.int/rec/T-REC-P.862/en, 2008.

[33] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted
noisy speech,” in Proc. of IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), March 2010,
pp. 4214–4217.

[34] E. Vincent, R. Gribonval, and C. Févotte, “Performance mea-
surement in blind audio source separation,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 14, no. 4, pp.
1462–1469, 2006.

[35] D. Wang and J. Chen, “Supervised speech separation based on
deep learning: An overview,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 26, no. 10, pp. 1702–
1726, 2018.

[36] H. Buchner, R. Aichner, and W. Kellermann, “TRINICON: a
versatile framework for multichannel blind signal processing,”



JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, DATE? 22

in Proc. of IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), vol. III, 2004, pp. 889–892.

[37] T. Nakatani and K. Kinoshita, “Maximum likelihood convolu-
tional beamformer for simultaneous denoising and dereverber-
ation,” in 27th European Signal Processing Conference (EU-

SIPCO), 2019.

[38] D. T. M. Slock, “Blind fractionally-spaced equalization, perfectre
construction filter-banks and multichannel linear prediction,” in
Proc. of IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), vol. 4, 1994, pp. 585–588.

[39] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile
approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2,
pp. 4–24, April 1988.

[40] S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov,
“A consolidated perspective on multimicrophone speech en-
hancement and source separation,” IEEE Transactions on Audio,

Speech, and Language Processing, vol. 25, no. 4, 2017.

[41] C. Boeddeker, T. Nakatani, K. Kinoshita, and R. Haeb-Umbach,
“Jointly optimal dereverberation and beamforming,” Submitted
to ICASSP, 2020. [Online]. Available: http://arxiv.org/abs/1910.
13707

[42] K. Abed-Meraim and P. Loubaton, “Prediction error method for
second-order blind identification,” IEEE Transactions on Signal

Processing, vol. 45, no. 3, pp. 694–705, 1997.

[43] E. Vincent, T. Virtanen, and S. Gannot, Audio source separation

and speech enhancement. John Wiley & Sons, 2018.

[44] S. Makino, Ed., Audio Source Separation. Springer, 2018.

[45] F. Xiong, B. T. Meyer, N. Moritz, R. Rehr, J. Anemüller, T. Gerk-
mann, S. Doclo, and S. Goetze, “Front-end technologies for
robust asr in reverberant environments—spectral enhancement-
based dereverberation and auditory modulation filterbank fea-
tures,” EURASIP Journal on Advances in Signal Processing, vol.
2015, no. 1, p. 70, 2015.

[46] T. Yoshioka and T. Nakatani, “Generalization of multi-channel
linear prediction methods for blind MIMO impulse response
shortening,” IEEE Transactions on Audio, Speech, and Language

Processing, 2012.

[47] J. Caroselli, I. Shafran, A. Narayanan, and R. Rose, “Adaptive
multichannel dereverberation for automatic speech recognition,”
in Proc. of Annual Conference of the International Speech

Communication Association (Interspeech), 2017.

[48] T. Higuchi, N. Ito, T. Yoshioka, and T. Nakatani, “Robust MVDR
beamforming using time-frequency masks for online/offline asr in
noise,” in Proc. of IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), March 2016, pp. 5210–
5214.

[49] Y. Isik, J. Le Roux, Z. Chen, S. Watanabe, and J. Hershey,
“Single-channel multi-speaker separation using deep clustering,”
in Proc. of Annual Conference of the International Speech

Communication Association (Interspeech), 2016.

[50] L. Griffiths and C. Jim, “An alternative approach to linearly con-
strained adaptive beamforming,” IEEE Transactions on Antennas

and Propagation, vol. 30, no. 1, pp. 27–34, January 1982.

[51] S. Makino, T. Lee, and H. Sawada, Blind speech separation.
Springer, 2007, vol. 615.

[52] G. Naik and W. Wang, Eds., Blind Source Separation. Springer,
2014.

[53] J. Heymann, L. Drude, and R. Haeb-Umbach, “Neural network
based spectral mask estimation for acoustic beamforming,” in
Proc. of IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2016.

[54] X. Xiao, S. Watanabe, H. Erdogan, L. Lu, J. Hershey, M. L.
Seltzer, G. Chen, Y. Zhang, M. Mandel, and D. Yu, “Deep
beamforming networks for multi-channel speech recognition,” in
Proc. of IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), March 2016, pp. 5745–5749.

[55] L. Drude and R. Haeb-Umbach, “Tight integration of spatial
and spectral features for BSS with deep clustering embeddings,”
in Proc. of Annual Conference of the International Speech

Communication Association (Interspeech), 2017.

[56] K. Kinoshita, M. Delcroix, H. Kwon, T. Mori, and T. Nakatani,
“Neural network-based spectrum estimation for online WPE dere-

verberation,” in Proc. of Annual Conference of the International

Speech Communication Association (Interspeech), 2017, pp. 384–
388.

