
Far-Field Boundary Conditions for Calculation of

Hole-Drilling Residual Stress Calibration

Coefficients

Antonio Baldi

Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali
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1 Abstract/Introduction

The Hole-Drilling method for residual stress measurement, both in its stan-

dard version based on strain gauge rosettes [1] and its derivative using optical

methods for estimating the displacement field around the hole [2–4], relies on

numerical calibrated coefficients (A and B) to correlate the experimentally ac-

quired strains (displacements) with residual stress components.

To estimate the A and B coefficients, two FEM (Finite Element Method)

computations are required, the former related to a hydrostatic stress state, the

latter to a pure shear case. Both can be implemented using either a semi-

analytical approach (i.e. an axis-symmetric mesh expanded in the tangential

direction using a Fourier series) or a tri-dimensional mesh, usually exploiting

the double symmetry of the problem.
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Whatever the approach selected, the definition of constraints to be applied to

the outer boundary is critical because the hole-drilling method assumes an infi-

nite plate, thus both the usual solutions—fully constrained or free boundaries—

are unable to correctly describe the theoretical situation.

In the following, the problem of correct simulation of the infinite domain

will be discussed and two simple and effective solutions will be proposed.

Keywords: Residual Stress, Hole Drilling, Calibration Coefficients, Finite

Element Analysis, Boundary Conditions
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Figure 1: Comparing the theoretical result (hole through case) and the FEM
solution with either constrained or free external boundary. Shear-loading case.
Displacements computed using a semi-analytical solver (i.e. applying an axis-
symmetric solution expanded in Fourier series), thus, the tangential displace-
ments correspond to θ = π/4, whereas the radial results are related to θ = 0.
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2 Meshing an Infinite Plate

The displacement field around a hole1 can be written as

ur = A (σx + σy) +B [(σx − σy) cos(2θ) + 2τxy sin(2θ)] (1a)

uθ = C [(σx − σy) sin(2θ)− 2τxy cos(2θ)] (1b)

uz = F (σx + σy) +G [(σx − σy) cos(2θ) + 2τxy sin(2θ)] (1c)

where the A, B, C, F and G coefficients depend on material properties (Young’s

module E and the Poisson ratio ν), on geometric parameters (the hole radius a

and the plate thickness t) and on point location (the ratio of the hole radius to

the distance of the current point from the center of the hole ρ and the angular

coordinate θ). In the blind-hole case, theA. . .G coefficients have to be computed

numerically, but a theoretical solution is known for the through-hole case [5]:

A =
a

2E
(1 + ν)ρ B =

a

2E

[
4− (1 + ν)ρ2

]
ρ

C = − a

2E

[
2(1− ν) + (1 + ν)ρ2

]
ρ F = 0 G =

νt

E
ρ2

(2)

thus, it can be used as a reference to check the accuracy of the numerical solu-

tion. Figure 1 compares the FEM-computed radial and tangential displacements

assuming either fully constrained or free external boundaries with (1a) and (1b)

(parameters: σx = −σy = 1 MPa, τxy = 0, E = 1 MPa, a = 6 mm, ν = 0.3,

outer diameter b = 10 a). Observing Figure 1, it is apparent that both solutions

differ significantly from the theoretical one; indeed, the former implies that the

stiffness of the outer region is infinite, whereas the latter lacks its contribution

to overall stiffness (note that the same behavior can also be observed in the

hydrostatic loading case).

1It is worth noting that the same formulas are used in the ring-core method; thus the
following discussion also applies to the evaluation of calibration coefficients for this technique.
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Apparently, a simple solution to this problem exists in literature: it suffices

to add an extra ring of ‘infinite’ elements to the mesh [6]; indeed, the radial

shape function of an infinite element approximates a sequence of the decay form

C1/ζ + C2/ζ
2 + . . . , where ζ is the distance from the focus of the problem,

thus allowing correct description of the behavior of the outer part of the plane.

Using this solution, a finite segment AB is mapped to [A : ∞), where point A

is located midway between the pole of the expansion and B; thus, the location

of the focus is implicitly defined by the radial coordinate of points A and B.
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Figure 2: Comparison of FEM solutions with respect to theoretical behavior
when using infinite elements (shear-loading case). Two formulations were tested:
the first version assumed that the pole of radial expansion was located on the
axis of symmetry while in the second version pole location was adjusted to
have a congruent normalized radius at b. Similar behavior is observed in the
hydrostatic case (results of simulation were better, but an exact match was not
obtained).