[57] J. Heymann, L. Drude, R. Haeb-Umbach, K. Kinoshita, and
T. Nakatani, “Joint optimization of neural network-based WPE
dereverberation and acoustic model for robust online ASR,” in
Proc. of IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2019, pp. 6655–6659.

[58] ——, “Frame-online DNN-WPE dereverberation,” in Proc.

IWAENC, Tokyo, Japan, September 2018.

[59] J. Heymann, L. Drude, C. Boeddeker, P. Hanebrink, and R. Haeb-
Umbach, “BEAMNET: End-to-end training of a beamformer-
supported multi-channel ASR system,” in Proc. of IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2017.
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[128] C. R. González and Y. S. Abu-Mostafa, “Mismatched training and
test distributions can outperform matched ones,” Neural Comput.,
vol. 27, no. 2, pp. 365–387, Feb. 2015.

[129] H. Liao, “Speaker adaptation of context dependent deep neural
networks,” in Proc. of IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), May 2013, pp.
7947–7951.

[130] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “Kl-divergence regu-
larized deep neural network adaptation for improved large vocab-
ulary speech recognition,” in Proc. of IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP),
May 2013, pp. 7893–7897.

[131] H. Erdogan, T. Hayashi, J. R. Hershey, T. Hori, C. Hori, W.-N.
Hsu, S. Kim, J. Le Roux, Z. Meng, and S. Watanabe, “Multi-
channel speech recognition: LSTMs all the way through,” in
CHiME-4 workshop, 2016, pp. 1–4.

[132] X. Xiao, S. Zhao, D. L. Jones, E. S. Chng, and H. Li, “On
time-frequency mask estimation for MVDR beamforming with
application in robust speech recognition,” in Proc. of IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2017, pp. 3246–3250.

[133] J. Heymann, M. Bacchiani, and T. N. Sainath, “Performance of
mask based statistical beamforming in a smart home scenario,”
in Proc. of IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), April 2018, pp. 6722–6726.

[134] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Proc. of

Advances in neural information processing systems (NeurIPS),
2015, pp. 577–585.

[135] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. of IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp.
4960–4964.

[136] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. of IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2013, pp. 6645–6649.

[137] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based
end-to-end speech recognition using multi-task learning,” in Proc.

of IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2017, pp. 4835–4839.

http://dx.doi.org/10.21437/CHiME.2018-3
http://home.tiscali.nl/ehabets/rir_generator/rir_generator.pdf
http://arxiv.org/abs/1806.02782
http://dx.doi.org/10.21437/Interspeech.2018-2030
http://dx.doi.org/10.21437/Interspeech.2018-2030
http://dx.doi.org/10.21437/Interspeech.2016-1475
https://hal.inria.fr/hal-01588876


JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, DATE? 25

[138] T. Ochiai, S. Watanabe, T. Hori, and J. R. Hershey, “Multichannel
end-to-end speech recognition,” in Proc. of International Confer-

ence on Machine Learning (ICML), 2017.

[139] T. Ochiai, S. Watanabe, T. Hori, J. R. Hershey, and X. Xiao, “Uni-
fied architecture for multichannel end-to-end speech recognition
with neural beamforming,” IEEE Journal of Selected Topics in

Signal Processing, vol. 11, no. 8, pp. 1274–1288, 2017.

[140] S. Braun, D. Neil, J. Anumula, E. Ceolini, and S.-C. Liu, “Multi-
channel attention for end-to-end speech recognition,” in Proc. of

Annual Conference of the International Speech Communication

Association (Interspeech), 2018, pp. 17–21.

[141] X. Wang, R. Li, S. H. Mallidi, T. Hori, S. Watanabe, and
H. Hermansky, “Stream attention-based multi-array end-to-end
speech recognition,” in Proc. of IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 7105–7109.

[142] A. S. Subramanian, X. Wang, M. K. Baskar, S. Watanabe,
T. Taniguchi, D. Tran, and Y. Fujita, “Speech enhancement using
end-to-end speech recognition objectives,” in Proc. of IEEE ASSP

Workshop on Applications of Signal Processing to Audio and

Acoustics. IEEE, 2019.

[143] X. Chang, W. Zhang, Y. Qian, J. L. Roux, and S. Watan-
abe, “MIMO-SPEECH: End-to-end multi-channel multi-speaker
speech recognition,” in Proc. of IEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU), 2019.

[144] M. Delcroix, S. Watanabe, T. Ochiai, K. Kinoshita, S. Karita,
A. Ogawa, and T. Nakatani, “End-to-End SpeakerBeam for
Single Channel Target Speech Recognition,” in Proc. of Annual

Conference of the International Speech Communication Associ-

ation (Interspeech), 2019, pp. 451–455.

[145] P. Denisov and N. T. Vu, “End-to-End Multi-Speaker Speech
Recognition Using Speaker Embeddings and Transfer Learning,”
in Proc. Interspeech 2019, 2019, pp. 4425–4429.

[146] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina et al., “State-
of-the-art speech recognition with sequence-to-sequence models,”
in Proc. of IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2018, pp. 4774–4778.
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