Because calibration coefficients (2) vanish as ρ = a/r, two different options
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for the radial location of the pole have been tested (Figure 2): the former (inf.

el. 1) assumes the pole is located on the axis of symmetry (thus ring width

is equal to b), the latter (inf. el. 2) ensures that the value of ζ matches ρ at

the interface (i.e. ring width is b/a). Both solutions outperform the “standard”

ones, however, (as noted in [6]) “miracles should not be expected” and the

solutions computed using this approach, although better than previous ones, do

not exactly match the theoretical behavior.2

3 A Simple Solution: Using a Fit Ring

Schajer3 suggested a simple solution to the problem of the missing portion of

the infinite plane: that of adding a thin ring of high-stiffness elements outside

the “standard” mesh in such a way as to have the same radial stiffness as the

theoretical infinite material in the far-field. The suggested Young’s module is

E1 = Eb/ [t(1 + ν)] whereas ring width has to be estimated numerically.

After calibration, the proposed approach ensures exact estimation of radial

displacement components in the hydrostatic case (A and F terms). However,

the shear case (B, C and G coefficients) requires two degrees of freedom, because

we have to match both the radial and tangential behavior of the plane in the

far field, while we have only one parameter to adjust. It is obviously possible

to obtain exact radial displacements4, but at the expense of the accuracy of

tangential displacements. Here we propose an alternative approach: that of

fitting at the same time the radial and torsional stiffness of the far field material.

To this end we have to adjust both Young’s modulus and the width of the ring.

2Note that infinite elements are not always available in commercial codes.
3Gary S. Schajer, personal communication.
4Actually, quite satisfactory results are obtained using the same width as in the hydrostatic

case.
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Figure 3: Comparison of FEM solutions with respect to theoretical behavior
when using infinite elements, width-only fit-ring and width+E fit-ring. Shear-
loading case. In the inset: a detail of the area near the hole.

3.1 Radial stiffness

Consider a thick disk under internal and external pressure. The radial displace-

ment ur is well known:

ur =
1− ν
E

PiR
2
i − PeR2

e

R2
e −R2

i

r +
1 + ν

E

R2
iR

2
e

r

Pi − Pe
R2
e −R2

i

(3)

with Pi, Pe respectively the internal and external pressure and Ri, Re the

corresponding radii. Calling s and q the internal and external pressure and

c the external radius (the internal being obviously b), (3) becomes

ur =
1− ν
E1

sb2 − qc2

c2 − b2
r +

1 + ν

E1

b2c2

r

s− q
c2 − b2

(4)
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Assuming that the external ring is radially constrained5, q can be estimated

by imposing ur|r=c = 0:

q =
2b2s

(1− ν)c2 + (1 + ν)b2
(5)

Thus, substituting (5) in (4) and setting r = b, we obtain

ur|r=b =
b(c2 − b2)s(1− ν2)

[c2(1− ν) + b2(1 + ν)]E1
(6)

The radial displacement of an infinite plane with a hole of radius b can easily

be computed by taking the limit of (3) when Re goes to infinity and Pe = 0:

lim
Re→∞

ur =
b2s(1 + ν)

rE
(7)

Thus, by evaluating (7) when r = b and posing the result equal to (6), we

get the first constraint to be solved:

b(1 + ν)

E
=

b(c2 − b2)(1− ν2)

[c2(1− ν) + b2(1 + ν)]E1
(8)

Note that (8) depends on two variables: Young’s modulus of ring material

E1 and the outer radius of the ring c.

3.2 Torsional stiffness

The stress distribution around a hole subject to a concentrated couple is given

by Muskhelishvili [7]. Starting from this solution, the displacement field around

5In principle, the ring could be radially free, because load is self-balanced, but this as-
sumption leads to physically inconsistent results (either a negative Young’s modulus or c < b
is obtained)
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a hole with radius b in an infinite plane is

uθ =
M

2πrG
(9)

where M is the concentrated couple for unit thickness and G the shear modulus.

By the superposition principle it is possible to compute the displacement field

in the equivalent ring: assuming that it is constrained tangentially at r = c, the

angular displacement becomes uθ = M(c− r)/ [2πcrG1], thus, the displacement

of the ring when r = b is

uθ|r=b =
(c− b)M
2π b cG1

(10)

We require that the equivalent ring behaves at the internal interface as an

infinite plane, thus equating (10) with (9) estimated at b, we get

cG1 − (c− b)G
b cGG1

= 0 (11)

which constitutes the second constraint to be satisfied.

3.3 Ring Geometry

Solving the system of equations (8) and (11) for E1 and c gives the width and

Young’s Modulus of the ring:

E1 = E
2ν

1 + ν
c = b

1 + ν

1− ν
(12)

The new formulation does not require calibration of the width of ring and is

able to mimic both the radial and torsional behavior of an infinite plate. The

counterpart is the dimension of the ring (assuming ν = 0.3, c ' 1.86 b) which

may affect computational time. Note that the material of the external ring is

actually softer than the original one because ν ≤ 1/2 for isotropic materials.
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Figure 3 compares the theoretical displacement field related to the shear

loading case (both the ring formulations give exact results for the hydrostatic

case) with FEM simulations performed using either infinite elements or the orig-

inal and the new ring formulation. Both rings outperform the infinite element

formulation, with the new one giving slightly better results. Note that they de-

part from the theoretical result for the uθ degree of freedom far from the hole.

This is not a significant problem because we are mainly interested in behavior

in the near field.

4 An Alternative Solution: Precomputed Bound-

ary Conditions

The calibrated-stiffness ring approach grants exact computation of radial dis-

placements for the hydrostatic case and very small deviations of the same quan-

tity in the shear-loading case. This ensures accurate calibration of the hole-

drilling method when using strain gauges. However, this is not enough when

optical methods are used: depending on sensitivity direction, the angular and

out-of-plane displacement components could be involved in computation. The

accuracy of the former, although improved, is still somewhat unsatisfactory,

thus a better solution is required.

Such a solution can be obtained by reconsidering why the fit-ring has been

introduced: it must ensure that stiffness at b matches that of an infinite plane,

i.e. it must ensure that the displacement at b will be the same of the theoretical

plane for a given external load. By reversing the reasoning and considering the

linear stress-strain relation, if a displacement corresponding to the theoretical

one is imposed on boundaries, a stress field corresponding to the theoretical

solution will result inside the plate.
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In the general case (e.g. blind-hole) the exact displacements are unknown,

but if we are far enough from the hole we can assume that the displacements

will be given by (1a)–(1c) by the Saint Venant principle, providing that we scale

the stress level by the ratio of the loaded depth to the thickness of the plate.

Thus, recovering the theoretical solution simply requires prescribing the ur|r=b,

uθ|r=b, uz|r=b resulting from (1) at the external boundary and performing the

simulation6.
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Figure 4: Comparing the theoretical result (hole-through case) and FEM solu-
tion with assigned external displacements (shear-loading case). A similar per-
formance was obtained in the hydrostatic case.

Figure 4 compares the theoretical displacements related to the shear case

(continuous line) with FEM results obtained using the proposed approach. The

agreement is excellent. The same can be stated for the hydrostatic case (not

6Note that if a semi-analytical solution is used (i.e. an axial-symmetric computation ex-
panded in Fourier series), the cos(2θ) and sin(2θ) terms are implicit in the expansion, thus ur
has to be evaluated at θ = 0 whereas uθ has to be computed assuming θ = π/4.
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shown).

5 Conclusions

In this work, implementation of the external boundary conditions for hole-

drilling calibration is discussed and shows that the standard solution (fully con-

strained or free external boundary) may lead to some inaccuracies, in particular

when optical methods are taken into account.

To solve this problem, two solutions are proposed: either by adding an exter-

nal ring, whose stiffness matches the radial and torsional behavior of an infinite

plane, or imposing precomputed displacements at boundary nodes. The former

grants that the system will always behave correctly, but requires a large ring

(thus affecting computational time significantly); the latter ensures exact results

over the full field, providing the Saint Venant principle is valid and the stiffness

of the core does not significantly affect the behavior of the system. Because this

requirement can easily be satisfied, the latter solution should always be pre-

ferred, in particular when optical methods and reverse calibration procedures

are employed to estimate residual stress.
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